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Abstract— Using lessons learned from error control coding, 
and multiple areas of life science, we propose a general 
purpose representation and association machine (GPRAM). 
GPRAM uses a versatile approach with hierarchical 
representation and association structures, each with different 
degrees of vagueness, over-completeness, and deliberate 
variation. GPRAM machines use vague measurements to do a 
quick and rough assessment on a task; then use approximated 
message-passing algorithms to improve assessment; and finally 
selects ways closer to a solution, eventually solving it. We 
illustrate concepts and structures using simple examples.  

Keywords-Intelligent Machine, Error Control Coding, 
General Purpose Systems 

I.  INTRODUCTION  
The Human Brain is a crowning achievement of 

evolution, having evolved for general purposes.  It can guide 
us on our quest to build an intelligent system that integrates 
various types of sensor information and processes them 
intelligently. Most man-made systems are built for special 
purposes. There are two ways to build general purpose 
machines. The first way (for example, modern computer) is 
to find one or few fixed representation and association 
formats, and then show that all of the other formats can be 
obtained by through these formats. The second way is to 
include as many variations as possible, to stay as broad as 
possible, and to move toward more specific format only 
when it is absolutely necessary. We shall call the first way 
the precise approach and the second way the versatile 
approach. Biological systems use the versatile approach to 
explore and benefit from nature without even knowing the 
theories behind the approach’s successes. For example, bats 
use a form of sonar to detect obstacles.  

Focusing on the fact that our brain needs ways to 
represent the outside world and make associations among 
these representations to solve general purpose problems, we 
aim to develop a theory outlining the functions of a general 
purpose representation and association machine (GPRAM) 
using the versatile approach. 

II. LITERATURE REVIEW 
The modern computer was developed in the 1940s to 

meet our need to handle computational tasks which our 
brains are not capable of performing with precision and 
speed. Visionary thoughts from Turing [1] and von Neumann 
[2]  laid the foundation in term of mathematical principle and 

engineering structure. During the same period of time, 
Shannon laid the foundation of the mathematical 
measurement of information [3], but it does not include the 
complexity, one of key issues in our engineering activities. 
Even though many tasks can be done by alternative 
computation in Turing sense, the complexity advantage of 
some non-optimal schemes should never be ignored. Twice 
the difference could mean big to a bio-species. Parts of 
problems could be well beyond what complexity theory can 
tell us. Quantum computer may ultimately solve the 
complexity problem, but bio-systems could have already 
discovered many efficient and smart ways.  

The key lessons learned in error control coding are listed 
as follows. 

1. The performance averaging over randomly 
constructed long codes can approach the Shannon 
limit, so there must exist many good codes [4]. 

2. Many codes randomly constructed based on Tanner 
graphs [6] are near optimal, as long as the graphs 
have few small loops. 

3. Information can be collected and passed around 
between sub-graphs at low complexity [5] [6]. 

4. Decoding process can be implemented iteratively 
[5] and it is very robust to noises and errors on the 
structure as well. 

5. Links between iterative decoding and Pearl’s belief 
algorithm [7], which is one of key tools to process 
information for Bayesian networks, have been 
discovered [8]. 

6. Many problems and solutions, including the Fourier 
transform and Kalman filtering problems, can be 
unified under the low density graph representation 
and iterative decoding [9]. 

7. Operation of code on graph and iterative decoding 
can be divided in three stages: repetition, random 
permutation, and non-linear operation, which is 
very similar to how neurons work [10]. 

Could the best known information transmission/reception 
mechanism help us to understand intelligent information 
representation and processing in a biological brain? In order 
to answer this question, we have spent a considerable 
amount of time to understand long codes [11], codes on 
graphs [12]-[17] and large scale random ad-hoc networks 
[18]. We also learn from life science, which will be 
summarized in Part 2. We have tried from LDPC brain, 
LDPC eye, to internal noisy systems [19]-[21], finally we 
found the foundation to describe as the GPRAM theory. 



III. DEFINATION OF GPRAM 
Before humans discovered scientific principles and 

mathematics, our ancestors used their minds to handle many 
tasks; for example, building homes. In the past, when 
peasants built their homes using mud-bricks, wood, and 
stone, every-effort was made to ensure the soundness of the 
structure. They selected and processed materials to ensure 
that they could estimate the stability of structure as easy as 
possible. Today, these rough estimations by our minds have 
been replaced with rigorous procedures governed by 
scientific principles and mathematical models. On surface, 
there is no reason to go back to vague estimates. However, 
even in a modern architectural design project, the human 
mind plays a key role in many aspects, including the 
consideration of as many factors as possible, making rough 
estimations and decisions, and guiding the general plan. The 
machine we aim to build this time is not to compute with 
more precision, but rather to mimic the human mind’s ability 
to take into consideration as many broad ideas as possible 
and to make an educated decision as quickly as possible. 

Scientists and engineers have been using intuition as a 
guide to their work almost every day. These intuitions are 
often built on their experiences, including their failures and 
unproven guesses. This intuition helps them make quick 
decisions on how to approach and tackle problems. Yet the 
end, they still depend on scientific methods and 
mathematical tools to complete the proof or perform a 
demonstration. It would be nice if we can build a machine to 
perform all these tasks, from quick judgments to definite 
proofs. Most of our previous AI attempts have been aimed 
completing this task in one machine. But the results are not 
very promising, largely due to complexity.  

In our approach, we will split the entire process into two 
parts: the GPRAM part for rough and quick estimates, and 
the scientific and mathematical part for definite proofs. In 
our GPRAM machine, we will mimic part of human brain 
and only focus on quick and rough estimates and decisions. 

Many scientists and mathematicians have been searching 
unsuccessfully for the precise mathematical models and 
coding principles of our brains. Very often, their models do 
not fit well with what we have observed. From our unique 
understanding of nature, we noticed that a machine with 
vague computation and approximation is sufficient to make 
quick estimates at a certain confidence.  Once we accept the 
concepts of vagueness and approximation, many 
discrepancies disappear.    

IV. DESIGN PROCEDURE  
The design procedure is very different from a 

conventional precise approach. In a precise design, we 
precisely define each part of machine; then assemble the 
parts into a machine that performs special tasks. The design 
procedure for our GPRAM design is different, split into two 
stages: group design and individual specification. Firstly, we 
focus on the common features in group designs. It has three 
steps. (1) To stay as broad as possible from the start. (2) To 
determine a goal. (3) To impose rules on the GPRAM 
design. We call Step (3) the specification process. Every 

time, we add a rule, the GPRAM is narrowed down to a 
subset, which has a smaller degree of uncertainty. From 
Steps (1) to (3), we need to stay as vague as possible and 
cover as many tasks as possible. After that, we need to focus 
on special tasks or skills in the individual specification. It 
takes three steps. (4) To define the special tasks or skills. (5) 
To select a learning or training method. (6) To implement 
and test the GPRAM out using existing technology. This 
work focuses on the group design. 

Suppose that we aim to find a machine design that may 
merge features closely matching to the human experiences, 
(i.e., Step 2). Now, we can search for clues in broad fields to 
narrow down to the architecture (i.e., Step 3). During the 
process, we will have learned thing well beyond scientific 
publication and record. At the rest steps, we can use any 
strategy to implement the system, as long as the used 
strategy does not exclude these features. 

The evaluation of the success of a general purpose 
machines are also very different from those for machines 
with specific purposes, particularly during group design 
stage. With the versatile approach, we cannot say which 
individual is good or bad until we specify tasks. For precise 
illustration, we have to specify tasks and the particular 
representation. But, these specifications often mean little. So, 
with our GPRAM approach, we focus on common features. 
The key is whether the architecture can achieve these 
common features. We wish that the reader will also focus on 
these features.  

In the past, simulation and computation provide evidence 
in verifying and optimizing a system. In a GPRAM, once we 
blur the boundaries between representation, association, and 
even structures, what can we compute or simulate? 
Furthermore, at any instant, the GPRAM’s representations 
and associations are changing. Which instant should we 
report? All these point to that we have to use vague design 
(as those in steps 1 to 3), in which we will include as many 
features as possible. As long as we do not exclude any 
features during the remaining steps (Steps 4-6), we should 
have a valid design. 

In summary, GPRAM uses a versatile approach with 
hierarchical representation and association structures, each 
with different degrees of vagueness, over-completeness, and 
deliberate variation. GPRAM machines use vague 
measurements to do a quick and rough assessment on a task; 
then use approximated message-passing algorithms to 
improve assessment; and finally selects ways closer to a 
solution, eventually solving it. Through these actions, 
GPRAM may help us deal with many computationally 
intensive tasks. 

V. SIMPLE ILLUSTRATIONS 

We use a simple example to illustrate GPRAM versatile 
approach. Consider two symbols A and B. A has four 
possible values [0, 1, 2, 3] and B has three possible values 
[0, 1, 2]. Let us define three tasks:  

1) To indicate true (say “1”) if A>1 and B>1;   

2) To indicate “1” if A=0 and B=0;  



3) To indicate “1” if 1≥A  and B>1.  

Let us see four representation cases. The first two are 
obtained by the precision approach. The first one has a 
smaller number of bits in representation and the second one 
is a simple and unique representation. The other two are 
from the versatile approach, in which we use randomly 
constructed and over-complete representation. 

 
Case 1 

Aàx1 x2 
0à 0   0 
1à 0   1 
2à 1   0 
3à 1   1 

Bày1 y2 
0à 0   0 
1à 0   1 
2à 1   0 
 

 

Case 2 
Aàx1 x2 x3 x4 
0à 1   0  0   0 
1à 0   1  0   0 
2à 0   0  1   0 
3à 0   0  0   1 

Bày1 y2 y3 
0à 1   0  0 
1à 0   1  0 
2à 0   0  1 
 

 

Case 3 
Aàx1 x2 x3 x4 
0à 0   0  1   0 
1à 1   0  1   1 
2à 1   0  0   1 
3à 1   1  0   1 

Bày1 y2 y3 
0à 0   0  0 
1à 0   1  1 
2à 1   0  1 
 

 

Case 4 
Aàx1 x2 x3 x4 
0à 0   1  0   0 
1à 1   0  1   1 
2à 1   0  1   1 
3à 1   0  1   1 

Bày1 y2 y3 
0à 0   0  0 
1à 0   0  0 
2à 1   0  1 
 

 

Case 1: Map A=[0,1,2,3] to [x1, x2]=[00,01,10,11], and 
B to [y1, y2]=[00,01,10]. We can perform task 1 easily as

11 yx • , but become more complex for task 2 
( 2121 yyxx +•+ ), and task 3 ( 1211 yxyx •+• ), where • , +  
and over-line denotes AND, OR and NOT logic operations, 
respectively. This precision approach is very efficient, only 
needing 4 bits. But, it is very hard to find using the versatile 
approach when the number of possible values becomes very 
large. 

Case 2: Map A=[0,1,2,3] to [x1, x2, x3, 
x4]=[1000,0100,0010,0001], and B to [y1, y2, y3]=[100, 010, 
001]. We can perform task 2 with one operation ( 11 yx • ), 
but two for the others, task 1 ( 343 )( yxx •+ ) and task 3 

( 31 yx • )). 

Case 3: Map A=[0,1,2,3] to [x1, x2, x3, 
x4]=[0010,1011,1001,1101], and B to [y1, y2, y3]=[000, 011, 
101]. Since x4 duplicates x1, it can be deleted. This is a 
typical. We can perform task 3 with one operation ( 11 yx • ), 
but more operations for task1 ( 13 yx • ) and task 2 ( 31 yx • ). 

Case 4: Map A=[0,1,2,3] to [x1, x2, x3, 
x4]=[0100,1011,1011,1011], and B to [y1, y2, y3] =[000, 000, 
101]. This is a bad case. We do not need to evaluate it for 
any tasks. But, when the number of possible values becomes 
large, the chance of selecting a poor representation becomes 
much lower. 

This example shows that using versatile approach, we 
may discover some simple solutions to perform a specific 
task. Complexity saving for this simple case is minor, but it 
could be significant for complex cases. Two key tasks in 
GPRAM are as follows: (1) to constantly search for simple 
approximation, either saving in the number of cells or saving 
energy or both; (2) to discover new ways. 

VI. EXAMPLES WITH CODING STRUCTURE 
In this section, we use a simple example to illustrate 

how GPRAM brain works. Firstly, we use the Hamming 
(7,4) code to illustrate some basic operations. After that, we 
illustrate growth, and finally extend to hierarchical 
structures. 

A. Illustration using a (7,4) Hamming code 

In Fig. 1, we draw a diagram with 2 sensors (s1,s2), 3 
actions (a1, a2, a3) and one error control code. We select 
Hamming (7,4) code, v1 to v7 denote code-word bits (called 
variable nodes), and C1 to C3, denote parity check bits 
(called check nodes). Edges link to nodes which indicate 
possible structure constraints. For example, C1 specifies 
parity check constraint, i.e., 05321 =⊕⊕⊕ vvvv  where ⊕  
represents XOR operation. The code generator matrix, 
parity check matrix, and code-word table are given in Fig. 2. 
The top graph of Fig. 1 is called Tanner graph which is 
well-known in error control coding and information theory 
literature [[6]]. The structure constraints are used for 
iterative computation of a posterior probability [[6]]. 

 
Figure 1.  A simple illustration of GRPAM brain. 

Let (s1,s2) be light sensors. Naturally, we define 
[s1,s2]=[0,0], [1,1], [1,0] for three message inputs, night, day, 
and seeing a human face, respectively, and actions a1, a2, a3 
for putting GPRAM in sleep mode, wake mode, kicking leg, 
respectively. 



Now let see how this brain works step by step when 
brain connection grows initially. We just use one of many 
possible random selections to illustrate the case. Readers 
can examine others.  

 
Figure 2.  Generator, parity check, and code words of Hamming code 

Step 1: After experiencing a few days and nights, it starts to 
make connections, say s1,s2 to v1 and v2, respectively.  
During nights, its code will limit to those code-words with 
[00] at the first two bits, for example, W8; vice versa for 
days, say W11. Step 2: Since during the night code-word W8 
is activated, v6=1, and at the same time a1 is activated, so 
both v6 and a1 are connected. Similarly, both v7 and a2 are 
connected. During the night, W8, and during the day, W11, 
are activated respectively. Quickly, we notice that W8 also 
results in a2=1. Step 3: Assume a switch box, which can 
switch off the sensor input during the night and switch on 
during the day. We will discuss the switch later. Since the 
day night cycle is important part of sensor input to switch 
box, while blocking the sensor layer will block this critical 
signal, we introduce the third sensor which directly connects 
to the switch box. Step 4: During the day, it finds a new 
experience [s1,s2, v6,v7]=[1001], which can be only 
expressed by a3. It finally finds a code word, W1, which 
does not conflict with pre-arrangement, i.e., connecting a3 to 
v5. Now, it has learnt a new action, as soon as it sees a 
human face during the day, it will kick its leg. 

Four steps are illustrated in Fig. 3 and each step is plotted 
in different colors for clarification. 

During each trial, messages (i.e., some forms of a 
posterior probability) are passing between variable nodes and 
check nodes many times. Those unused variable nodes are 
free to connect other sensors or action nodes based on a 
simple rule: wiring together if firing together. 

How to implement the switch? There are many methods: 
blocking signals from sensor / action layers, injecting noises 
into parity check units, etc. But, a simple way, which has 
been well-known in error control coding, is to inject heavy 
noises into variable nodes, then information will not be able 
to pass between. If this method is implemented, then an 
interesting feature arises, we can introduce dream-like 
actions to train its upper layers.  

 

 
Figure 3.  Final connection for a simple GPRAM system 

Now, we have a product with the following actions. 
During the day, it will switch on to day action; unblock 
variable node layer. When it sees a human face, it will kick 
leg. During night, it will switch off variable layers and go to 
sleep mode. 

B. Growth 

Let us see one more step before we introduce 
hierarchical structures. Once the system can perform simple 
functions, it would not stop. See Fig.4. It grows more 
sensors (say s1 is x6, s2 is x4, and the rest of them are new 
sensors), variable nodes (w1 to w7), parity check nodes (D1 
to D3), and action nodes. It needs to learn more functions. 
For simplicity, we omit actions 1 and 2, and the switch. We 
only focus on day activities. 

 
Figure 4.  Growth and beyond 

We introduce complex cells (CC1 and CC2) here, 
which connect sensors to provide global features for the 
coding layer to make quick guesses. Suppose CC1 connects 
to sensor cells (x2, x4, x5, x6, x9, x12, x15), so it is for round 
feature; CC2 connects (x1, x2, x4, x6, x7, x8), so it is for 
horizontal patch feature. When a human face shows up, CC1 



is on and CC2 is off, which match up to s1 and s2 
descriptions. So, after many experiences, CC1 connects to 
v1 and CC2 to v2. Gradually, old connections between s1 and 
v1 and s2 to v2 will be replaced by these new links. 

With new action units, it starts to refine its actions as 
well. For example, when a3 is on, it also activates a3_1 (to 
open a lower layer for more detail (i.e. local) feature) and at 
the same time activates a3_2 (to change its focus to zoom in 
a region, say x6, x7, x10, x11). After these actions, the visual 
image displayed at x1 to x16 is a detailed feature of the 
region, and it cannot use the higher (C) layer to process, 
instead it uses the lower (D) layer to handle the new task. 
Supposing the detailed image is local feature (1) in Fig.5, 
combining with global feature (a), it knows this combination 
is a human face, not others. Gradually, it refines its kicking 
leg action to only this combination. 

We have to keep in mind even at a lower layer, the 
feature is still vague, but with less degree of uncertainty. 
Some vagueness is a very important strategy in 
representation complexity saving. Once it learns one action 
in vagueness, it learns the action for a set of detailed things. 
These can explain many imaging processing features unique 
to human and also many psychological illusion images. 

  
Figure 5.  Local and global features 

VII. CONCLUSIONS AND DISCUSSION 
This is the first of three parts to introduce our GPRAM 

system. The second part will focus on biological implication 
and the third part will be coding aspect. In the second part, 
we will show many merging features in our machine, closely 
matching human experiences. These include dream-like 
experiences, a decrease in sleeping time as it matures, 
uniqueness, hierarchical efficiency, visual robustness, and 
specification in regions. We will also show how to explain 
visual illusions using our theory.  

This work uses knowledge pieced together from a broad 
spectrum of field. Each knowledge piece is often well known 
within its own field, but one of our key contributions is to 

link them together to build a GPRAM system. Therefore, we 
have written this paper to be as simple as possible so a broad 
field of readers can comprehend it’s meaning. 
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