
Some Results and Challenges on Codes and Iterative
Decoding with Non-equal Symbol Probabilities

Bowen Dai, Lei Wei

Department of Electrical and Computer Engineering,
University of Central Florida,

Orlando, FL 32816, email: lei@ee.ucf.edu.

Abstract—Modern telecommunication and error control coding
are largely designed to handle equiprobable symbols. In this
paper, we present challenges and several results in designing
codes and iterative decoding when we extend to non-equiprobable
symbols, which may lead to better understanding of bio-signal
processing in future. We first demonstrate the limitation of XOR
operation in dealing with non-equiprobable symbols. We then
present two possible ways to mitigate the limitation: quasi-XOR
operation and intermediate transformation layer. We also show
how to construct codes for non-equiprobable symbols using quasi-
XOR operation and prove the codes are very poor in terms
of error correction capability. We further compute probabilistic
messages for sum-product algorithm using XOR, AND, and OR
operations with non-equiprobable symbols. We outline further
challenges to design codes for non-equiprobable symbols.

I. INTRODUCTION

Shannon’s separation principle [1] has played a key role in
design of telecommunication systems, which recommends to
design the source and channel coders in a system indepen-
dently. This is because whatever performance is achievable
with a jointly designed source/channel coding system, it is also
achievable with a source coder, designed and optimized solely
with regard to the source description, and a channel coder,
designed and optimized solely with regard to the channel de-
scription. When we design the channel coding and modulation,
we always assume that the data has been compressed by an
ideal source encoder, so it produces an independent, identically
distributed (i.i.d) sequence of equiprobable bits at the output.
Both modulation, capacity, and error control coding have been
well studied under these considerations [2] - [5].

Recently, these settings have been extended in various
directions to accommodate the practical needs, not only in
telecommunication system design [7]-[11], but also in the
understanding of biological systems [13]-[16]. In this paper,
we move away from the equiprobable case by one small
step. We assume that information source symbols have a
fixed, but non-equal prior probability. We wish to design an
error control encoder which produces the output symbols with
the same prior probability. Later on, we can generalize the
results to more complicated cases. When we examine the key
operation, the XOR operation, used in error control coding,
we note that it does not fit well with the non-equiprobable
symbol case. In other words, when we apply XOR on two
equiprobable symbols (say x, y), the result (z = x⊕ y, where

⊕ denotes XOR) is an equiprobable symbol. However, when
we apply XOR on two non-equiprobable symbols (say, P (x =
0) = P (y = 0) = 0.3, where P (.) denotes probability),
the output symbol does not have the same prior probability
(P (z = 0) = 0.58). This implies that we can not apply XOR
directly to symbol sequences with non-equiprobability. Fur-
thermore, when studying biological systems using likelihood
detection theory [13], source compressing called sparse coding
[14], and iterative turbo-like joint estimation and decoding
called factorized decoder [15], we may need to go beyond
the conventional wisdom. The ultimate goal is to study how to
design source and channel coding mechanisms for the systems
with imperfections, which may lead to better understanding of
signal processing mechanism used in bio-systems and a new
type of intelligent machine called GPRAM [16] [17].

Our work aims to extend the possible linkage between
advanced coding theory and brain functionalities, highlighted
in [18]-[21]. To do so, we need to extend error control coding
theory beyond current application.

In this paper we will present challenges and some results on
how to construct codes and iterative decoding algorithms for
the non-equiprobable case. The rest of the paper is organized
as follows. In Section II, we illustrate the limitation of XOR
operation in the conventional error control codes to deal with
the non-equiprobable case. In Section III, we present two
possible ways to mitigate the limitation: quasi-XOR operation
and intermediate transformation layer. In Section IV, we
show how to construct codes for non-equiprobable symbols
using quasi-XOR operation and how to compute probabilistic
messages for sum-product algorithm using XOR, AND, and
OR operations. In Section V, we conclude and outline further
challenges to design codes for non-equiprobable symbols.

II. LIMITATION OF XOR OPERATION

Let us consider a simple (2,3) parity check code, in which
the two message bits are (u0, u1) and three codeword bits are
(v0, v1, v2) = (u0, u1, u0⊕u1), where ⊕ denotes XOR opera-
tion. If the message bits are equiprobable, i.e., ui ∈ {0, 1} with
P (ui = 0) = P (ui = 1) = 0.5, then symbol probabilities for
the codeword bits are also equiprobable. After encoding, we
can transmit codeword bits vi ∈ {0, 1}) using equal-spaced
constellation (i.e., xi ∈ {±1}).



The XOR operation has several nice properties: (a) re-
versible (i.e., if u0 ⊕ u1 = u2, then u2 ⊕ u1 = u0 and
u0 ⊕ u2 = u1; (b) symmetric (i.e., u0 ⊕ u1 = u1 ⊕ u0);
(c) scalable (i.e., u0 ⊕ u1 ⊕ u2 = (u0 ⊕ u1)⊕ u2).

However, if the message bits are non-equiprobable (say
P (ui = 0) = 0.3), then we have non-equiprobable codeword
bits, i.e., P (v0 = 0) = P (v1 = 0) = 0.3 and P (v2 = 0) =
0.58. Clearly, message passing from v2 and v1 to v0 (i.e.,
v1⊕v2 = v0), will result in a mismatching in prior probability,
since P (v1 ⊕ v2 = 0) = 0.468 �= P (v0 = 0) = 0.3.
Furthermore, it is difficult to match up optimal constellations
between message and codeword bits.

The optimal constellations for message bits satisfy xi ∈
{w0, w1} and 0.3w0+0.7w1 = 0, where wj denotes amplitude
of rectangular pulse waveform when u = j is transmitted,
[12]. If we select xi ∈ {±1}, then it costs 0.72 dB re-
duction in Eb/N0 capacity. No coding strategy can recover
this loss. If we express constellation in two consecutive bits,
then we have four symbols, m0 = (u0 = 0, u1 = 0) =
(0, 0), m1 = (0, 1), m2 = (1, 0), m3 = (1, 1), with
probabilities (0.09, 0.21, 0.21, and 0.49), and constellation
({w0, w0}, {w0, w1}, {w1, w0}, {w1, w1}), respectively. Now,
how to assign the constellations to codeword bits? Conven-
tionally, we use the same constellation xi ∈ {w0, w1} for
codeword bits but each has a duration of 2/3 of the message bit
duration. However, this is not optimal since P (v2 = 0) = 0.58,
not 0.3.

Therefore, we need to replace XOR operation so that we
have prior probability of each codeword bit matched to the
prior probability of each message bit. Here we introduce two
novel solutions. The first one is to use quasi-XOR operation
and the second one is to use intermediate transformation
to obtain symbols with prior probabilities suitable for XOR
operation.

III. QUASI-XOR OPERATION AND INTERMEDIATE
TRANSFORMATION LAYER

In this section, we illustrate two methods to solve the
problem. The first method is to find alternative operation
to replace XOR and the second method is to transfer non-
equiprobable symbols to equiprobable symbols.

A. quasi-XOR Operation

We introduce quasi-XOR operation which produces output
with arbitrary prior probability (0 ≤ p ≤ 1) identical to that of
input. In Fig. 1, we show Karnaugh maps for XOR operation
(a), and quasi-XOR (QXOR) operations with three inputs (c)
and four inputs (d), respectively. We obtain QXOR operation
as follows. First, we extend XOR operation by introducing
one additional input (i.e. I3) and then label 1 for all slots
with I3 = 1 (see (b)). We then move some of ”1” to other
places with the same Hamming weight. For example, ”1” at
the bottom left (in (b)) is moved to ”1” at the top right (in
Fig. 1(c)). By doing so, we have six cases: O1 = Ī2I1 + I2I3
(shown in Fig. 1(c)), O2 = Ī1I3 + I2I1, O3 = Ī3I2 + I1I3,
O4 = Ī2I3 + I1I2, O5 = Ī1I2 + I1I3, and O6 = Ī3I1 + I2I3.

We will select the first three, since they form three feedback
paths from O1, O2, and O3 to I1, I2, and I3 as follows: I1 =
Ō2O1 + O2O3, I2 = Ō1O3 + O1O2, I3 = Ō3O2 + O3O1,
i.e., by swapping I1, I2, I3 with O1, O2, O3, respectively. We
define this operation as QXOR3.

For four inputs, the construction is as follows. O1 =
I1I2I3 + I2Ī1Ī4 + I2I4Ī3 + I3I4Ī2 (see Fig. 1 (d)); O2 =
I1I2I4 + I1Ī2Ī3 + I3I4Ī1 + I1I3Ī4; O3 = I1I3I4 + I3Ī2Ī4 +
I1I2Ī3+I2I3Ī1; O4 = I2I3I4+I4Ī1Ī3+I1I2Ī4+I1I4Ī2. The
reversing operations can be obtained by swapping I1, I2, I3,
and I4 with O1, O2, O3, and O4 respectively. We define this
operation as QXOR4.

We obtain many different sets of similar operations. Here,
we list one of them as O1 = I4Ī1Ī3 + I2I3I4 + I1I2Ī4 +
I1I4Ī2; O2 = I2Ī1Ī3 + I1I2I4 + I3I4Ī2 + I2I3Ī4; O3 =
I3Ī1Ī4 + I2I3I4 + I1I3Ī2 + I1I2Ī3; O4 = I1Ī2Ī3 + I1I2I4 +
I1I3Ī4 + I3I4Ī1. and reversing operations as I1 = O1O4Ō3 +
O2O3O4+O1O3Ō4+O4Ō1Ō2; I2 = O2Ō3Ō4+O1O2O4+
O2O3Ō1+O1O3Ō2; I3 = O3Ō1Ō2+O1O3O4+O2O3Ō4+
O2O4Ō3; I4 = O1Ō3Ō4 +O1O2O3 +O2O4Ō1 +O1O4Ō2.

By combining three and four input operations, we can obtain
operations with any number (no less than 3) of inputs.

B. Intermediate Transformation Layer

First, let us look at how symbol prior probability changes
after XOR operation. Let us define M input XOR operation
(i.e., I1⊕I2⊕I3, ...,⊕IM as M -XOR. If the prior probability
of symbol Ii is pi, then we can compute the prior probability of
output symbol (denoted as po) recursively as follows. Setting,
y(2) = p1p2 + (1− p1)(1− p2), For i=3, ..., M, compute

y(i) = piy(i− 1) + (1− pi)(1− y(i− 1)) (1)

and finally, we have po = y(M). In Fig. 5, we plot po as
a function of pi for M -XOR. It shows that (a) in order to
generate symbols with all possible prior probabilities between
0 and 1, we need to stay at the left hand side, i.e., small pi.
That is, the probability of satisfying parity check constraint
must be small. If we can use NOT gates to invert symbols, then
we can stay at the right hand side as well. But, in either case,
we must stay away from the central point (pi = 0.5). (b) We
have the value of po close to 0.5 over a large range of pi values
around of 0.5. The larger the value of M is, the broader this
range becomes. (c) From (1), we have the following results.
If pi < 0.5, then y(i) = piy(i− 1)+ (1− pi)(1− y(i− 1)) =
pi + (1 − 2pi)(1 − y(i − 1)) ≥ pi; and if pi > 0.5, then
y(i) = pi− (2pi− 1)(1− y(i− 1)) ≤ pi. (d) Furthermore, we
have po = 0.5 if pi = 0.5 for any i ∈ (1, 2, ...,M).

Secondly, in order to impose code constraint, the prior
probabilities must match each other, for example, if I1⊕ I2⊕
I3 = I4, then po of I1 ⊕ I2 ⊕ I3 must match up with pi of I4.
We do not use I1⊕I2⊕I3⊕I4 = 0 since reverse operations are
often not true due to mismatch between prior probabilities for
non-equiprobable cases. Therefore, code constraint becomes
directional, rather than bi-directional.

There are three ways to use intermediate transformation
layer (ITL) to deal with non-equiprobable symbols: (a) to



apply ITL first, then follow by M -XOR. For example, we
can use logic gates to convert symbols with pi = 0.3 to
symbols with p = 0.1316, then apply 3-XOR operation to
impose code constraint directly, which produce output symbols
with po = 0.3. We call this the front ITL (F-ITL) (see Fig. A).
(b) To apply M -XOR operations to non-equiprobable symbols
with pis, then use the transformation to match up po of the
output symbol with pi of the constrained symbol. We call it
the End ITL (E-ITL). (c) To convert non-equiprobable symbols
to equiprobable symbols, then to operate using conventional
codes, and finally, to convert equiprobable symbols back to
non-equiprobable symbols. We call this Half ITL (H-ITL).

Let us look F-ITL using an example p = 0.3. If we combine
two inputs together as a group, then we have three basic prob-
abilities (p2 = 0.09 for I1 = 0 and I2 = 0, p(1 − p) = 0.21,
and (1− p)2 = 0.49). For each two inputs (say Ii,1 and Ii,2,
where subscribe i denote the ith group of two inputs), F-ITL
will have three outputs P (yi,1 = 0) = P (Ii,1 = 0

⋂
Ii,2 =

0) = 0.09, P (yi,2 = 0) = P (Ii,1 = 0
⋂

Ii,2 = 1) = 0.21,
P (yi,3 = 0) = P (Ii,1 = 1

⋂
Ii,2 = 0) = 0.21), i.e.,

yi,1 = Ii,1 + Ii,2, yi,2 = Ii,1 + Īi,2, and yi,3 = Īi,1 + Ii,2.
3-XOR with yi,1 (i.e., P (yi,1 = 0) = 0.09 for the ith group),
yi+1,1 (i.e., P (yi+1,1 = 0) = 0.09 for the i + 1th group)
and yi+2,2 (i.e., P (yi+2,2 = 0) = 0.21 for the i + 2th

group) will produce an output symbol with po = 0.305, which
approximates p = 0.3 (see Fig. A).

If we combine three inputs as a group, then we have
four basic probabilities (p3 = 0.027, p2(1 − p) = 0.063,
p(1 − p)2 = 0.147, and (1 − p)3 = 0.343). We have seven
outputs, yi,1 = Ii,1+Ii,2+Ii,3, yi,2 = Īi,1+Ii,2+Ii,3, yi,3 =
Ii,1+ Īi,2+Ii,3, yi,4 = Ii,1+Ii,2+ Īi,3, yi,5 = Īi,1+ Īi,2+Ii,3,
yi,6 = Īi,1 + Ii,2 + Īi,3, yi,7 = Ii,1 + Īi,2 + Īi,3. Let zi,1 =
yi,1yi+1,1yi+2,1yi+3,1yi+4,1, zi,2 = yi,2yi+1,2, and zi,3 = yi,5.
3-XOR with zi,1, zi+5,1 and zi+10,2, (or zi,2, zi+2,2, and
zi+4,3), can produce an output symbol with po = 0.291 (or
po = 0.299, respectively). If we have wi,1 = yi,1yi+1,1yi+2,1,
wi,2 = yi,2, and wi,3 = yi,1yi+1,5, then 4-XOR with wi,1,
wi+3,1, wi+6,2, and wi+7,3 will produce an output symbol
with po = 0.705. Inverting this symbol will get a symbol with
a prior probability of 0.2954.

It becomes clear that F-ITL will generate symbols with low
probabilities first then XOR these low probable symbols will
produce symbols approximately matched to the required prior
probability.

We consider E-ITL, again using the example with p = 0.3.
According to Fig. 5, if we apply M -XOR with M ≥ 4,
then po ≈ 0.5. Let Os denote output symbols. We can
construct yi(m) = Oi + Oi+1 + ... + Oi+m and the prior
probability of yi(m) is py(m) = 2−(m+1). Searching for
combination of py(m) approximately equal to p = 0.3, we
have py(1) + py(4) + py(6) = 0.296. Now, we can build
zi = yi(2)yi+3(5)yi+9(6) which has prior probability of
p = 0.296. This is far more simpler than F-ITL.

Finally, we consider H-ITL. We can use M -XOR to con-
struct the front-layer which transform prior probability from
0.3 to 0.5. Then construct the end-layer similar to E-ITL.

Between the front-layer and the end-layer, we can use con-
ventional error control codes.

IV. CODE CONSTRUCTION AND PROBABILISTIC
MESSAGES FOR NON-EQUIPROBABLE SYMBOLS

In this section, we study how to construct codes using
QXOR. We call them neither source codes nor error control
codes, since they may perform functionalities in applications
or help us understanding bio-signal process beyond conven-
tional source and channel coding in modern telecommunica-
tion systems (see [16]).

A. Tree Codes with QXOR

In this subsection, we construct two simple codes with
QXOR operations (Fig. 6(2) and (4)) and compare them with
codes based on XOR operations (Fig. 6 (1) and (3)). Currently,
we are working on how to construct codes using Intermediate
Transformation Layer.

Codes (1) and (3) are constructed as follows: Code (1) with
O1 = I1 ⊕ I2 = Ī2I1 + I2Ī1, O2 = I1 ⊕ I3, O3 = I2 ⊕ I3
(defined as XOR3, which is different from M -XOR); Code
(3) with O1 = I1⊕I2⊕I3, O2 = I1⊕I3⊕I4, O3 = I1⊕I2⊕I4,
and O4 = I2 ⊕ I3 ⊕ I4 (defined as XOR4). Both codes are
linear with Hamming distances of 3 and 4 for Code (1), and
4 and 7 for Code (3), respectively. Furthermore, many new
constraints exist in both codes, for example, O1⊕O2⊕O3 = 0
for Code (1) and I1 = O1 ⊕ O2 ⊕ O3 for Code (3). These
constraints will form mesh networks when we merge more
operations together.

Codes (2) and (4) in Fig. 6 are constructed based on
QXOR3 and QXOR4 respectively. Both are non-linear codes
with Hamming distance (2,4,6) and (2,4,6,8) respectively. Both
are similar to repetition codes in term of distances. Input bits in
the repetition codes are independent each other, while input
bits in Codes (2) and (4) are dependent each other through
constraints of O bits. Both are reversible for non-equiprobable
symbols.

Property 1: The minimum Hamming distance of codes
based on QXORM is no greater than 2 and multiplicity is
M .

Proof: Codes based on QXORM contain two parts (Is
and Os, see Fig. 6) and Hamming weight of each codeword is
equal to the sum of Hamming weights in Is and Os. According
to Karnaugh maps (see Fig. 1), each of M− O bits with O = 1
in codes based on QXORM must contain one and only one
codeword with Hamming weight of 1 in Is in order to maintain
the same prior probability. For example, see Fig. 1 (d), in 8
places which O1 = 1, only one place has Hamming weight of
1, i.e., I1I3I3I4 = 0100. There are a total of M codewords
with Hamming weight of 1 in Is. If one of such codewords has
a Hamming weight of 2 or more in Os, then there must be at
least one codeword with Hamming weight of 0 in Os in these
M codewords. Consequently, the minimum Hamming weight
is 1. If each of M codewords has a Hamming weight of 1 in
Os, then we have codes with minimum Hamming distance of
2 and multiplicity is M .



The above proposition simply rules out the possible to
construct a good error control code using this method, since
it produces neither large minimum distance nor a favorable
distribution of multiplicities.

B. Probabilistic messages for non-equiprobable symbols with
XOR and other logic operations

It has been well known how to compute probabilistic
messages for sum-product algorithm with XOR operation and
equiprobable symbols (see [5] for summary). Here we derive
probabilistic operations for XOR, AND, and OR gates for non-
equiprobable symbols.

Let us focus basic two-inputs and one-output operations. For
XOR, we have (v0, v1, v2) and (v2 = v0 ⊕ v1). Then, symbol
vi with prior probabilities (pi = Pr(vi = 0)) is mapped to
constellation xi for transmission, where i = 0, 1, 2. At the
receiver, we obtain a noise corrupted signal ri = xi + ni,
where ni is a white Gaussian variable with zero mean and
variance σ2. Let us define Li = ln

(
P (vi=0|ri)
P (vi=1|ri)

)
for i = 0 and

1, R2 = ln
(

P (r2|v2=0)
P (r2|v2=1)

)
Ui = ln

(
P (vi=0|rj1 ,rj2 )
P (vi=1|rj1 ,rj2 )

)
, where

i = 0, 1, 2, j1 = i + 1 mod 3, and j2 = i + 2 mod 3,
mod denotes modulo operation. To simplify expression, we
denote L2 = R2. Now, we obtain

tanh

(
Ui

2

)
= tanh

(
Lj1

2

)
tanh

(
Lj2

2

)
(2)

or

eUi =
1 + eLj1 eLj2

eLj1 + eLj2
(3)

ln

(
P (vi = 0|r1, r2, r3)
P (vi = 1|r1, r2, r3)

)
= Ui + Li (4)

where i = 0, 1, 2.
For AND, we replace (3) by

eUi =
eLj1 + eLj2

1 + eLj1 eLj2
(5)

for i=0, 1, and

eU2 = (1 + eL1)(1 + eL2)− 1 (6)

For OR, we replace (3) by

eUi =
1 + eL2eLj3

1 + eLj3
(7)

for i=0, 1, and j3 = i+ 1 mod 2, and

eU2 =
eL0eL1

1 + eL0 + eL1
(8)

V. CONCLUDE AND CHALLENGES

In this paper, we presented challenges and several results in
designing codes and iterative decoding for non-equiprobable
symbols. We first demonstrated the limitation of XOR op-
eration in dealing with non-equiprobable symbols. We then
presented two possible ways to mitigate the limitation: quasi-
XOR operation and intermediate transformation layer. We
showed how to construct codes for non-equiprobable symbols
using quasi-XOR operation and prove the codes are very poor
in term of error correction capability. We further computed
probabilistic messages for sum-product algorithm using XOR,
AND, and OR operations with non-equiprobable symbols.

We now outline further challenges to design codes for non-
equiprobable symbols.

1 beyond XOR: To understand bio-systems, we may
need to extend the basic operation beyond XOR,
for example, including AND and OR gates, or the
combination of these gates. These will increase the
complication of design.

3 Code construction using intermediate transforma-
tion layer: Up to now, we could not find a way to
match the targeted prior probabilities precisely with
those in intermediate transformation layer. We can
only approximately match them up.

4 Encoder: It has been a well-known problem to con-
struct encoder from parity check matrix of general
LDPC codes. For codes with XOR, AND, and OR
gates with non-equiprobable, the problem gets much
worse.

5 Application of these codes: It is an open question
how to apply these codes in GPRAM design (see
[17]).

REFERENCES

[1] C. E. Shannon, ”A Mathematical theory of communication,” Bell Syst.
Tech. J., Vol. 27, pp.370-423, July 1948

[2] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engi-
neering. John Wiley & Sons,Inc., New York-London -Sydney, 1965.

[3] M. K. Simon, M. K. Hinedi, andW. C. Lindsey, Digital Communication
Techniques. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[4] J. B. Proakis and M. Salehi, Digital Communications, 5th ed. McGraw-
Hill, 2008

[5] S. Lin and D. Costello, Error control coding: fundamentals and applica-
tions, 2nd ed. Pearson-Prentice Hall, 2004.

[6] F. Alajaji, N. Phamdo, and T. Fuja, “Channel codes that exploit the
residual redundancy in CELP-encoded speech,” IEEE Trans. Speech
Audio Processing, vol. 4, pp. 325-336, Sept. 1996.

[7] W. Xu, J. Hagenauer, and J. Hollmann, ”Joint source-channel decoding
using the residual redundancy in compressed images,” in Proc. Int. Conf.
Communications, Dallas, TX, June 1996.

[8] H. Kuai, F. Alajaji, and G. Takahara, ”Tight error bounds for nonuniform
signaling over AWGN channels,” IEEE Trans. Inform. Theory, vol. 46,
pp. 2712-2718, Nov. 2000.

[9] I. Korn, J. P. Fonseka, and S. Xing, ”Optimal binary communication with
nonequal probabilities,” IEEE Trans. Commun., vol. 51, no. 9, pp. 1435-
1438, Sep. 2003.

[10] L. Wei and I. Korn, ”Optimal M-ASK/QASK with Non-equal Symbol
Probabilities,” IET Communications, Vol. 5, No.6, April 2011, pp.745-
752.

[11] L. Wei, ”Optimal M-ary Orthogonal Signaling with Non-equal Symbol
Probabilities,” IEEE ISIT 2012, submitted.

[12] L. Wei, ”Channel Capacity and Constellation Optimization of MASK
Input AWGN with Non-equal Symbol Probabilities,” in preparation



[13] L. Wei, D. M. Levi, R. Li, S. Klein ”Feasibility Study on a Hyper-
acuity Device with Motion Uncertainty: Two-point Stimuli,” IEEE Trans.
on Systems. Man, and Cybernetics, April 2007, pp. 385-97.

[14] B. A. Olshausen and D. J. Field: Emergence of simple cell receptive
field properties by learning a sparse code for nature images, Nature, 381
(1997) 607-609.

[15] Burak Y, Rokni U, Meister M, Sompolinsky H ”Bayesian Model of
dynamic image stabilization in the visual system,” Proc Natl Acad Sci,
USA, 107: 19525-19530, 2010.

[16] L. Wei, “General Purpose Representation and Association Machine, Part
1: Introduction and Illustrations,” and “General Purpose Representation
and Association Machine, Part 2: Biological Implications,” IEEE South-
eastcon, Mar. 2012, Orlando, USA.

[17] H. Li, B. Dai, S. Schultz, and L. Wei, “General Purpose Representation
and Association Machine, Part 3: Prototype Study using LDPC codes”
IEEE ISIT, July, 2012, MIT, USA.

[18] R. J. McEliece, D. J. C. MacKay, Jung-Fu Cheng Turbo decoding as an
instance of Pearls belief propagation algorithm, IEEE JASC Volume: 16
Issue: 2 , Feb. 1998, Page(s): 140 -152

[19] F. R. Kschischang, B. J. Frey and H. A. Loeliger, Factor graphs and the
sum-product algorithm, IEEE Trans. Inform. Theory, Vol. 47, pp.498-
519, Feb. 2001.

[20] J. Hagenauer “Analog decoding and Beyond,” ITW2001, Cairns,
Australia, Sept. 2-7, 2001, p.126-127.

[21] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley, 1989.

(c) QXOR operation with three inputs

1I2

I1I2I1I2

I1I2

00 01 11 10
I3I4

I3

0

1

00 01 11 10

I
3

00 01 11 10

1 1 1

1

(b) An operation with three inputs(a) XOR

00 01 11 10

1

1 1

1

1

11

1

1

1 1

1

1 1

(d) QXOR operation with four inputs

I

Fig. 1. Karnaugh maps for XOR and QXOR operations.

1

I1 I2 I4I3 I6I5

PI
1
=PI

2
=PI

3
=PI

4
=PI

5
=PI

6
=0.3

y2,1y1,1 y3,2

P(y2,1=0)=0.09

P(y1,1=0)=0.09

P(y3,2=0)=0.21

PO
1
=0.305

F−ITL

O

Fig. 2. Code Structure with F-ITL

E−ITL

PI
1
=...=P I

M
=0.3=P O

1
=PO

2

I1 IM O1 O2...

Fig. 3. Code Structure with E-ITL

2

Z
1
=...=P Z

M
=PZ

M+1
=...=P Z

2M
=0.5

Z1 ZM ZM+1 Z2M

I1 IM O1 OM

PI
1
=...=P I

M
=PO

1
=...=P O

M
=0.3

Conventinal Codes for Equiprobable Symbols

... ...

... ...

H−ITLH−ITL
1

P

Fig. 4. Code Structure with H-ITL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
i

p o

 

 

2XOR
3XOR
4XOR
5XOR
6XOR

Fig. 5. Probabilities of output symbols versus input symbols

4

2 I3 I
41I 1O 2O 3O 4O

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0 0 0

0 0 1

0 1 0

0 1 1

0 0

0 1

1 0

1 1

0

0

0

0

0 0 1 0

1100

0 010

0 1 0 1

1 0 0 0

111 1

0 0 0

0 1 1

1

1

1

1

0 1 1

000

0

1

1

0

1 0

1 0

0 1 1

1 0 0

0

1

0

1

1 1 1

1 0 0

I2 I3 I
41I 1O 2O 3O 4O

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0 0 0

0 0 1

0 1 0

0 1 1

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

0

1

0

0

0

1

1

1

1

0

0

0

0

1 0 0

0 0 1

0 0 0

0 1 0

1 1 1

0

0

0

1

1

1

1

1

0

0

0

1

0

0

1

1

0

1

1

1

0

1

0

0

1

1

0

1

1

0

0

1

1

I3I1 I2 1O 2O 3O I3I1 I2 1O 2O 3O

0 0 0 0 0 0

0 0 01 1 1

0 1 0 1 0 1

0 1 1 1 1 0

1 0 0 1 1 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 1 00 0

(1) Code based on XOR
2

0 0 0 0 0 0

0 0 01 1

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 1 1

0

1 1

(2) Code based on QXOR
3

(3) Code based on XOR
3

(4) Code based on QXOR

I

Fig. 6. Codes with XOR and QXOR operations.


