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Abstract

Safety performance functions (SPFs) are essential tools for highway agencies to predict crashes, identify hotspots and assess safety countermeasures. In the Highway Safety Manual (HSM), a variety of SPFs are provided for different types of roadway facilities, crash types and severity levels. Agencies, lacking the necessary resources to develop own localized SPFs, may opt to apply the HSM’s SPFs for their jurisdictions. Yet, municipalities that want to develop and maintain their regional SPFs might encounter the issue of the small sample bias. Bayesian inference is being conducted to address this issue by combining the current data with prior information to achieve reliable results. It follows that the essence of Bayesian statistics is the application of informative priors, obtained from other SPFs or experts’ experiences. In this study, we investigate the applicability of informative priors for Bayesian negative binomial SPFs for rural divided multilane highway segments in Florida and California. An SPF with non-informative priors is developed for each state and its parameters’ distributions are assigned to the other state’s SPF as informative priors. The performances of SPFs are evaluated by applying each state’s SPFs to the other state. The analysis is conducted for both total (KABCO) and severe (KAB) crashes. As per the results, applying one state’s SPF with informative priors, which are the other state’s SPF independent variable estimates, to the latter state’s conditions yields better goodness of fit (GOF) values than applying the former state’s SPF with non-informative priors to the conditions of the latter state. This is for both total and severe crash SPFs.   
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Introduction

Safety performance functions (SPFs), regression models used for predicting crash frequencies, are an indispensable constituent of traffic safety analyses. They are used to predict crashes of any type or severity. The HSM (AASHTO, 2010) provides SPFs by facility type, crash type and severity. The SPF development process involves regressing traffic crash counts with contributing factors. Modeling crashes using the ordinary linear least square regression framework is faulty since crash patterns are non-negative integers (Miaou et al., 1993; Miaou, 1994; Kim et al., 2005; Garber and Wu, 2001). Generalized linear models are applied for crash analysis studies (Sawalha and Sayed, 2006; Taylor et al., 2002; Harnen et al., 2004; Donnel and Mason, 2006). The Poisson model is proposed as it has a statistically appropriate structure for non-negative integer data. Yet, it offers a restriction that the mean crash frequency is equivalent to the variance. The condition in which the variance is greater than the mean is often observed in crash data and is termed over-dispersion. The negative binomial model, a type of Poisson-gamma models, relax the restrictive assumption of the Poisson model and is used as the conventional modeling framework in estimating SPFs in the literature (Lord et al., 2005). Often, municipalities develop and update jurisdiction specific SPFs with the least possible number of independent variables, or factors, that contribute to crashes. A typical problem encountered is the lack of available resources to gather data of sufficient sample sizes (Heydari et al., 2014). Application of the maximum likelihood estimation (MLE) method to obtain the optimal estimates of the model parameters produces inaccurate results under limited data whereas the full Bayesian method is an efficient alternative approach applicable to circumvent the limited sample size problem. 
The essence of the full Bayesian method is that prior knowledge is taken into account by introducing informative prior distributions for the parameters. It is demonstrated that even for small sample sizes, the full Bayesian method yields unbiased estimates of the parameters (Heydari et al., 2014). The other advantage of the full Bayesian approach is that unlike the Frequentist approach, where the traditional MLE method is applied, the probability that an estimate of a parameter falls within a certain range is obtained by direct computation. In the Frequentist approach, it can be interpreted that the estimates are within confidence limits if multiple samples are collected (Heydari et al., 2014). Investigating the application of prior information to achieve accurate parameter estimates is a topic of interest for researchers in road safety as is discussed in the following section (Heydari et al., 2014, Lord and Miranda-Moreno, 2008; Part et al., 2010; Miranda-Moreno et al., 2013; Yu and Abdel-Aty, 2013; Washington and Oh, 2006; Jang et al., 2010; Haleem et al., 2010). Yet, the main objective of these studies is to develop informative priors for modeling crashes for regions with limited data. The objective of this study is clearly distinguished from those of the previous studies. In our study, the goal is to examine the influence of informative priors in the transferability of SPFs. That is, when transferring an SPF from one jurisdiction to another, an investigation is made to check whether adopting informative prior information on the parameters from the jurisdiction where the SPF is being transferred will facilitate the transferability of the SPF. We aim at developing Bayesian negative binomial SPFs with non-informative priors for rural divided multilane highway segments in two states, which are Florida and California. Then, each state’s data are provided with parameter estimates of the other state to re-develop SPFs with informative priors. We evaluate the improvement in model fit based on the consideration of informative priors.      

Literature Review

Few studies are focused on the application of Bayesian priors in traffic crash modeling. Lord and Miranda-Moreno (2008) address the low sample mean and size problem encountered by transportation authorities when collecting data for developing SPFs. The authors simulate and model crash data using negative binomial and Poisson-lognormal formulations. Specifically, several datasets are simulated with varying sample sizes and means. Non-informative and informative priors are tested for Bayesian modeling of the simulated data. For the models with informative priors, a shape parameter of 0.1 and a scale of 1 are assigned to the inverse dispersion parameter which is assumed to follow a gamma distribution. According to the authors’ findings, modeling small datasets with low means leads to an inaccurate estimation of the inverse dispersion parameter’s distribution mean. This is particularly true in the case where non-informative priors are applied. The chances of encountering the poor accuracy problem are reduced when informative priors are provided for the inverse dispersion parameter.
Park et al. (2010) address the unobserved heterogeneity for datasets of low sample means and sizes. As described earlier, several datasets are simulated with different sample means and sizes. Negative binomial, finite mixture negative binomial and finite mixture Poisson models are applied. The analysis is conducted using Bayesian inference once with non-informative priors and once with informative priors for the inverse dispersion parameter that follows a gamma distribution. The priors are 0.5 and 0.1 for the shape and scale respectively. Finite mixture negative binomial models exhibit the best fit since they account for the unobserved heterogeneity more accurately than the traditional negative binomial models. Nevertheless, the results of the finite mixture negative binomial models with non-informative priors demonstrate that for datasets of low means and sample sizes, the estimated posterior distribution mean of the inverse dispersion parameter is biased. Based on the findings, the authors suggest minimum sample sizes of 300, 500 and 1,500 sites for datasets with high, medium and low mean crash frequencies, respectively. 
In another study by Miranda-Moreno et al. (2013), the authors investigate the benefit of incorporating knowledge of previous experiences in the Bayesian inference framework when having limited data. The study is aimed at identifying hot spots in rural three-leg intersections in California and four-lane highway segments in Texas. The data include both divided and undivided segments. Several specifications of the prior distributions of the inverse dispersion parameter are tested for different sample sizes. The informative prior distributions, applied, are the uniform distribution, Christiansen’s distribution and the gamma distribution. Results of the Bayesian models with the gamma and uniform informative prior distributions are superior to those of the models with the informative prior distribution of Christiansen for data of 50 sites. Furthermore, under low sample sizes, informative prior models outperform non-informative prior models. However, for data of large samples of more than 100 sites, the benefit of assigning informative priors to the inverse dispersion parameter is less pronounced. 
Heydari et al. (2014) offer a practical Bayesian methodology to estimate and update SPFs by making use of both data of limited samples and the national HSM’s SPF parameters. The study is conducted for rural undivided multilane highways. A sensitivity analysis is undertaken by proposing 15 combinations of informative and non-informative prior specifications for both the independent variables and the inverse dispersion parameter. According to the results, there is no single combination that yields the best estimate for each regression coefficient including that of the inverse dispersion parameter. Yet, two combinations outperform the others in terms of overall model fit. One is a combination in which a variance of 10 is assumed for the independent variables while the HSM’s provided parameters are assumed as the means. The ratio of the squared mean to the variance of the inverse dispersion parameter is assigned as the shape prior of the inverse dispersion parameter that follows a gamma distribution. The scale, assigned, is the ratio of the mean to the variance of the inverse dispersion parameter. The second best combination is similar to the aforementioned one. However, the inverse dispersion parameter is exponentially distributed and assigned the inverse of its mean as an informative prior.
Yu and Abdel-Aty (2013) examine four approaches to formulate Bayesian informative priors for negative binomial and Poisson-lognormal models of crashes in a freeway section in Colorado. One approach is the two-stage Bayesian updating approach where past data are modeled while non-informative priors are assigned to all independent variables and the inverse dispersion parameter. The output means and variances of the variables’ posterior distributions act as the informative priors for modeling the training data. The second approach is the MLE approach where the likelihood function is maximized and the estimated variable coefficients are used as informative priors for Bayesian modeling. Third, the method of moments is one where the dataset’s independent variables’ means and variances are used as informative priors for the analysis and the variables are assumed to be normally distributed. The last approach is the expert experience method which is based on experts’ judgments on crash contributing factors provided by means of surveys. The authors conclude that the two-stage updating approach is the superior one. If, however, past data are limited, the authors recommend the method of moments approach since its performance is not substantially different from that of the MLE approach. Overall, it is concluded that the performances of the models with informative priors are superior to those with non-informative priors.
Washington and Oh (2006) develop crash modification factors (CMFs) for railroad crossing crashes in South Korea while relying on expert knowledge. Jang et al. (2010) estimate zero-inflated Poisson and zero inflated negative binomial models with the likelihood function raised to an exponent which is an informative prior. Also, in a study by Haleem et al. (2010), a reliability analysis is undertaken using the Bayesian updating approach with informative priors to accurately estimate crash frequencies at three-leg and four-leg un-signalized intersections in Florida. Overall, there is a general interest in the application of Bayesian inference particularly to address the issue of developing SPFs in cases where data are of limited sample size. As previously discussed, historical data are implemented as the informative prior information and the limited current data, collected, are used for Bayesian analysis. Indeed, the analysis is efficient since the small sample size problem is circumvented. 
In this study, Bayesian negative binomial SPFs are developed to estimate KABCO and KAB crashes for rural divided multilane highway segments in Florida and California. Each state’s SPF is developed with non-informative priors. Then, each state’s SPF parameters are assigned the estimated regression coefficients’ distributions of the other state’s model as informative priors and the SPFs are re-developed. The aim of this study is similar to those of Yu and Abdel-Aty (2013) and Heydari et al. (2014). However, the advantages of the proposed research are two-fold. The research not only checks the efficiency of Bayesian informative priors but also assesses whether informative priors from elsewhere are applicable to the jurisdiction of interest. This study is a follow up on a previous investigation by Farid et al. (2016) where the transferability of SPFs, taking the functional form of those of the HSM, are explored among the same aforementioned states. In the previous study, it is concluded that Florida and California’s SPFs of multiple vehicle crashes are to an extent transferable. This study is of great value for roadway agencies not having the resources to collect and process data in that Bayesian SPFs can be developed swiftly. The SPFs can be estimated efficiently and at a reduced cost by borrowing informative priors from other regions as opposed to spending excessively on retrieving and preparing historical data. In the following sections, the preparation of the data, details of the research methodology and analysis results are discussed.
Data Preparation
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The data of KABCO and KAB crashes at rural divided multilane highway segments in Florida and California are employed in our study. Geometric characteristics are included as well. Specifically, Florida’s road geometric data are obtained from the Roadway Characteristics Inventory of the Florida Department of Transportation (FDOT). The crash data of Florida are retrieved from the Crash Analysis Reporting System (CARS), which also belongs to FDOT. There are 436 homogenous segments with a total of 1,114 crashes sampled from Florida. On the other hand, the California data, including crash and road geometric characteristics, are obtained from the Highway Safety Information System (HSIS). It is a database that includes traffic data on multiple states including not only California but also Ohio, Washington, Minnesota, Illinois, North Carolina and Maine (Highway Safety Information System). In California, the samples, obtained, are 1,153 segments with 3,887 crashes. Note that Florida’s crash data are from the years 2009 to 2011 while those of California are from 2009 to 2010. The descriptive statistics of both states’ data are shown in Table 1. The minimum segment length, sampled, is not less than 0.1 mi to be consistent with the HSM standards. The AADT, in Table 1, is the average annual daily traffic.   
[bookmark: _Ref456091595]	Table 1 Descriptive Statistics of the States' Data
	State
	Florida (N=436)
	California (N=1,153)

	Variable
	Mean
	Standard Deviation
	Minimum
	Maximum
	Mean
	Standard Deviation
	Minimum
	Maximum

	Segment Length (mi)
	0.804
	1.459
	0.100
	18.078
	0.516
	0.572
	0.100
	5.329

	AADT (veh/day)
	12,681.930
	8,709.680
	2,500
	49,500
	21,243.260
	14,642.420
	2,325
	79,500

	Lane Width (ft)
	12.008
	0.205
	10
	13
	11.995
	0.204
	11
	13

	Shoulder Width (ft)
	4.752
	1.669
	1.5
	12
	6.370
	2.013
	0
	11

	Median Width (ft)
	40.429
	23.504
	8
	140
	42.699
	30.238
	5
	99

	
	Crashes Per Hundred Million Vehicle Miles Traveled Per Year

	KABCO
	22.704
	43.712

	KAB
	8.213
	7.928




Large differences in geometric characteristics may inhibit improvements in model fits after incorporating informative priors. From Table 1, it can be observed that Florida’s shoulders are narrower than those of California, as indicated by the means. The variation in shoulder widths in Florida is marginally less than that of shoulder widths of California as well. It should also be noted that the variation in median widths is larger for California’s segments. Also, California experiences a greater KABCO crash rate while the opposite is the case for KAB crashes. 
Research Methodology

The negative binomial framework is used as the traditional structure for developing SPFs. That is because the over-dispersion is accommodated (Lord et al., 2005). The research approach, employed, is the application of Bayesian inference to estimate negative binomial models. Under the negative binomial model, the probability, p, of a crash at site, i, is given by the following function (Lord and Miranda-Moreno, 2008):
 					      			       (1) 
The term, φ, denotes the inverse dispersion parameter, while yi is the observed crash frequency and μi is the mean crash frequency at site i. The negative binomial model converges to the Poisson model as φ → ∞. The mean crash frequency per site is a function of the estimated independent variable coefficients, βj’s, the site characteristics whether roadway geometrics, demographics or any other characteristics, Xij’s, and finally the inverse dispersion parameter’s function, θ. The mean crash frequency is defined as follows (Lord and Miranda-Moreno, 2008):
 						       (2)
The parameter, θ, is a function of the inverse dispersion parameter, φ, both of which are assumed to follow gamma distributions as follows (Lord and Miranda-Moreno, 2008).
 									                               (3)
 										                   (4)	
The terms, a and b, are the shape and scale parameters of the gamma distribution. In this study, the mean crash frequency function, which is the prediction equation, is considered as follows.
                                                 (5)
The last term is not associated with a coefficient to be consistent with the HSM’s SPFs for rural divided multilane highway segments. The year is an offset variable that takes into consideration the fact that crashes occurred throughout multiple years and that the mean function yields the crash counts per year.  
According to Bayes’ theorem, which forms the basis of the Bayesian inference, both the likelihood of a crash and the parameters’ prior distributions are required. The posterior probability of the vector of parameters, β, can be interpreted as the following (Heydari et al., 2014):
							       (6)
The vectors, y and γ, are those of the crashes, observed, and parameters of the inverse dispersion parameter which follows the gamma distribution. Thus, the posterior probability is proportional to the product of the likelihoods of crashes in the current dataset, f(y|β), the prior knowledge of the independent variables, f(β |γ), and that of the inverse dispersion parameter, f(γ). The posterior distribution cannot be obtained by direct computation. Integrations with a large number of dimensions are required. Markov Chain Monte Carlo (MCMC) simulations including the Metropolis-Hastings and the Gibbs methods are applicable (Heydari et al., 2014; Cowles, 2013).  
First, a model with non-informative priors for the independent variables is developed for each state. That is, each variable is assigned a prior of 0 and a precision factor, which is the inverse of the variance, of 0.001 to indicate no prior information. The variables are assumed to follow normal distributions. Likewise, the dispersion parameter is assigned a shape and a scale of 0.01 each. The models are run in R software (R Core Team) and WinBUGS open source software (Lunn et al., 2000) using the R package, R2WinBUGS (Sturtz, 2005), for MCMC simulations. The model runs comprise of 3 chains of 120,000 iterations, of which 12,000 are burn-in iterations, and 120,000 simulations. The results are recorded and checked for model convergence by inspecting the Kernel density plots and trace plots (Cowles, 2013). The estimated parameter means and standard deviations of each state’s model are recorded and assigned to the other state as informative priors. Subsequently, the models are rerun with the informative priors. It should be noted that no prior information is assumed for the dispersion parameter throughout all models. Each state’s models, including those with informative priors and those with non-informative priors, are applied to the other state for validation. The deviance information criterion (DIC) is used for evaluating the fit of Bayesian SPFs (Spiegelhalter et al., 2002) and is defined as shown in Equation (7).
                                                                                                                               (7)
The term, D̅, is the average of the SPF’s deviance while pD is the effective number of parameters. Furthermore, other GOF measures are computed. They are the mean absolute deviation (MAD) and mean square prediction error (MSPE). Defined as follows, the GOF measures, applied in this study, are dependent on the difference between the observed and predicted crash frequency per site.
 							       (8)
  							       (9)
The terms, n, NSPF i and Nobs i are the number of sites, predicted number of crashes, which is the mean crash frequency, and observed number of crashes per site i, respectively. The GOF measures are calculated to check whether the informative prior models are superior to the non-informative prior models when applied elsewhere.
Empirical Analysis

[bookmark: _GoBack]The analysis is conducted by running 4 Bayesian SPFs for KABCO crashes and 4 for KAB crashes. According to the Kernel density and trace plots, all models converged successfully. Results of each state’s KABCO crash SPFs with non-informative priors are shown in Table 2 while results of those with informative priors are presented in Table 3. Similarly, the KAB crash SPFs with non-informative priors are shown in Table 4 and those with informative priors are shown in Table 5. As previously mentioned, the means and precisions (i.e., inverse of variances) of the parameters, not including those of the inverse dispersion parameter, are used as the informative priors. Summaries of the results of the application of the models with informative priors for validation are presented in Table 6. Note that in Table 6, results of applying jurisdiction specific SPFs, whether with non-informative or informative priors, to local conditions are not presented. Instead, we are interested in transferring SPFs to other state(s) and examining the effect of informative priors, retrieved from the state of which the SPF is transferred to, on the transferability of the SPF.

[bookmark: _Ref456388647]Table 2 States' Non-Informative Prior Model Results for KABCO Crashes
	Model
	Parameter
	Mean
	Standard Deviation
	Bayesian Credible Interval

	
	
	
	
	Lower 95%
	Lower 90%
	Median
	Upper 90%
	Upper 95%

	Florida
(N=436)
	Constant
	-6.448
	0.983
	-8.355
	-8.043
	-6.483
	-4.744
	-4.418

	
	Ln(AADT)
	0.709
	0.105
	0.493
	0.528
	0.712
	0.879
	0.912

	
	φ
	1.147
	0.161
	0.871
	0.907
	1.134
	1.432
	1.499

	
	Deviance
	1,144
	28.880
	1,089
	1,097
	1,144
	1,192
	1,202

	
	pD
	171.535

	
	DIC
	1,315.520

	California
(N=1,153)
	Constant
	-11.140
	0.488
	-12.110
	-11.970
	-11.140
	-10.360
	-10.210

	
	Ln(AADT)
	1.247
	0.049
	1.154
	1.169
	1.246
	1.330
	1.344

	
	φ
	1.440
	0.107
	1.243
	1.272
	1.436
	1.624
	1.663

	
	Deviance
	3,523
	45.280
	3,435
	3,449
	3,522
	3,598
	3,613

	
	pD
	521.498

	
	DIC
	4,044.400




[bookmark: _Ref456823293][bookmark: _Ref456822713]Table 3 States' Informative Prior Models for KABCO Crashes
	Model
	Parameter
	Mean
	Standard Deviation
	Bayesian Credible Interval

	
	
	
	
	Lower 95%
	Lower 90%
	Median
	Upper 90%
	Upper 95%

	Florida with California’s Informative Priors
(N=436)
	Constant
	-10.840
	0.325
	-11.490
	-11.370
	-10.840
	-10.310
	-10.210

	
	Ln(AADT)
	1.179
	0.035
	1.111
	1.122
	1.179
	1.236
	1.248

	
	φ
	1.041
	0.142
	0.795
	0.828
	1.030
	1.291
	1.349

	
	Deviance
	1,142
	29.000
	1,087
	1,096
	1,142
	1,191
	1,201

	
	pD
	176.175

	
	DIC
	1,318.400

	California with Florida’s Informative Priors
(N=1,153)
	Constant
	-9.502
	0.408
	-10.300
	-10.170
	-9.503
	-8.833
	-8.723

	
	Ln(AADT)
	1.083
	0.041
	1.005
	1.016
	1.083
	1.149
	1.162

	
	φ
	1.394
	0.103
	1.205
	1.232
	1.390
	1.570
	1.607

	
	Deviance
	3,513
	44.940
	3,426
	3,440
	3,512
	3,588
	3,602

	
	pD
	526.824

	
	DIC
	4,039.570


[bookmark: _Ref456822879]Table 4 States' Non-Informative Prior Model Results for KAB Crashes
	Model
	Parameter
	Mean
	Standard Deviation
	Bayesian Credible Interval

	
	
	
	
	Lower 95%
	Lower 90%
	Median
	Upper 90%
	Upper 95%

	Florida
(N=436)
	Constant
	-3.700
	1.098
	-5.768
	-5.446
	-3.744
	-1.845
	-1.440

	
	Ln(AADT)
	0.294
	0.117
	0.054
	0.097
	0.299
	0.481
	0.515

	
	φ
	1.985
	0.645
	1.101
	1.191
	1.867
	3.169
	3.572

	
	Deviance
	771.5
	26.980
	719.5
	727.6
	771.3
	816.300
	825

	
	pD
	80.836

	
	DIC
	852.351

	California
(N=1,153)
	Constant
	-11.090
	0.737
	-12.510
	-12.310
	-11.090
	-9.894
	-9.640

	
	Ln(AADT)
	1.067
	0.073
	0.923
	0.948
	1.067
	1.188
	1.208

	
	φ
	2.214
	0.528
	1.447
	1.531
	2.127
	3.194
	3.478

	
	Deviance
	1,804
	42.020
	1,723
	1,736
	1,803
	1,874
	1,887

	
	pD
	166.889

	
	DIC
	1,970.470




[bookmark: _Ref456822905]Table 5 Results of States' Informative Prior Models for KAB Crashes
	Model
	Parameter
	Mean
	Standard Deviation
	Bayesian Credible Interval

	
	
	
	
	Lower 95%
	Lower 90%
	Median
	Upper 90%
	Upper 95%

	Florida with California’s Informative Priors
(N=436)
	Constant
	-9.879
	0.476
	-10.810
	-10.670
	-9.876
	-9.100
	-8.949

	
	Ln(AADT)
	0.954
	0.051
	0.854
	0.870
	0.953
	1.038
	1.054

	
	φ
	1.399
	0.373
	0.844
	0.905
	1.342
	2.084
	2.282

	
	Deviance
	766.800
	27.270
	714.100
	722.400
	766.600
	812.200
	820.900

	
	pD
	92.188

	
	DIC
	859.019

	California with Florida’s Informative Priors
(N=1,153)
	Constant
	-7.683
	0.545
	-8.769
	-8.573
	-7.686
	-6.779
	-6.594

	
	Ln(AADT)
	0.727
	0.054
	0.619
	0.637
	0.728
	0.816
	0.836

	
	φ
	1.943
	0.438
	1.288
	1.363
	1.880
	2.733
	2.966

	
	Deviance
	1,800
	42.870
	1,717
	1,730
	1,799
	1,871
	1,885

	
	pD
	178.209

	
	DIC
	1,977.890
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	SPF of KABCO Crashes
	Application Data

	
	Florida (N=436)
	California (N=1,153)

	
	MAD
	MSPE
	MAD
	MSPE

	Florida with Non-Informative Priors
	NA
	2.384
	27.986

	Florida with California’s Informative Priors
	
	2.134
	20.886

	California with Non-Informative Priors
	3.294
	80.938
	NA

	California with Florida’s Informative Priors
	3.367
	70.291
	

	SPF of KAB Crashes
	

	Florida with Non-Informative Priors
	NA
	0.619
	1.073

	Florida with California’s Informative Priors
	
	0.613
	0.935

	California with Non-Informative Priors
	0.820
	2.777
	NA

	California with Florida’s Informative Priors
	0.808
	2.079
	



Remarks on the SPFs with Non-Informative Priors
The AADT is associated with crash occurrence as can be shown in Tables 2 and 4. The relationship is nearly linear for California. Also, it is worth noting that several types of SPF specifications are attempted besides the model structure of Equation (5). In addition to the natural log transformation of the AADT, the lane width, shoulder width and median width variables are included as independent variables. However, the Bayesian credible interval includes 0 for these variables’ values prompting the variables’ removal.
Remarks on the SPFs with Informative Priors
When applying a state’s KABCO crash SPF to another state while borrowing the latter state’s independent variable values as informative priors improves the GOF relative to applying the former state’s SPF with non-informative priors to the latter state as shown in Table 6. Florida’s KABCO crash SPF with informative priors from California exhibits a lower MAD and MSPE than that with non-informative priors when both SPFs are applied to California. On the other hand, California’s KABCO SPF with Florida’s informative priors outperforms its respective SPF with non-informative priors when both SPFs are applied to Florida. Even though, the MAD increased by 0.073 (3.294 to 3.367), the MSPE dropped considerably by 10.647 (80.938 to 70.291). The MSPE is a more effective measure than the MAD since the MSPE is more sensitive to large residuals, which are deviations between observed and predicted crash counts needed for calculation of both measures. It is demonstrated in the SPF transferability study by Farid et al. (2016) that Florida’s SPFs, for crashes involving at least two vehicles, are to an extent transferable to California and vice versa possibly due to similarities in demographics, topography and weather conditions in both states. Florida and California are characterized by tourism even though Florida experiences more rainfall than California. In addition, it is critical to note the unobserved difference attributed to crash reporting thresholds in both states. The thresholds in Florida and California are $500 (Florida Statutes) and $750 (Xie et al., 2011) worth of damage to property, respectively.
The KAB crash SPF results are consistent with those of KABCO crash SPFs. The MADs and MSPEs are reduced when applying Florida’s KAB crash SPF with California’s informative priors to California compared with applying Florida’s KAB crash SPF with non-informative priors to California. On the other hand, assigning Florida’s independent variables as informative priors to the California KAB crash SPF and applying the SPF to Florida improves the GOF values relative to applying the California KAB crash SPF with non-informative priors to Florida. Nevertheless, it is crucial to mention that differences in reporting thresholds affect the count of KABCO crash records but are highly unlikely to affect those of KAB crashes.

Summary and Conclusions

Employing informative priors for modeling crash frequencies is an area that is explored to a limited extent. Recent studies contribute to the solution of accurately estimating crashes with data having limited sample sizes by the application of informative priors within the context of the Bayesian inference. In our study, the use of informative priors from Florida and California is tested where each state is assigned the priors of the other state. When transferring an SPF from one jurisdiction to another, borrowing informative priors from the latter, when developing the SPF for the former, facilitates the transferability of the developed SPF to the latter. The Florida KABCO crash SPF with California’s priors exhibits a better GOF than the Florida SPF with non-informative priors when both SPFs are applied to California. The opposite is also true. The crash predictions of California’s KABCO SPF with Florida’s informative priors, applied to Florida’s conditions, are more accurate than those of California’s KABCO SPF with non-informative priors applied to Florida’s conditions.
The KAB crash SPF results are consistent with those of KABCO crash SPFs. Florida’s KAB crash SPF with California’s informative priors demonstrates better performance when applied to California’s conditions compared to Florida’s KAB crash SPF with non-informative priors applied to California’s conditions. Also, the GOF results are improved when applying the California KAB SPF with Florida’s informative priors to Florida relative to applying California’s KAB SPF with non-informative priors to Florida. Ultimately, the findings of this study indicate that when developing SPFs, roadway agencies, lacking staff with expertise, may provide available data for another region’s municipality to extract the informative priors. The municipality, elsewhere, may develop SPFs with the priors, extracted, and transfer the SPFs to the locality of roadway agencies. Preferably, the agencies would provide their data to municipalities of regions with similar roadway design characteristics, weather trends, demographics and topographic characteristics.
It is imperative to discuss the future work to build upon this study. The analysis, undertaken, is for distant states specifically for rural divided multilane highways. The investigation can be conducted for neighbor states and for other types of roadway facilities. Furthermore, throughout the entire analysis procedure, non-informative priors are assigned to the inverse dispersion parameter even though informative priors are applied for the independent variables. Using informative priors for the inverse dispersion parameter, obtained from another region’s SPF, is a viable option. It should also be noted that the HSM’s SPFs’ dispersion parameter for rural divided multilane highway segments is a function with an estimable coefficient rather than a fixed parameter. That is, every site’s dispersion parameter is different than that of the other sites, which is not the case of this study. Modifying the dispersion parameter structure is a convenient technique to reduce bias. However, care should be taken to avoid including a large number of parameters in the dispersion parameter formula especially if the model size is large (Mitra and Washington, 2007). Another issue to caution is the application of uniform prior distributions, known as diffuse priors, because inaccuracies will result in the estimated posterior distributions (Natarajan and McCulloch, 1998). Also, the independent variables used were limited to the daily traffic even though the lane width, shoulder width and median width are attempted and exhibit Bayesian intervals that include 0. One issue to investigate for future analysis is the addition of more variables such as the roadside hazard rating, presence of horizontal curvature and street lighting, among others that are not necessarily available in each state. Another is the inclusion of socio-demographic and topographic variables since crashes are not only affected by road geometrics (Abdel-Aty et al., 2013; Lee et al., 2014a; Lee et al., 2014b; Lee et al., 2015a; Lee et al., 2015b). Finally, the spatial correlation among crashes can and ought to be accounted for in future studies (Ma et al., 2008). 

Acknowledgments

The authors would like to express their gratitude for NCHRP 17-62’s funds. Special thanks are conveyed to the research team headed by Drs. John Ivan, Raghavan Srinivasan and Bhagwant Persaud. All opinions, stated in this manuscript, are those of the authors only.

References

Farid, A., Abdel-Aty, M., Lee, J., Eluru, N., Wang, J.-H., 2016. Exploring the Transferability of Safety Performance Functions. Accident Analysis and Prevention 94, 143-152.

Jang, H., Lee, S., Kim, S., 2010. Bayesian Analysis for Zero-Inflated Regression Models with the Power Prior: Applications to Road Safety Countermeasures. Accident Analysis and Prevention 42, 540–547.

Park, B.-J., Lord, D., Hart, J., 2010. Bias Properties of Bayesian Statistics in Finite Mixture of Negative Binomial Regression Models in Crash Data Analysis. Accident Analysis and Prevention 42 (2), 741-749.

AASHTO, 2010. Highway Safety Manual. American Association of State Highway and Transportion Officials, Washington D.C.

Abdel-Aty, M., Lee, J., Siddiqui, C., Choi, K., 2013. Geographical Unit Based Analysis in the Context of Transportation Safety Planning. Transportation Research Part A: Policy and Practice 49, 62-75.

Cowles, M., 2013. Applied Bayesian Statistics with R and OpenBUGS Examples. Springer, New York.

Donnell, E., Mason, J., 2006. Predicting the Frequency of Median Barrier Crashes on Pennsylvania Interstate Highways. Accident Analysis and Prevention 38 (3), 590-599.

Florida Statutes. Title XXIII – Motor Vehicle. The Florida Legislature, Tallahassee, Florida. http://www.leg.state.fl.us/Statutes/index.cfm?App_mode=Display_Statute&Search_String=&URL=0300-0399/0316/Sections/0316.065.html. Accessed Oct. 28, 2015.

Garber, N., Wu, L., 2001. Stochastic Models Relating Crash Probabilities with Geometric and Corresponding Traffic Characteristics Data. Presented to National Intelligent Transportation Systems Implementation Research Center of the Department of Transportation, Charlottesville, Virginia.

Haleem, K., Abdel-Aty, M., Mackie, K., 2010. Using a Reliability Process to Reduce Uncertainty in Predicting Crashes at Unsignalized Intersections. Accident Analysis and Prevention 42 (2), 654-666.

Harnen, S., Umar, R., Wong, S., Hashim, W., 2004. Development of Prediction Models for Motorcycle Crashes at Signalized Intersections on Urban Roads in Malaysia. Journal of Transportation and Statistics 7 (2), 27-39.

Heydari, S., Miranda-Moreno, L., Lord, D., Fu, L., 2014. Bayesian Methodology to Estimate and Update Safety Performance Functions under Limited Data Conditions: a Sensitivity Analysis. Accident Analysis and Prevention 64, 41-51.

Highway Safety Information System. State Data. Highway Safety Research Center, University of North Carolina, Chapel Hill, North Carolina. http://www.hsisinfo.org/. Accessed Sept. 28, 2015.

Kim, S., Chung, S., Song, K., Chon, K., 2005. Development of an Accident Prediction Model using GLIM (Generalized Log-linear Model) and EB method: A case of Seoul. Journal of the Eastern Asia Society for Transportation Studies 6, 3669-3682.

Lee, J., Abdel-Aty, M., Choi, K., 2014a. Analysis of Residence Characteristics of at-Fault Drivers in Traffic Crashes. Safety Science 68, 6-13.

Lee, J., Abdel-Aty, M., Choi, K., Huang, H., 2015a. Multi-Level Hot Zone Identification for Pedestrian Safety. Accident Analysis and Prevention 76, 64-73.

Lee, J., Abdel-Aty, M., Jiang, X., 2014b. Development of Zone System for Macro-Level Traffic Safety Analysis. Journal of Transport Geography 38, 13-21.

Lee, J., Abdel-Aty, M., Jiang, X., 2015b. Multivariate Crash Modeling for Motor Vehicle and Non-Motorized Modes at the Macroscopic Level. Accident Analysis and Prevention 78, 146-154.

Lord, D., Miranda-Moreno, L., 2008. Effects of Low Sample Mean Values and Small Sample Size on the Estimation of the Fixed Dispersion Parameter of Poisson-Gamma Models for Modeling Motor Vehicle Crashes: a Bayesian Perspective. Safety Science 46 (5), 751-770.

Lord, D., Washington, S., Ivan, J., 2005. Poisson, Poisson-gamma and Zero-Inflated Regression Models of Motor Vehicle Crashes: Balancing Statistical Fit and Theory. Accident Analysis and Prevention 37 (1), 35-46.

Lunn, D., Thomas, A., Best, N., Spiegelhalter, D., 2000. WinBUGS—a Bayesian Modelling Framework: Concepts, Structure, and Extensibility. Statistics and Computing 10 (4), 325–337.

Ma, J., Kockelman, K., Damien, P., 2008. A Multivariate Poisson-Lognormal Regression Model for Prediction of Crash Counts by Severity, Using Bayesian Methods. Accident Analysis and Prevention 40 (3), 964-975.

Miaou, S.-P., 1994. The Relationship between Truck Accidents and Geometric Design of Road Sections: Poisson versus Negative Binomial Regressions. Accident Analysis and Prevention 26 (4), 471-482.

Miaou, S.-P., Lum, H., 1993. Modeling Vehicle Accidents and Highway Geometric Design Relationships. Accident Analysis and Prevention, 25 (6), 689-709.

Miranda-Moreno, L., Heydari, S., Lord, D., Fu, L., 2013. Bayesian Road Safety Analysis: Incorporation of Past Evidence and Effect of Hyper-Prior Choice. Journal of Safety Research 46, 31-40.

Mitra, S., Washington, S., 2007. On the Nature of Over-Dispersion in Motor Vehicle Crash Prediction Models. Accident Analysis and Prevention 39 (3), 459-468.

Natarajan, R., McCulloch, C., 1998. Gibbs Sampling with Diffuse Proper Priors: a Valid Approach to Data-Driven Inference? Journal of Computational and Graphical Statistics 7 (3), 267-277.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, 2013. http://www.r-project.org/. Accessed Jan. 20, 2016.

Sawalha, Z., Sayed, T., 2006. Traffic Accident Modeling: Some Statistical Issues. Canadian Journal of Civil Engineering 33 (9), 1115-1124.

Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A., 2002. Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society: Series B 64 (4), 583-639.

Sturtz, S., Ligges, U., Gelman, A., 2005. R2WinBUGS: a Package for Running WinBUGS from R. Journal of Statistical Software 12 (3), 1-16.

Taylor, M., Baruya, A., Kennedy, J., 2002. The Relationship between Speed and Accidents on Rural Single-Carriageway Roads. Publication TRL511. Transport Research Laboratory, United Kingdom.

Washington, S., Oh, J., 2006. Bayesian Methodology Incorporating Expert Judgment for Ranking Countermeasure Effectiveness Under Uncertainty: Example Applied to at Grade Railroad Crossings in Korea. Accident Analysis and Prevention 38, 234–247.

Xie, F., Gladhill, K., Dixon, K., Monsere, C., 2011. Calibration of Highway Safety Manual Predictive Models for Oregon State Highways. Transportation Research Record: Journal of the Transportation Research Board 2241, 19-28.

Yu, R., Abdel-Aty, M., 2013. Investigating Different Approaches to Develop Informative Priors in Hierarchical Bayesian Safety Performance Functions. Accident Analysis and Prevention 56, 51-58.
