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Abstract— Using lessons learned from error control coding, 
and multiple areas of life science, we propose a general 
purpose representation and association machine (GPRAM). In 
this part of paper, we illustrate our methodology, four 
principles, and our understanding of intelligence. We then 
introduce hierarchical structure and reasons to be vagueness, 
overcompleteness, and deliberate variation. After that, we 
show possible features and how to explain some visual 
illusions. Lastly, we illustrate a possible vague computational 
architecture to perform quick and rough estimation for 
general purpose. 
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I.  REASON TO USE OUR METHOD 

Over the last 50 years, we have collected large 
amounts of information about the brain. Now, we need 
engineers who aim to build some aspects of brain to put 
these back into one product, i.e., selecting carefully, and 
then connecting dots. GPRAM is one of these trials, but our 
approach is unique. In front of mountains of information, we 
noted that this rich information provides us with a solid 
basis and lots of clues, but it also blinds us to the principles 
and underlying truths. So, we should stand at a position 
close enough to see a vague picture, but at a distance 
enough to not be buried in the details. Distance allows me 
avoid being influenced by current views and thinking, so we 
can build up a structure based on our principles.  

How to deal with the flood of information in the neural 
science field? In the review article [1], Fox and Raichle 
made the following statement. “Task-related increases in 
neuronal metabolism are usually small (<5%) when 
compared with this large resting energy consumption. 
Therefore, most of our knowledge about brain function 
comes from studying a minor component of total brain 
activity.” In a book review, “A neurocomputational 
jeremiad,” appeared in the October 2009 issue of Nature 
Neuroscience, it pointed out that one of key ingredients 
missing in neuroscience researches is the architecture of 
bio-brains. Our GPRAM machine covers parts of brain 
functions which we do not understand yet. So it is a good 
starting point. 

As trained engineers, we always believe that if a theory 
is correct, then we must be able to build something and gain 
benefits from it. Of course, it often takes time, effort and 
resources to build a realistic thing that we can touch and see. 
It is often beyond the capability of a single person, even a 
group of people. But, one thing that each of us can do is to 
think about it, i.e., using our imagination and logical 
reasoning to paint a design picture. When a theory is wrong, 
evidence against it will appear, so we modify our theory to 
fit in the new evidence. A GPRAM prototype sets up a 
realistic goal. During the process we can learn much more 
on how to construct a general purpose machine and on how 
to represent and process massive amount information 
efficiently. 

II. FOUR PRINCIPLES 

A. Thoughts lead to four principles  

When the bio-system started billions of years ago, it has no 
idea which tasks they would encounter later. If our GPRAM 
does not know which tasks need to be solved, then how do 
we know which representation or association is good or bad? 
If we cannot determine which one needs to be eliminated, 
then we need to search over all orders, at least as many as 
possible. This is often impractical. The total number of 
permutations for 50 ``things'' is 641004.3 × . Very few tools 
can handle this task. One way to solve the problem is to 
mass duplicate the machines randomly, like bio-systems. 
Let them spread randomly out around the world. Each 
represents the subset of “things” that it has experienced and 
searches for some possible orders. Three points need to be 
considered. (a) Each individual way of representation and 
association must be randomized, so we can avoid any blind 
spot due to the way we construct the machine. (b) The 
machines must be able to communicate with each other in 
order to reduce the possibility of repeating previous 
searches. (c) Experiences gained from ``things'' in the 
outside world are important to guide them to search orders 
[2]. But, many rules in nature could be hidden from their 
obvious appearances. We must build a machine that can 
search for orders that may be totally irrelevant or even 
contradict the obvious appearances.  



B. Four principles  

Principle 1: Split the information processing part of 
GPRAM into two parts: the inner and the outer parts. The 
outer part will engage interactions between inside and 
outside; the influence of the outside world is unavoidable. 
The inner part needs to preserve a certain degree of 
possibility to reject the influence of the outside world. 

Principle 2: Treat each ``thing'' in the outside world as 
one of many samples of its representations and freely 
associate those representations with little or no influence 
from the outside world. 

Principle 3: Communications between individuals are 
essential for an efficient and effective GPRAM design. 

Principle 4: It must have deliberate variation 
capabilities in units, signals, structures and functionalities, 
as well as the ability to maintain its stability. 

In the past, people constantly asked me the real 
meaning of these four principles. Instead of explaining them, 
why not leave some room for readers to guess them out? We 
have used these principles to guide us for conceptual design 
of GPRAM system well beyond what in this paper. Aimed 
with principles, we reviewed over more than 10 different 
fields and visited many life science research labs across 
broad fields over many years.  

C. Our understanding of intelligence  

From the evolution of life on the earth, from our 
behaviors in stock markets, and from four GPRAM 
principles, we could extend and modify Barlow's definition 
on intelligence (“a good guess” [3] [4]) as 
follows iondisseminat
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Looking at the 5th example in Section V GPRAM starts this 
action at the fundamental level. 

III. LITERATURE REVIEW OF LIFE SCIENCE 

To build an intelligent machine we first pay special 
attentions to what bio-brains (including kids and animals) 
can do naturally, not those difficult activities which need a 
lot of training, and not even languages.  

Unlike many existing approaches in biology and brain 
researches, here we need to examine the biological 
phenomena following the GPRAM principles. Our 
examinations include (1) hyperacuity in human visual 
systems, (2) our preference of music and abstract arts, (3) 
our passions for hobbies, (4) our behaviors in stock markets, 
(5) facts and lessons learned in our life evolution on the 
earth. These questions helped us to guide direction and 
interact with life science communities. 

Over the last several years, we have been working on 
how hyper-acuity works in human visual systems [5]-[7]. 

This was a testing case for us to learn the methods in life 
sciences. We selected a simplest task in the human visual 
system, the hyper-acuity capability. In [7], we showed how 
to construct ideal system for various realistic environments. 
In order to differentiate two separation distances differed by 
1/10 to 1/30th of the size of photo-receptor under general 
moving environments, we need a massive number of 
templates for very small region of uncertainty.  For 
example, 7776 templates to deal with a speed up to 2 
degree/s stimulus movement with randomly selected 
direction and 9 by 9 min position uncertainty region. This is 
for two simple dots only. The human visual system can 
handle various hyper-acuity tasks under very dynamic 
environments, yet its performance closely approach to 
various ideal observers, which each is optimized to a 
particular setting. It seems the visual system has used a 
super approximated template which is approximated as the 
superposition of many ideal templates. It may tune toward a 
particular template smoothly and slowly when it is exposed 
to some artificially designed stimuli intensively.  

To understand general principles and establish a broad 
picture, it is not sufficient to read scientific papers from 
journals or books. The easiest and most effective way is to 
walk into their labs and talk to them, often students, directly, 
with questions in mind. Wisdoms often stand out clearly and 
sharply in unexpected conversations. This is how we connect 
one of important dots, the role of music signals.  

We had been struggling to find a signal base in our 
GPRAM to make association with those abstract 
representations that may involve in primitive planning skills 
in animals and protohuman beings. We were puzzling 
birding singing and human preference of music and dancing. 
One day we had a discussion on roving attention [8]. 
Suddenly, a clear picture merged that we could use music-
like signals as a base for primitive planning and attention. 
Suddenly, evidences supporting this thought stood out from 
many places, for example, the behaviors of tits [10], other 
animals [11], and the deaf boy Joseph in [9]. In briefs, the 
better singers of tits had better winter dominance position, 
survived better, and had a higher individual lifetime 
reproductive success. “Neither winter dominance position 
nor song was related to size (wing length, tarso-metatarsus 
length, weight)” [10]. If we will build a GPRAM brain for a 
tit, then we have a very simple and straight-forward answer. 
The GPRAM tit uses singing songs to enhance its capability, 
i.e., use the mind-mouth-ear-mind loop to make its music-
like signal base more coherent, longer strings, more 
variations, so it can better predict the future.  

Now let us summarize other key lessons learned from 
bio-systems. 

[Blurring a dot in order to see it clear, [5]-[7]] In order 
to achieve hyperacuity, our eye blurs a tiny dot stimulus. If 
our cortex uses this blurred image to work out a result far 
better than sharp one, then its focus does not need to be 
improved. Furthermore, prepared in blurred could easily 
handle head and eye movements. When we use precision 



approach, we wish each part to be as optimal as possible. 
Optimizing one part may miss out opportunity to discover 
smart ways to use non-optimizing parts for a better and 
efficient overall result. Versatile approach will search for 
many possible combinations for a better overall result. 

[Over-complete and sparse coding: [12] [13]] Olshausen 
and Field showed over-complete templates lead to sparse 
neural activities.  

[STDP rule: [14]] If we apply STDP rule, it leads to 
discourage of small loops in code structure and implement a 
posterior computation. We will show this in future. 

[Early stage development:] One of key ingredients is the 
early development of each part. 

[Life evolution:] Up to 2 millions of years ago, rapid 
environment changes have challenged all species; 
particularly developing better brain structure as well as size 
to accommodate the need for survives. Over the last three 
hundreds of years, it is not the natural event, but our own 
motivation has led us to the industry revolution. Is this due to 
our unpredictable and deliberately random nature in our 
mind, or in Mr. Soros’s term, “reflexivity” acting as a 
perturbation force to drive us out of the equilibrium and 
entered to industry revolution? 

Remarks: We just list a few key items here and mention 
the functions which are essential to our GPRAM design. 
Each strategy discovered by nature could have many 
purposes, and for each purpose, nature could discover many 
solutions simultaneously using the versatile approach. For 
example, nature could have found many methods to perform 
memory. We probably know very little about these methods.  

IV. HIERARCHICAL STRUCTURE OF A GPRAM SYSTEM 
Now, following the example system in the first part of 

this paper, we purpose a hierarchical structure (well beyond 
[2]) using error control coding and iterative decoding.  

From the higher (i.e., more vague) layer (illustrated with 
thick lines) to the lower (i.e., more accurate) layer (illustrated 
in thin lines), each is implemented with different degree of 
vague, deliberately variant to each other, and over-complete 
representation and association. Very often each layer has 
multiple sub-layers, and the boundaries among these layers 
and sub-layers are often not clearly defined. The sensor layer 
splits into sensor neural layer, which aims to reduce the 
redundancy in the sensor information, simple cell layer, 
which focuses on local features for accurate guesses and 
actions, complex cell layer which focuses on global features 
for coarse and quick guesses and action. 

During the operation time, the GPRAM take sensor 
inputs, decide actions, and examine outcome of actions from 
sensor inputs. To achieve robustness, it will stay at higher 
layers. To achieve fineness, it will go into lower layers. As 
soon as it decides to go into a next lower layer, only those 
sensor and action units within the control of the current layer 
will be activated. Others are excluded.  

Consider a GPRAM sees a scene of a man with 
something in his hand. If the GPRAM decides that the scene 

is safe, then all it needs to do is to have a rough guess of 
what is meant by the man’s hand gesture. For example, 
“waving his hand” means “say hello”, “pointing to 
somewhere” means “see this”, etc. Only when the GPRAM 
wants to examine possible threat, it will then zoom in its 
focuses to “what is in the man’s hand?” These kinds of 
actions are very efficient, but could miss opportunities.  

 

 
Figure 1.  Illustration of hierarchical structures. 

Let us define hierarchical structures in coding parts as 
structure. Then, we can define the “thinking” action as 
message-passing between different parts inside its existing 
structure (i.e., connections). The decision action is defined as 
converging to a code word. Once it has a satisfied outcome, 
it will significantly modify its structure. During thinking, it 
will slightly modify its structure a little at a time. Many 
methods (in AI) can be used for structure learning. 

Many natural properties will be examined later on. Here, 
let us examine reasons to be vague using simple examples in 
the next section.  

V. REASONS TO USE VAGUE REPRSENTATION AND 
ASSOCIATION 

We use several simple examples to illustrate the reasons 
to stay at vagueness, overcompleteness, and deliberate 
variation in this section.  

A. Illustration of vague, over-complete and variant 
representations and rules  

It has been well known that vague representations, for 
example, probability measurement in Bayesian networks 
and a range value instead of 0 and 1 in Fuzzy logic, have 
pushed artificial intelligence forward. But, vagueness is 
mainly to reduce the complexity of representation in 
computation. Over-completeness, as a concept, is not 
efficient. Therefore we often rule it out, which can cause 
difficulties in implementing some good features later.  



Let us see the first example. In order to measure 
temperature of a cup of milk with single degree accuracy 
from 1 to 100, we would need 100 values. But if we 
measure temperature with a vague measurement, say [cold: 
<50; hot: >50], we only need 2 values. So, the computer 
only needs to handle 2 values instead of 100 values; the 
complexity is reduced dramatically. However, each of us has 
different perspective regarding cold and hot. Furthermore, 
for each different task, the meaning of cold and hot could be 
slightly different. So, we can generate multiple sets of 
values: set 1 [cold: <50; hot: >50], 2 [cold: <60; hot: >60] 
and 3 [cold: <40; hot: >40]. This leads to vague and over-
completed sets, each with slight variation. With vague, over-
complete, and variant representation, we make 
representation much more flexible. If we do a task and find 
that set 1 is no good, we can try the second set, or the third. 
Humans are inventive. Why do we follow the rules? Why do 
we not create a new set (4[cold:<60; hot:>40])? Is this a 
case of “thinking out of a box”? 

Let us see the second example. Children will try to 
answer almost any question we ask them. Many of the 
answers, which do not make sense in one instance, could 
make sense in another instance. If we ask a child to answer 
“1 plus 1=?”, occasionally we get 1+1=3 for a good reason, 
1 (mom)+1(dad)=3(mom+dad+me (the kid)). Does the kid 
think outside of the rule box? And if so, which box? If we 
blur the boundaries of these boxes, then the meaningless 
answers in one box could be meaningful in another.  

Sometimes, over-complete representation can help us to 
reduce the complexity during an operation. Let us look at the 
third example [13]. Suppose we need to describe a dot 
moving along a direction on a piece of paper, what do we do? 
Most of us will plot an (x,y) coordinate plane, and then 
describe the coordinates in two real numbers. If we have 16 
neurons, evenly tuning to 16 directions and each covering 
for 22.5 degrees roughly. Our brain will only one neuron to 
report the moving direction of the dot roughly, instead of 
two real numbers. Although it may not always be the best 
possible estimator, as long as upper-level processors take 
into account the vagueness in the message, it will work fine.  

B. Illustration of vague, over-complete, variant interaction  
Let us look at the fourth example. How to compute square-
root of 2 using a computer? Enquiry (guess, check, refine 
guess): at first trial, we guess 2, then find out 22=4>2; so we 
refine our guess to 1, and find out 12=1<2, then refine our 
guess again, and so on. We can compute it to any accuracy.  
The same idea can be used in interaction between boxes of 
neurons (our fifth example). Assuming two boxes (A and B) 
of neurons, each is well connected to do some functions, but 
with nothing connected in between them, how do they 
interact? Association links must be established. Presuming 
that they establish an initial link, they now can start to 
influence one another (say A to B). Next time, when a task 
is coming, it will use this association to answer and get a 

feedback, the second association (B to A). It uses the second 
association link to guide its next answer, the third 
association (A to B), and so on. Gradually it improves its 
efficiency.   

Over-complete, variation, and vague in representation 
and association lay a very important foundation for the 
structure and operation in an entire GPRAM. We need to 
implement these at all parts. These are deliberated variation 
at the unit and structural levels to cover general purpose 
tasks, since inefficiency at one place may improve over-all 
efficiency, over-all flexibility, and over-all robustness. 

VI. KEY FEATURES OF GPRAM SYSTEM AND OUR 
EXPLANATION TO SEVERAL ILLUSION 

Dream-like experience: Let us introduce “dream”-like 
experiences to our GPRAM machine. Influence from heavy 
noise will be gradually reduced into upper layer structures 
since all three layers (upper structure layer, interaction layer, 
and sensor / operation layer) by multi-level vague 
hierarchies. Now, if we replay the signals in the upper layer 
structures, many discrepancies between the newly 
established influences and the existing structure can be 
reduced by using plasticity and querying learning methods 
(see our 5th example). Again, we use three well-known 
factors in iterative decoding. (a) Message-play back can be 
achieved by iterative decoding, i.e., iterative computation of 
a posterior probabilities. (b) It can be initiated at any place 
using the flooding strategy. (c) It often converges to similar 
code words, but rarely hits the same one when the code 
structure becomes very large. 

Decrease in sleeping time when it matures: When our 
system starts, its structure is not specified properly (i.e., 
weak codes), so switching noises can easily switch it into 
the sleep mode. When the system matures, the structure 
becomes more ridged and resilient (i.e., strong codes) so it is 
harder for switching noises to put the system in sleep. 

Uniqueness: A substantial part of structure is 
determined during its initial growing phase, i.e., training 
with the sounds of the womb. Any future development will 
be heavily influenced by this structure. Even though 
GPRAMs will have common preferences towards music 
(due to similarity in the sounds of the womb and the 
construction procedures), each will still maintain a slight 
variation in its preferences. 

Hierarchical efficiency: GPRAM will use hierarchical 
layers to zoom in and out as quickly as possible to decide on 
its next action.  

Visual robustness: As soon as it learns at high levels to 
associate an object (say a hand or a face) with different tasks 
(rotation or movement), it has learned the same association 
for all similar objects (due to vagueness). As soon as two 
tasks of similar patterns are connected, it learns similar 
movement across both tasks. As soon as a synchronization 



signal is tricked, all patterns on the tree that were learned in 
the past for different tasks, different objects, different sizes, 
etc are ready to match up to patterns in the sensor input 
signals, which were generated by transforming massive 
parallel signals using complex cells.  So, it has face 
recognition and CAPTCHA ability similar to human.  

We used many visual illusions to guide us in the design 
of a GPRAM; an example is the Muller Lyer illusion. There 
are many explanations to causes of visual illusions. With 
our GPRAM architecture, the first three illusions (a, b, c in 
Figure 2. ) are easy to understand. The last one is a little 
tricky. When an image is in between two vague templates, 
oscillation between the two templates creates a moving 
sensation. So, the wheel seems to spin from time to time. 

 
Figure 2.  Four visual illusions 

We leave it to the readers to explore more. These 
optical illusions are important since they will provide us 
with clues on how to construct and arrange vague templates 
in GPRAM.  

VII. CONCLUSIONS AND DISCUSSION 
In this part paper, we aim to use simple examples and 

illustrations to open up readers’ mind for our GPRAM 
system in biological aspect. Combining with the first part of 
paper, we hope that readers can understand our goal, 
approach, and possible outcomes. In future, we will further 
discuss the roles of music-like signals, the roles of abstract 
art-like patterns, linkage between STDP and coding, and 
coding prospects of GPRAM systems, etc.  All these efforts 
will lead to unique computer architecture to do vague 
computation and one step closer toward singularity [15]. 
Here we use the last simple example to illustrate how a 
vague computer works. 

How do you represent vague operation? How do you 
describe hierarchy in music signals using vague 
measurement and operation? Let us use piano keys to 

vaguely describe the mathematical operation and location 
arrangement of two patches in an image. We can describe 
two expressions, (a) x+y=z, and (b) patch x is at the left-
hand side of patch y by z inches, using one abstract form 
(middle A key for x, middle C key for y, the gap between 
for z). During its training, a GPRAM finds a code structure 
which links many fundamental elements together.  During 
operations, the GPRAM asks each fundamental element to 
do some kinds of rough estimations for a particular aspect of 
the task (asking step in our intelligent model and also the 5th 
example). The estimated value can then be tuned up and 
down, just like a musician’s fingers move along piano keys. 
These estimated pieces are then sent (answering step) and 
passed along the code structure to other elements 
(disseminating step) to decide whether it needs to tune next 
estimated value up or down. The GPRAM does this several 
times until it finally converges on a code-word that fits all of 
the task constraints, and then it outputs a possible solution.    
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