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Abstract 
 

Over 400 cities around the world have deployed or have plans to deploy a bike sharing 

system. However, the factors that drive their usage and the amount of rebalancing they require are 

not known precisely. A knowledge of these factors would allow cities to design or modify their 

systems to increase usage while lowering rebalancing costs. We collect station-level occupancy 

data from two cities and transform station occupancy snapshot data into station level customer 

arrivals and departures to perform our analysis. Specifically, we postulate that arrivals and 

departures from stations can be separated into: (i) arrivals (and departures) due to consumers, and 

(ii) arrivals (and departures) due to the system operators for rebalancing the system. We then 

develop a mixed linear model to estimate the influence of bicycle infrastructure, socio-

demographic characteristics and land-use characteristics on customer arrivals and departures. 

Further, we develop a binary logit model to identify rebalancing time periods and a regression 

model framework to estimate the amount of rebalancing. The research is conducted using bike 

sharing data from Barcelona and Seville, Spain. The resulting modeling framework provides a 

template for examining bicycle rebalancing in different contexts, and a tool to improve system 

management of bicycle sharing systems. 
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1. Introduction 
 

Bike sharing systems are an emerging mode of transportation that provide the temporary 

rental of publicly available bicycles. These programs have the potential to reduce car usage in 

dense neighborhoods, hence reducing congestion; additionally they promote healthy living and are 

environmentally friendly. Over 400 cities have operating bike sharing programs worldwide, 

including North and South America, Europe and Asia (see http://bike-sharing.blogspot.com). In 

the process, many cities and planners have conducted feasibility studies of existing and proposed 

bike sharing systems. These studies often include demand estimation and corresponding 

methodology. For example, Philadelphia (DVRP, 2011), New York (NYC, 2011), London (TFL, 
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2011), and many others have published bike sharing feasibility studies. In these reports, many 

assumptions and hypotheses are presented for demand estimation. The feasibility studies make 

hypotheses about various socio-demographic, land use, economic and infrastructure factors. The 

work of Krykewycz et al. (2011) is representative of demand estimation methodology for bike 

sharing systems. They hypothesize about factors which contribute to trip generation and trip 

attraction. These factors are grouped into three main categories: socio-demographic, land-use and 

infrastructure spatial attributes. Our approach also uses these three categories while employing 

system usage data. 

The goal of this paper is to explain the factors influencing trip generation and trip attraction 

from station occupancy snapshot data. Earlier studies have shown that snapshot data can provide 

a useful representation of bike share usage (de Chardon and Caruso, 2015). We transform station 

occupancy snapshot data into two categories: (i) customer arrivals and departures, and (ii) system 

operator rebalancing (removal and refill), in order to perform this analysis. Augmenting the system 

data from Barcelona and Seville in Spain with census level socio-demographic data, and points of 

interest data, we test the hypotheses about the various factors affecting bike sharing usage. We 

select Barcelona as the primary city for our study because of its popularity and large number of 

bike trips. Additionally, Barcelona has been previously studied in the literature, see Froehlich et 

al. (2008 and 2009). The goal of these two papers is to predict the availability of bikes at each 

station. In contrast, our goal is not prediction, but explaining the factors that contribute to trip 

generation and attraction. We also select Seville as a case study because of the urban 

redevelopment and innovative transport planning that has taken place over the last ten years 

(Cycling Mobility, 2011). 

The proposed research effort evaluates two hypotheses and their corresponding questions. 

First, we hypothesize that bike-sharing demand is influenced by bicycle infrastructure (bicycle 

station numbers and capacity), land use (population density, employment density and points of 

interest) and temporal variables (such as temperature and humidity). We answer the question of 

quantifying the impact of these various factors on bike-sharing demand, in a multivariate setting. 

Second, we hypothesize that rebalancing requirements at each station can be partitioned into the 

quantity of rebalancing at a station and the frequency of rebalancing. While these metrics are likely 

to be substantially affected by the same set of variables that influence bike-sharing demand, we 

expect the influence of these variables to be different for rebalancing. We answer the question of 

how the influences of these factors differ for rebalancing, as compared to demand, in magnitude 

and sign. For instance, while mixed land use areas increase bicycle sharing demand they might 

also reduce demand for rebalancing as bicycle flows occur across all parts of a dense 

neighborhood.  

The outline of this paper is as follows. In Section 2, we review relevant literature. In Section 

3, we discuss the unique data sources used in the empirical estimation strategy. We present the 

linear mixed model and discuss the most salient challenges and solutions to its estimation in 

Section 4. In Section 5, we discuss the estimation results for Barcelona and Seville, including the 

explanations for user trips, rebalancing operations caused by imbalance of bikes in the system, as 

well as policy implications for system design. We conclude in Section 6. 
 

1.1 Contributions 
 

The major contributions of this paper are as follows. First, we generate a unique dataset 

through a combination of three data sets – (1) station occupancy snapshots collected from the 



 

operators’ websites; (2) socio-demographic, economic and housing data from census data (for this 

paper, from Eurostat); and (3) Points of Interest data that describe land-use from TeleAtlas. 

Second, we separate user arrivals and departures from operator rebalancing (removal or refill of 

bikes) using a heuristic approach. Through empirical analysis we test assumptions about the factors 

that influence customer arrivals and departures and rebalancing refill and removal. We apply a 

methodology for analyzing such systems using behavioural models, specifically, linear mixed 

models. Finally, we present the first empirical analysis of system rebalancing by the operator 

focused on understanding the factors creating such imbalances, using an approach consisting of a 

binary logit model (for identifying stations that need rebalancing) and a linear regression model 

for the amount of rebalancing. This analysis can help in creating plans for rebalancing well in 

advance, as well as in creating incentive mechanisms for customers to rebalance bikes. 
 
 

2. Literature Review 
 

Demand estimation for non-motorized travel modes have been fairly well-studied (see Rietveld et 

al., 2001, Cao et al., 2006, Chatman, 2005, Handy et al., 2006, Kitamura et al., 1997 and Schwanen 

and Mokhtarian, 2005). The FHWA report (FHWA, 1999) describes key factors for trip generation 

for non-motorized modes. Other studies have attempted the demand analysis of bicycle usage and 

trip rates (Chatman, 2005), usage and mode choice (Baltes, 1996, Beck and Immers, 1996, Cervero 

and Duncan, 2003 and Hunt and Abraham, 2007) and usage and travel mileage (Ewing et al., 

2005). There are relatively fewer studies about bicycle ownership and its relation to bicycle use. 

Also, measures of bicycle usage are subject to inaccuracy in travel surveys and are therefore often 

poorly documented (BTS, 2000). 

Bike sharing systems, however, are expected to have some similar and some differing 

characteristics compared to other non-motorized modes. For example, a characteristic 

differentiating bike sharing systems from other non-motorized systems is that they do not 

necessitate ownership of bikes and therefore facilitate increased complementarity between biking 

and transit. A characteristic common to bike sharing and other non-motorized systems is the age 

group population that is expected to favor their use. 

There is emerging literature on bike sharing systems. Studies such as Shaheen et al. (2010) 

and deMaio (2009) have described the history of bike sharing systems while Carballeda et al. 

(2010) survey public bike systems in Spain. The majority of quantitative studies focus on state 

prediction of the system using time series models. Borgnat et al. (2009a, 2009b, 2010), 

Kaltenbrunner et al. (2010) and Vogel & Mattfeld (2010) present time series models of bike 

sharing. Jensen et al. (2010) also infer the travel speeds of bikes in the bike sharing program in 

Lyon. Froehlich et al. (2008, 2009) use Bayesian networks and clustering to predict bike 

availability. 

Recently, there have been several quantitative studies examining bike sharing systems from 

different dimensions. For example, several studies demonstrate that increasing bike sharing 

systems infrastructure (number of stations and capacity) or increasing bicycle routes around 

stations increases bike sharing systems usage (Buck and Buehler, 2012, Faghih-Imani et al., 2014, 

and Wang et al., 2015). Faghih-Imani and Eluru (2014) found evidence for the self-selection 

hypothesis indicating that ignoring the installation decision process in modeling usage tends to 

over-estimate the impact of bike sharing system infrastructure. Studies found that stations in areas 

with higher job or population density or stations with higher number of point of interests (such as 



 

restaurants, retail stores and universities) in the vicinity experience higher arrivals and departures 

(Rixey, 2013, and Faghih-Imani et al., 2014). Furthermore, the relationship between bike sharing 

systems and other public transportation systems such as subway or bus transit system are also 

examined by several research efforts (Nair et al., 2013, Faghih-Imani et al., 2014, Faghih-Imani 

and Eluru, 2015 and González et al., 2015). Analyses on temporal attributes of bike sharing 

systems show that the peak usage is observed during the evening peak hours while weekdays tend 

to have higher rates of usage compared to weekends, indicating that bike sharing systems are used 

on weekdays for commuting purposes (O’Brien, 2014, Faghih-Imani et al., 2014, and Murphy and 

Usher, 2015). Several studies analyze the impact of weather characteristics (such as temperature 

and humidity) on the usage of the bike sharing systems (Gebhart and Noland, 2014, and Faghih-

Imani et al., 2014). 

Another stream of literature focuses on operational efficiency of bike sharing systems. Nair 

et al. (2013) characterize the spatial-temporal supply and demand asymmetries inherent in bike 

sharing systems. Complementarily, Raviv et al. (2013) and Lin et al. (2011) seek to address these 

asymmetries by optimizing bike repositioning operations. 
 

2.1 Trip Generation and Attraction Factors 
 

Many cities have released bike sharing feasibility and demand forecasting studies which 

use similar methodologies (see New York City (NYC, 2011), London (TFL, 2011), and 

Philadelphia (DVRP, 2011). Most of these studies posit three main user groups for bike sharing: 

commuters, students and tourists. The feasibility studies typically use stated preference surveys 

and census tract level data to estimate uptake rates for each user group. Additionally, the surveys 

attempt to ask questions which lead to estimates of trip substitution and mode share changes. Our 

approach is different in that we are estimating trip generation and attraction factors from revealed 

preference (usage) data. Krykewycz et al. (2011) is the most directly related work to this paper. 

Krykewycz et al. (2011) presents a systematic framework for estimating demand for a 

bicycle sharing program in Philadelphia, Pennsylvania. In addition, they hypothesize about factors 

which contribute to trip origin and trip attraction. Origin factors include population density and 

group quarter population density. Attraction factors include job density, location of tourist 

attractions, and proximity to parks and recreation. They also consider network facilities and 

infrastructure features like rail stations, bike lanes and bus stops. We complement the work of 

Krykewycz et al. (2011) by using observed usage data to uncover the factors that impact trip 

generation and attraction. While results based on census data are common in bike sharing 

feasibility studies -- see Philadelphia (DVRP, 2011), New York (NYC, 2011), London (TFL, 

2011) -- we present an empirical analysis to test the factors that influence bike sharing usage. 
 
 

3. Description of Data Sources 
 

Our goal is to explain select factors influencing bike sharing trip generation and attraction 

in Barcelona and Seville, Spain. The dependent variables of interest in our analysis are the public 

bicycle usage arrival and departure rates and operator rebalancing refill and removal rates in Sub-

City Districts (SCDs) of the city. SCDs are spatially homogenous regions (in terms of social 

structure and built environment) formed for ease of planning. The independent variables include 

census level data at the SCD-level on socio-demographics, economics, and housing, from 



 

EuroStat. Points of interest (POI) data such as the location of businesses, metro stations, leisure 

activities, restaurants, etc., are used as proxies for land-use characteristics and trip purpose. We 

describe the compilation exercise for each of these data sources in detail below. 
 

3.1 Bike Sharing Usage Data 
 

We developed an information systems infrastructure that includes a web crawler, to capture 

bike sharing system state (snapshot) data in real-time via the websites of these programs. The 

dataset, obtained from the websites of the bike sharing programs, spans from May 1 - September 

20, 2009. Through this process, the state information of all bike stations in the city is captured 

every 5 minutes (due to restrictions on the crawler). However, due to intermittent errors in the 

information systems infrastructure, several stations and time points have missing data. We clean 

this data to result in 34 days and 21 days of 5-minute state data for each station in Barcelona and 

Seville, respectively. Trip rate information in this study is derived from the collected state 

information. We also record the latitude and longitude of each bike station in the city, and the total 

number of bike stations in each SCD. Through this process, we have compiled a unique 

longitudinal dataset on usage at each individual station and SCD. 

To transform this data into the dependent variables used in our models, we first compute 

the total arrival and departure rates at each station at a 5-minute level. Note that total arrivals and 

departures of bikes can be influenced by both customer usage as well as rebalancing operations by 

the operator. We split the apparent total arrival rate and total departure rate into four components 

- (i) arrival rate, (ii) departure rate, (iii) refilling rate, and (iv) removal rate, using a heuristic 

approach. Rates (i) and (ii) are due to customer usage and (iii) and (iv) due to rebalancing by the 

operator. The assumption behind our separation is the following – when the operator rebalances 

bikes at a station, usually there will be a significant change in the total number of bikes at the 

station (refilling or removal) in a short span of time, as compared to users borrowing and returning 

bikes. Therefore, when we observe a 5-minute total arrival (total departure) rate that is greater than 

the 99th percentile of arrival (departure) rate for that station, we assume that a rebalancing 

operation (refilling or removal) is performed by the operator. Specifically, our heuristic assumes 

that when the total arrival (total departure) rate exceeds 99th percentile of the arrival (departure) 

rate for that station, the arrival (departure) rate due to public demand is the average rate of the last 

two 5-minute arrivals (departures) for that station, and the remaining is due to refilling (removal) 

by the operator (Note that a different threshold, for example, the 95th percentile, could also be 

used depending on the observations in the data)1. The 5-minute level data of (i) arrival rate, (ii) 

                                                           
1 We did not have the rebalancing information from the operator to validate our rebalancing heuristic; hence, we 

employed the exact same approach using Boston bicycle-sharing system data to “test” our heuristic approach. The 

Boston data was available online with aggregate daily rebalancing information (at the system level for each day). A 

comparison of the estimated rebalancing (using our approach) and actual aggregate numbers provided in the Boston 

data yielded a maximum daily error margin of about 20%. Given that there might be some intrinsic differences between 

how the Barcelona and Seville systems and the Boston system are operated we considered this an acceptable error 

margin for our heuristic method. Moreover, we have tested different values (99th, 98th and 95th) for threshold of our 

heuristic approach and the 99th percentile threshold provided lowest error in the comparison of estimated rebalancing 

and actual numbers. Moreover, we believe that it is very unlikely that two rebalancing operations happen for one 

station in two consecutive hours. The comparison of 99th, 98th and 95th percentile showed us that the 99th percentile 

appropriately reduce the likelihood of such occurrences.  



 

departure rate, (iii) refilling rate, and (iv) removal rate are further aggregated temporally and 

spatially to create their corresponding hourly metrics at the SCD-hour level. 
 

3.2 Eurostat Urban Audit 
 

The European Union’s statistical agency, Eurostat, and member state national statistical 

agencies compile data at the intra-city level for a select number of cities in the Urban Audit 

(Eurostat, 2007). The Eurostat urban audit data provides variables in the categories of: 

sociodemographic, economic and housing. The data is available at the city level and Sub-City 

District (SCD) level. For this study we use data at the SCD level. This study uses data collected in 

the 2006-2007 urban audit. The number of variables at the SCD level in 2006-2007 with completed 

entries is limited. We were able to extract the following variables at the SCD level: population 

density, female population, one person households and labor market participation rate. 
 

3.3 Tele Atlas Points of Interest 
 

We use Points of Interest (POI) data from Tele Atlas (see www.teleatlas.com), provider of 

geographic databases. The Tele Atlas data consists of the latitude and longitude of Points of 

Interest (POI) in a city. Tele Atlas places each POI into one of 68 categorizes. Following the bike 

sharing literature, Krykewycz et al. (2011), we combine the 68 categories into super-categories of 

POIs for our analysis. The eight categories are businesses, transportation, leisure, worship, hotels, 

hospitals, restaurants and universities. 

We combine the arrival and departure rates at SCD-hour level with SCD-level Eurostat 

data and the TeleAtlas Point of Interest (POI) data to create the data samples for Barcelona and 

Seville. We now describe the data sets for Barcelona and Seville generated from this procedure. 

 

 
Fig. 1 Barcelona Average Total Arrival Rate for 24 hours 



 

3.4 Barcelona Dataset Description 
 

The bike sharing program in Barcelona, Spain, named Bicing, started operation on March 

3, 2008, operated by the company Clear Channel. During our study period, it consisted of 402 

fixed location bike stations and approximately 6000 bikes. Barcelona has 86 train and metro stops 

with a bike station nearby (OBIS, obisproject.com). Barcelona has 56 SCDs in the Eurostat urban 

audit. The Tele Atlas data contains 6,893 points of interest for Barcelona. During the observation 

period, Barcelona has 168 points of interest that are categorized as transport, 2,809 categorized as 

businesses, 401 as leisure and 60 as universities. We use data from 34 days of observations, with 

arrival rate and departure rate averaged over each hour of the day. Thus we have 816 observations 

per SCD. Only weekdays are selected for analysis in this study. In our dataset, there are 28,632 

average trips per day in Barcelona. Figure 1 shows the city-wide total arrival rate for Barcelona 

for each hour in a 24 hour period. It shows the morning, lunch and evening behavior of the arrival 

rate. The total city arrival rate has three peaks, corresponding to the morning, lunch and evening 

periods. 

The total arrival rate attains a maximum during the evening period around 7pm. A 

descriptive summary of arrival, departure, refilling and removal rates are provided in Table 1. 

Specifically, the average rates for the dependent variables across the different time periods are 

provided. The values clearly indicate that the lunch and evening time periods have higher arrivals 

and departures as well as increased rebalancing operations. Table 2 provides a description of the 

sample characteristics of the independent variables employed in the model estimation. The 

statistics indicate that there are about 7 stations in every SCD while the average capacity at the 

SCD level is about 67 bicycles. Further, it is clear that businesses and restaurants form the majority 

of the POIs in the Barcelona region. 
  

Fig. 2 Seville Average Total Arrival Rate for 24 hours 
 



 

3.5 Seville Dataset Description 
 

The bike sharing program in Seville, named Sevici, started operation on July 24, 2007. It 

is operated by the company JCDecaux. During our study period, it consisted of 271 fixed location 

bike stations and approximately 2000 bikes. According to the EU-sponsored Optimizing Bike 

Sharing in Europe (OBIS) working group, Seville has 19 train and metro stops with a bike station 

nearby. In contrast to Barcelona, Seville has a flat elevation profile. There are 38 sub-city districts 

in the city. The Tele Atlas data contains 1,700 points of interest for the city, in which 168 are 

categorized as transport, 808 as business, 278 as leisure and 30 as universities. We use data from 

21 days of observations. Similar to Barcelona, only weekdays are selected for the analysis in this 

study. From these days, we construct 504 hourly observations of the arrivals and departures per 

SCD. In the dataset, there are an average of 8,173 trips per day in the city. 

Figure 2 shows the total arrival rate for Seville for each hour in a 24-hour period. It shows 

morning, lunch and evening peaks in the arrival rate, similar to that in Barcelona. One key 

observation is that in Seville, the activity in the evening period is less prominent compared to the 

morning and lunch periods, as compared to Barcelona. Additionally, the peak during the lunch 

period is slightly later in the day compared to Barcelona. Tables 1 and 2 describe the sample 

characteristics of the dependent variables (arrival, departure, refilling and removal rates) and 

independent variables used in the model estimation. 

 

 

4. Research Methodology 

 

4.1 Linear Mixed Model Approach for Arrival and Departure Rates 
 

In this section, we describe the methodology employed for model estimation in our paper. 

The data compiled contains repeated measures for the same SCD across multiple days and hours. 

A traditional cross-sectional linear regression model would neglect the inherent correlation across 

the multiple repeated measures and the resulting models would be econometrically inefficient and 

the parameter estimates likely to be biased. Moreover, any quantitative computation from such 

models will result in erroneous predictions. Toward estimating the accurate impact of exogenous 

factors we estimated a parsimonious linear mixed model that allows us to simultaneously 

incorporate different correlation structures. In our analysis, we found that the auto regressive 

moving average (ARMA) correlation structure offered superior statistical fit. In this model 

structure, we consider that observations within a day for each SCD are correlated in the ARMA 

structure. The assumption allows us to estimate a model that captures the influence of bicycle 

infrastructure attributes and socio-demographic characteristics at the SCD level. The same model 

structure is employed for customer arrivals and departures and operator refilling and removal for 

Barcelona and Seville.  
 Let q = 1,2, …, Q be an index to represent a sub-city district (SCD), d = 1, 2, …, D be an 

index to represent the various days on which data was collected and t = 1, 2, …, 24 be an index 

for hourly data collection period at SCD q and day d. The logarithm of the dependent variable is 

modeled using linear regression equation which in its most general form takes the following 

structure: 

𝑦𝑞𝑑𝑡 = 𝛽𝑋 + 𝜉 



 

where yqdt is the logarithm of the observed dependent variable, X is an L×1 column vector of 

attributes including a constant that influences the dependent variable including SCD q level 

variables, such as number of stations, population density, day d related variables, such as week of 

the day, and time period t related variables, such as hour of the day. The model coefficients, form 

a L×1-column vector. An idiosyncratic random error term, 𝜉, is assumed to be normally distributed 

across the data records. 
In the context of data collected in our study, the idiosyncratic error term could be 

potentially be partitioned into three components. The first component represents the common 

unobserved factors related to the SCD in influencing the dependent variable across different days 

and times. The second component represents common unobserved factors related to a particular 

day that influence the dependent variable across the region, usually related to spatial effects such 

as occurrence of rain or unusually hot weather. The third component considers the influence of 

unobserved factors on the dependent variable values across different time periods in a day for each 

SCD. An analysis that incorporates the three components requires the partitioning of the 𝜉 term 

into three categories: (1) SCD component, (2) Day component and (3) Time of day component. 

However, incorporating these three components in the regression model simultaneously is far from 

trivial and will result in a covariance matrix of the order of the size of the dataset (i.e. 45,696 × 

45,696 in our empirical context for Barcelona). Given the considerably large size of data and the 

number of dependent variables considered in our study, it is quite prohibitive in terms of run-times 

to estimate the combined influence of the three components simultaneously (see Bhat et al. (2010) 

for discussion on complexity involving spatial models). So, we adopt the approach of identifying 

an appropriate correlation structure through a systematic process of model estimation while 

focusing on a parsimonious specification. Specifically, we resort to examining the influence of 

SCD-specific common unobserved effects and SCD-time of day related common unobserved 

effects. 
 

4.1.1 SCD structure 
 

In this structure, the multiple responses for each SCD are considered to be correlated. This 

means that in the Barcelona dataset, this results in 56 SCDs with 816 repeated measures. 

Estimating a full covariance matrix is computationally intensive while providing very little 

intuition. Hence, we parameterize the covariance matrix (Ω): 

 

Ω = (

𝜎2 + 𝜎1
2 𝜎1

2

𝜎1
2 𝜎2 + 𝜎1

2

⋯         𝜎1
2

⋯        𝜎1
2

⋮             ⋮
𝜎1

2         ⋯
 ⋱     ⋮
⋯   𝜎2 + 𝜎1

2

) 

 

The parameters estimated in this correlation structure are (𝜎2 and 𝜎1
2). 

 

4.1.2 SCD-day-time of day structure 
 

In this structure, the data can be visualized as 24 records for each SCD-day combination 

for a total of 1804 observations. In this structure, the 24 records, corresponding to 24 hours, from 

the same SCD and same day are assumed to be correlated. Again, for estimating a parsimonious 



 

specification, we assume a first-order autoregressive moving average (ARMA) correlation 

structure with three parameters 𝜎; 𝜑 and 𝜌 as follows: 

Ω = 𝜎2 (

1 𝜑𝜌
𝜑𝜌 1

⋯ 𝜑𝜌23

⋯ ⋮
⋮ ⋮

𝜑𝜌23 ⋯
 ⋱ ⋮
⋯   1

) 

 

4.2 Rebalancing Operation Models 
 

For modeling the rebalancing operation, we employ two models: 1) a binary choice model 

for the identification of a rebalancing action 2) a linear regression model for the rate of rebalancing 

actions. We examine the refilling and removal operations separately. To elaborate, two binary 

choice models are estimated to analyze the contributing factors that influence the refill and removal 

operations. In these two models, the dependent variables are dummy variables indicating if a refill 

or removal operation is performed or not. Next, given a refill (removal) operation is performed, a 

linear regression model is employed to examine what factors affect the refill (removal) rates in 

each rebalancing operation. The sample size for linear regression models reduces to the records 

where a refill (removal) is identified. 

The model for identification of a rebalancing action takes the well-known binary logit 

formulation as the following: 

𝑢𝑟 = 𝛽𝑟𝑋𝑟 + 𝜂𝑟  

where 𝑢𝑟 is the utility obtained for rebalancing occurrence, 𝑋𝑟 is the vector of attributes that 

influences the rebalancing operation and 𝛽𝑟 is the model coefficients to be estimated. The random 

error term, 𝜂𝑟, is assumed to be independent and identically Gumbel-distributed across the dataset. 

Given this notation, the probability expression takes the typical binary logit form as follows: 

𝑃𝑟 =
1

1 + exp (−𝑢𝑟)
 

by maximizing the log-likelihood of this probability function, the model parameters 𝛽𝑟 are 

estimated. The model for the rate of rebalancing actions take the simplest form of linear regression 

models. The linear mixed model described above collapses to the model for the rebalancing rate 

when the 𝜑 and 𝜌 are assumed to be zero. 
 

4.3 Model Estimation 
 

The approach employed for arrival and departure models in the estimation is based on the 

Restricted Maximum Likelihood Approach (REML) that is slightly different from the maximum 

likelihood (ML) approach. The REML approach estimates the parameters by computing the 

likelihood function on a transformed dataset. The approach is commonly used for linear mixed 

models (Harville, 1977). For operator rebalancing models, the binary choice model is estimated 

using a maximum likelihood approach while linear regression model is estimated using an ordinary 

least squares approach. The models were estimated using the SPSS software. 
The results from the estimation are discussed separately for usage and rebalancing 

(operator-enforced movement) measures. The former analysis will allow us to evaluate bicycle 

demand generated at an SCD level while the latter analysis will allow us to provide information to 

operators on when and where to focus on rebalancing operations. In particular, the current analysis 



 

is focused on examining four rate components: (i) arrival rates, (ii) departure rates, (iii) refilling 

rate and (iv) removal rate.  

Several variables were considered in the analysis. These variables can be broadly classified 

as: (1) Bicycle infrastructure attributes including number of stations in a SCD, stations per unit 

area, capacity of the SCD, total capacity in a SCD, total capacity per unit area and (2) Land use 

characteristics of the SCD including population density, proportion of one person households, 

proportion of females to males, elevation measures in the SCD and percentage point of interests 

(POIs) for business, recreation, transport, restaurants, places of worship and universities. In the 

model estimation, several forms of the variables from the two groups were considered. These 

variables were also interacted with temporal dimensions to allow for differential sensitivities 

across different time periods. The final model selection was based on the restricted log-likelihood 

and Bayesian Information Criterion metrics. Our model estimation process was guided by 

parsimony and intuitiveness considerations. The model estimation process required us to estimate 

SCD level models and SCD-day combination models. The models that incorporated temporal 

correlations using the ARMA model frameworks offered improved fit measures. Hence, in Section 

5, we focus our discussion on the ARMA model results. 
 
 

5. Estimation Results 
 

5.1 Usage 
 

In this section, we focus our attention on understanding how bicycle infrastructure attributes and 

land use characteristics influence public bicycle usage (arrival and departure rates) in Barcelona 

and Seville. The model estimation process began with simple linear regression model. Employing 

the results from the linear regression a linear mixed model was estimated. The data fit as measured 

by log-likelihood clearly highlights the model fit improvement offered by the mixed models 

relative to simple linear regression model in both cities. Specifically, the log-likelihood ratio test 

statistic for comparing the mixed linear model to simple linear model is 6650.0 for Barcelona 

arrivals model, 10580.4 for Barcelona departures model, 2918.4 for Seville arrivals model, and 

4552.8 for Seville departures model. The test statistic is substantially higher than the corresponding 

chi-squared table value with only 2 degrees of freedom at any practical level of significance for all 

the models. The estimation results for the log-linear mixed model estimations are presented in 

Tables 3 and 4. 
 

5.1.1 Bicycle Infrastructure attributes 
 

The results indicate that the arrivals and departures in a SCD are strongly influenced by 

bicycle infrastructure variables. In the model specifications, different functional forms of the 

number of stations and capacity are considered. The station density variable and total capacity per 

unit area variable offered the most intuitive fit while providing statistically significant results. For 

Barcelona, as is expected, as the station density increases the number of arrivals and departures in 

an SCD increase. It is interesting to note that the impact of the station density varies for different 

time period of the day. The result indicates that the impact of station density is highest on the 

‘Evening’ and ‘Late’ time period i.e. the arrivals or departures in the evening and late night period 

are most strongly related to station density. This is expected because during evening and late time 



 

periods the demand is predominantly a function of the number of stations where as during other 

time periods, demand is dependent on other amenities. For Seville, on the contrary, the impact of 

station density is negative. However, it is important to note that the effect of station density variable 

and total capacity per unit area variable must be considered together; i.e. increase in one parameter 

would simultaneously increase the other parameter. Hence, the estimates obtained are the overall 

effect of station and capacity density variables. The capacity variable exhibits intuitive impacts. 

For both Barcelona and Seville, as capacity in an SCD increases, arrivals and departures are 

positively influenced. Further, we see that capacity has an overall positive impact on the different 

time periods of the day (Morning, Lunch and Evening) with the largest impact during the lunch 

period for Barcelona and the morning period for Seville.  
 

5.1.2 Land use characteristics 
 

A host of land use characteristics affect the arrival and departure rates in our models for 

Barcelona. The mean and standard deviation of the SCD elevation levels offer interesting results. 

We observe that SCDs with higher average elevation tend to have lower arrival and departure rate 

increase indicating that bicycle demand is lower in regions with higher elevation. However, as the 

standard deviation of elevation of the stations within the SCD increases, the arrival and departure 

rates increase, indicating that within SCDs with same mean elevation, bicyclists prefer stations 

that are on lower elevation levels for arrivals and departures. The Points of Interest variables by 

different categories offer plausible results. All categories of POIs positively influence bicycle 

arrival and departure rates (except place of worship). The reader would note that the POIs are 

indicative of the presence of potential activity centers in the various parts of the city that strongly 

influence station location and capacity decisions. Hence they are more likely to have a positive 

association on arrival and departure rates. Nonetheless, controlling for the variation of POI 

proportion is important in the context of our modeling effort. The other land-use variables 

including proportion of females to males, proportion of one person households and population 

density serve as controls for land-use effects on arrival and departure rates. 

The impact of land-use effects in the Seville region broadly follow the same pattern. The 

mean of elevation of the SCD influences usage similarly, with increased elevation decreasing 

usage. The standard deviation of elevation was not significant in explaining the usage (as was the 

case for Barcelona). The POI variables for different categories such as businesses, recreation and 

transportation all increase usage (both arrivals and departures), similar to the case of Barcelona. 

As expected, the population density variable has positive impact on the arrivals and departures. 

However, the impact of population density on arrivals in the morning time period is less than other 

time periods. It is intuitive, since we expect more departures from higher population density areas 

in the morning period than arrivals, which would result in higher arrivals in the areas with lower 

population density.  
 

5.1.2 Temporal Parameters 
 

In our modeling efforts, we also control for temporal variables. For Barcelona, we observe 

lowest demand during late night time period as expected. For Seville, AM time period has the 

lowest arrival demand while for departures, the lowest demand is for AM and late night time 

periods. 
 



 

5.2 Rebalancing Operation Analysis 
 

In the rebalancing framework the influence of bicycle infrastructure attributes and land-

use characteristics are examined on the decision of rebalancing operation and the rates of refills 

and removals. The estimates for binary choice and linear regression models for Barcelona and 

Seville are presented in Tables 5 to 8. In Barcelona, the results indicate that areas with the need 

for more rebalancing operations require lower rebalancing rates. The results pertaining to number 

of stations and average capacity offer interesting insights on infrastructure operation. Specifically, 

increasing the number of stations results in the increase in number of rebalancing needs for both 

refills and removals and reduction in the rate of refills and removal. Increasing capacity also results 

in increased rebalancing needs both in terms of occurrence and rates. The result indicates that a 

reduction in station density in an SCD would result in higher rates of refills and removal but with 

lower rebalancing operation needs.  
Among land-use characteristics, increase in mean elevation and the standard deviation of 

the elevation reduces rebalancing needs because the usage is marginally lower in these SCDs. 

However, when a rebalancing occurred, it is more likely associated with higher refill or removal 

rates. Population density also reduces rebalancing needs for both refills and removals. Moreover, 

SCDs with higher population density are more likely to have rebalancing operations both in terms 

of occurrence and rates during night time period. The points of interest variables also have similar 

trends. The SCDs with more points of interest have higher needs for rebalancing but with fewer 

amount of rebalancing per instance. Temporal parameters indicate more performance of 

rebalancing operations during the night time period. 
In Seville, increasing capacity results in increased rebalancing needs but reduces the 

amount of refills and removals. The number of stations estimate is not significant for the removal 

model. However, the SCDs with higher station density have higher needs, for refills. Contrary to 

Barcelona, the effect of elevation parameters are not significant.  
We now introduce a notion of spatial flexibility for shared mobility systems. This notion is 

closely related to mixed-use development. We claim that SCDs that contain a heterogeneous set of 

points of interest support many different usage patterns and are spatially flexible. By the term 

‘usage pattern’, we are referring to temporal usage patterns associated with a given point of 

interest. Heterogeneous usage patterns, if complementary, lead to higher operational efficiency via 

economies of scope, or multiplexing. 
SCDs with less varied types of points of interest support fewer usage patterns and are less 

spatially flexible. For example, stations in an SCD that contain only business POIs experience an 

influx of bikes due to the morning commute causing the stations to become full. There would be 

fewer full stations if this SCD also contained POIs with a demand inversely related to business 

demand. The operational benefit of heterogeneous usage patterns was introduced in previous 

literature on car sharing, see Barth and Shaheen (2002). We provide the first empirical support for 

spatial flexibility for shared mobility systems. 
In the rebalancing estimation, we measure spatial flexibility by the POI variance across the 

SCDs by computing the average of the square of the deviation from the mean for all POI categories 

i.e. a larger value indicates significant differences from overall mean values in the region. The 

results for this variable in both Seville and Barcelona indicate that as the overall variance computed 

increases, the need for rebalancing reduces. However, when a rebalancing occurred, SCDs with 

higher POI variance are associated with higher rates of refills and removals. Again, the result 

provides credence to the hypothesis that increased spatial flexibility reduces requirement to 



 

rebalance because the usage patterns for these POIs are complementary and lead to an inherent 

rebalancing by the bicyclists without the operator’s intervention. For both Seville and Barcelona, 

the POI variables have negative impact in binary choice model while they have positive impact in 

linear regression model of refills and removals.  
 

5.3 Elasticity Effects 
 

The parameter estimates in Section 5.1 and 5.2 provide an intuitive understanding of the 

exogenous factors that are important. However, these estimates do not provide us with tangible 

comparison measures across various exogenous variables. Towards this end, we compute elasticity 

effects based on parameter estimates. The elasticity effects are computed for customer arrivals and 

departures. For the sake of brevity, we restrict ourselves to elasticity effects for the Barcelona 

region. 
 

5.3.1 Arrivals and Departures  
 

In this section, we focus on examining the influence of various variables identified in the 

discussion of results. To elaborate, we compute the elasticity effect of changing a particular 

variable. For instance, we illustrate the contribution of number of stations in an SCD by increasing 

their count by 1 and examining its influence on the overall arrivals and departures. In this exercise, 

we focus on the following variables: 1) increasing number of stations without increasing SCD 

level capacity, i.e., we redistribute capacity to create a new station, 2) increasing number of stations 

allowing for SCD capacity to increase (the increase is same as the average capacity), and 3) 

increasing average SCD capacity (by adding bicycles at each station), For each of these variables, 

the percentage change in the predicted outcome is computed. The elasticity measures are also 

computed for different time periods. The results of the elasticity computation for Barcelona are 

presented in Table 9. 
The following observations can be made from the elasticities. First, increasing bicycle 

infrastructure facilities (stations and/or capacity) results in an increase in arrivals and departures. 

Second, the positive impact of increasing number of stations and capacity is substantially higher 

than the positive impact of increasing either capacity or stations for arrivals and departures. An 

important finding is that the impact of adding a new station is similar to increasing the capacity by 

5 units to existing stations in the SCD for arrivals. On the other hand, for departures, adding a 

station has a stronger impact than capacity increase of 5 units.  
 
 

6. Conclusion 
 

The current study contributes to literature on bicycle sharing program usage and operation. 

The paper documents research undertaken toward answering two questions related to quantifying 

and comparing the influence of bicycle infrastructure attributes and land-use characteristics on: (a) 

demand, consisting of customer arrivals and departures, and (b) rebalancing, consisting of the 

frequency and quantity of operator refills and removals. The research questions also seek to 

understand if specific bicycle infrastructure attributes or land-use characteristics influence demand 

and rebalancing operations differently, and if so, in what manner.  



 

The study employs usage data compiled through scripts that record station level bicycle 

availability every few minutes in urban regions of Barcelona and Seville. The resulting data is 

composed of a multi-day 24 hour data for station level bicycle availability. The station level bicycle 

availability data was aggregated to a Sub-City District (SCD) level and the temporal dimension is 

aggregated to an hourly value. The aggregation of snapshot data allows us to derive bicycle arrivals 

and departure rates and rebalancing rates at a regional level. The compiled bicycle usage data is 

augmented with intra-city level data on sociodemographic, economic and housing characteristics 

at the SCD level for the year 2006-2007. Specifically, the following variables at the SCD level 

were extracted: population density, female population, one person households and labor market 

participation rate. We also compiled Points Of Interest (POI) data from Tele Atlas in eight 

categories: business, transport, leisure, restaurants, worship, hotels, hospitals and universities. The 

POI variables are used an indicator of land-use variability at the SCD level. 

A total of 8 models were estimated. The model results highlight the importance of bicycle 

infrastructure attributes and land-use characteristics on bicycle usage and operator rebalancing. 

The results for bicycle usage from Barcelona and Seville follow a similar pattern with minor 

differences across the two cities. The model results for the Barcelona region highlight bicycle 

station density, average capacity, and percentage of POIs from business, recreation, and restaurants 

as important contributors of arrival and departure rates. The results for the Seville region are 

similar except for the insignificance of station density attribute. The results for operator 

rebalancing for both Barcelona and Seville region have fewer parameters. In particular, for the 

Barcelona region we find that increasing the number of stations actually results in a reduction for 

operator rebalancing. The result has significant implications for shared bicycle infrastructure 

operators in Barcelona. In the Seville region, the number of stations variable was insignificant for 

operator rebalancing indicating that increasing capacity directly results in increasing rebalancing 

requirements. In addition, we also see that the presence of heterogeneous POIs in an SCD leads to 

lower requirements of rebalancing. This confirms empirically the hypothesis that the presence of 

a variety of POIs indicates several purposes for bikes, incoming and outgoing from the SCD, and 

therefore the likelihood of customers automatically rebalancing bikes increases. 
In addition to the parameter estimates, to directly compare the impact of various exogenous 

variables, we also compute elasticity effects. The elasticity effects were computed for various 

bicycle infrastructure attributes and land-use characteristics for Barcelona. The results provide 

quantitative estimates of how increasing the number of bicycle stations or station capacity affect 

bicycle usage. The estimates suggest very important policy implications from the perspective of 

the bicycle infrastructure operation. The results indicate that redistributing existing capacity into 

smaller capacity based stations thus increasing total number of stations has a positive effect on 

usage. The authors believe that the quantitative computation provided in this paper provides a 

template for examining bicycle rebalancing across the world. A prediction framework for SCD 

level rebalancing will offer improved system management for bicycle sharing system operators. 

To be sure, the study is not without its limitations. The data collected allows the arrival rate 

and departure rate to be computed at intervals of 5 minutes. It is possible that multiple transactions 

occur within this time period and result in an erroneous estimate of the bicycle usage. However, 

we believe that the resulting error from our assumption is minimal2. The quantitative models 

                                                           
2 To address the magnitude of error from our 5-minute data, we used another dataset. Specifically, we explored data 

from Montreal that was collected every 1 minute to check for the underestimation of demand if the data collection 

interval was 5 minutes. We found that the hourly arrival and departures rates were under estimated by about 20%  if 



 

developed will benefit substantially if additional data on commuting patterns and general urban 

trends in these cities were available. Finally, in this paper, we focus on SCD level models. In future 

research, other types of spatial aggregation might be considered. 
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Table 1: Descriptive Summary of Dependent Variables 
 

Dependent Variable Morning Mid-day Evening Late Total 

 Barcelona 

Mean Arrival Rate 4.05 5.12 5.53 3.95 4.61 

Mean Departure Rate 4.55 5.11 5.65 3.38 4.60 

Mean Refill Rate 0.46 0.29 0.15 0.50 0.36 

Mean Removal Rate 0.45 0.28 0.15 0.52 0.36 

 Seville 

Mean Arrival Rate .97 2.08 2.13 1.33 1.59 

Mean Departure Rate 1.42 1.95 2.11 1.09 1.61 

Mean Refill Rate .05 0.04 0.04 0.02 0.03 

Mean Removal Rate .03 0.02 0.03 0.01 0.02 

 
 
  



 
 

 
 

Table 2: Descriptive Summary of Independent Variables 
 

Independent Variable 
Barcelona Seville 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Number of Stations 7.2 4.9 8.3 5.1 

Average SCD Capacity 66.9 82.7 147.7 105.0 

Mean of station elevation in the SCD 58.0 48.5 14.4 4.1 

Standard Deviation of station elevation in the SCD 13.6 18.7 3.0 0.9 

Proportion Females to Males (for every 100 males) 112.6 9.9 110.8 7.0 

Proportion of One Person Households 26.6 5.8 18.8 6.9 

Population Density (1000 residents per sqkm) 30.2 14.6 15.8 10.7 

Percentage of Business POI 43.9 12.4 45.6 18.8 

Percentage of Recreational POI 4.4 4.4 11.0 9.6 

Percentage of University POI 0.9 2.4 1.6 3.1 

Percentage of Transport POI 17.4 7.3 16.9 18.4 

Percentage of Hospital POI 0.7 1.3 0.7 1.5 

Percentage of Restaurant POI 27.0 10.5 14.9 8.7 

Percentage of Worship POI 2.8 2.4 5.3 5.3 

Percentage of Hotel POI 2.9 3.9 3.9 5.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Table 3: Model Estimation Results for Arrival and Departure Rates - Barcelona 
 

Variable 
Arrival Rate Departure Rate 

Estimate t-statistic Estimate t-statistic 

Intercept -1.0144 -5.160 -1.4988 -6.514 

Bicycle Infrastructure Attributes     

Number of Stations per unit area 0.0139 3.177 0.0217 4.122 

Number of Stations per unit area * Morning -0.0111 -2.278 -0.0258 -4.898 

Number of Stations per unit area * Midday -0.0205 -4.067 -0.0220 -4.053 

Total capacity per unit area (10-3) 0.1861 10.359 0.1906 9.791 

Total capacity per unit area * Morning (10-3) 0.0823 3.685 0.0547 2.349 

Total capacity per unit area * Midday (10-3) 0.1404 5.061 0.1390 5.071 

Total capacity per unit area * Evening (10-3) 0.0446 1.975 - - 

Land use characteristics     

Mean elevation of the SCD -0.0131 -20.784 -0.0136 -17.384 

Standard Deviation of elevation of the SCD 0.0198 12.060 0.0226 11.351 

Percentage of recreation POIs 0.0297 6.765 0.0314 6.004 

Percentage of transportation POIs - - 0.0060 2.336 

Percentage of Restaurants POIs  0.0066 3.904 0.0059 2.990 

Percentage of place of Worship POIs -0.0208 -3.700 - - 

Percentage of hotel POIs 0.0346 6.314 0.0373 5.738 

Proportion of Females to Males in the SCD 0.0184 9.641 0.0180 8.099 

Proportion of One Person Households in the SCD -0.0343 -7.676 -0.0326 -5.893 

Population Density (10-3) 0.0114 10.727 0.0135 10.809 

Temporal Parameters     

AM 0.2771 7.133 0.7667 18.396 

Mid-day 0.6128 14.857 0.7200 16.466 

PM 0.5478 22.956 0.6687 30.981 

ARMA correlation Parameters     
𝜎 

1.7861 118.476 2.0738 99.917 

𝜌 
0.7512 89.902 0.7697 118.192 

𝜑 
0.3707 66.693 0.4896 89.436 

Restricted Log-Likelihood -74263.2 -74800.4 

 
  



 
 

Table 4: Model Estimation Results for Arrival and Departure Rates - Seville 

Variable 
Arrival Rate Departure Rate 

Estimate t-statistic Estimate t-statistic 

Intercept -9.6038 -11.084 -9.0148 -10.936 

Bicycle Infrastructure Attributes     

Number of Stations per unit area -0.0433 -2.289 - - 

      Number of Stations per unit area * Morning - - -0.0696 -7.837 

      Number of Stations per unit area * Midday - - -0.0367 -4.004 

Number of Stations per unit area * Evening 0.0148 1.745 - - 

Total capacity per unit area (10-3) 0.4990 6.843 0.5265 15.975 

      Total capacity per unit area * Morning (10-3) 0.1552 5.008 - - 

      Total capacity per unit area * Evening (10-3) - - -0.1745 -4.836 

Land use characteristics     

Mean elevation of the SCD -0.1360 -16.400 -0.1315 -15.381 

Percentage of business POIs 0.0406 7.775 0.0389 7.733 

Percentage of recreation POIs 0.0322 6.825 0.0399 8.045 

Percentage of transportation POIs 0.0603 9.973 0.0596 10.998 

Percentage of Restaurants POIs 0.0186 3.216 0.0219 3.586 

Percentage of hotel POIs 0.0367 5.887 0.0409 5.889 

Proportion of Females to Males in the SCD 0.0622 10.532 0.0529 8.634 

Population Density (10-3) 0.0290 5.582 0.0100 3.073 

Population Density (10-3) * Morning -0.0248 -7.034 - - 

Population Density (10-3) * Mid-day -0.0157 -4.040 - - 

Population Density (10-3) * Evening -0.0159 -4.059 - - 

Temporal Parameters     

AM -0.4375 -6.063 - - 

Mid-day 0.5219 7.037 0.7360 10.741 

PM 0.5130 7.176 0.8061 14.798 

ARMA correlation Parameters     

𝜎 
2.0349 66.817 2.4206 64.222 

𝜌 
0.6142 41.958 0.5906 49.682 

𝜑 
0.4602 53.802 0.5376 72.289 

Restricted Log-Likelihood -26820.1 -27448.5 

 
 

 
 
 
 



 
 
 
 
 

Table 5: Model Estimation Results for Binary Choice of Refilling and Removal - Barcelona 
 

Variable 
Refill Removal 

Estimate t-statistic Estimate t-statistic 
Intercept -6.0329 -7.636 -3.0901 -29.831 
Bicycle Infrastructure Attributes     
Number of Stations per unit area  0.0285 3.414 0.0187 2.830 
Number of Stations per unit area * Morning -0.0289 -2.854 - - 
Number of Stations per unit area * Midday 0.0402 3.053 0.0602 4.887 
Number of Stations per unit area * Evening 0.0822 6.875 0.0778 7.023 
Total capacity per unit area (10-3) 0.3830 22.521 0.3671 21.648 
Total capacity per unit area * Midday (10-3) 0.2277 5.860 0.2143 5.446 
Land use characteristics     
Mean elevation of the SCD -0.0116 -9.771 -0.0074 -7.765 
Standard Deviation of elevation of the SCD 0.0165 5.678 0.0100 3.867 
Population Density (10-3) 0.0067 2.759 0.0112 4.726 
Population Density (10-3) * Morning -0.0100 -3.128 -0.0188 -6.093 
Population Density (10-3) * Mid-day -0.0378 -9.798 -0.0537 -13.490 
Population Density (10-3) * Evening -0.0294 -7.556 -0.0318 -8.005 
Percentage of recreation POIs 0.0441 5.181 0.0274 5.762 
Percentage of transportation POIs 0.0175 2.092 - - 
Percentage of hotels POIs 0.0297 3.050 - - 
Percentage of business POIs 0.0159 1.996 - - 
Percentage of Restaurants POIs 0.0193 2.454 0.0091 4.428 
POI Variance Measure (10-3) -0.1757 -2.913 -0.3603 -6.763 
Proportion of Females to Males in the SCD 0.0146 5.956 - - 
Temporal Parameters     
Morning 0.5937 4.767 0.7033 6.776 
Mid-day 0.4036 2.952 0.6729 5.177 
Evening -0.4700 -3.126 -0.3888 -2.626 

Log-Likelihood -12027.0 -11941.0 
 
  



 
 

Table 6: Model Estimation Results for Binary Choice of Refilling and Removal - Seville 
 

Variable 
Refill Removal 

Estimate t-statistic Estimate t-statistic 

Intercept -8.9647 -10.927 -10.5854 -11.504 

Bicycle Infrastructure Attributes     

Number of Stations per unit area  0.0403 1.814 - - 

Number of Stations per unit area * Evening - - -0.0811 -3.861 

Total capacity per unit area (10-3) 0.3239 4.412 0.6301 12.026 

Total capacity per unit area * Morning (10-3) - - -0.4404 -5.129 

Land use characteristics     

Population Density (10-3)   -0.0157 -2.673 

Population Density (10-3) * Morning -0.0858 -7.929 - - 

Population Density (10-3) * Mid-day -0.0357 -3.171 -0.0752 -5.130 

Population Density (10-3) * Evening -0.0214 -2.142 - - 

POI Variance Measure (10-3) -0.2879 -3.893 -0.2773 -3.391 

Proportion of Females to Males in the SCD 0.0430 5.981 0.0565 7.155 

Temporal Parameters     

Morning 1.9843 10.654 1.3355 6.908 

Mid-day 1.1079 5.220 1.4095 6.112 

Evening 0.9547 4.800 1.3818 6.371 

Log-Likelihood -2713.9 -2404.8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 7: Model Estimation Results for Refilling and Removal Rates - Barcelona 
 

Variable 
Refill Removal 

Estimate t-statistic Estimate t-statistic 

Intercept 11.2218 7.181 11.0151 7.085 

Bicycle Infrastructure Attributes     

Number of Stations per unit area  -0.4510 -20.314 -0.4750 -19.994 

Number of Stations per unit area * Midday 0.2023 5.358 0.2130 5.607 

Number of Stations per unit area * Evening 0.1154 2.774 0.1129 2.739 

Total capacity per unit area (10-3) - - 0.1159 2.196 

Land use characteristics     

Mean elevation of the SCD 0.0126 3.364 0.0108 2.950 

Standard Deviation of elevation of the SCD -0.0321 -3.225 -0.0278 -2.866 

Population Density (10-3) 0.1206 19.115 0.1215 17.934 

Population Density (10-3) * Mid-day -0.0666 -6.449 -0.0609 -4.992 

Population Density (10-3) * Evening -0.0526 -4.867 -0.0304 -2.257 

Percentage of recreation POIs -0.1401 -5.068 -0.1179 -4.294 

Percentage of transportation POIs -0.0652 -3.795 -0.0572 -3.335 

Percentage of business POIs -0.0542 -3.369 -0.0505 -3.145 

Percentage of Restaurants POIs -0.0692 -4.222 -0.0613 -3.742 

POI Variance Measure (10-3) 1.6137 8.339 1.5618 7.864 

Temporal Parameters     

Morning -0.6587 -4.123 -1.1684 -7.380 

Mid-day -1.5150 -3.361 -2.1933 -4.891 

Evening -1.5844 -2.969 -2.3532 -4.533 

R Square 0.249 0.257 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 8: Model Estimation Results for Refilling and Removal Rates- Seville 
 

Variable 
Refill Removal 

Estimate t-statistic Estimate t-statistic 

Intercept -0.6009 -2.513 0.1494 1.407 

Bicycle Infrastructure Attributes     

Number of Stations per unit area  0.0476 3.513 - - 

Number of Stations per unit area * Morning 0.0625 3.571 0.0802 2.162 

Number of Stations per unit area * Midday -0.0278 -2.279 - - 

Total capacity per unit area (10-3) -0.1790 -3.385 -0.0860 -4.190 

Total  capacity per unit area * Morning (10-3) -0.1779 -2.316 -0.1038 -2.877 

Land use characteristics     

Standard Deviation of elevation of the SCD 0.1881 4.438 - - 

Population Density (10-3) - - 0.0115 4.578 

Population Density (10-3) * Mid-day - - -0.0104 -1.660 

Percentage of transportation POIs 0.0077 2.909 0.0046 2.515 

Percentage of hotels POIs -0.0169 -2.450 - - 

Percentage of business POIs 0.0061 2.171 0.0049 2.487 

Percentage of business POIs * Midday 0.0201 4.392 - - 

Percentage of worship POIs 0.0367 4.768 - - 

POI Variance Measure (10-3) 0.3397 7.025 0.1972 4.983 

Temporal Parameters     

Morning - - 0.3060 4.206 

Mid-day -0.5996 -2.744 0.2649 2.976 

R Square 0.266 0.249 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

Table 9: Elasticity Effects for Arrival and Departure Rates - Barcelona 
 

Variable Change Considered 
Arrivals Departures 

Morning Mid-day Evening Late Overall Morning Mid-day Evening Late Overall 

Increasing Number of 

Stations 
(Total Capacity remains same) 

          

1 0.37 -0.86 1.84 1.84 0.91 -0.54 -0.04 2.89 2.89 1.42 

2 0.74 -1.71 3.73 3.73 1.85 -1.08 -0.08 5.88 5.88 2.90 
Increasing Number of 

Stations 
(Total Capacity increases by 

average station capacity) 

          

1 2.48 1.37 3.41 3.23 2.70 1.37 2.24 4.19 4.33 3.12 

2 5.09 2.82 6.97 6.61 5.53 2.82 4.60 8.61 8.91 6.42 

Increase Average SCD 

capacity 
(Number of Stations  remains 

same) 

          

5 1.05 1.28 0.90 0.73 0.97 0.96 1.29 0.75 0.75 0.91 

10 2.12 2.58 1.82 1.46 1.95 1.94 2.61 1.50 1.50 1.84 

 
 


