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ABSTRACT 1 
 2 
Safety performance functions (SPFs) are essential tools for highway agencies to predict crashes, 3 
identify hotspots and assess safety countermeasures. In the Highway Safety Manual (HSM), a 4 
variety of SPFs are provided for different types of roadway facilities, crash types and severity 5 
levels. Agencies, lacking the necessary resources to develop own localized SPFs, may opt to 6 
apply the HSM’s SPFs for their jurisdictions. Yet, municipalities that want to develop and 7 
maintain their regional SPFs might encounter the issue of the small sample bias. Bayesian 8 
inference is being conducted to address this issue by combining the current data with prior 9 
information to achieve reliable results. It follows that the essence of Bayesian statistics is the 10 
application of informative priors, obtained from other SPFs or experts’ experiences. In this study, 11 
we investigate the applicability of informative priors for Bayesian negative binomial SPFs for 12 
rural divided multilane highway segments in Florida and California. An SPF with non-13 
informative priors is developed for each state and its parameters’ distributions are assigned to the 14 
other state’s SPF as informative priors. The performances of SPFs are evaluated by applying 15 
each state’s SPFs to the other state. The analysis is conducted for both total (KABCO) and 16 
severe (KAB) crashes. As per the results, applying one state’s SPF with informative priors, 17 
which are the other state’s SPF independent variable estimates, to the latter state’s conditions 18 
yields better goodness of fit (GOF) values than applying the former state’s SPF with non-19 
informative priors to the conditions of the latter state. This is for both total and severe crash 20 
SPFs.    21 

Keywords: Bayesian Informative Priors, Negative Binomial Models, Markov Chain Monte 22 
Carlo Simulations, Highway Safety Manual, Transferability  23 
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INTRODUCTION 1 
 2 
Safety performance functions (SPFs), regression models used for predicting crash frequencies, 3 
are an indispensable constituent of traffic safety analyses. They are used to predict crashes of any 4 
type or severity. The HSM (AASHTO, 2010) provides SPFs by facility type, crash type and 5 
severity. The SPF development process involves regressing traffic crash counts with contributing 6 
factors. Modeling crashes using the ordinary linear least square regression framework is faulty 7 
since crash patterns are non-negative integers (Miaou et al., 1993; Miaou, 1994; Kim et al., 2005; 8 
Garber and Wu, 2001). Generalized linear models are applied for crash analysis studies (Sawalha 9 
and Sayed, 2006; Taylor et al., 2002; Harnen et al., 2004; Donnel and Mason, 2006). The 10 
Poisson model is proposed as it has a statistically appropriate structure for non-negative integer 11 
data. Yet, it offers a restriction that the mean crash frequency is equivalent to the variance. The 12 
condition in which the variance is greater than the mean is often observed in crash data and is 13 
termed over-dispersion. The negative binomial model, a type of Poisson-gamma models, relax 14 
the restrictive assumption of the Poisson model and is used as the conventional modeling 15 
framework in estimating SPFs in the literature (Lord et al., 2005). Often, municipalities develop 16 
and update jurisdiction specific SPFs with the least possible number of independent variables, or 17 
factors, that contribute to crashes. A typical problem encountered is the lack of available 18 
resources to gather data of sufficient sample sizes (Heydari et al., 2014). Application of the 19 
maximum likelihood estimation (MLE) method to obtain the optimal estimates of the model 20 
parameters produces inaccurate results under limited data whereas the full Bayesian method is an 21 
efficient alternative approach applicable to circumvent the limited sample size problem.  22 

The essence of the full Bayesian method is that prior knowledge is taken into account by 23 
introducing informative prior distributions for the parameters. It is demonstrated that even for 24 
small sample sizes, the full Bayesian method yields unbiased estimates of the parameters 25 
(Heydari et al., 2014). The other advantage of the full Bayesian approach is that unlike the 26 
Frequentist approach, where the traditional MLE method is applied, the probability that an 27 
estimate of a parameter falls within a certain range is obtained by direct computation. In the 28 
Frequentist approach, it can be interpreted that the estimates are within confidence limits if 29 
multiple samples are collected (Heydari et al., 2014). Investigating the application of prior 30 
information to achieve accurate parameter estimates is a topic of interest for researchers in road 31 
safety as is discussed in the following section (Heydari et al., 2014, Lord and Miranda-Moreno, 32 
2008; Part et al., 2010; Miranda-Moreno et al., 2013; Yu and Abdel-Aty, 2013; Washington and 33 
Oh, 2006; Jang et al., 2010; Haleem et al., 2010). Yet, the main objective of these studies is to 34 
develop informative priors for modeling crashes for regions with limited data. The objective of 35 
this study is clearly distinguished from those of the previous studies. In our study, the goal is to 36 
examine the influence of informative priors in the transferability of SPFs. That is, when 37 
transferring an SPF from one jurisdiction to another, an investigation is made to check whether 38 
adopting informative prior information on the parameters from the jurisdiction where the SPF is 39 
being transferred will facilitate the transferability of the SPF. We aim at developing Bayesian 40 
negative binomial SPFs with non-informative priors for rural divided multilane highway 41 
segments in two states, which are Florida and California. Then, each state’s data are provided 42 
with parameter estimates of the other state to re-develop SPFs with informative priors. We 43 
evaluate the improvement in model fit based on the consideration of informative priors.       44 

 45 
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LITERATURE REVIEW 1 
 2 
Few studies are focused on the application of Bayesian priors in traffic crash modeling. Lord and 3 
Miranda-Moreno (2008) address the low sample mean and size problem encountered by 4 
transportation authorities when collecting data for developing SPFs. The authors simulate and 5 
model crash data using negative binomial and Poisson-lognormal formulations. Specifically, 6 
several datasets are simulated with varying sample sizes and means. Non-informative and 7 
informative priors are tested for Bayesian modeling of the simulated data. For the models with 8 
informative priors, a shape parameter of 0.1 and a scale of 1 are assigned to the inverse 9 
dispersion parameter which is assumed to follow a gamma distribution. According to the 10 
authors’ findings, modeling small datasets with low means leads to an inaccurate estimation of 11 
the inverse dispersion parameter’s distribution mean. This is particularly true in the case where 12 
non-informative priors are applied. The chances of encountering the poor accuracy problem are 13 
reduced when informative priors are provided for the inverse dispersion parameter. 14 

Park et al. (2010) address the unobserved heterogeneity for datasets of low sample means and 15 
sizes. As described earlier, several datasets are simulated with different sample means and sizes. 16 
Negative binomial, finite mixture negative binomial and finite mixture Poisson models are 17 
applied. The analysis is conducted using Bayesian inference once with non-informative priors 18 
and once with informative priors for the inverse dispersion parameter that follows a gamma 19 
distribution. The priors are 0.5 and 0.1 for the shape and scale respectively. Finite mixture 20 
negative binomial models exhibit the best fit since they account for the unobserved heterogeneity 21 
more accurately than the traditional negative binomial models. Nevertheless, the results of the 22 
finite mixture negative binomial models with non-informative priors demonstrate that for 23 
datasets of low means and sample sizes, the estimated posterior distribution mean of the inverse 24 
dispersion parameter is biased. Based on the findings, the authors suggest minimum sample sizes 25 
of 300, 500 and 1,500 sites for datasets with high, medium and low mean crash frequencies, 26 
respectively.  27 

In another study by Miranda-Moreno et al. (2013), the authors investigate the benefit of 28 
incorporating knowledge of previous experiences in the Bayesian inference framework when 29 
having limited data. The study is aimed at identifying hot spots in rural three-leg intersections in 30 
California and four-lane highway segments in Texas. The data include both divided and 31 
undivided segments. Several specifications of the prior distributions of the inverse dispersion 32 
parameter are tested for different sample sizes. The informative prior distributions, applied, are 33 
the uniform distribution, Christiansen’s distribution and the gamma distribution. Results of the 34 
Bayesian models with the gamma and uniform informative prior distributions are superior to 35 
those of the models with the informative prior distribution of Christiansen for data of 50 sites. 36 
Furthermore, under low sample sizes, informative prior models outperform non-informative prior 37 
models. However, for data of large samples of more than 100 sites, the benefit of assigning 38 
informative priors to the inverse dispersion parameter is less pronounced.  39 

Heydari et al. (2014) offer a practical Bayesian methodology to estimate and update SPFs by 40 
making use of both data of limited samples and the national HSM’s SPF parameters. The study is 41 
conducted for rural undivided multilane highways. A sensitivity analysis is undertaken by 42 
proposing 15 combinations of informative and non-informative prior specifications for both the 43 
independent variables and the inverse dispersion parameter. According to the results, there is no 44 
single combination that yields the best estimate for each regression coefficient including that of 45 
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the inverse dispersion parameter. Yet, two combinations outperform the others in terms of 1 
overall model fit. One is a combination in which a variance of 10 is assumed for the independent 2 
variables while the HSM’s provided parameters are assumed as the means. The ratio of the 3 
squared mean to the variance of the inverse dispersion parameter is assigned as the shape prior of 4 
the inverse dispersion parameter that follows a gamma distribution. The scale, assigned, is the 5 
ratio of the mean to the variance of the inverse dispersion parameter. The second best 6 
combination is similar to the aforementioned one. However, the inverse dispersion parameter is 7 
exponentially distributed and assigned the inverse of its mean as an informative prior. 8 

Yu and Abdel-Aty (2013) examine four approaches to formulate Bayesian informative priors for 9 
negative binomial and Poisson-lognormal models of crashes in a freeway section in Colorado. 10 
One approach is the two-stage Bayesian updating approach where past data are modeled while 11 
non-informative priors are assigned to all independent variables and the inverse dispersion 12 
parameter. The output means and variances of the variables’ posterior distributions act as the 13 
informative priors for modeling the training data. The second approach is the MLE approach 14 
where the likelihood function is maximized and the estimated variable coefficients are used as 15 
informative priors for Bayesian modeling. Third, the method of moments is one where the 16 
dataset’s independent variables’ means and variances are used as informative priors for the 17 
analysis and the variables are assumed to be normally distributed. The last approach is the expert 18 
experience method which is based on experts’ judgments on crash contributing factors provided 19 
by means of surveys. The authors conclude that the two-stage updating approach is the superior 20 
one. If, however, past data are limited, the authors recommend the method of moments approach 21 
since its performance is not substantially different from that of the MLE approach. Overall, it is 22 
concluded that the performances of the models with informative priors are superior to those with 23 
non-informative priors. 24 

Washington and Oh (2006) develop crash modification factors (CMFs) for railroad crossing 25 
crashes in South Korea while relying on expert knowledge. Jang et al. (2010) estimate zero-26 
inflated Poisson and zero inflated negative binomial models with the likelihood function raised 27 
to an exponent which is an informative prior. Also, in a study by Haleem et al. (2010), a 28 
reliability analysis is undertaken using the Bayesian updating approach with informative priors to 29 
accurately estimate crash frequencies at three-leg and four-leg un-signalized intersections in 30 
Florida. Overall, there is a general interest in the application of Bayesian inference particularly to 31 
address the issue of developing SPFs in cases where data are of limited sample size. As 32 
previously discussed, historical data are implemented as the informative prior information and 33 
the limited current data, collected, are used for Bayesian analysis. Indeed, the analysis is efficient 34 
since the small sample size problem is circumvented.  35 

In this study, Bayesian negative binomial SPFs are developed to estimate KABCO and KAB 36 
crashes for rural divided multilane highway segments in Florida and California. Each state’s SPF 37 
is developed with non-informative priors. Then, each state’s SPF parameters are assigned the 38 
estimated regression coefficients’ distributions of the other state’s model as informative priors 39 
and the SPFs are re-developed. The aim of this study is similar to those of Yu and Abdel-Aty 40 
(2013) and Heydari et al. (2014). However, the advantages of the proposed research are two-fold. 41 
The research not only checks the efficiency of Bayesian informative priors but also assesses 42 
whether informative priors from elsewhere are applicable to the jurisdiction of interest. This 43 
study is a follow up on a previous investigation by Farid et al. (2016) where the transferability of 44 
SPFs, taking the functional form of those of the HSM, are explored among the same 45 
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aforementioned states. In the previous study, it is concluded that Florida and California’s SPFs of 1 
multiple vehicle crashes are to an extent transferable. This study is of great value for roadway 2 
agencies not having the resources to collect and process data in that Bayesian SPFs can be 3 
developed swiftly. The SPFs can be estimated efficiently and at a reduced cost by borrowing 4 
informative priors from other regions as opposed to spending excessively on retrieving and 5 
preparing historical data. In the following sections, the preparation of the data, details of the 6 
research methodology and analysis results are discussed. 7 

DATA PREPARATION 8 
 9 
The data of KABCO and KAB crashes at rural divided multilane highway segments in Florida 10 
and California are employed in our study. Geometric characteristics are included as well. 11 
Specifically, Florida’s road geometric data are obtained from the Roadway Characteristics 12 
Inventory of the Florida Department of Transportation (FDOT). The crash data of Florida are 13 
retrieved from the Crash Analysis Reporting System (CARS), which also belongs to FDOT. 14 
There are 436 homogenous segments with a total of 1,114 crashes sampled from Florida. On the 15 
other hand, the California data, including crash and road geometric characteristics, are obtained 16 
from the Highway Safety Information System (HSIS). It is a database that includes traffic data 17 
on multiple states including not only California but also Ohio, Washington, Minnesota, Illinois, 18 
North Carolina and Maine (Highway Safety Information System). In California, the samples, 19 
obtained, are 1,153 segments with 3,887 crashes. Note that Florida’s crash data are from the 20 
years 2009 to 2011 while those of California are from 2009 to 2010. The descriptive statistics of 21 
both states’ data are shown in Table 1. The minimum segment length, sampled, is not less than 22 
0.1 mi to be consistent with the HSM standards. The AADT, in Table 1, is the average annual 23 
daily traffic.   24 
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 Table 1 Descriptive Statistics of the States' Data 1 

State Florida (N=436) California (N=1,153) 
Variable Mean Standard Deviation Minimum Maximum Mean Standard Deviation Minimum Maximum 

Segment Length (mi) 0.804 1.459 0.100 18.078 0.516 0.572 0.100 5.329 

AADT (veh/day) 12,681.930 8,709.680 2,500 49,500 21,243.260 14,642.420 2,325 79,500 
Lane Width (ft) 12.008 0.205 10 13 11.995 0.204 11 13 

Shoulder Width (ft) 4.752 1.669 1.5 12 6.370 2.013 0 11 
Median Width (ft) 40.429 23.504 8 140 42.699 30.238 5 99 

 Crashes Per Hundred Million Vehicle Miles Traveled Per Year 
KABCO 22.704 43.712 

KAB 8.213 7.928 
 2 
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Large differences in geometric characteristics may inhibit improvements in model fits after 1 
incorporating informative priors. From Table 1, it can be observed that Florida’s shoulders are 2 
narrower than those of California, as indicated by the means. The variation in shoulder widths in 3 
Florida is marginally less than that of shoulder widths of California as well. It should also be 4 
noted that the variation in median widths is larger for California’s segments. Also, California 5 
experiences a greater KABCO crash rate while the opposite is the case for KAB crashes.  6 

RESEARCH METHODOLOGY 7 
 8 
The negative binomial framework is used as the traditional structure for developing SPFs. That is 9 
because the over-dispersion is accommodated (Lord et al., 2005). The research approach, 10 
employed, is the application of Bayesian inference to estimate negative binomial models. Under 11 
the negative binomial model, the probability, p, of a crash at site, i, is given by the following 12 
function (Lord and Miranda-Moreno, 2008): 13 

 𝑝𝑝𝑖𝑖 = Γ(𝑦𝑦𝑖𝑖+𝜑𝜑)
Γ(𝜑𝜑)𝑦𝑦𝑖𝑖!

× � 𝜑𝜑
𝜇𝜇𝑖𝑖+𝜑𝜑

�
𝜑𝜑

× � 𝜇𝜇𝑖𝑖
𝜇𝜇𝑖𝑖+𝜑𝜑

�
𝑦𝑦𝑖𝑖

                     (1)  14 

The term, φ, denotes the inverse dispersion parameter, while yi is the observed crash frequency 15 
and μi is the mean crash frequency at site i. The negative binomial model converges to the 16 
Poisson model as φ → ∞. The mean crash frequency per site is a function of the estimated 17 
independent variable coefficients, βj’s, the site characteristics whether roadway geometrics, 18 
demographics or any other characteristics, Xij’s, and finally the inverse dispersion parameter’s 19 
function, θ. The mean crash frequency is defined as follows (Lord and Miranda-Moreno, 2008): 20 

𝜇𝜇𝑖𝑖 = exp�𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖1 + 𝛽𝛽2𝑋𝑋𝑖𝑖2 + ⋯𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑗𝑗� × 𝜃𝜃𝑖𝑖              (2) 21 

The parameter, θ, is a function of the inverse dispersion parameter, φ, both of which are assumed 22 
to follow gamma distributions as follows (Lord and Miranda-Moreno, 2008). 23 

𝜃𝜃~Γ(𝜑𝜑,𝜑𝜑)                                         (3) 24 

𝜑𝜑~Γ(𝑎𝑎, 𝑏𝑏)                              (4)  25 

The terms, a and b, are the shape and scale parameters of the gamma distribution. In this study, 26 
the mean crash frequency function, which is the prediction equation, is considered as follows. 27 

𝜇𝜇𝚤𝚤� = exp��̂�𝐴 + 𝐵𝐵� × ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + ln(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ × 𝑦𝑦𝑠𝑠𝑎𝑎𝑦𝑦)�                                                 (5) 28 

The last term is not associated with a coefficient to be consistent with the HSM’s SPFs for rural 29 
divided multilane highway segments. The year is an offset variable that takes into consideration 30 
the fact that crashes occurred throughout multiple years and that the mean function yields the 31 
crash counts per year.   32 

According to Bayes’ theorem, which forms the basis of the Bayesian inference, both the 33 
likelihood of a crash and the parameters’ prior distributions are required. The posterior 34 
probability of the vector of parameters, β, can be interpreted as the following (Heydari et al., 35 
2014): 36 

𝑓𝑓(𝜷𝜷,𝜸𝜸|𝒚𝒚) ∝ 𝑓𝑓(𝒚𝒚|𝜷𝜷) × 𝑓𝑓(𝜷𝜷|𝜸𝜸) × 𝑓𝑓(𝜸𝜸)              (6) 37 
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The vectors, y and γ, are those of the crashes, observed, and parameters of the inverse dispersion 1 
parameter which follows the gamma distribution. Thus, the posterior probability is proportional 2 
to the product of the likelihoods of crashes in the current dataset, f(y|β), the prior knowledge of 3 
the independent variables, f(β |γ), and that of the inverse dispersion parameter, f(γ). The posterior 4 
distribution cannot be obtained by direct computation. Integrations with a large number of 5 
dimensions are required. Markov Chain Monte Carlo (MCMC) simulations including the 6 
Metropolis-Hastings and the Gibbs methods are applicable (Heydari et al., 2014; Cowles, 2013).   7 

First, a model with non-informative priors for the independent variables is developed for each 8 
state. That is, each variable is assigned a prior of 0 and a precision factor, which is the inverse of 9 
the variance, of 0.001 to indicate no prior information. The variables are assumed to follow 10 
normal distributions. Likewise, the dispersion parameter is assigned a shape and a scale of 0.01 11 
each. The models are run in R software (R Core Team) and WinBUGS open source software 12 
(Lunn et al., 2000) using the R package, R2WinBUGS (Sturtz, 2005), for MCMC simulations. 13 
The model runs comprise of 3 chains of 120,000 iterations, of which 12,000 are burn-in 14 
iterations, and 120,000 simulations. The results are recorded and checked for model convergence 15 
by inspecting the Kernel density plots and trace plots (Cowles, 2013). The estimated parameter 16 
means and standard deviations of each state’s model are recorded and assigned to the other state 17 
as informative priors. Subsequently, the models are rerun with the informative priors. It should 18 
be noted that no prior information is assumed for the dispersion parameter throughout all models. 19 
Each state’s models, including those with informative priors and those with non-informative 20 
priors, are applied to the other state for validation. The deviance information criterion (DIC) is 21 
used for evaluating the fit of Bayesian SPFs (Spiegelhalter et al., 2002) and is defined as shown 22 
in Equation (7). 23 

𝐴𝐴𝐷𝐷𝐷𝐷 = 𝐴𝐴� + 𝑝𝑝𝐷𝐷                                                                                                                               (7) 24 

The term, D̅, is the average of the SPF’s deviance while pD is the effective number of 25 
parameters. Furthermore, other GOF measures are computed. They are the mean absolute 26 
deviation (MAD) and mean square prediction error (MSPE). Defined as follows, the GOF 27 
measures, applied in this study, are dependent on the difference between the observed and 28 
predicted crash frequency per site. 29 

𝑀𝑀𝐴𝐴𝐴𝐴 = (1/𝑠𝑠)∑ |𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖 − 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖|𝑛𝑛
𝑖𝑖=1                (8) 30 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (1/𝑠𝑠)∑ (𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖 − 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                 (9) 31 

The terms, n, NSPF i and Nobs i are the number of sites, predicted number of crashes, which is the 32 
mean crash frequency, and observed number of crashes per site i, respectively. The GOF 33 
measures are calculated to check whether the informative prior models are superior to the non-34 
informative prior models when applied elsewhere. 35 

EMPIRICAL ANALYSIS 36 
 37 
The analysis is conducted by running 4 Bayesian SPFs for KABCO crashes and 4 for KAB 38 
crashes. According to the Kernel density and trace plots, all models converged successfully. 39 
Results of each state’s KABCO crash SPFs with non-informative priors are shown in Table 2 40 
while results of those with informative priors are presented in Table 3. Similarly, the KAB crash 41 
SPFs with non-informative priors are shown in Table 4 and those with informative priors are 42 
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shown in Table 5. As previously mentioned, the means and precisions (i.e., inverse of variances) 1 
of the parameters, not including those of the inverse dispersion parameter, are used as the 2 
informative priors. Summaries of the results of the application of the models with informative 3 
priors for validation are presented in Table 6. Note that in Table 6, results of applying 4 
jurisdiction specific SPFs, whether with non-informative or informative priors, to local 5 
conditions are not presented. Instead, we are interested in transferring SPFs to other state(s) and 6 
examining the effect of informative priors, retrieved from the state of which the SPF is 7 
transferred to, on the transferability of the SPF. 8 
 9 

Table 2 States' Non-Informative Prior Model Results for KABCO Crashes 10 

Model Parameter Mean Standard 
Deviation 

Bayesian Credible Interval 
Lower 
95% 

Lower 
90% Median Upper 

90% 
Upper 
95% 

Florida 
(N=436) 

Constant -6.448 0.983 -8.355 -8.043 -6.483 -4.744 -4.418 
Ln(AADT) 0.709 0.105 0.493 0.528 0.712 0.879 0.912 

φ 1.147 0.161 0.871 0.907 1.134 1.432 1.499 
Deviance 1,144 28.880 1,089 1,097 1,144 1,192 1,202 

pD 171.535 
DIC 1,315.520 

California 
(N=1,153) 

Constant -11.140 0.488 -12.110 -11.970 -11.140 -10.360 -10.210 
Ln(AADT) 1.247 0.049 1.154 1.169 1.246 1.330 1.344 

φ 1.440 0.107 1.243 1.272 1.436 1.624 1.663 
Deviance 3,523 45.280 3,435 3,449 3,522 3,598 3,613 

pD 521.498 
DIC 4,044.400 

 11 

 12 

Table 3 States' Informative Prior Models for KABCO Crashes 13 

Model Parameter Mean Standard 
Deviation 

Bayesian Credible Interval 
Lower 
95% 

Lower 
90% Median Upper 

90% 
Upper 
95% 

Florida with 
California’s 
Informative 

Priors 
(N=436) 

Constant -10.840 0.325 -11.490 -11.370 -10.840 -10.310 -10.210 
Ln(AADT) 1.179 0.035 1.111 1.122 1.179 1.236 1.248 

φ 1.041 0.142 0.795 0.828 1.030 1.291 1.349 
Deviance 1,142 29.000 1,087 1,096 1,142 1,191 1,201 

pD 176.175 
DIC 1,318.400 

California with 
Florida’s 

Informative 
Priors 

(N=1,153) 

Constant -9.502 0.408 -10.300 -10.170 -9.503 -8.833 -8.723 
Ln(AADT) 1.083 0.041 1.005 1.016 1.083 1.149 1.162 

φ 1.394 0.103 1.205 1.232 1.390 1.570 1.607 
Deviance 3,513 44.940 3,426 3,440 3,512 3,588 3,602 

pD 526.824 
DIC 4,039.570 
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Table 4 States' Non-Informative Prior Model Results for KAB Crashes 1 

Model Parameter Mean Standard 
Deviation 

Bayesian Credible Interval 
Lower 
95% 

Lower 
90% Median Upper 

90% 
Upper 
95% 

Florida 
(N=436) 

Constant -3.700 1.098 -5.768 -5.446 -3.744 -1.845 -1.440 
Ln(AADT) 0.294 0.117 0.054 0.097 0.299 0.481 0.515 

φ 1.985 0.645 1.101 1.191 1.867 3.169 3.572 
Deviance 771.5 26.980 719.5 727.6 771.3 816.300 825 

pD 80.836 
DIC 852.351 

California 
(N=1,153) 

Constant -11.090 0.737 -12.510 -12.310 -11.090 -9.894 -9.640 
Ln(AADT) 1.067 0.073 0.923 0.948 1.067 1.188 1.208 

φ 2.214 0.528 1.447 1.531 2.127 3.194 3.478 
Deviance 1,804 42.020 1,723 1,736 1,803 1,874 1,887 

pD 166.889 
DIC 1,970.470 

 2 

 3 

Table 5 Results of States' Informative Prior Models for KAB Crashes 4 

Model Parameter Mean Standard 
Deviation 

Bayesian Credible Interval 
Lower 
95% 

Lower 
90% Median Upper 

90% 
Upper 
95% 

Florida with 
California’s 
Informative 

Priors 
(N=436) 

Constant -9.879 0.476 -10.810 -10.670 -9.876 -9.100 -8.949 
Ln(AADT) 0.954 0.051 0.854 0.870 0.953 1.038 1.054 

φ 1.399 0.373 0.844 0.905 1.342 2.084 2.282 
Deviance 766.800 27.270 714.100 722.400 766.600 812.200 820.900 

pD 92.188 
DIC 859.019 

California 
with Florida’s 
Informative 

Priors 
(N=1,153) 

Constant -7.683 0.545 -8.769 -8.573 -7.686 -6.779 -6.594 
Ln(AADT) 0.727 0.054 0.619 0.637 0.728 0.816 0.836 

φ 1.943 0.438 1.288 1.363 1.880 2.733 2.966 
Deviance 1,800 42.870 1,717 1,730 1,799 1,871 1,885 

pD 178.209 
DIC 1,977.890 

 5 

  6 

 7 
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Table 6 Model Validation Results 1 

SPF of KABCO Crashes 
Application Data 

Florida (N=436) California (N=1,153) 
MAD MSPE MAD MSPE 

Florida with Non-Informative Priors NA 2.384 27.986 
Florida with California’s Informative Priors 2.134 20.886 

California with Non-Informative Priors 3.294 80.938 NA California with Florida’s Informative Priors 3.367 70.291 
SPF of KAB Crashes  

Florida with Non-Informative Priors NA 0.619 1.073 
Florida with California’s Informative Priors 0.613 0.935 

California with Non-Informative Priors 0.820 2.777 NA California with Florida’s Informative Priors 0.808 2.079 
 2 

Remarks on the SPFs with Non-Informative Priors 3 
The AADT is associated with crash occurrence as can be shown in Tables 2 and 4. The 4 
relationship is nearly linear for California. Also, it is worth noting that several types of SPF 5 
specifications are attempted besides the model structure of Equation (5). In addition to the 6 
natural log transformation of the AADT, the lane width, shoulder width and median width 7 
variables are included as independent variables. However, the Bayesian credible interval 8 
includes 0 for these variables’ values prompting the variables’ removal. 9 

Remarks on the SPFs with Informative Priors 10 
When applying a state’s KABCO crash SPF to another state while borrowing the latter state’s 11 
independent variable values as informative priors improves the GOF relative to applying the 12 
former state’s SPF with non-informative priors to the latter state as shown in Table 6. Florida’s 13 
KABCO crash SPF with informative priors from California exhibits a lower MAD and MSPE 14 
than that with non-informative priors when both SPFs are applied to California. On the other 15 
hand, California’s KABCO SPF with Florida’s informative priors outperforms its respective SPF 16 
with non-informative priors when both SPFs are applied to Florida. Even though, the MAD 17 
increased by 0.073 (3.294 to 3.367), the MSPE dropped considerably by 10.647 (80.938 to 18 
70.291). The MSPE is a more effective measure than the MAD since the MSPE is more sensitive 19 
to large residuals, which are deviations between observed and predicted crash counts needed for 20 
calculation of both measures. It is demonstrated in the SPF transferability study by Farid et al. 21 
(2016) that Florida’s SPFs, for crashes involving at least two vehicles, are to an extent 22 
transferable to California and vice versa possibly due to similarities in demographics, topography 23 
and weather conditions in both states. Florida and California are characterized by tourism even 24 
though Florida experiences more rainfall than California. In addition, it is critical to note the 25 
unobserved difference attributed to crash reporting thresholds in both states. The thresholds in 26 
Florida and California are $500 (Florida Statutes) and $750 (Xie et al., 2011) worth of damage to 27 
property, respectively. 28 

The KAB crash SPF results are consistent with those of KABCO crash SPFs. The MADs and 29 
MSPEs are reduced when applying Florida’s KAB crash SPF with California’s informative 30 
priors to California compared with applying Florida’s KAB crash SPF with non-informative 31 
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priors to California. On the other hand, assigning Florida’s independent variables as informative 1 
priors to the California KAB crash SPF and applying the SPF to Florida improves the GOF 2 
values relative to applying the California KAB crash SPF with non-informative priors to Florida. 3 
Nevertheless, it is crucial to mention that differences in reporting thresholds affect the count of 4 
KABCO crash records but are highly unlikely to affect those of KAB crashes. 5 

 6 

SUMMARY AND CONCLUSIONS 7 
 8 
Employing informative priors for modeling crash frequencies is an area that is explored to a 9 
limited extent. Recent studies contribute to the solution of accurately estimating crashes with 10 
data having limited sample sizes by the application of informative priors within the context of 11 
the Bayesian inference. In our study, the use of informative priors from Florida and California is 12 
tested where each state is assigned the priors of the other state. When transferring an SPF from 13 
one jurisdiction to another, borrowing informative priors from the latter, when developing the 14 
SPF for the former, facilitates the transferability of the developed SPF to the latter. The Florida 15 
KABCO crash SPF with California’s priors exhibits a better GOF than the Florida SPF with non-16 
informative priors when both SPFs are applied to California. The opposite is also true. The crash 17 
predictions of California’s KABCO SPF with Florida’s informative priors, applied to Florida’s 18 
conditions, are more accurate than those of California’s KABCO SPF with non-informative 19 
priors applied to Florida’s conditions. 20 

The KAB crash SPF results are consistent with those of KABCO crash SPFs. Florida’s KAB 21 
crash SPF with California’s informative priors demonstrates better performance when applied to 22 
California’s conditions compared to Florida’s KAB crash SPF with non-informative priors 23 
applied to California’s conditions. Also, the GOF results are improved when applying the 24 
California KAB SPF with Florida’s informative priors to Florida relative to applying California’s 25 
KAB SPF with non-informative priors to Florida. Ultimately, the findings of this study indicate 26 
that when developing SPFs, roadway agencies, lacking staff with expertise, may provide 27 
available data for another region’s municipality to extract the informative priors. The 28 
municipality, elsewhere, may develop SPFs with the priors, extracted, and transfer the SPFs to 29 
the locality of roadway agencies. Preferably, the agencies would provide their data to 30 
municipalities of regions with similar roadway design characteristics, weather trends, 31 
demographics and topographic characteristics. 32 

It is imperative to discuss the future work to build upon this study. The analysis, undertaken, is 33 
for distant states specifically for rural divided multilane highways. The investigation can be 34 
conducted for neighbor states and for other types of roadway facilities. Furthermore, throughout 35 
the entire analysis procedure, non-informative priors are assigned to the inverse dispersion 36 
parameter even though informative priors are applied for the independent variables. Using 37 
informative priors for the inverse dispersion parameter, obtained from another region’s SPF, is a 38 
viable option. It should also be noted that the HSM’s SPFs’ dispersion parameter for rural 39 
divided multilane highway segments is a function with an estimable coefficient rather than a 40 
fixed parameter. That is, every site’s dispersion parameter is different than that of the other sites, 41 
which is not the case of this study. Modifying the dispersion parameter structure is a convenient 42 
technique to reduce bias. However, care should be taken to avoid including a large number of 43 
parameters in the dispersion parameter formula especially if the model size is large (Mitra and 44 
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Washington, 2007). Another issue to caution is the application of uniform prior distributions, 1 
known as diffuse priors, because inaccuracies will result in the estimated posterior distributions 2 
(Natarajan and McCulloch, 1998). Also, the independent variables used were limited to the daily 3 
traffic even though the lane width, shoulder width and median width are attempted and exhibit 4 
Bayesian intervals that include 0. One issue to investigate for future analysis is the addition of 5 
more variables such as the roadside hazard rating, presence of horizontal curvature and street 6 
lighting, among others that are not necessarily available in each state. Another is the inclusion of 7 
socio-demographic and topographic variables since crashes are not only affected by road 8 
geometrics (Abdel-Aty et al., 2013; Lee et al., 2014a; Lee et al., 2014b; Lee et al., 2015a; Lee et 9 
al., 2015b). Finally, the spatial correlation among crashes can and ought to be accounted for in 10 
future studies (Ma et al., 2008).  11 
 12 
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