
General Purpose Representation and Association Machine
Part 1: Introduction and Illustrations

Lei Wei
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816, USA

lei@ee.ucf.edu

Abstract— Using lessons learned from error control coding,
and multiple areas of life science, we propose a general
purpose representation and association machine (GPRAM).
GPRAM uses a versatile approach with hierarchical
representation and association structures, each with different
degrees of vagueness, over-completeness, and deliberate
variation. GPRAM machines use vague measurements to do a
quick and rough assessment on a task; then use approximated
message-passing algorithms to improve assessment; and finally
selects ways closer to a solution, eventually solving it. We
illustrate concepts and structures using simple examples.

Keywords-Intelligent Machine, Error Control Coding,
General Purpose Systems

I. INTRODUCTION
The Human Brain is a crowning achievement of

evolution, having evolved for general purposes. It can guide
us on our quest to build an intelligent system that integrates
various types of sensor information and processes them
intelligently. Most man-made systems are built for special
purposes. There are two ways to build general purpose
machines. The first way (for example, modern computer) is
to find one or few fixed representation and association
formats, and then show that all of the other formats can be
obtained by through these formats. The second way is to
include as many variations as possible, to stay as broad as
possible, and to move toward more specific format only
when it is absolutely necessary. We shall call the first way
the precise approach and the second way the versatile
approach. Biological systems use the versatile approach to
explore and benefit from nature without even knowing the
theories behind the approach’s successes. For example, bats
use a form of sonar to detect obstacles.

Focusing on the fact that our brain needs ways to
represent the outside world and make associations among
these representations to solve general purpose problems, we
aim to develop a theory outlining the functions of a general
purpose representation and association machine (GPRAM)
using the versatile approach.

II. LITERATURE REVIEW
The modern computer was developed in the 1940s to

meet our need to handle computational tasks which our
brains are not capable of performing with precision and
speed. Visionary thoughts from Turing [1] and von Neumann
[2] laid the foundation in term of mathematical principle and

engineering structure. During the same period of time,
Shannon laid the foundation of the mathematical
measurement of information [3], but it does not include the
complexity, one of key issues in our engineering activities.
Even though many tasks can be done by alternative
computation in Turing sense, the complexity advantage of
some non-optimal schemes should never be ignored. Twice
the difference could mean big to a bio-species. Parts of
problems could be well beyond what complexity theory can
tell us. Quantum computer may ultimately solve the
complexity problem, but bio-systems could have already
discovered many efficient and smart ways.

The key lessons learned in error control coding are listed
as follows.

1. The performance averaging over randomly
constructed long codes can approach the Shannon
limit, so there must exist many good codes [4].

2. Many codes randomly constructed based on Tanner
graphs [6] are near optimal, as long as the graphs
have few small loops.

3. Information can be collected and passed around
between sub-graphs at low complexity [5] [6].

4. Decoding process can be implemented iteratively
[5] and it is very robust to noises and errors on the
structure as well.

5. Links between iterative decoding and Pearl’s belief
algorithm [7], which is one of key tools to process
information for Bayesian networks, have been
discovered [8].

6. Many problems and solutions, including the Fourier
transform and Kalman filtering problems, can be
unified under the low density graph representation
and iterative decoding [9].

7. Operation of code on graph and iterative decoding
can be divided in three stages: repetition, random
permutation, and non-linear operation, which is
very similar to how neurons work [10].

Could the best known information transmission/reception
mechanism help us to understand intelligent information
representation and processing in a biological brain? In order
to answer this question, we have spent a considerable
amount of time to understand long codes [11], codes on
graphs [12]-[17] and large scale random ad-hoc networks
[18]. We also learn from life science, which will be
summarized in Part 2. We have tried from LDPC brain,
LDPC eye, to internal noisy systems [19]-[21], finally we
found the foundation to describe as the GPRAM theory.

III. DEFINATION OF GPRAM
Before humans discovered scientific principles and

mathematics, our ancestors used their minds to handle many
tasks; for example, building homes. In the past, when
peasants built their homes using mud-bricks, wood, and
stone, every-effort was made to ensure the soundness of the
structure. They selected and processed materials to ensure
that they could estimate the stability of structure as easy as
possible. Today, these rough estimations by our minds have
been replaced with rigorous procedures governed by
scientific principles and mathematical models. On surface,
there is no reason to go back to vague estimates. However,
even in a modern architectural design project, the human
mind plays a key role in many aspects, including the
consideration of as many factors as possible, making rough
estimations and decisions, and guiding the general plan. The
machine we aim to build this time is not to compute with
more precision, but rather to mimic the human mind’s ability
to take into consideration as many broad ideas as possible
and to make an educated decision as quickly as possible.

Scientists and engineers have been using intuition as a
guide to their work almost every day. These intuitions are
often built on their experiences, including their failures and
unproven guesses. This intuition helps them make quick
decisions on how to approach and tackle problems. Yet the
end, they still depend on scientific methods and
mathematical tools to complete the proof or perform a
demonstration. It would be nice if we can build a machine to
perform all these tasks, from quick judgments to definite
proofs. Most of our previous AI attempts have been aimed
completing this task in one machine. But the results are not
very promising, largely due to complexity.

In our approach, we will split the entire process into two
parts: the GPRAM part for rough and quick estimates, and
the scientific and mathematical part for definite proofs. In
our GPRAM machine, we will mimic part of human brain
and only focus on quick and rough estimates and decisions.

Many scientists and mathematicians have been searching
unsuccessfully for the precise mathematical models and
coding principles of our brains. Very often, their models do
not fit well with what we have observed. From our unique
understanding of nature, we noticed that a machine with
vague computation and approximation is sufficient to make
quick estimates at a certain confidence. Once we accept the
concepts of vagueness and approximation, many
discrepancies disappear.

IV. DESIGN PROCEDURE
The design procedure is very different from a

conventional precise approach. In a precise design, we
precisely define each part of machine; then assemble the
parts into a machine that performs special tasks. The design
procedure for our GPRAM design is different, split into two
stages: group design and individual specification. Firstly, we
focus on the common features in group designs. It has three
steps. (1) To stay as broad as possible from the start. (2) To
determine a goal. (3) To impose rules on the GPRAM
design. We call Step (3) the specification process. Every

time, we add a rule, the GPRAM is narrowed down to a
subset, which has a smaller degree of uncertainty. From
Steps (1) to (3), we need to stay as vague as possible and
cover as many tasks as possible. After that, we need to focus
on special tasks or skills in the individual specification. It
takes three steps. (4) To define the special tasks or skills. (5)
To select a learning or training method. (6) To implement
and test the GPRAM out using existing technology. This
work focuses on the group design.

Suppose that we aim to find a machine design that may
merge features closely matching to the human experiences,
(i.e., Step 2). Now, we can search for clues in broad fields to
narrow down to the architecture (i.e., Step 3). During the
process, we will have learned thing well beyond scientific
publication and record. At the rest steps, we can use any
strategy to implement the system, as long as the used
strategy does not exclude these features.

The evaluation of the success of a general purpose
machines are also very different from those for machines
with specific purposes, particularly during group design
stage. With the versatile approach, we cannot say which
individual is good or bad until we specify tasks. For precise
illustration, we have to specify tasks and the particular
representation. But, these specifications often mean little. So,
with our GPRAM approach, we focus on common features.
The key is whether the architecture can achieve these
common features. We wish that the reader will also focus on
these features.

In the past, simulation and computation provide evidence
in verifying and optimizing a system. In a GPRAM, once we
blur the boundaries between representation, association, and
even structures, what can we compute or simulate?
Furthermore, at any instant, the GPRAM’s representations
and associations are changing. Which instant should we
report? All these point to that we have to use vague design
(as those in steps 1 to 3), in which we will include as many
features as possible. As long as we do not exclude any
features during the remaining steps (Steps 4-6), we should
have a valid design.

In summary, GPRAM uses a versatile approach with
hierarchical representation and association structures, each
with different degrees of vagueness, over-completeness, and
deliberate variation. GPRAM machines use vague
measurements to do a quick and rough assessment on a task;
then use approximated message-passing algorithms to
improve assessment; and finally selects ways closer to a
solution, eventually solving it. Through these actions,
GPRAM may help us deal with many computationally
intensive tasks.

V. SIMPLE ILLUSTRATIONS

We use a simple example to illustrate GPRAM versatile
approach. Consider two symbols A and B. A has four
possible values [0, 1, 2, 3] and B has three possible values
[0, 1, 2]. Let us define three tasks:

1) To indicate true (say “1”) if A>1 and B>1;

2) To indicate “1” if A=0 and B=0;

3) To indicate “1” if 1≥A and B>1.

Let us see four representation cases. The first two are
obtained by the precision approach. The first one has a
smaller number of bits in representation and the second one
is a simple and unique representation. The other two are
from the versatile approach, in which we use randomly
constructed and over-complete representation.

Case 1

Aàx1 x2
0à 0 0
1à 0 1
2à 1 0
3à 1 1

Bày1 y2
0à 0 0
1à 0 1
2à 1 0

Case 2
Aàx1 x2 x3 x4
0à 1 0 0 0
1à 0 1 0 0
2à 0 0 1 0
3à 0 0 0 1

Bày1 y2 y3
0à 1 0 0
1à 0 1 0
2à 0 0 1

Case 3
Aàx1 x2 x3 x4
0à 0 0 1 0
1à 1 0 1 1
2à 1 0 0 1
3à 1 1 0 1

Bày1 y2 y3
0à 0 0 0
1à 0 1 1
2à 1 0 1

Case 4
Aàx1 x2 x3 x4
0à 0 1 0 0
1à 1 0 1 1
2à 1 0 1 1
3à 1 0 1 1

Bày1 y2 y3
0à 0 0 0
1à 0 0 0
2à 1 0 1

Case 1: Map A=[0,1,2,3] to [x1, x2]=[00,01,10,11], and
B to [y1, y2]=[00,01,10]. We can perform task 1 easily as

11 yx • , but become more complex for task 2
(2121 yyxx +•+), and task 3 (1211 yxyx •+•), where • , +
and over-line denotes AND, OR and NOT logic operations,
respectively. This precision approach is very efficient, only
needing 4 bits. But, it is very hard to find using the versatile
approach when the number of possible values becomes very
large.

Case 2: Map A=[0,1,2,3] to [x1, x2, x3,
x4]=[1000,0100,0010,0001], and B to [y1, y2, y3]=[100, 010,
001]. We can perform task 2 with one operation (11 yx •),
but two for the others, task 1 (343)(yxx •+) and task 3

(31 yx •)).

Case 3: Map A=[0,1,2,3] to [x1, x2, x3,
x4]=[0010,1011,1001,1101], and B to [y1, y2, y3]=[000, 011,
101]. Since x4 duplicates x1, it can be deleted. This is a
typical. We can perform task 3 with one operation (11 yx •),
but more operations for task1 (13 yx •) and task 2 (31 yx •).

Case 4: Map A=[0,1,2,3] to [x1, x2, x3,
x4]=[0100,1011,1011,1011], and B to [y1, y2, y3] =[000, 000,
101]. This is a bad case. We do not need to evaluate it for
any tasks. But, when the number of possible values becomes
large, the chance of selecting a poor representation becomes
much lower.

This example shows that using versatile approach, we
may discover some simple solutions to perform a specific
task. Complexity saving for this simple case is minor, but it
could be significant for complex cases. Two key tasks in
GPRAM are as follows: (1) to constantly search for simple
approximation, either saving in the number of cells or saving
energy or both; (2) to discover new ways.

VI. EXAMPLES WITH CODING STRUCTURE
In this section, we use a simple example to illustrate

how GPRAM brain works. Firstly, we use the Hamming
(7,4) code to illustrate some basic operations. After that, we
illustrate growth, and finally extend to hierarchical
structures.

A. Illustration using a (7,4) Hamming code

In Fig. 1, we draw a diagram with 2 sensors (s1,s2), 3
actions (a1, a2, a3) and one error control code. We select
Hamming (7,4) code, v1 to v7 denote code-word bits (called
variable nodes), and C1 to C3, denote parity check bits
(called check nodes). Edges link to nodes which indicate
possible structure constraints. For example, C1 specifies
parity check constraint, i.e., 05321 =⊕⊕⊕ vvvv where ⊕
represents XOR operation. The code generator matrix,
parity check matrix, and code-word table are given in Fig. 2.
The top graph of Fig. 1 is called Tanner graph which is
well-known in error control coding and information theory
literature [[6]]. The structure constraints are used for
iterative computation of a posterior probability [[6]].

Figure 1. A simple illustration of GRPAM brain.

Let (s1,s2) be light sensors. Naturally, we define
[s1,s2]=[0,0], [1,1], [1,0] for three message inputs, night, day,
and seeing a human face, respectively, and actions a1, a2, a3
for putting GPRAM in sleep mode, wake mode, kicking leg,
respectively.

Now let see how this brain works step by step when
brain connection grows initially. We just use one of many
possible random selections to illustrate the case. Readers
can examine others.

Figure 2. Generator, parity check, and code words of Hamming code

Step 1: After experiencing a few days and nights, it starts to
make connections, say s1,s2 to v1 and v2, respectively.
During nights, its code will limit to those code-words with
[00] at the first two bits, for example, W8; vice versa for
days, say W11. Step 2: Since during the night code-word W8
is activated, v6=1, and at the same time a1 is activated, so
both v6 and a1 are connected. Similarly, both v7 and a2 are
connected. During the night, W8, and during the day, W11,
are activated respectively. Quickly, we notice that W8 also
results in a2=1. Step 3: Assume a switch box, which can
switch off the sensor input during the night and switch on
during the day. We will discuss the switch later. Since the
day night cycle is important part of sensor input to switch
box, while blocking the sensor layer will block this critical
signal, we introduce the third sensor which directly connects
to the switch box. Step 4: During the day, it finds a new
experience [s1,s2, v6,v7]=[1001], which can be only
expressed by a3. It finally finds a code word, W1, which
does not conflict with pre-arrangement, i.e., connecting a3 to
v5. Now, it has learnt a new action, as soon as it sees a
human face during the day, it will kick its leg.

Four steps are illustrated in Fig. 3 and each step is plotted
in different colors for clarification.

During each trial, messages (i.e., some forms of a
posterior probability) are passing between variable nodes and
check nodes many times. Those unused variable nodes are
free to connect other sensors or action nodes based on a
simple rule: wiring together if firing together.

How to implement the switch? There are many methods:
blocking signals from sensor / action layers, injecting noises
into parity check units, etc. But, a simple way, which has
been well-known in error control coding, is to inject heavy
noises into variable nodes, then information will not be able
to pass between. If this method is implemented, then an
interesting feature arises, we can introduce dream-like
actions to train its upper layers.

Figure 3. Final connection for a simple GPRAM system

Now, we have a product with the following actions.
During the day, it will switch on to day action; unblock
variable node layer. When it sees a human face, it will kick
leg. During night, it will switch off variable layers and go to
sleep mode.

B. Growth

Let us see one more step before we introduce
hierarchical structures. Once the system can perform simple
functions, it would not stop. See Fig.4. It grows more
sensors (say s1 is x6, s2 is x4, and the rest of them are new
sensors), variable nodes (w1 to w7), parity check nodes (D1
to D3), and action nodes. It needs to learn more functions.
For simplicity, we omit actions 1 and 2, and the switch. We
only focus on day activities.

Figure 4. Growth and beyond

We introduce complex cells (CC1 and CC2) here,
which connect sensors to provide global features for the
coding layer to make quick guesses. Suppose CC1 connects
to sensor cells (x2, x4, x5, x6, x9, x12, x15), so it is for round
feature; CC2 connects (x1, x2, x4, x6, x7, x8), so it is for
horizontal patch feature. When a human face shows up, CC1

is on and CC2 is off, which match up to s1 and s2
descriptions. So, after many experiences, CC1 connects to
v1 and CC2 to v2. Gradually, old connections between s1 and
v1 and s2 to v2 will be replaced by these new links.

With new action units, it starts to refine its actions as
well. For example, when a3 is on, it also activates a3_1 (to
open a lower layer for more detail (i.e. local) feature) and at
the same time activates a3_2 (to change its focus to zoom in
a region, say x6, x7, x10, x11). After these actions, the visual
image displayed at x1 to x16 is a detailed feature of the
region, and it cannot use the higher (C) layer to process,
instead it uses the lower (D) layer to handle the new task.
Supposing the detailed image is local feature (1) in Fig.5,
combining with global feature (a), it knows this combination
is a human face, not others. Gradually, it refines its kicking
leg action to only this combination.

We have to keep in mind even at a lower layer, the
feature is still vague, but with less degree of uncertainty.
Some vagueness is a very important strategy in
representation complexity saving. Once it learns one action
in vagueness, it learns the action for a set of detailed things.
These can explain many imaging processing features unique
to human and also many psychological illusion images.

Figure 5. Local and global features

VII. CONCLUSIONS AND DISCUSSION
This is the first of three parts to introduce our GPRAM

system. The second part will focus on biological implication
and the third part will be coding aspect. In the second part,
we will show many merging features in our machine, closely
matching human experiences. These include dream-like
experiences, a decrease in sleeping time as it matures,
uniqueness, hierarchical efficiency, visual robustness, and
specification in regions. We will also show how to explain
visual illusions using our theory.

This work uses knowledge pieced together from a broad
spectrum of field. Each knowledge piece is often well known
within its own field, but one of our key contributions is to

link them together to build a GPRAM system. Therefore, we
have written this paper to be as simple as possible so a broad
field of readers can comprehend it’s meaning.

REFERENCES
[1] A.M. Turing "On Computable Numbers, with an Application to the

Entscheidungsproblem", "On Computable Numbers, with an
Application to the Entscheidungsproblem: A correction", Proceedings
of the London Mathematical Society, 2 42: 230-65. 1937, and 2 43:
544-6, 1937, respectively.

[2] von Neumann, J. , The computer and the brain, Yale University
Press, USA, 2nd edition, (2000)

[3] C. E. Shannon, “A mathematical theory of communication”, Bell
System Technical Journal, (1948) 379-423, July, 623-656, October.

[4] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, ``Near Shannon limit
error-correcting coding and decoding: Turbo codes,'' IEEE Int. Conf.
Commun. (ICC), Geneva, Switzerland, 1993, pp. 1064-1070.

[6] R. M. Tanner, ``A recursive approach to low complexity codes,''
IEEE Trans. Inform. Theory, Vol. 27, pp.533-547, Sept. 1981.

[7] Pearl, J. : Probabilistic Reasoning in Intelligent Systems, 2nd Ed.
San Francisco, CA, USA, Kaufmann, (1988).

[8] R. J. McEliece, D. J. C. MacKay, Jung-Fu Cheng, “Turbo decoding
as an instance of Pearl's ``belief propagation algorithm,'' IEEE JASC
Volume: 16 Issue: 2 , Feb. 1998, Page(s): 140 -152.

[9] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inform. Theory, Vol. 47,
pp.498-519, Feb. 2001.

[10] G. D. Forney, Jr., ``Codes on graphs: normal realization,'' IEEE
Trans. Inform. Theory, Vol. 47, pp. 520-548, Feb. 2001.

[11] L. Wei and H.QI, ``Near Optimal Limited Search Decoding on
ISI/CDMA channels and decoding of long convolutional codes,''
IEEE Trans. on Inform. Theory, Vol 46-4, July 2000, pp.1459 -1482.

[12] L. Wei, ``High Performance Iterative Viterbi Algorithm for
Conventional Serial Concatenated Systems,'' IEEE Trans. on
Information Theory, Vol. 48, July 2002, pp. 1759-1771.

[13] Q. Wang, L. Wei and R. A. Kennedy ``Iterative Viterbi Decoding,
Trellis Shaping and Multilevel Structure for High-Rate Concatenated
TCM,'' IEEE Trans on Comm., Vol. 50, Jan. 2002, pp.48-55.

[14] L. Wei, “Several Properties of Short LDPC Codes,” IEEE Trans. on
Communications, Vol. 52, May 2004, pp.721-728.

[15] L. Wei, “Iterative Viterbi Algorithm: Implementation Issues,” IEEE
Trans on Wireless Comm., Vol. 3, March 2004, pp. 382 - 386.

[16] Q. Wang* and L. Wei, “Iterative Viterbi Algorithm for Concatenated
Multi-dimensional TCM,” IEEE Trans. on Comm, Vol. 50, Jan. 2002,
pp. 12-15.

[17] Q. Wang* and L. Wei, “Graph-Based Iterative Decoding Algorithms
for Parity-Concatenated Trellis Codes,” IEEE Trans. on Information
Theory, Vol. 47, pp.1062-1074, March 2001.

[18] L. Wei, “Connectivity Reliability of Large Scale Random Ad Hoc
Networks”, Procs of MILCOM 2003, Boston, USA, October 13-16.

[19] L. Wei, “Robustness of LDPC Codes and Internal Noisy Systems”,
41th Annual Allerton Conference on Communication, Control, and
Computing, Allerton House, Illinois , USA October 2-4, 2003.

[20] L. Wei, “Biologically Inspired Statistical Matched Filter”, IEEE ICC,
Seoul, Korea, May 16-20, 2005.

[21] L. Wei, “Biologically Inspired Amorphous Communications”, IEEE
ISIT, Adelaide, Australia, Sept 3-10, 2005

	I. Introduction
	II. Literature review
	III. Defination of GPRAM
	IV. Design Procedure
	V. Simple Illustrations
	VI. Examples with Coding Structure
	A. Illustration using a (7,4) Hamming code
	B. Growth

	VII. Conclusions and Discussion
	References

