
 

 

 

A Flexible Spatially Dependent Discrete Choice Model: Formulation and Application to 

Teenagers’ Weekday Recreational Activity Participation 

 

 

 
Chandra R. Bhat* 

The University of Texas at Austin 
Department of Civil, Architectural & Environmental Engineering 

1 University Station, C1761, Austin, TX 78712-0278 
Phone: (512) 471-4535, Fax: (512) 475-8744 

Email: bhat@mail.utexas.edu 
 
 

Ipek N. Sener 

The University of Texas at Austin 
Department of Civil, Architectural & Environmental Engineering 

1 University Station, C1761, Austin, TX 78712-0278 
Phone: (512) 471-4535, Fax: (512) 475-8744 

Email: ipek@mail.utexas.edu 
 

 
Naveen Eluru 

The University of Texas at Austin 
Dept of Civil, Architectural & Environmental Engineering 

1 University Station C1761, Austin TX 78712-0278 
Phone: 512-471-4535, Fax: 512-475-8744 

E-mail: naveeneluru@mail.utexas.edu 
 
 

 
*corresponding author 

 



 

ABSTRACT 

This study proposes a simple and practical Composite Marginal Likelihood (CML) inference 

approach to estimate ordered-response discrete choice models with flexible copula-based spatial 

dependence structures across observational units. The approach is applicable to data sets of any size, 

provides standard error estimates for all parameters, and does not require any simulation machinery. 

The combined copula-CML approach proposed here should be appealing for general multivariate 

modeling contexts because it is simple and flexible, and is easy to implement  

The ability of the CML approach to recover the parameters of a spatially ordered process is 

evaluated using a simulation study, which clearly points to the effectiveness of the approach. In 

addition, the combined copula-CML approach is applied to study the daily episode frequency of 

teenagers’ physically active and physically inactive recreational activity participation, a subject of 

considerable interest in the transportation, sociology, and adolescence development fields. The data 

for the analysis are drawn from the 2000 San Francisco Bay Area Survey. The results highlight the 

value of the copula approach that separates the univariate marginal distribution form from the 

multivariate dependence structure, as well as underscore the need to consider spatial effects in 

recreational activity participation. The variable effects indicate that parents’ physical activity 

participation constitutes the most important factor influencing teenagers’ physical activity 

participation levels. Thus, an effective way to increase active recreation among teenagers may be to 

direct physical activity benefit-related information and education campaigns toward parents, perhaps 

at special physical education sessions at the schools of teenagers. 

   

Keywords:  Spatial econometrics, copula, composite marginal likelihood (CML) inference 

approach, children’s activity, public health, physical activity. 
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1. INTRODUCTION 

Spatial dependence in data may occur for several reasons, including diffusion effects, social 

interaction effects, or unobserved location-related effects influencing the level of the dependent 

variable (see Jones and Bullen, 1994; Miller, 1999). Accommodating such spatial dependence has 

been an active area of research in spatial statistics and spatial econometrics, and has spawned a vast 

literature in different application fields such as earth sciences, epidemiology, transportation, land use 

analysis, geography, social science and ecology (see Páez and Scott, 2004; Franzese and Hays, 

2008). However, while this literature abounds in techniques to address spatial dependence in 

continuous dependent variable models, there has been much less research on techniques to 

accommodate spatial dependence in discrete choice models, as already indicated by several 

researchers (see Bhat, 2000; Páez, 2007).  This, of course, is not because there is a dearth of 

application contexts of spatial dependence in discrete choice settings, but because of the estimation 

complications introduced by spatial interdependence in non-continuous dependent variable models.  

In the past decade, several alternative approaches have been introduced that attempt to 

address the estimation complications of spatial dependence across observational units in discrete 

choice models (see Fleming, 2004). Almost all of these efforts are focused on the binary spatial 

probit model, which is predicated on a multivariate normality assumption to characterize the spatial 

dependence structure. However, an approach referred to as the “Copula” approach has recently 

revived interest in a whole set of alternative couplings that can allow non-linear and asymmetric 

dependencies. A copula is essentially a multivariate dependence structure for the joint distribution of 

random variables that is separated from the marginal distributions of individual random variables, 

and derived purely from pre-specified parametric marginal distributions of each random variable. 

Under the copula approach, the multivariate normal distribution adopted in almost all spatial binary 

choice models in the past is but one of a suite of different types of error term couplings that can be 

tested. In particular, since it is difficult to know a priori what the best structure is to characterize the 

distribution of the univariate observation-specific error terms, as well as the dependence between the 

error terms across observations, it behooves the analyst to empirically test different univariate error 

distributions and multivariate dependence functions rather than pre-imposing particular error 

distributions. The copula approach enables such testing by allowing different specifications for the 

univariate marginal distributions and the dependence structure (see Bhat and Eluru, 2009; Trivedi 

and Zimmer, 2007).  
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In terms of estimation of discrete choice models with a general spatial correlation structure, 

the analyst confronts, in the familiar probit model, a multi-dimensional integral over a multivariate 

normal distribution, which is of the order of the number of observational units in the data. While a 

number of approaches have been proposed to tackle this situation (see McMillen, 1995; LeSage, 

2000; Pinske and Slade, 1998; Fleming, 2004; Beron et al., 2003; Beron and Vijverberg, 2004), none 

of these remain practically feasible for moderate-to-large samples.1 These methods are also quite 

cumbersome and involved.  An approach to deal with these estimation complications in the spatial 

probit or other non-normal copula-based spatial models is the technique of composite marginal 

likelihood (CML), an emerging inference approach in the statistics field. The CML estimation 

approach is a simple approach that can be used when the full likelihood function is near impossible 

or plain infeasible to evaluate due to the underlying complex dependencies, as is the case with 

spatial discrete choice models. The CML approach also represents a conceptually, pedagogically, 

and implementationally simpler procedure relative to simulation techniques, and also has the 

advantage of reproducibility of results.  

In the current paper, we combine a copula-based formulation with a CML estimation 

technique to propose a simple and practical approach to estimate ordered-response discrete choice 

models with spatial dependence across observational units. Our approach subsumes the familiar and 

extensively studied spatial binary probit model as a special case. The approach is applicable to data 

sets of any size, provides standard error estimates for all parameters, and does not require any 

simulation machinery, which is in contrast to extant spatial approaches for binary choice models. In 

essence, the current paper brings together two emerging areas in the statistics field – the copula 

approach to construct general multivariate distributions and the CML approach to estimate models 

with an intractable likelihood function – to develop and estimate spatial discrete choice models.  

The rest of this paper is structured as follows. The next section provides an overview of 

copula concepts and the composite marginal likelihood estimation method. Section 3 presents the 

structure of the copula-based spatial ordered response model and discusses the estimation/inference 

approach utilized in the current paper. Section 4 focuses on a simulation study to evaluate the 

                                                 
1 McMillen’s EM method, LeSage’s MCMC method, and Pinkse and Slade’s heteroscedastic approach require the 
inversion and determinant computation of a square matrix of the order of the number of observational units. Most 
practical algorithms require O(Q3) steps to evaluate the determinant and inverse of a Q × Q matrix, which becomes 
prohibitive for moderate-to-large Q (see Caragea and Smith, 2006). Beron and Vijvberg’s method requires the simulation 
of a multidimensional integral of the order of the number of observational units, which again becomes prohibitive for 
large Q. 
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performance of the CML approach. Section 5 describes the data source and sample formation 

procedures for an empirical application of the proposed spatial model to teenagers’ recreational 

activity participation. Section 6 presents the corresponding empirical results. The final section 

summarizes the important findings from the study and concludes the paper.  

 

2. OVERVIEW OF COPULA CONCEPTS AND THE CML METHOD 

2.1. Copula Concepts 

A copula is a device or function that generates a stochastic dependence relationship (i.e., a 

multivariate distribution) among random variables with pre-specified marginal distributions. In 

essence, the copula approach separates the marginal distributions from the dependence structure, so 

that the dependence structure is entirely unaffected by the marginal distributions assumed. This 

provides substantial flexibility in developing dependence among random variables (see Bhat and 

Eluru, 2009; Trivedi and Zimmer, 2007).  

The precise definition of a copula is that it is a multivariate distribution function defined over 

the unit cube linking standard uniformly distributed marginals. Let C be a K-dimensional copula of 

uniformly distributed random variables U1, U2, U3, …, UK with support contained in [0,1]K. Then,  

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK), (1) 

where θ  is a parameter vector of the copula commonly referred to as the dependence parameter 

vector. A copula, once developed, allows the generation of joint multivariate distribution functions 

with given continuously distributed  marginals. Consider K random variables Y1, Y2, Y3, …, YK, each 

with univariate continuous marginal distribution functions Fk(yk) = Pr(Yk < yk), k =1, 2, 3, …, K. 

Then, by Sklar’s (1973) theorem, a joint K-dimensional distribution function of the random variables 

with the continuous marginal distribution functions Fk(yk) can be generated as follows: 

F(y1, y2, …, yK) = Pr(Y1 < y1, Y2 < y2, …, YK < yK) = Pr(U1 < F1(y1),, U2 < F2(y2), …,UK < FK(yK))  

                         = Cθ (F1(y1), F2(y2),…, FK(yK)).  (2) 

Conversely, by Sklar’s theorem, for any multivariate distribution function with continuous marginal 

distribution functions, a unique copula can be defined that satisfies the condition in Equation (2).  
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Thus, given a known multivariate distribution F(y1, y2, …, yK) with continuous and strictly 

increasing margins Fk(yk), the inversion method may be used to obtain a unique copula using 

Equation (2) (see Nelsen, 2006):2 

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK)  

 = Pr(Y1 < F–1
1(u1), Y2 < F–1

2(u2), ..., Y k < F–1
 k (u k)) (3) 

 = F(F–1
1(u1), F–1

2(u2), ..., F–1
k(uk)). 

Once the copula is developed, one can revert to Equation (2) to develop new multivariate 

distributions with arbitrary univariate margins.  
 A rich set of bivariate copula types have been generated using inversion and other methods, 

including the Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and the Archimedean 

class of copulas (including the Clayton, Gumbel, Frank, and Joe copulas). Of these, the Gaussian 

and FGM copulas can be extended to more than two dimensions in a straightforward manner, 

allowing for differential dependence patterns among pairs of variables.3 In fact, the multivariate 

normal distribution used in the spatial probit model corresponds to the Gaussian copula with 

univariate normal distributions. Recently, Bhat and Sener (2009) proposed the use of the FGM 

copula with univariate logistic distributions for spatial modeling in a binary choice context, but point 

out that the maximal correlation allowable between pairs of variables is 0.303.  

 In the current paper, we use the Gaussian and FGM copulas to formulate spatial ordered 

response models. This allows us to test different distributions for the individual observation-specific 

error terms as well as the multivariate dependence structure. For reference, the multivariate Gaussian 

copula takes the following form: 

),),(),...,(),((),...,,( 1
2

1
1

1
21 θθ QQQ uuuuuuC −−− ΦΦΦΦ=              (4) 

where QΦ  is the Q-dimensional standard normal cumulative distribution function (CDF) with zero 

mean and correlation matrix (obtained by scaling an arbitrary covariance matrix so that each 

component has a variance of one) whose off-diagonal elements are captured in the vector θ , and 

                                                 
2 The strictly increasing nature of the margins ensures the existence of the inverse of the margins.   
3 More generally, it is possible to specify specific copula forms in two dimensions, and then examine the compatibility 
issues in developing multivariate copula forms with the predetermined copula forms in two dimensions as the bivariate 
marginals (see Aas et al., 2009, Aas and Berg, 2009). 
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(.)1−Φ is the inverse (or quantile function) of the univariate standard normal CDF. This copula 

collapses to the independence copula when all elements of θ take the value of zero.  In the bivariate 

case, the Gaussian copula takes the form given below: 

∫ ∫
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where θ now includes a single parameter that is the correlation coefficient of the standard bivariate 

normal distribution, and also represents the direction and magnitude of dependence between the 

standard uniform variates U1 and U2.  

The multivariate FGM copula that allows for pairwise dependence for spatial analysis takes 

the form shown below: 

,)1)(1(1),...,(
1

1 11
21 ⎥

⎦

⎤
⎢
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−−+= ∑ ∑∏

−

= +==

Q
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Q

qk
kqqk

Q

q
qQ uuuuuuC θθ              (6) 

where qkθ  is the dependence parameter between qU and kU  (–1 ≤ qkθ  ≤ 1), qkθ = kqθ  for all q and k. 

  

2.2. Composite Marginal Likelihood Approach 

The composite marginal likelihood (CML) approach is an estimation technique that is gaining 

substantial attention in the statistics field, though there has been little to no coverage of this method 

in econometrics and other fields.4 While the method has been suggested in the past under various 

pseudonyms such as quasi-likelihood (Hjort and Omre, 1994; Hjort and Varin, 2008), split 

likelihood (Vandekerkhove, 2005), and pseudolikelihood or marginal pseudo-likelihood 

(Molenberghs and Verbeke, 2005), Varin (2008) discusses reasons why the term composite marginal 

likelihood is less subject to literary confusion.5  

                                                 
4 The first conference dedicated to the composite likelihood method was held at the University of Warwick in the United 
Kingdom last year. For a recent review of the method, see Varin (2008).  
5 For instance, the term “quasi-likelihood” is already reserved for a well-established statistical estimating function 
method that is applicable to cases where the analyst is unable to posit (or would rather not posit) a statistical model for a 
given set of data, but is willing to identify a link function that relates the mean of the dependent variable vector to a set of 
covariates, and a variance function that relates the covariance of the dependent variables to the mean vector of the 
variable (see Wedderburn, 1974; Heyde, 1997, provides an extensive treatment).   



 6

The composite marginal likelihood (CML) estimation approach is a relatively simple 

approach that can be used when the full likelihood function is near impossible or plain infeasible to 

evaluate due to the underlying complex dependencies, as is oftentimes the case with spatial and 

time-series models. For instance, in discrete choice models with spatial dependence based on a 

multivariate normal form, the full likelihood function entails a multidimensional integral of the order 

of the number of observational units. While there have been recent advances in simulation 

techniques within a classical or Bayesian framework that assist with such complex model estimation 

situations (see Bhat, 2003; Beron and Vijverberg, 2004; LeSage, 2000), these techniques are 

impractical and/or infeasible in situations with a moderate to high number of observations. These 

simulation-based methods are also not straightforward to implement. In contrast, the CML method, 

which belongs to the more general class of composite likelihood function approaches (see Lindsay, 

1988), is based on forming a surrogate likelihood function that compounds much easier-to-compute, 

lower-dimensional, marginal likelihoods.6 The simplest CML, formed by assuming independence 

across observations, entails the product of univariate densities (for continuous data) or probability 

mass functions (for discrete data). However, this approach does not provide estimates of dependence 

that are of central interest in spatial application situations. Another approach is the pairwise 

likelihood function formed by the product of power-weighted likelihood contributions of all or a 

selected subset of couplets (i.e., pairs of observations).7 Almost all earlier research efforts employing 

the CML technique have used the pairwise approach, including Apanasovich et al. (2008), Bellio  

and Varin (2005), de Leon (2005), Varin and Vidoni (2006, 2009), and Varin et al. (2005).  

Attention to the CML estimation approach in spatial analysis has been confined to the spatial 

statistics field thus far, primarily in the context of characterizing spatial dependence for spatial 

random fields or spatial points or spatial lattices (see, for example, Caragea and Smith, 2006; Guan, 

2006; Oman et al., 2007; and Apanasovich et al., 2008).  There is little to no mention of the CML 

approach in the spatial econometrics field, even in recent reviews of, and dedicated paper collections 

                                                 
6 The general class of composite likelihood function approaches includes composite marginal likelihood approaches and 
composite conditional likelihood approaches (see, for example, Besag, 1974; Hanfelt, 2004; Mardia et al., 2007). The 
research of Hjort and Varin (2008) suggests that, in general, composite marginal likelihood approaches are much more 
efficient than composite conditional likelihood approaches. However, more research is needed to test this result for 
different types of model structures.  
7 The power weights for each couplet’s likelihood contribution may be optimally chosen based on estimating equation 
theory (Heyde, 1997; Chaganty and Joe, 2004; Kuk, 2007; Guan, 2006), though this is still an open area of debate and 
research.  
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in, the field (see Fleming, 2004; Paelinck, 2005; Beck et al., 2006; Páez, 2007; Franzese and Hays, 

2008).  

 

3. MODEL FORMUATION 

3.1. Copula-based Spatial Ordered Response Model Structure 

In the usual framework of an ordered-response model based on a censoring mechanism involving the 

partitioning of an underlying latent continuous random variable into non-overlapping intervals, let 

the data ( qz , qx ) be generated as follows: 

qqq xz εβ +′=*

                 
(7)
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where { }1210 ... −<<< Mψψψψ
 
is a set of thresholds to be estimated, qx

 
is a vector of exogenous 

variables whose elements are not linearly dependent ( qx  does
 
not include a constant), β  is a vector 

of parameters to be estimated, and qε  is a random error term. Note that since the underlying scale is 

unobserved, we normalize the scale without any loss of generality in a translational sense by not 

including a constant in the qx  vector. The univariate distribution of qε  can be any parametric 

distribution in our copula approach, though we will confine ourselves to a logistic or normal 

distribution in the current study. The mean of qε  
is set to zero. Let qσ  be a scale parameter such 

that qqq σεη /=  is standard logistic or standard normal. Of course, it is not possible to estimate a 

separate qσ  parameter for each q. Thus, we parameterize qσ  as )exp()( qqq wwg λλσ ′=′=  where 

qw  includes variables specific to pre-defined “neighborhoods” or other groupings of observational 

units and individual related factors, and λ  is a corresponding coefficient vector to be estimated. For 

identification purposes caused by scale invariance in the ordered-response model, qw cannot include 

a constant. Additionally, consider that the qη terms are spatially dependent based on the multivariate 
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copula (.)θC . The vector θ includes pairwise dependence terms between an observational unit and 

other observational units (if only a selected subsample of observational units k within a threshold 

distance of observational unit q is considered in the CML estimation approach, then the vector θ 

includes only the qkθ  terms for the selected observational units k; alternatively,  qkθ  =0 for all 

observational units k beyond the threshold distance from observational unit q). Since it is not 

possible to estimate a separate dependence term for each pair of observational units q and k, and 

assuming that the spatial process is isotropic, we parameterize qkθ  for the Gaussian and FGM 

copulas as8: 

qk

qk
qk se

se
)(1

)(
′+

′
±= ς

ς

θ ,                           (8) 

where qks  is a vector of variables (taking on non-negative values) corresponding to the {q,k} pair 

and that influence the level of spatial dependence between observational units q and k, and ς  is a 

corresponding set of parameters to be estimated.9  By functional form, –1 ≤ θqk ≤ 1, as required in the 

FGM and Gaussian copulas (see Bhat and Eluru, 2009). Further, in a spatial context, we expect 

observational units in close proximity to have similar preferences, because of which we impose the 

‘+’ sign in front of the expression in Equation (8). The functional form of Equation (8) can 

accommodate various (and multiple) forms of spatial dependence through the appropriate 

consideration of variables in the vector qks . In particular, the dependence form nests the typical 

                                                 
8 Note that if we have a separate dependency term for each pair of observational units, there will be Q(Q –1)/2 parameters 
to estimate, which would be more than the number of observations available for parameter estimation for Q > 3. 
9 A few issues about the functional form. A continuous transformation mapping to the -1 to +1 range, such as 

( 1) / ( 1)qk qks s
qk e eς ςθ ′ ′= − + , would pose problems in interpretation if there are negative coefficients in the ς  vector. For 

example, consider that there are two variables in the vector qks ,
 
one being whether q and k are in the same spatial 

neighborhood or not and another being the distance between q and k. Let the
 
coefficient on the first variable be positive 

and that on the second negative. Then, the implication would be that for q and k in the same spatial neighborhood, the 
dependence is positive and decreasing up to a certain distance threshold, but then abruptly changes to a negative 
dependence beyond the threshold. Also, for q and k not in the same spatial neighborhood, the spatial dependence is 
always negative and lower in magnitude for q and k closer to one another than farther from one another. These 
dependency forms are difficult to explain. On the other hand, the functional form used in Equation (8) allows a 
dampening of the magnitude of dependence effects without changing the sign of dependency in response to variables in

 
qks . Finally, note that the functional form

 
/ ( 1)qk qks s

qk e eς ςθ ′ ′= + is also not appropriate. For example, consider the
 
case 

when
 qks  includes a single dummy variable indicating whether or not q and k are in the same spatial neighborhood. Then, 

if one uses the above functional form, a spatial dependency is implied even for observational units in different spatial 
neighborhoods. On the other hand, the functional form in Equation (8) ensures no spatial dependence.   
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spatial dependence patterns used in the extant literature as special cases, including dependence based 

on (1) whether observational units are in the same “neighborhood” or in contiguous 

“neighborhoods”, (2) shared border length of the “neighborhood” of two observational units, and (3) 

time or distance between observational units.10 

Let (.)qF  be the cumulative distribution of *
qz  and let (.)qf be the corresponding density 

function. Also, let qd  be the actual observed categorical response for qz  in the sample. Then, the 

probability of the observed vector of choices ),...,,,( 321 Qdddd  can be written as: 

( ) ,...)()(),...,(),(),...,,( **
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22
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θ      (9) 

where },...,2,1  allfor    :,...,,{ *
)1(

**
2

*
1

* QqzzzzD
qq dqdQz =<<= − ψψ  and θc  is the copula density. The 

integration domain *
zD  is simply the multivariate region of the *

qz  variables ),...,2,1( Qq =  

determined by the observed vector of choices ),...,,( 21 Qddd .  The dimensionality of the integration, 

in general, is equal to the number of observations Q (in the ordinary, spatially uncorrelated ordered 

response model, the density function collapses to that of the independence copula, and so we are left 

with only single dimension integrals). If the copula used is the Gaussian copula, and the marginals 

(.)qF  are univariate normal, the result is the spatial ordered-response probit model. In this case, the 

probability expression for the observed vector of choices entails an analytically intractable Q-

dimensional rectangular integral over the multivariate normal density. Equivalently, the expression 

involves the computation of the order of Q2  terms, each term involving a Q-variate cumulative 

normal distribution.11 Even with moderate-sized samples, it becomes numerically infeasible to 

evaluate such a high-dimensional integral. If the copula used is the FGM copula, one encounters the 

case of either numerically evaluating a Q-dimensional rectangular integral over the FGM density 

                                                 
10  While the emphasis in this paper is on spatial dependence, the model formulation here is much more general, and can 
generate dependence between observational units q and k based on proximity on such non-spatial factors as income 
levels, education levels, and family structure. However, in the empirical analysis of this paper, we will confine attention 
to spatial measures of proximity.  
11 In the special case of just two categories – i.e., the spatial binary probit model – the expression can be collapsed into a 
single Q-variate cumulative normal distribution. 
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function or computing in the order of Q2  closed-form FGM cumulative distribution functions.12 

Thus, even for the FGM copula, the direct computation of the likelihood function becomes infeasible 

for even moderate-sized Q in the context of an ordered-response model (for instance, with even just 

200 observations, the number of closed-form cumulative distribution functions to be computed is of 

the order of 601061 ×⋅ ). Hence, we propose the much simpler and robust composite marginal 

likelihood approach for spatial econometric models. 

 

3.2. Estimation and Inference Approach 

In the current paper, we use a pairwise marginal likelihood estimation approach, which corresponds 

to a composite marginal approach based on bivariate margins.13 Let )'',',','( ζλψβγ = . For the 

spatial copula-based ordered response (SCOR) model, the pairwise marginal likelihood function is 

given by: 

[ ] ,),()(
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(.)qF  in the above expression corresponds to the standard cumulative distribution form of (.)qF . 

The bivariate-probability expressions in the likelihood function of Equation (10) are straightforward 

to compute, since they only entail four bivariate copula expressions (for example, in the case of 

                                                 
12 In the special case of two categories and the FGM copula, the probability collapses to a single closed-form expression 
term, as exploited by Bhat and Sener (2009). In the special case of two categories and the generalized Gumbel (GG) 
copula, the probability still requires 2Q closed-form GG cumulative distribution term evaluations because of the 
asymmetric nature of this copula. This is different from the case of the FGM copula with two categories. 
13 The analyst can also consider larger subsets of observations, such as triplets or quadruplets or even higher dimensional 
subsets (see Oman et al., 2007; Engler et al., 2006; Caragea and Smith, 2007). In general, the issue of how best to form a 
CML function corresponding to a full likelihood function remains an open, and under-researched, area of research 
because of the relatively limited results on the properties of CML inferential procedures (but see Zhao and Joe, 2005 and 
Cox and Reid, 2004). However, it is generally agreed that the CML construction should be based on balancing statistical 
and computational efficiency. 
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univariate normal margins and a Gaussian copula, the bivariate probability involves four bivariate 

cumulative normal expressions).14 

 The pairwise marginal likelihood function of Equation (10) comprises 2/)1( −QQ  pairs of 

bivariate probability computations, which can itself become quite time consuming. Fortunately, in a 

spatial case where dependency drops quickly with inter-observation distance, the pairs formed from 

the closest observations provide much more information than pairs that are very far away. In fact, as 

demonstrated by Varin and Vidoni (2009), Varin and Czado (2008), and Apanasovich et al. (2008), 

in different empirical contexts, retaining all 2/)1( −QQ  pairs not only increases computational 

costs, but may also reduce estimator efficiency. Typically, in a spatial context, there appears to be an 

optimal distance for inclusion of observation pairs. This distance threshold may be set based on 

knowledge about the spatial process or based on testing the efficiency of estimators with varying 

values of the distance threshold. Assume that this distance threshold is m, and let the set of 

observational units k within the threshold distance of unit q be qM . Then, we propose dummy 

weights to include appropriate pairwise terms in the composite marginal likelihood function of 

Equation (10). In particular, 1=qkω  if qMk ∈  and 0=qkω  otherwise. This effectively reduces the 

number of pairwise terms in the CML function. 

The properties of the CML estimator may be derived using the theory of estimating equations 

(see Cox and Reid, 2004). Specifically, under usual regularity assumptions (Molenberghs and 

Verbeke, 2005, page 191), the CML estimator is consistent and asymptotically normal distributed 

(this is because of the unbiasedness of the CML score function, which is a linear combination of 

proper score functions associated with the marginal event probabilities forming the composite 

likelihood). Of course, the maximum CML estimator loses some efficiency from a theoretical 

perspective relative to a full likelihood estimator (Lindsay, 1988; Zhao and Joe, 2005), but this 

efficiency loss has been shown to be minimal in most empirical cases (Lele and Taper, 2002; 

Henderson and Shimakura, 2003; Lele, 2006). Besides, in many situations, it is infeasible to use the 

full likelihood estimator anyway. Even if feasible, numerical simulation methods that are typically 

needed in such situations get imprecise as the number of dimensions increase, leading to 

convergence problems during estimation. Further, as indicated by Varin and Vidoni (2009), it is 

                                                 
14 Cθ (u1,u2) = Φ2(Φ-1(u1), Φ-1(u2),θ) for the bivariate Gaussian copula 
   Cθ (u1,u2) = u1u2 [1 + θ (1– u1)( 1– u2)] for the bivariate FGM copula 
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possible that the “maximum CML estimator can be consistent when the ordinary full likelihood 

estimator is not”. This is because the CML procedures are typically more robust and can represent 

the underlying low-dimensional process of interest more accurately than the low dimensional 

process implied by an assumed high-dimensional multivariate model.  

The CML estimator CMLγ̂ , obtained by maximizing the logarithm of the function in Equation 

(10) with respect to the vector γ , is asymptotically normal distributed with asymptotic mean γ  and 

variance matrix given by the inverse of Godambe’s (1960) sandwich information matrix15: 

[ ] [ ] ,)()()()( 111 −−− = γγγγ HJHG                (11) 

where 
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The “bread” matrix )(γH  of Equation (11) can be estimated in a straightforward manner using the 

Hessian of the negative of )(log γCMLL , evaluated at the CML estimate γ̂ . This is because the 

information identity remains valid for each pairwise term forming the composite marginal 

likelihood. Thus, )(γH  can be estimated as: 

                                                 
15 The analyst can also use a two-stage approach to maximize the logarithm of the composite likelihood function in 
Equation (9). This entails assuming independence across each pair of observational units (i.e., θqk = 0 for all q and k) and 
estimating ( ', ', ') 'ζγ β ψ λ− =  . Then, fixing these estimated parameters in Equation (9), the analyst can maximize the 
logarithm of the equation to estimate the ζ  parameter vector embedded in the θqk terms. Zhao and Joe (2005) have 

compared this two stage approach with the pairwise approach adopted in the current paper for the case of a continuous 
dependent variable and a binary discrete variable, and have generally found that the pairwise approach outperforms the 
two stage approach. Besides, the computation of the covariance matrix of the parameters is more cumbersome in the two-
stage approach than in the pairwise approach.  
16 This sandwich form for the asymptotic variance matrix for the CML estimator is similar to the asymptotic variance 
matrix for the ordinary maximum likelihood estimator under a mis-specified model. This is not surprising, since the CML 
setting is tantamount to a mis-specified model due to the consideration of only partial, though correctly specified, 
likelihood terms. Specifically, the use of the CML inference procedure implies the failure of the information identity (i.e., 
H(γ) ≠ J(γ)), implying a loss of efficiency with respect to the ordinary, but practically infeasible, maximum likelihood 
estimator. 
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However, the estimation of the “vegetable” matrix )(γJ  is more difficult. One cannot estimate )(γJ  

as the sampling variance of individual contributions to the composite score function because of the 

underlying spatial dependence in observations. But, since the spatial dependence fades with 

distance, we can use the windows resampling procedure of Heagerty and Lumley (2000) to estimate 

)ˆ(γJ . This procedure entails the construction of suitable overlapping subgroups of the original data 

that may be viewed as independent replicated observations. Then, )(γJ  may be estimated 

empirically as the weighted average of the variance of composite score evaluations (computed at γ̂ ) 

across the subgroups (the weights correspond to the size of each subgroup). In the current spatial 

context, we can consider all the observational units k in the data within a distance m of observation q 

as a subgroup or cluster (note that the dependence is weak beyond a distance m, and thus each 

subgroup as just defined would be only weakly dependent on other subgroups). Then, we propose 

the following as an estimate of the matrix )(γJ : 
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As indicated earlier, for any copula model, one needs to determine the optimal threshold distance 

“m” that provides the most efficient parameter estimates. We establish this distance by estimating 

the variance matrix  G(γ) for different distance values and selecting the distance value that 

minimizes the total variance  across all parameters as given by tr[G(γ)], where ][Atr  denotes the 

trace of the matrix A.  

 

3.3. Model Selection  

Varin and Vidoni (2005) introduced a composite likelihood information criterion (CLIC) for model 

selection. In the current paper, this criterion can be used for selecting between different copula 
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models with the same threshold distance (i.e., the same number of pairwise terms). We select the 

copula model that maximizes the following penalized log-composite likelihood17: 

* 1ˆ ˆ ˆ ˆlog ( ) log ( ) ( ) ( )CML CMLL L tr J Hγ γ γ γ −⎡ ⎤= − ⎣ ⎦  (14) 

An issue that is closely associated with model selection is testing null hypotheses. The 

composite likelihood ratio statistic may be used for this purpose. Consider the null hypothesis 

00 : ττ =H  against 01 : ττ ≠H , where τ  is a subvector of γ  of dimension d; i.e., ),( ′′′= ατγ . The 

statistic takes the familiar form shown below: 

[ ]0ˆ2 log ( ) log ( ) ,CML CMLCLRT L Lγ γ= −              (15) 

where 0γ  is the composite marginal likelihood estimate under the null hypothesis ))(,( 00 τατ CML′′ . 

The CLRT statistic does not have a standard chi-squared asymptotic distribution as in the case of the 

ordinary maximum likelihood ratio statistic. Molenberghs and Verbeke (2005; chapter 9) provides 

the appropriate asymptotic distribution, which is based on Kent’s (1982) derivation of the 

distribution of the ordinary likelihood ratio statistic under a mis-specified likelihood function. To 

write this, first define )(γτG  and )(γτH  as the dd ×  submatrices of )(γG  and )(γH , respectively, 

which correspond to the vector τ . Then, CLRT has the following asymptotic distribution: 

2

1
~ ii

d

i
WCLRT λ∑

=

,                          (16)  

where 2
iW  for i = 1, 2, …, d are independent 2

1χ  variates and dλλλ ...21 ≥≥  are the eigenvalues of 

the matrix )()( 1 γγ ττ GH −  evaluated under the null hypothesis. The problem with this approach 

though is that it cannot be used when the parameter value(s) under the null hypothesis is at the 

boundary of the parameter space. For instance, in the spatial dependence case of this paper, one may 

want to test if −∞→ς  in Equation (7), which corresponds to the case of no spatial dependence. 

This represents a degenerate case for the application of Equation (14). Fortunately, one can resort to 

                                                 
17 This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information Criterion 
(AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood inference procedure, 
the information identity holds (i.e., H(γ) = J(γ)) and the CLIC in this case is exactly the AIC  

ˆ[ log ( ) (# of model parameters)].MLL γ= − Note also that the CLIC can be applied only for the case when the log 
composite likelihoods ˆ[log ( )]CMLL γ are comparable across the models being tested or, equivalently, only when the same 
number of pairwise terms are used in the development of the log-composite likelihood function.  
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parametric bootstrapping to obtain the precise distribution of the CLRT statistic for any null 

hypothesis situation. Such a bootstrapping procedure is rendered very simple in the CML approach, 

and can be used to compute the p-value of the null hypothesis test. The procedure is as follows (see 

Varin and Czado, 2008): 

1. Compute the observed CLRT value as in Equation (14) from the estimation sample. Let the 

estimation sample be denoted as obsy , and the observed CLRT value as ).( obsyCLRT  

2. Generate B sample data sets 
Byyyy ,...,,, 321 using the CML convergent values under the null 

hypothesis 

3. Compute the CLRT statistic of Equation (14) for each generated data set, and label it as 

).( byCLRT  

4. Calculate the p-value of the test using the following expression: 

{ }
,

1

)()(1
1

+

≥+
=

∑
=

B

yCLRTyCLRTI
p

B

b
obsb

 where 1}{ =AI if A is true. 

 

4. SIMULATION STUDY 

To evaluate the performance of the CML estimation technique just discussed, we generate a sample 

of 500 observations with three independent variable and four ordered categories.  The values for 

each of the independent variables are drawn from a standard univariate normal distribution. The 

coefficients applied to the independent variables are 1, 0.5, and 0.25.  Next, values of the error terms 

qε  (q = 1, 2, …, 500) in Equation (7) are generated with the dependence structure of Equation (8). 

We use a standard distribution for the qε  terms (i.e., we assume qσ = 1 for all q) and focus on spatial 

dependence, which is what creates estimation complications in moderate to large sized samples. 

Further, for this simulation study, we consider normally distributed marginal error terms and 

consider a Gaussian copula to tie the error terms. To accommodate a global spatial dependence 

pattern among the error terms, we consider a single variable - the inverse of distance - in the qks  

vector that influences the level of spatial dependence between observational units q and k. We adopt 

this specification because it is simple and intuitive, and generates a global spatial dependence 

structure. The distance between members of each pair of the 500 observations is borrowed from the 

residential locations of 500 teenagers residing in the San Francisco Bay Area, based on the 2000 San 
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Francisco Bay Area Travel Survey (BATS) that is used in the empirical analysis of this paper (see 

Section 5). We then consider two values of ς  for the coefficient on the inverse of distance [see 

Equation (8)] -  0.5ς = −  and 0.5ς = . For a given distance between two observations, the former 

value for ς  leads to lower spatial error dependence, while the latter value results in higher spatial 

error dependence. For instance, for two observations spaced 1 mile (10 miles) apart, the error 

correlation is 0.38 (0.06) when 0.5ς = − and 0.62 (0.14) when 0.5ς = + .  For each of the two values 

of ς , we generate a multivariate realization of the error term vector ),...,( 50021 εεεε = with the 

desired correlation matrix. The error terms for each observation ( qε ) is then added to the systematic 

component qxβ ′ as in Equation (7) and then translated to “observed” values of qz  (= 0, 1, 2,3) based 

on the pre-specified threshold values of 0ψ = 0.25, 1ψ = 0.75, and 2ψ =1.5. The data generation 

process is undertaken 25 times with different realizations of the random vector ε to generate 25 

different data sets. The CML estimation procedure is then applied to each dataset to obtain estimated 

values. In this estimation, we considered all possible pairings of the 500 observations.  

The performance evaluation of the CML technique is based on the ability to recover the 

parameter vector )'',','( ςψβγ = . The proximity of estimated and true values for each parameter is 

based on computing the following three metrics: (a) bias (or the difference between the mean of the 

relevant values across the 25 runs and the true values), (b) the relative bias (i.e., the bias as a 

percentage of the true value), (c) the total error computed as the root mean-squared error (RMSE) 

between the estimated and true values across all 25 runs ( RRMSE
R

r
r /)ˆ(100

1

2 ⎟
⎠

⎞
⎜
⎝

⎛ −×= ∑
=

γγ , where 

R is the number of data replications). 

 Table 1 presents the results, and shows that the CML approach recovers the parameters 

extremely well in terms of bias and relative bias (see the fourth and fifth columns of the table). The 

relative bias is, in general, higher for the case of higher dependence (ς = 0.5), but still is very small. 

The RMSE values are also generally small, though it is interesting to note that the RMSE values for 

the thresholds are consistently higher than for other parameters in both the low and high correlation 

case. Overall, the simulation results clearly demonstrate the ability of the Composite Marginal 

Likelihood (CML) to recover the parameters in a spatially dependent discrete choice context. 
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Combined with its conceptual and implementation simplicity, the CML approach is an effective 

method in spatial and other high-dimensional multivariate distribution contexts.  

 

5. THE EMPIRICAL CONTEXT 
5.1. Background 

The empirical context of the current study is the participation of teenagers in out-of-home, weekday, 

recreational episodes. Participation in out-of-home recreational activity is an important part of a 

balanced and healthy lifestyle, and contributes in important ways to the physical, emotional, and 

mental health of adolescents (see Campbell, 2007). Specifically, several earlier studies have shown 

that participation in out-of-home structured recreational activities helps adolescents develop social 

skills, self-esteem, teamwork abilities, fairness concepts, and tolerance. Such participation also 

provides increased learning opportunities, and reduces the incidence of drug and tobacco use, 

depression and level of illness (see, for example, Hofferth and Sandberg, 2001; Tiggemann, 2001; 

Marsh and Kleitman, 2003; Klentrou et al., 2003).  

In this paper, we distinguish between physically active and physically inactive activity 

episodes within the context of out-of-home recreation pursuits. Earlier studies in the literature 

strongly emphasize the importance of physical activity in improving health, since physical activity 

increases cardiovascular fitness and decreases obesity, heart disease, diabetes, high blood pressure, 

and several forms of cancer. Further, it also enhances agility and strength, reduces the need for 

medical attention, contributes to improved mental health, and decreases depression and anxiety (see, 

for instance, Nelson and Gordon-Larsen, 2006; Center for Disease Control (CDC), 2006; Ornelas et 

al., 2007). But, in spite of its well-acknowledged benefits, adolescents’ participation rates in 

physical activity have been very low. A report by the Center for Disease Control (2002) indicates 

that about a third of teenagers do not engage in adequate physical activity, and that the high school 

physical education class participation rate has been steadily declining over the past decade. Since 

physically inactive lifestyles may be transferred from adolescence to adulthood (Aaron et al., 2002), 

the low physical activity participation among adolescents has become a particularly serious health 

concern in the U.S. and other countries.  

Of course, the recreational activity participation of adolescents is not only relevant to the 

sociology or public health fields, but is also of considerable interest to transportation professionals in 

understanding children’s activity engagement patterns (see, for example, Transportation Research 
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Board and Institute of Medicine, 2005; Goulias and Kim, 2005; Copperman and Bhat, 2007a,b; and 

Sener et al., 2008). In particular, teenagers’ activity engagement desires and needs impact the 

activity-travel patterns of adults through serve-passenger activities (such as the need to drop off a 

teenager at an out-of-home recreational activity site at a certain time of the day) and joint activity 

participations with parents (such as going to the park or taking a walk around the neighborhood).  

Also, the consideration of children’s activity-travel patterns is important in its own right since these 

patterns contribute directly to travel demand. 

 In the current application, we model teenagers’ participation in recreational activity (both 

physically active and physically inactive) in terms of the number of episodes of participation during 

the weekday, using a comprehensive set of socio-demographic and built environment variables as 

potential determinants, while also accommodating spatial effects based on residence patterns. The 

approach developed in this research allows spatial dependence in recreational pursuits across 

teenagers, as well as accommodates heteroscedasticity across teenagers based on spatial and 

individual-related characteristics.18 

 

5.2. Data and Sample Formation 

The primary source of data is the 2000 San Francisco Bay Area Travel Survey (BATS), which was 

designed and administered by MORPACE International, Inc. for the Bay Area Metropolitan 

Transportation Commission (see MORPACE International Inc., 2002). The sample used for the 

current analysis is confined to a single weekday of 1447 teenagers from 1447 different households 

residing in nine Counties (Alameda, Contra Costa, San Francisco, San Mateo, Santa Clara, Solano, 

Napa, Sonoma and Marin) of the San Francisco Bay Area. Each recreational activity episode of the 

teenagers is classified as being physically active (such as sports, games, walking around the 

neighborhood, and physically active play) or physically inactive (such as organized hobbies, 

attending sports events, going to the movies/concerts, and arts and crafts). The episodes are 

appropriately aggregated to obtain the number of physically active and physically inactive episodes 

                                                 
18 It is possible that in addition to dependence due to unobserved factors in the propensities of participation in physically 
active recreation across teenagers, and similar dependence in the propensities of participation in physically inactive 
recreation across teenagers, there is also dependence in unobserved factors in the propensities of participation in 
physically active and physically inactive recreation within the same teenager. However, in this analysis, we consider each 
of the two recreation activity purposes in isolation to keep things relatively simple in this first application of a composite 
likelihood procedure to a spatial econometric context. The consideration of dependence across observational units as well 
as across multiple dependent variables of the same observational unit is left for future research.  
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undertaken by each teenager during the sampled weekday. These two variables constitute the 

dependent variables. The distributions of the number of active episodes and the number of inactive 

episodes in the sample are as follows: zero episodes (active: 89.0%, inactive: 79.1%), one episode 

(active: 9.9%, inactive: 17.3%), and two or more episodes (active: 1.1%, inactive: 3.6%).  

In addition to the BATS survey, several other secondary Geographic Information System (GIS) 

data layers of highways, local roadways, bicycle facilities, businesses, and land-use/demographics 

were used to obtain spatial variables and built environment variables characterizing the residential 

traffic analysis zone (TAZ) of each teenager.19 The residential neighborhood variables include:  

1) Zonal land-use structure variables, including housing type measures (fractions of single family, 

multiple family, duplex and other dwelling units), land-use composition measures (fractions of 

zonal area in residential, commercial, and other land-uses), and a land-use mix diversity index 

computed as a fraction based on the land-use composition measures with values between 0 and 1 

(zones with a value closer to one have a richer land-use mix than zones with a value closer to 

zero; see Bhat and Guo, 2007 for a detailed explanation on the formulation of this index). 

2)  Zonal size and density measures, including total population, number of housing units, 

population density, household density, and employment density by several employment 

categories, as well as dummy variables indicating whether the area corresponds to a central 

business district (CBD), urban area, suburban area, or rural area. 

3) Regional accessibility measures, which include Hansen-type (Fotheringham, 1983) employment, 

shopping, and recreational accessibility indices that are computed separately for the drive and 

transit modes. 

4)  Zonal ethnic composition measures, constructed as fractions of Caucasian, African-American, 

Hispanic, Asian and other ethnic populations for each zone.  

5)  Zonal demographics and housing cost variables, including average household size, median 

household income, and median housing cost in each zone. 

6) Zonal activity opportunity variables, characterizing the composition of zones in terms of the 

intensity or the density of various types of activity centers. The typology used for activity centers 

includes five categories: (a) maintenance centers, such as grocery stores, gas stations, food 

stores, car wash, automotive businesses, banks, medical facilities, (b) physically active 

                                                 
19 Due to privacy considerations, the point coordinates of each teenager’s residence is not available; only the TAZ of 
residence of each teenager is available. 
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recreation centers, such as fitness centers, sports centers, dance and yoga studios, (c) physically 

passive recreational centers, such as theatres, amusement centers, and arcades, (d) natural 

recreational centers such as parks and gardens, and (e) restaurants and eat-out places. 

7) Zonal transportation network measures, including highway density (miles of highway facilities 

per square mile), local roadway density (miles of roadway density per square mile), bikeway 

density (miles of bikeway facilities per square mile), street block density (number of blocks per 

square mile), non-motorized distance between zones (i.e., the distance in miles along walk and 

bicycle paths between zones), and transit availability. The non-motorized distance between 

zones was used to develop an accessibility measure by non-motorized modes, computed as the 

number of zones (a proxy for activity opportunities) within “x” non-motorized mode miles of the 

teenager’s residence zone. Several variables with different thresholds for “x” were formulated 

and tested. 

8) Spatial dependence variables, characterize the spatial dependence of the residences of each pair 

of teenagers (these are the elements of the sqk vector in Section 3.1). These include (1) whether 

or not two teenagers reside in the same TAZ, (2) whether or not two teenagers reside in 

contiguous TAZs, (3) the boundary length of the shared border between the residence zones of 

two teenagers, and 4) several functional forms of the distance between the residence TAZ 

activity centroids of the two teenagers, such as inverse of distance and square of inverse of 

distance.20 

 

6. EMPIRICAL ANALYSIS 

6.1 Model Specification  

Several different variable specifications, functional forms, and variable interactions were considered 

to identify the final model specification.  The variables included (1) individual characteristics (age, 

sex, race, driver’s license holding, physical disability status, etc.), (2) household characteristics 

(number of adults, number of children, household composition and family structure, household 

income, dwelling type, whether the house is owned or rented, parents’ activity participation 

characteristics, etc.), (3) activity-day variables (season of the year, day of week, etc.), and (4) 

residential neighborhood variables  (as discussed in Section 5.2). 

                                                 
20 For two teenagers in the same zone, we assigned a distance that was one-half of the distance between that zone 
and its closest neighboring zone.  
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We estimated separate ordered response models for teenagers’ physically active recreational 

activity (or active recreation) and physically inactive recreational activity (or inactive recreation). 

The models were estimated with two different univariate distribution assumptions (normal and 

logistic) for the random error term qε  and two different copula structures (FGM and Gaussian). 

Thus, for each of the active and inactive recreation ordered response structures, we estimated four 

distribution-copula models: (1) Normal-FGM, (2) Normal-Gaussian, (3) Logistic-FGM, and (4) 

Logistic-Gaussian. 

The final model specification was based on a systematic process of eliminating variables 

found to be statistically insignificant, intuitive considerations, insights from previous literature, and 

parsimony in specification. The final specification includes some variables that are not highly 

statistically significant, because of their intuitive effects and potential to guide future research efforts 

in the field. Further, we retained the same set of variables across all the four distribution-copula 

models for consistency and comparison purposes, so some variables that may turn out to be 

statistically significant in one model may be marginally significant in another.  

 

6.2. Model Selection  

As discussed before, the optimal distance for selecting pairwise terms for inclusion in the composite 

likelihood was set based on minimizing the trace of the variance-covariance matrix, tr(G(γ)). To 

achieve this, tr(G(γ)) was computed for five distance thresholds (5 miles, 10 miles, 20 miles, 40 

miles and 151.46 miles, the last one representing the case of including all the 2/)1( −QQ possible 

pairs in the CML function). Our results showed that the trace values did not change substantially 

based on the distance threshold used, particularly for the inactive recreation category. But, in general 

and across the four distribution-copula models, the best estimator efficiency was obtained at about 

40 miles for the active recreation category and at 151.46 miles for the inactive recreation category.  

 The next step in the selection process was to identify the best model from the distribution-

copula models estimated using the 40 miles (151.46 miles) distance threshold for active (inactive) 

recreation using the composite likelihood information criterion (CLIC).  Table 2 provides the values 

of the log-composite likelihood at convergence )ˆ(log γCMLL , the trace value in the CLIC statistic 

( [ ]1)ˆ()ˆ( −γγ HJtr ), and the CLIC statistic value [see Equation (12)]. As can be observed from the 

CLIC statistic column, the Logistic-Gaussian model turns out to be the best specification for both the 
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active and inactive recreation categories. The usual multivariate normal specification for the error 

terms (as captured by the Normal-Gaussian model) has a poorer fit. This finding highlights the value 

of the copula approach that is able to separate out the univariate marginal distribution form from the 

multivariate dependence structure.  

Finally, one can compare the Logistic-Gaussian model for each of the two recreation activity 

categories with a standard ordered logistic (SOL) model with no spatial dependence and no 

heteroscedasticity. This SOL model can be easily estimated using the classical maximum likelihood 

procedure. However, we estimate it using the CML approach so that we can compare the data fit of 

these models with those that incorporate spatial dependence.21 The CLIC statistic value at 

convergence for the SOL model is -447,759 for the active recreation category and -1,271,030 for the 

inactive recreation category. Comparing these numbers with the corresponding ones from Table 2, 

we observe that all the copula models perform better than the SOL model in terms of the CLIC 

statistic, rejecting the null hypothesis of no spatial dependence and no heterogeneity.  One can also 

use the more powerful CLRT statistic to compare the SOL model with the best Logistic-Gaussian 

model from Table 2. Using the parametric bootstrap procedure discussed in Section 3.3, we can 

compute the p-value corresponding to the null hypothesis of 0=λ  and −∞→ς . The estimated p-

value based on 25 bootstrap samples is 0.115 for the active recreation category and 0.038 for the 

inactive recreation category. The low p-values reject the null hypotheses of absence of heterogeneity 

and spatial dependence, and highlight the value of the Logistic-Gaussian models estimated in the 

current paper.22  

 The empirical results are presented in the following section, in which we focus our attention 

on the results of the best Logistic-Gaussian copula models.  

 

                                                 
21 The CML and ML estimates are, as expected, almost identical for the SOL model. For the active recreation category, 
we observed some very small differences between the CML and ML estimates because of the use of the 40 mile 
threshold in the CML approach, which effectively has the result of weighting some observations more than others. For 
the inactive category, the CML and ML estimates are pretty much identical because of the use of all pairs in the CML 
estimation, which weights all observations equally as in the ML case. 
22 We also compared the Logistic-Gaussian models for each of the active and inactive recreation categories with 
corresponding pure heteroscedastic ordered logistic (HOL) models with no spatial dependence. This tests the exclusive 
null hypothesis of the absence of spatial dependence. Again, the CLIC statistics for the Logistic-Gaussian models were 
higher than those for the HOL models (the HOL CLIC statistics were -437,171 for the active recreation category and       
-1,255,749 for the inactive recreation category, both of which are lower than the corresponding Logistic-Gaussian CLIC 
values). As we will see later in Section 6.4.2, we can also reject the null hypothesis of no spatial dependence based on the 
statistically significant t-statistics on the spatial dependence effects. 
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6.3. Estimation Results  

Table 3 presents the estimation results for the best ordered response models as identified in the 

previous section. The coefficients provide the effects of variables on the latent propensity of 

teenagers to participate in active recreation (second main column) and inactive recreation (third 

main column). The first two rows provide estimates of the threshold values that do not have any 

substantive interpretation. These thresholds simply serve to translate the latent propensity into the 

observed ordered categories of the number of recreational activity participations. 

 

6.3.1 Individual Characteristics 

The effects of individual characteristics indicate that, among teenagers, males are more likely than 

females to participate in active recreation (see Mhuircheartaigh, 1999 and Bhat, 2008 for similar 

results). The age variable suggests a significantly higher propensity for inactive recreation among 

teenagers aged 16 to 19 years (relative to their younger teenage counterparts), perhaps because these 

older teenagers can drive themselves to recreation activity locations and not be dependent on others 

to chauffeur them. The race variable effects reveal that Hispanic teenagers have a lower propensity 

to partake in recreational activity (active and inactive) relative to Caucasians, African Americans, 

Asians, and other ethnic groups, while Asian teenagers are less likely to participate in inactive 

recreation relative to their non-Hispanic teenager peers.  

The part-time student status (employment status) variable effect reflects a higher (lower) 

prevalence of inactive recreation among part-time students (employed individuals) compared to full-

time students (non-employed individuals), possibly due to time constraints of full-time students 

(employed teenagers). Interestingly, we did not find any statistically significant effects of these 

variables on active recreation propensity. 

 

6.3.2 Household Characteristics 

The household-related variable effects show that teenagers in households with more children (age 

less than 18 years) are associated with a higher propensity to participate in active recreation, 

possibly due to increased opportunities for joint physical recreational activities with siblings. The 

household structure effects indicate that teenagers living in nuclear family households (i.e., 

households with both parents living with the teenager) are less likely to partake in active recreation 

compared to those in other household structure types (single parent families, roommate families, and 
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joint families with several adults), a result that needs further exploration. Finally, among the 

household demographic variables, teenagers in low income households (less than an annual income 

of $35,000) have a lower propensity for active recreation, presumably due to financial constraints 

(see Bhat et al., 2006 for a similar income-related effect). At the same time, the results indicate that 

teenagers living in high income households (more than an annual income of $90,000) are more likely 

to participate in inactive recreation. 

The final variables in the category of household characteristics indicate, as expected, a higher 

level of active recreation among teenagers whose parents participate in physically active recreation 

(for the purpose of this research, we designate a parent as participating in physically active 

recreation if the parent pursues one or more active recreation episodes on the survey day). This is 

presumably because parents serve as role models to children. Further, the joint activity participation 

of parents and children can significantly motivate and increase physical activity participation among 

teenagers (such as bicycling or walking together as a family around the neighborhood). Perhaps, an 

appropriate policy strategy to encourage physical activity participation among teenagers would be to 

develop family oriented programs focusing on encouraging physical activity levels among parents as 

well as other household members.  

 

6.3.3 Household Location, Season, and Activity Day Variables  

Teenagers residing in San Francisco County have a higher (lower) tendency to pursue active 

(inactive) recreation compared to the rest of the counties in the region (i.e., San Mateo, Santa Clara, 

Alameda, Contra Costa, Solano, Napa, Sonoma, and Marin Counties). Further, the tendency for 

inactive recreation among teenagers is lower if they reside in Alameda County.23  

The seasonal variables reflect the higher propensity to participate in active recreation during 

the temperate summer months and the higher inclination for inactive recreation during cold winter 

months. This suggests that public health policies aimed at encouraging year-round teenager physical 

                                                 
23 These location dummy variables are perhaps capturing micro-scale urban form characteristics and crime-related 
characteristics. Further exploration of the effects of such attributes is an important avenue for future research. In the 
current paper, a number of built environment measures were considered, but these are at the relatively coarse spatial scale 
of the traffic analysis zone (because we could not obtain the point coordinates of each teenager’s residence, and only 
have the teenager’s residence tagged to a traffic analysis zone). Further, we were able to obtain crime statistics only at the 
county level, and this aggregate crime variable did not have a statistically significant impact on recreation activity 
participation.  
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activity participation should focus on providing more indoor recreational activity opportunities at 

affordable cost during the non-summer months in general, and the winter season in particular. 

The results also indicate that teenagers have a higher propensity to participate in inactive 

recreation on Fridays compared to other days of the week.  

 

6.3.4 Residential Neighborhood Variables  

The next set of variables in Table 3 corresponds to the impacts of the residential neighborhood 

measures identified in Section 5.2. Many of these variables did not turn out to be statistically 

significant even at the 15% level in both of the models, and hence do not appear in Table 3. Of 

course, as indicated earlier, this result may be the consequence of using a relatively coarse spatial 

resolution for computing these variables. 

The effect of the “Fraction of African-American population” variable in Table 3 shows that 

there is a lower propensity to participate in active recreation among teenagers living in zones with a 

high percentage of African-American population relative to teenagers in other areas. A similar result 

is obtained by Gordon-Larsen et al. (2005, 2006), who suggest that this may be because of poor 

neighborhood quality and lack of good recreational facilities in areas with a high fraction of African-

American population. As expected, the presence of natural recreation sites (such as 

county/state/national parks, gardens, nature centers) in a zone has a positive influence on active 

recreation among teenagers residing in the zone, suggesting that providing more opportunities for 

natural recreation and improving accessibility to natural recreation sites may be an effective urban 

and transportation policy to improve public health. Finally, teenagers in households that own several 

bicycles and that are in residential areas with a high bicycle facility density (as measured by miles of 

bicycle lanes per square mile in the residential TAZ) are more likely to participate in physically 

active recreational pursuits than their peers in other households.   

 

6.4. Heteroscedasticity and Spatial Dependency  

This section presents the parameter estimates characterizing heteroscedasticity and spatial 

dependence in the models. 
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 6.4.1 Heteroscedasticity  

Several variables were considered in the qw
 
vector that generates scale heteroscedasticity among 

individuals (note that )exp( qq wλσ ′= ), though only a handful turned out to be statistically 

significant. The estimates provided in Table 3 under “(Spatial) heteroscedasticity variables” 

correspond to the λ  vector. The results indicate a higher variation (i.e., more spread) in the 

propensity to participate in active recreation during the winter season (relative to other seasons) and 

among teenagers living in Contra Costa County (compared to other counties). Further, the results 

reveal a much tighter variation (i.e., less spread) in the propensity to participate in active recreation 

among teenagers residing in San Francisco and Solano County. In combination with the direct 

positive effect of the San Francisco location variable on active recreation propensity (see Section 

6.3.3), the net implication is that teenagers residing in San Francisco have a uniformly higher 

propensity to participate in active recreation relative to teenagers living elsewhere.  

The season and “Alameda County” residence variables influence the scale of the error term 

for the inactive recreation category. Specifically, there is a much tighter variation (i.e., less spread) 

in the propensity to participate in inactive recreation among teenagers during the winter and fall 

seasons (relative to other seasons), and a higher variation (i.e., more spread) among teenagers 

residing in Alameda County (relative to other counties).  

 

6.4.2 Spatial Dependence Effects 

In addition to heteroscedasticity, the estimated ordered choice models also incorporate spatial 

dependency across observational units through the qks vector and the corresponding ς coefficient 

vector. In this regard, the best specification for the models included a single “inverse of distance” 

variable in the qks  vector of Equation (7). The corresponding ς  coefficient is reported in Table 2, 

and has a value of -1.690 (with a standard error estimate of 0.074) for active recreation, and -1.116 

(with a standard error estimate of 0.047) for inactive recreation.  The implied value of ςμ e=  is 

0.185 for active recreation and 0.327 for inactive recreation, with corresponding t-statistics values of 

13.53 and 21.18 with respect to the null hypothesis that 0=μ  (the standard error for μ may be 

computed from that for ς using the familiar delta method). These t-statistics clearly reject the 

hypothesis of no spatial dependence (note that qkθ = 0 for all q and k pairs in Equation (7) if 0=μ , 
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and so rejection of the hypothesis that 0=μ is a clear rejection of spatial independence). In fact, it is 

easy to show that the t-statistic corresponding to the spatial correlation coefficient qkθ ( qkθ for the 

Gaussian copula corresponds to the traditional Spearman’s correlation) may be written as follows: 
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which then implies that as ∞→qkdist , 0→qkθ  and the t-statistic for qkθ tends toward the t-statistic 

of μ . As the distance between two teenagers q and k decreases, qkθ increases and the t-statistic of 

qkθ also increases. Essentially then, one can reject the null hypothesis that  qkθ =0 even for the most 

distant pair of teenagers, since the t-statistic for testing this hypothesis will be at least 13.53 for 

active recreation and 21.18 for inactive recreation for any pair of teenagers. Given the range of the 

distance between teenagers’ residences in the sample, the Spearman’s correlation ranges, for active 

recreation, from 0.001 (for two teenagers located 151.460 miles apart) to 0.575 (for two teenagers 

located 0.135 miles apart). The correlation for two teenagers spaced 1 mile apart in the active 

recreation case is 0.156 and that for two teenagers spaced 2 miles apart is 0.085. The correlation 

values for inactive recreation range from 0.002 (for two teenagers located 151.460 miles apart) to 

0.708 (for two teenagers located 0.135 miles apart). The correlation for two teenagers spaced 1 mile 

apart in the inactive recreation case is 0.247 and for two teenagers spaced 2 miles apart is 0.141. 

These results indicate that the spatial extent of dependence in unobserved factors for active 

recreation is smaller than the spatial extent of dependence in unobserved factors for inactive 

recreation. Alternatively, the spatial dependence effect is more localized for active recreation 

relative to inactive recreation. Thus, including distant teenager pairs (in the construction of the CML 

function) provides more useful information (and better estimator efficiency) for inactive recreation 

compared to active recreation, as our empirical results indicated in Section 6.2. 

It is clear from the discussion above that the spatial dependence effect is very highly 

statistically significant, and needs to be accommodated. The standard ordered logistic (SOL) model 

ignores these spatial dependencies, while the Logistic-Gaussian (LG) copula models of this paper 

consider these dependencies and accommodates (spatial and individual) heteroscedasticity. The 

result is that the SOL model provides less efficient estimates. In particular, the average of the trace 

of the covariance matrix of parameter estimates for the active recreation (inactive recreation) model 
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is 0.062 (0.011) for the LG model and 0.074 (0.024) for the SOL model, indicating the higher 

standard errors of the SOL model. Further, as we discuss in the next section, the SOL model also 

provides inconsistent elasticity effects.   

 

6.5. Aggregate-Level Elasticity Effects 

The parameters on the exogenous variables in Table 3 do not directly provide the magnitude of the 

effects of the variables on the probability of each number of weekday recreation episodes. To do so, 

we compute the aggregate-level “elasticity effects” of each variable. In particular, to compute the 

aggregate-level elasticity of a dummy exogenous variable (such as the “male” variable), we change 

the value of the variable to one for the subsample of observations for which the variable takes a 

value of zero and to zero for the subsample of observations for which the variable takes a value of 

one. We then sum the shifts in expected aggregate shares of each number of activity episodes in the 

two subsamples after reversing the sign of the shifts in the second subsample, and compute an 

effective percentage change in the expected aggregate share of teenagers participating in each 

number of activity episodes due to a change in the dummy variable from 0 to 1. On the other hand, 

to compute the aggregate level elasticity effect of an ordinal variable (such as number of children), 

we increase the value of the variable by 1 and compute a percentage change in the expected 

aggregate share of teenagers participating in each number of activity episodes. Finally, the 

aggregate-level “arc” elasticity effect of a continuous exogenous variable (such as fraction of 

African-American population) is obtained by increasing the value of the corresponding variable by 

10% for each individual in the sample, and computing a percentage change in the expected 

aggregate share of teenagers participating in each number of activity episodes. While the aggregate 

level elasticity effects are not strictly comparable across the three different types of independent 

variables (dummy, ordinal, and continuous), they do provide order of magnitude effects. 

 The elasticity effects by variable category for each of the active and inactive recreation 

categories, and for both the (aspatial) standard ordered logistic (SOL) and the best spatial model, are 

presented in Table 4. To reduce clutter, we have simplified the presentation by translating the 

elasticity effects of variables from the ordered models to a simple binary elasticity effect of variables 

on the share of teenagers not participating, and participating, in each recreation activity category.24 

                                                 
24 The more detailed elasticity effects for each number of activity episodes (0,1,2) are available from the authors.  
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Further, we present only the elasticity effect on the “1 or more activity episodes” category in the 

table (rather then presenting the effect on the “no activity episodes” category too). Thus, the 

numbers in the table may be interpreted as the percentage change in the share of teenagers 

participating in recreational activity. For instance, the first number “24.94” corresponding to the 

“male” variable in the SOL model indicates that the share of male teenagers participating in active 

recreation is about 25% higher than the share of female teenagers participating in physical activity. 

Similarly, the number “22.56” corresponding to the “Number of children” variable in the SOL model 

reflects that an increase in number of children by 1 leads to about a 23% increase in teenager 

participation in active recreation, while the number “-0.86” for the effect of the “Fraction of African-

American population” implies that teenager participation in active recreation decreases by 0.9% due 

to a 10% increase in the zonal fraction of African-American population. 

The elasticity results provide several insights. First, for active recreation, parents’ physical 

activity participation constitutes the most important factor influencing teenagers’ physical activity 

participation levels. This suggests that an effective way to increase active recreation among 

teenagers would be to direct informational and education campaigns (that raise awareness of the 

health benefits of active recreation) toward parents, perhaps at special physical education sessions at 

schools for parents of teenagers studying there. Interestingly, regardless of the sex of the teenager, it 

is the teenager’s mother’s physical activity participation that appears to have a higher influence (than 

the teenager’s father’s physical activity participation) on the teenager’s active recreation 

participation. Second, another variable with a strong influence on recreation activity participation is 

the “San Francisco” location dummy variable. Specifically, living in San Francisco County 

substantially increases active recreation among teenagers, perhaps because of better active recreation 

opportunities and access to opportunities. On the other hand, living in San Francisco reduces 

participation in inactive recreation. As indicated earlier, while we considered several built 

environment and other measures of the residential environment, these are at a coarse geographic 

level and may not be capturing the micro-urban form attributes that get manifested in the effects of 

the location dummy variables in the current estimation. Third, the share of teenagers in nuclear 

family and low income households participating in active recreation is about 50-75% lower than the 

share of teenagers in non-nuclear family and high income households, respectively, that participate 

in active recreation. The effect of the “nuclear family” variable may be because teenagers in nuclear 

family households perceive less independence and feel more “controlled” by parents in their activity 
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schedules (contributing to less opportunity for physically active free play), while teenagers in non-

nuclear families are more independent and participate in more active free-play.  Fourth, the presence 

of natural recreation sites in and around a teenager’s residence has a clear and strong impact on 

active recreation participation. Fifth, there is a higher likelihood of active recreation during the 

summer season compared to other seasons, and a higher propensity for inactive recreation during the 

winter season, suggesting that public health policies need to aim at providing more indoor active 

recreation opportunities at affordable cost to promote year-round teenager physical activity 

participation. Sixth, individual characteristics (age, race, and student and employment status) appear 

to play a much more important role in determining inactive recreation participation, while household 

characteristics play a more dominant role in influencing active recreation participation. This is an 

interesting result for activity scheduling models, pointing to a more individual-orientated decision 

process for participation in inactive recreation and a more household interactive influence 

mechanism for participation in active recreation. Finally, there are differences in the elasticity 

effects between the SOL and spatial models. This, combined with the better data fit of the spatial 

model, points to the inconsistent elasticity effects from the SOL model. For instance, for the active 

recreation category, the SOL model underestimates the influence of gender and family structure, and 

overestimates the impact of the teenager’s father’s physical activity participation. Further, the SOL 

model also underestimates the effect of the presence of natural recreation sites on active recreation 

participation. There are similar differences in the elasticity effects for the inactive recreation 

category. Further, note that some of the location variables (Contra Costa and Solano dummy 

variables) have an impact on active recreation participation in the spatial model, but not in the 

aspatial SOL, because these location variables appear in the heteroscedasticity specification in the 

spatial model. The same is the case for the Fall season dummy variable effect for inactive recreation. 

Overall, ignoring spatial effects, when present, can lead to inconsistent estimation of variable effects 

that, in turn, can lead to misinformed policy actions. 

 

7. SUMMARY AND CONCLUSIONS 

This paper proposes a copula-based ordered-response spatial dependence formulation across 

decision agents that can incorporate a variety of different kinds of marginal distribution forms for the 

random terms of each decision agent as well as dependence forms that characterize the multivariate 

relationship among the decision agents. Regardless of the dependence form used, extant methods in 
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spatial econometrics become practically infeasible to implement with a moderate-to-large sized 

sample of decision agents. To address this situation, we propose a simple pseudo-likelihood 

estimation technique based on a composite marginal likelihood (CML) inference approach to 

estimate spatial ordered-response discrete choice models. The approach is applicable to data sets of 

any size, provides standard error estimates for all parameters, and does not require any simulation 

machinery. It also represents a conceptually and pedagogically simpler procedure relative to current 

simulation techniques, and has the advantage of reproducibility of the results. The estimation of the 

asymptotic standard errors and model selection/hypothesis testing procedures are a little more 

tedious than in the case of the traditional maximum likelihood method, but the appropriate 

expressions/statistics are presented for spatial econometric models in the current paper. These 

expressions/statistics are easy to code and implement.  

The ability of the CML approach to recover the parameters of a spatially ordered process is 

evaluated using a simulation study, which clearly points to the effectiveness of the approach. In 

addition, the combined copula-CML approach is applied to study the daily episode frequency of 

teenagers’ recreational activity participation (both physically active and physically passive), a 

subject of considerable interest in the transportation, sociology, and adolescence development fields. 

The data for the analysis is drawn from the 2000 San Francisco Bay Area Survey. Several model 

forms were tested during the empirical specification, from which the Logistic-Gaussian model 

emerged as the best specification for both the active and inactive recreation categories. The usual 

multivariate normal specification for the error terms, as captured in the Normal-Gaussian model, has 

a poorer fit. This finding highlights the value of the copula approach that is able to separate out the 

univariate marginal distribution form from the multivariate dependence structure. A further 

comparison of the aspatial standard ordered logit (SOL) model with the Logistic-Gaussian spatial 

model indicates the significant presence of heteroscedasticity across observations and spatial 

dependence between teenager pairs. This underscores the need to consider spatial effects in 

recreational activity participation to obtain consistent and efficient parameter estimates and elasticity 

effects.  

The variable effects indicate that parents’ physical activity participation constitutes the most 

important factor influencing teenagers’ physical activity participation levels, suggesting that one of 

the most effective ways to increase active recreation among teenagers would be to direct physical 

activity benefit-related information and education campaigns toward parents, perhaps at special 
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physical education sessions at schools for parents of teenagers studying there. Another important 

general result is that individual characteristics (age, race, and student and employment status) are 

more important than household characteristics in determining teenagers’ inactive recreation 

participation, while household characteristics (number of children, household structure, household 

income, and parents’ recreation participation) are more important determinants of teenagers’ active 

recreation participation.  

 To summarize, we have proposed a combined copula-CML approach to accommodate, 

estimate, and test different forms of multivariate dependence in the spatial process underlying 

observed ordinal discrete choices of decision agents. However, the approach should be very 

appealing for application to several other multivariate modeling contexts too because it is simple and 

flexible, and is easy to implement. 
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Table 1. CML Estimation Results with 25 samples of 500 Observations 
 

Case 1: ς = -0.50 

Parameter True Value Mean CML 
estimate Bias Relative Bias 

(%) RMSE 

1β  1.0000 1.0052 -0.0052 0.5228 0.0793 

2β  0.5000 0.4981 0.0019 0.3832 0.0696 

3β  0.2500 0.2490 0.0010 0.4080 0.0561 

0ψ  -0.7500 -0.7504 0.0004 0.0544 0.1678 

1ψ  0.2500 0.2563 -0.0063 2.5328 0.1899 

2ψ  1.2500 1.2494 0.0006 0.0480 0.1959 
ς  -0.5000 -0.5011 0.0011 0.2224 0.0020 

 
 

Case 2: ς = 0.50 

Parameter True Value Mean CML 
estimate Bias Relative Bias 

(%) RMSE 

1β  1.0000 1.0203 -0.0203 2.0300 0.0829 

2β  0.5000 0.5203 -0.0203 4.0512 0.0752 

3β  0.2500 0.2570 -0.0070 2.7952 0.0554 

0ψ  -0.7500 -0.7768 0.0268 3.5771 0.2185 

1ψ  0.2500 0.2516 -0.0016 0.6544 0.2233 

2ψ  1.2500 1.2714 -0.0214 1.7155 0.2577 
ς  0.5000 0.4918 0.0082 1.6368 0.0098 
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Table 2. Model Selection based on the CLIC Statistic 
 

 

Recreation 
Category Distribution Copula 

Log-
composite 
likelihood 

Trace of the 
matrix in the 
CLIC statistic 

 CLIC statistic 

Active recreation 
(40 miles) 

Normal 
FGM -432,318.74 10,629.02 -442,947.77 

Gaussian -432,370.84 10,303.54 -442,674.37 

Logistic 
FGM -433,256.40 11,441.04 -444,697.44 

Gaussian -433,233.25 3,839.25 -437,072.49 

Inactive recreation 
(151.46 miles) 

Normal 
FGM -1,249,341.25 8,035.03 -1,257,376.28 

Gaussian -1,251,218.01 7,807.39 -1,259,025.39 

Logistic 
FGM -1,247,454.36 7,754.06 -1,255,208.42 

Gaussian -1,247,475.00 4,120.94 -1,251,595.94 
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Table 3. Estimation Results for the Number of Recreational Activity Episodes 

 

 Active Recreation Inactive Recreation  

Variable Parameter t-stat Parameter t-stat 

Threshold parameters     

Threshold 1  3.114 23.31  1.357 23.01 

Threshold 2  5.781 31.03  3.131 29.14 

Individual characteristics     

Male   0.386  4.19 - - 

Age greater than 15 - -  0.285  5.73 

Hispanic  -0.438 -1.86 -0.523 -4.56 

Asian - - -0.244 -3.18 

Part time student - -  0.397  2.59 

Employed - - -0.272 -4.38 

Household characteristics     

Number of children  0.299  6.15 - - 

Nuclear family -0.631 -5.98 - - 

Household income less than 35k -1.423 -4.65 - - 

Household income greater than 90k - -  0.131  2.77 

Teenager’s father physically active   0.933  5.57 - - 

Teenager’s mother physically active  1.471 12.32 - - 

Household location, season and activity-day 
variables     

San Francisco County  1.732  7.55 -0.651 -2.34 

Alameda County - - -0.228 -1.98 

Summer  0.502  4.81 - - 

Winter -0.420 -1.74  0.799 13.98 

Friday - -  0.280  5.82 
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Table 3 (Continued) Estimation Results for the Number of Recreational Activity Episodes 
 
 

 Active Recreation Inactive Recreation  

Variable Parameter t-stat Parameter t-stat 

Residential neighborhood variables     

Fraction of African-American population -2.395 -2.69 - - 

Presence of natural recreation sites such as 
county/state/national parks, gardens, nature 
centers 

 0.740  6.12 - - 

Bicycling facility density multiplied with 
number of bikes in the household (miles of 
bike lanes per square mile) 

 0.011  2.48 - - 

(Spatial) heteroscedasticity variables      

Winter  0.125  1.96 -0.915 -11.12 

Fall - - -0.283 -7.44 

Alameda County - -  0.144  1.91 

Contra Costa  0.268  5.49 - - 

San Francisco -0.485 -2.81 - - 

Solano -0.187 -2.42 - - 

Spatial dependence variable     

ζ in the θ parameter 
 “Inverse of distance between zonal centroids” 

-1.690 -22.88 -1.116 -23.63 

Number of Observations 1447 1447 

Trace of G 1.2452 0.1783 

Log-composite likelihood at convergence -433,233.25 -1,247,475.00 

Trace of the matrix in the CLIC statistic 3,839.25 4,120.94 

Penalized log-composite likelihood (PLCL) -437,072.49 -1,251,595.94 
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Table 4. Aggregate-level Elasticity Effects of the Aspatial SOL and Spatial Models 
 

 

Variable 

Active 
Recreation Inactive Recreation 

SOL Spatial SOL Spatial 

1 or more 
episodes 

1 or more 
episodes 

1 or more 
episodes 

1 or more 
episodes 

Individual characteristics     

Male  24.94  30.70 - - 

Age greater than 15 - -  21.76  26.44 

Hispanic -31.33 -30.54 -33.71 -40.28 

Asian - - -28.83 -20.69 

Part time student - -  35.15  40.95 

Employed - - -24.16 -23.49 

Household characteristics     

Number of children  22.56   26.08 - - 

Nuclear family -46.38 -51.07 - - 

Household income less than 35k -61.45 -72.65 - - 

Household income greater than 90k - -  12.96  12.08 

Teenager’s father physically active 126.20   94.37 - - 

Teenager’s mother physically active 166.49 166.76 - - 

Household location, season, and 
activity-day variables     

San Francisco 136.40 165.94 -27.23 -46.74 

Alameda County - -   -6.63    -5.18 

Contra Costa     0.00   43.07 - - 

Solano     0.00 -26.29 - - 

Summer   42.54   42.33 - - 

Winter      1.36  -11.44  19.92  15.50 

Fall - -     0.00 -28.66 

Friday - -  16.33  26.90 

Residential neighborhood variables     
Fraction of African-American 
population    -0.86    -0.77 - - 

Presence of natural recreation sites 
such as county/state/national parks, 
gardens, nature centers 

  41.99   68.26 - - 

Bicycling facility density multiplied 
with # of bikes in the household 
(miles of bike lanes per square mile) 

    0.53     0.66 - - 

 


