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Abstract 

 

The current research effort bridges the gap between traditional crash risk and real-time crash risk 

models by developing a joint model that accommodates for both dimensions in developing crash 

risk analysis models. Specifically, we develop a joint reactive and proactive crash modeling 

framework by coupling the monthly crash risk and real-time crash risk in a unified econometric 

framework for a microscopic analysis unit. In the joint modeling approach, we propose and 

estimate an alternative to the case-control binary logit based real-time crash risk analysis by 

proposing a multinomial logit based approach where time periods serve as alternatives and the 

chosen alternative is the time period in which crash occurs. The joint model also allows us to 

accommodate for the common unobserved factors that increase the likelihood of a crash in 

microscopic unit to affect the real-time crash risk propensity. We demonstrate the application of 

the proposed approach by using data on roadway segments from three expressways in Central 

Florida (State Roads 408, 417, and 528) for 29 months. The monthly crash risk component is 

examined by using binary logit model employing different static roadway attributes (roadway 

geometry and operational attributes). The real-time crash risk component is examined by using a 

multinomial logit model employing different real-time traffic attributes (volume, speed, lane 

occupancy and environmental conditions). The outcome of the proposed approach allows us to 

predict both the monthly and real-time crash risk components simultaneously in a single 

econometric framework.  

 

Keywords: real-time crash risk; case-control binary logit, multinomial logit models; joint 

econometric frameworks; expressways   
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1. INTRODUCTION  

 

Traditionally, statistical analysis in road safety research has evolved based on police reported crash 

databases along two major streams: crash frequency analysis and crash severity analysis. The first 

stream of research is focused on identifying attributes that result in traffic crashes and propose 

means to reduce the occurrence of traffic crashes (see Lord and Mannering, 2010; Yasmin and 

Eluru, 2016 for a review of these studies). The second stream of work examines crash events and 

identifies factors that impact the crash outcome and suggests countermeasures to reduce crash 

related consequences (injuries and fatalities) (see Savolainen et al., 2011; Yasmin and Eluru, 

2013). However, analysis based on police reported crash databases is “after the fact” i.e. after the 

occurrence of the crash and is predominantly reactive in nature. On the other hand, with the 

availability of emerging data collection techniques, researchers have the opportunity to develop 

proactive real time crash analysis models based on real-time traffic data (Mannering and Bhat, 

2014). For example, advanced transportation information system (ATIS) based databases have 

become efficient and readily accessible for safety professionals. The access to such data has 

resulted in growing interest among safety researchers to evaluate real-time crash risk. Findings 

from these studies can assist in the development and deployment of proactive traffic management 

strategies to ameliorate hazardous traffic conditions (see Roshandel et al., 2015 for a review of 

these studies). Research in reactive and proactive safety areas has progressed independently. The 

current research effort bridges the gap between these two streams by developing a joint model that 

accommodates for both dimensions in developing crash risk analysis models. Specifically, we 

formulate and estimate a joint econometric framework to analyze the monthly crash risk and real-

time crash risk components simultaneously, while also modeling the real-time crash risk 

component based on a “sampling of alternatives” approach within a multinomial logit based 

structure.   

 

2. EARLIER RESEARCH 

 

In existing safety literature, studies that evaluated microscopic crash risk of highway/freeway 

segments can be classified along two broad categories: (1) reactive crash risk assessment models 

and (2) proactive crash risk assessment models.  

The first group of studies in the transportation safety area are focused on identifying critical 

factors contributing to crash occurrences for a particular roadway entity – traditionally known as 

crash frequency or crash prediction models (also often referred to as reactive, aggregate or static 

crash risk models). The crash count events examined in traditional crash frequency models are 

aggregated at a spatial unit for a given period of time (such as month or year). These models are 

developed by using relatively low-resolution historical data related to roadway geometry, roadway 

condition, traffic characteristics, operational attributes and/or environmental data (Chen et al., 

2016; Ding and Gou, 2016; Dinu and Veeraragavan, 2011). In examining crash occurrences in the 

long-term at a micro-level, statistical modeling approaches considered include ordinary least 

square regression, logistic regression, bayesian regression and a wide variety of count regression 

approaches (see Lord and Mannering, 2010; Yasmin and Eluru, 2016 for a detailed review). 

Outcome of these studies are predominantly used to identify effective countermeasures to improve 

roadway design and/or operational attributes, to identify black spots and to evaluate roadway 

safety policies and interventions (Chang and Kim, 2012; Geurts and Wets, 2003; Saccomanno et 

al., 2001). These models are integral to the development of safety performance function (SPF) and 
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crash modification factors (Hariharan et al., 2016; Park et al., 2016). However, these models are 

not applicable for identifying short-term hazardous traffic conditions that may lead to crash 

occurrences and thus are poorly suited for developing crash avoidance systems using advanced 

traffic management interventions (Abdel-Aty and Pande, 2007).  

The second group of studies – referred to as real-time crash risk models (also often referred 

to as proactive, disaggregate or dynamic crash risk models), link real-time crash likelihood with 

hazardous microscopic traffic flow conditions prior to crash occurrences (see Roshandel et al., 

2015; Xu et al., 2015 for detailed review). These studies are developed due to the appealing feature 

of predicting crash risk proactively. The underlying assumption of these studies is that real-time 

traffic, geometric and weather conditions can identify ‘crash prone’ traffic conditions. These 

models are focused on identifying crash precursors that are likely to lead to crash occurrence in 

dynamic traffic environment using high-resolution traffic data (such as traffic monitoring data for 

5-10 minute intervals), weather characteristics and road geometry (Abdel-Aty et al., 2008; Lee et 

al., 2002; Oh et al., 2001; Wang et al., 2015; Xu et al., 2013). In developing real-time crash risk 

models, researchers have predominantly resorted to case-control sampling design (Abdel-Aty and 

Pande, 2007; Sun and Sun, 2015; Xu et al., 2016). Case-control studies are usually retrospective 

studies where cases - outcomes of interest - are matched with a control group. In real-time crash 

prediction models, a crash is considered as ‘case’ and non-crash events for similar situational 

conditions are considered as ‘control’ within case-control study design. It is an efficient and cost 

effective method in designing studies for rare events. The case-control approach can take two 

forms: unmatched or matched. The major difference between these two study designs lies in 

selecting the random sample of controls from the crash-free observations. In the matched design 

approach, control confounding factors (such as segment characteristics or time) are used to identify 

controls. On the other hand, these factors are considered directly in the model estimation for 

unmatched case-control design (Bruce et al., 2008). It is important to note that the differences in 

efficiency between model estimates from these two sampling designs is marginal (Thompson et 

al., 1982). The econometric structures employed in developing real-time crash risk models include 

log-linear model, binary logistic regression model, multilevel binary logistic regression model, 

Bayesian logistic regression model, dynamic Bayesian network model and several data mining 

techniques (Abdel-Aty et al., 2007; Basso et al., 2018; Lee et al., 2002; Qu et al., 2012; Zheng et 

al., 2010; Wang et al., 2017a; Wang et al., 2017b; Wu et al., 2018; Xie et al., 2017; You et al., 

2017). A majority of the studies to date used the matched case–control design and binary logit 

model to examine possible relationships between crash precursors and crash risk for dynamic 

traffic environment (Roshandel et al., 2015). 

 

3. CURRENT STUDY IN CONTEXT  

 

3.1 Addressing Binary Logistic Regression Model Limitations 

From the literature review it is evident that the predominantly used model to study real-time crash 

occurrence is the binary logit model to differentiate crash occurrence (yes or no) in a time period. 

The rationale behind this approach is to generate an estimated crash risk for the chosen time period 

(5-minute interval or similar). There are two major limitations for the case control approaches 

employed in literature. First, by design, crash occurrence is a rare event; there is significant 

evidence from econometrics and statistics literature to indicate that traditional binary logit models 

(or logistic regression approaches) with extremely small shares for one of the alternatives are likely 



Yasmin, Eluru, Wang and Abdel-Aty                                                                                                                           5 

 

to yield biased/incorrect model estimates (see for example Calabrese and Osmetti, 2013; King and 

Zeng, 2001).  

Second, identifying the appropriate number of control cases for a case-control study is far 

from “well-defined”. The model estimates from the case-control study are likely to be unbiased 

only if the case-control ratio considered in the study design is representative of the ratio from the 

overall population. However, given that crash is a rare-event and collection of all control events 

against such low incidence events are expensive and to some extent infeasible, researchers have 

considered various values of this ratio. Most of the existing real-time crash risk studies used case-

control study design with a ratio ranging from 1:1 to 1:101. Thus the databases considered are 

predominantly biased towards an underrepresentation of non-crash cases. Earlier studies implicitly 

assume that the influence of the altered sample is captured by the constant in the binary logit model 

and does not affect other model parameters. While theoretically under certain conditions the 

assumption is possibly valid – empirical studies have shown that model estimates of other 

parameters are also likely to be biased (see Wooldridge, 2010; Yasmin and Eluru, 2013). Most 

recently, Theofilatos et al. (2018) considered crash as a rare event and examined real-time crash 

risk by using the Firth methods (a bias correction). Furthermore, even if the parameters are 

unbiased model estimates from case-control studies cannot be used to calculate relative risk 

directly without employing corrections for the constant (see Zhang and Kai, 1998 for detailed 

discussion). The case control model outputs can only be used to calculate the odds ratio (Mann, 

2003). It is surprising to note that very few studies in safety literature have explicitly discussed 

this issue with the case-control study design.   

In this context, the current research effort contributes to real-time crash risk analysis 

methodologically by proposing an alternate approach to the case-control binary logit based 

approach. Specifically, we propose to consider a “sampling of alternatives” based approach with 

a multinomial logit based formulation to examine real-time crash risk. In our approach, time 

periods (5 minute interval) serve as alternatives and the outcome to be studied is the time period 

in which crash occurs. This is a significantly different approach to the traditional approach in 

literature. In the binary approach, the number of alternatives are limited to 2. However, the 

challenge is in determining the appropriate amount of crash and non-crash records for analysis. In 

our proposed approach, the number of outcome contexts (or observations) is based on the number 

of crash events on a spatial unit (such as a freeway segment) in prescribed time period (such as a 

month). Given the reformulation, the dependent variable is the outcome of time period within the 

month for a segment. Any time interval in the month could be a potential alternative for crash 

occurrence. Thus, we have translated the issue of “data size” into an issue of “outcome set size”. 

In the context of multinomial logit model (and other categorical modeling approaches), there are 

relatively straight forward approaches to handle such large outcome set sizes. The most commonly 

employed approach is to consider a random sample of time periods in addition to the time period 

that the crash has occurred and estimate the model with this outcome set. These approaches have 

been employed in a host of transportation scenarios including residential/work location choice 

(Waddell et al., 2007), destination choice (Scott and He, 2012), and bicycle sharing system station 

choice (Faghih-Imani and Eluru, 2015). 

 

 

                                                 
1 In existing real-time crash risk studies, case-control ratio of 1:4 has been widely accepted with an argument that the 

improvement in term of statistical power is negligible beyond a case-control ratio of 1:4 (Ahmed and Abdel-Aty, 

2012). 
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3.2 Bringing Together Static and Real-Time Crash Analysis 

 

Based on the review of earlier research, it also evident that static and real-time models in 

examining crash risks have evolved independently. The static crash risk models are developed 

based on historical aggregate level information. On the other hand, current framework for real-

time crash risk models choose crash occurrence events and generate control cases for similar 

situational conditions. Thus only a sample of segments are considered in the eventual model 

development. A potential result of this approach is the absence of any consideration of a reasonably 

large number of segments because crash occurrence is a rare event. In that case, the analysis is 

inherently biased toward crash occurring locations (and their controls). To provide a real-time 

crash risk assessment this approach might not result in a truly universal sample.  

 In our study, to alleviate this potential mis-selection of segments, we propose an 

econometric framework with two components. The first component is monthly crash risk 

component for all segments and the dependent variable is characterized as a binary outcome: no 

crash or crash. Thus, all segments part of the study region are considered in our first component 

model. The unit of analysis is a month across different roadway segments for the study period. We 

employ the binary logit (BL) model in the current study context2. The reader would recognize that 

the monthly crash risk dependent variable is not as rare as the crash risk at the time period level.  

For the second component, we replace the traditional case control binary approach with a 

“sampling of alternatives” based multinomial logit based formulation to examine real-time crash 

risk. The alternatives in the real-time crash risk model are time intervals of 5 minute duration in 

the month for every segment. Naturally, the universal outcome set will be very large and would 

result in computational tractability challenges (Ben-Akiva and Lerman, 1985; Train, 2009). To 

resolve this, we adopt a sampling approach to generate 30 alternatives (29 randomly sampled time 

periods in the month and 1 actual crash outcome time period). Several researchers have employed 

the sampling approach successfully in the transportation area (Faghih-Imani and Eluru, 2015; Scott 

and He, 2012; Waddell et al., 2007). The reader would note that the second component is only 

applicable for segments with crashes. For segments with multiple crashes in a segment, we 

consider multiple crash records within a repeated observation structure.  

 The two components mentioned in the modeling framework can potentially be considered 

as sequential or simultaneous.  A sequential assumption indicates modeling monthly crash risk and 

conditional on the crash risk modeling real-time crash risk. The simultaneous approach, on the 

other hand, postulates that there are common unobserved factors influencing the two components.  

In our study, we explicitly posit that the two components are interconnected by different observed 

and unobserved attributes and thus adopt the simultaneous framework. For instance, we observe 

that a high speed limit (HSL) roadway, in general, has lower crash risk than a low speed limit 

(LSL) location. However, higher variance of vehicle speed within a specified time interval 

substantially increases the likelihood of crash risk for the HSL compared to the crash risk of LSL 

road. This is an example of how certain combinations of real-time traffic conditions (speed 

variance in the interval) and static roadway attributes (speed limit) influence static and real-time 

                                                 
2 The aggregate level crash prediction models are generally developed by using count-based regression models. But 

in our estimation sample, we have only 371 records with multiple crashes (among 6913 records) over a month for 

different roadway segments. Therefore, we adopt a BL model based approach for examining monthly crash risk 

component. However, in case of higher number of crash events in future research, examining static crash risk by 

employing an ordered or count based regression based approach is straightforward within the proposed joint 

framework.   
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crash risk. In this example, these attributes are observed to the analysts and accommodating the 

impact of these observed variables is straightforward within the two components. 

At the same time, several unobserved factors may also contribute to the interconnectedness 

of these two crash risk dimensions. For example, a backward shockwave resulting from an 

aggressive lane changing behaviour in a certain time interval is likely to increase crash risk on a 

HSL road (compared to LSL road). However, such driver behavior attributes are difficult to 

observe. Thus, accommodating for the impact of such unobserved heterogeneity necessitates for 

the consideration of interconnectedness between the two components. To the best of the authors’ 

knowledge, this is the first attempt to employ such a joint framework for examining micro-level 

crash count events. 

In summary, the current research effort contributes to safety literature on micro-level crash 

risk analysis both methodologically and empirically. In terms of methodology, we formulate and 

estimate a joint econometric framework to analyze the monthly crash risk and real-time crash risk 

components simultaneously, while also modeling the real-time crash risk component based on a 

“sampling of alternatives” approach within a multinomial logit based structure. Empirically, we 

demonstrate the application of the proposed approach by using data on roadway segments from 

three expressways in Central Florida (State Roads 408, 417, and 528) for 29 months. The monthly 

crash risk component is examined by using binary logit model (month with zero crash and at least 

one crash) employing different static roadway attributes (roadway geometry and operational 

attributes). While the real-time crash risk component is examined by using a random utility model 

employing different time varying traffic attributes (volume, speed, lane occupancy and 

environmental conditions) and their interactions with static attributes.  

The rest of the paper is organized as follows. Section 4 provides details of the econometric 

model framework used in the analysis. In Section 5, the data, dependent and independent variables’ 

formation procedures are described. Model comparison results and estimation results are presented 

in Section 6. Section 7 concludes the paper. 

 

4. ECONOMETRIC FRAMEWORK 

 

4.1 Model Structure 

 

The focus of our study is to jointly model “monthly crash risk” and “real-time crash risk”. Let us 

assume that 𝑖 (𝑖 = 1,2,3, … , 𝑁) be the index to represent road segment, k represent the crash states, 

and 𝑡 (𝑡 = 1,2,3, … , 𝑇) represent different months. In this empirical study, 𝑘 take the values of ‘no 

crash’ (𝑘 = 0) and ‘at least one crash’ (𝑘 = 1). The binary logit formulation can be incorporated 

in an ordered logit structure and hence is formulated by using ordered outcome structure in current 

study context (Train, 2009). In the ordered outcome framework, the actual crash state (𝑦𝑖𝑡𝑘) are 

assumed to be associated with an underlying continuous latent variable (𝑦𝑖𝑡𝑘
∗ ).  

For the joint approach, the equation system for modeling the monthly crash risk component 

takes the familiar binary logit in an ordered outcome formulation as follows: 

𝑦𝑖𝑡
∗ = ((𝜷 + 𝜸𝑖𝑡)𝒙𝑖 +  𝜀𝑖𝑡 + 𝜼𝑖𝑡), 𝑦𝑖𝑡 = 𝑘 𝑖𝑓 𝜏𝑖𝑡,𝑘−1 < 𝑦𝑖𝑡

∗ < 𝜏𝑖𝑡𝑘 (1)  

The latent propensity 𝑦𝑖𝑡
∗  is mapped to the actual crash state 𝑦𝑖𝑡 by 𝜏 thresholds (𝜏0 =

−∞ 𝑎𝑛𝑑 𝜏𝐾 = +∞) as presented in equation 1. 𝒙𝑖 is a vector of static roadway attributes 
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(including constant) associated with segment 𝑖. 𝜷 is the vector of corresponding mean effects. 𝜸𝑖𝑡 

is a vector of unobserved factors on monthly crash risk propensity of segment 𝑖 for month 𝑡 and 

its associated roadway characteristics assumed to be realization from standard normal distribution: 

𝜸𝑖𝑡~𝑁(0, 𝝈𝑖𝑡
2 ). 𝜀𝑖𝑡 is an idiosyncratic error term assumed to be identically and independently 

standard logistic distributed across segment 𝑖. 𝜼𝑖𝑡 captures unobserved factors that simultaneously 

impact monthly crash risk and subsequent real-time crash risk for segment 𝑖. 
In the joint framework, we assume a categorical discrete outcome structure for modeling 

the real-time crash risk component (following (McFadden, 1973). Let l (l = 1, 2) represent the lth 

crash in the month and and 𝑗 (𝑗 = 1,2,3, … , 𝐽) be the index to represent a 5-minute interval among 

a set of 𝐶𝑖𝑡𝑙𝑗 alternatives of road segment 𝑖 for month 𝑡 specific to time interval 𝑗. Thus the real-

time crash risk component takes the familiar discrete outcome formulation in linear form as 

follows3: 

𝑢𝑖𝑡𝑙𝑗
∗ = ((𝜹 + 𝝆𝑖𝑡)𝒛𝑖𝑡𝑙𝑗 +  𝜉𝑖𝑡𝑙𝑗 ± 𝜼𝑖𝑡)  (2)  

where 𝑢𝑖𝑡𝑙𝑗
∗  is the latent variable of crash risk of time alternative j for lth crash on segment 𝑖 for 

month 𝑡. Within the traditional discrete outcome framework as presented in equation 2, segment 𝑖 
for month 𝑡 will have possibility of crash outcome 𝑗 if 𝑢𝑖𝑡𝑙𝑗

∗ >  max
𝑑=1,2,3,…,𝐽

𝑑≠𝑗

𝑢𝑖𝑡𝑙𝑑
∗ . 𝒛𝑖𝑡𝑙𝑗 is a vector of  

observed attributes corresponding to crash unit 𝑗. 𝜹 is a vector of coefficients to be estimated. 𝝆𝑖𝑡 

is a vector of unobserved factors on real-time crash risk propensity of segment 𝑖 for month 𝑡 for lth 

crash for time unit 𝑗 and its associated observed characteristics assumed to be realization from 

standard normal distribution: 𝝆𝑖𝑡~𝑁(0, 𝝅𝑖𝑡
2 ). 𝜉𝑖𝑡𝑙𝑗 is an idiosyncratic error term assumed to be 

identically and independently standard logistic distributed across roadway segment 𝑖 for month 𝑡, 

crash l in crash time period 𝑗. 𝜼𝑖𝑡 term generates the correlation between equations for monthly 

crash risk and real-time crash risk components. The ± sign in front of 𝜼𝑖𝑡 in equation 2 indicates 

that the correlation in unobserved individual factors between the monthly crash risk and the 

subsequent real-time crash risk may be positive or negative. To determine the appropriate sign, 

one can empirically test the models with both ‘ + ’ and ‘ − ’ signs independently. The model 

structure that offers the superior data fit is considered as the final model. 

It is important to note here that the unobserved heterogeneity between two components of 

the joint system may vary across observations. Therefore, in the current study, the correlation 

parameter 𝜼𝑖𝑡 is parameterized as a function of observed attributes separately for monthly crash 

risk and real-time crash risk as follows: 

𝜼𝑖𝑡 = 𝝀𝑖𝑡𝒘𝑖𝑡 (3)  

                                                 
3 Based on recent research by Guevara and Ben-Akiva (2013) there is evidence to suggest that the naïve estimator (i.e. 

employing random sampling based estimation) offers reasonable accuracy in model estimation for mixed multinomial 

logit (MMNL) model. Our joint approach builds on this research finding. 
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𝜼𝑖𝑡 = 𝝀𝑖𝑡𝒘𝑖𝑡𝑙𝑗 (4)  

where, 𝒘𝑖𝑡 and 𝒘𝑖𝑡𝑙𝑗 represent exogenous variables that are closely related at the aggregate (i.e. 

monthly) and disaggregate (time-period) levels, 𝝀𝑖𝑡 is a vector of unknown parameters to be 

estimated. The reader would note that we allow for different resolutions of 𝒘 because the aggregate 

resolution cannot be directly employed in the real-time crash model as there is no variability across 

time periods (𝑗). 

 

4.2 Model Estimation 

 

In examining the model structure of monthly crash risk and real-time crash risk, it is necessary to 

specify the structure for the unobserved vector 𝜸𝑖𝑡 , 𝝆𝑖𝑡 𝑎𝑛𝑑 𝝀𝑖𝑡 represented by Ω. In this paper, it 

is assumed that all these vectors are independent realizations from normal population distributions. 

Thus, conditional on 𝜸𝑖𝑡 𝑎𝑛𝑑 𝒘𝑖𝑡, the probability of segment 𝑖 corresponding to crash state 𝑘 for 

month 𝑡 is given by: 

𝑃𝑖𝑡𝑘|(𝜸𝑖𝑡, 𝝀𝑖𝑡) = φ{𝜏𝑖𝑡𝑘 − ((𝜷 + 𝜸𝑖𝑡)𝒙𝑖 + 𝜼𝑖𝑡)}

− φ{𝜏𝑖𝑡,𝑘−1 − ((𝜷 + 𝜸𝑖𝑡)𝒙𝑖 + 𝜼𝑖𝑡)} 
(5)  

where, φ(∙) is the standard logistic cumulative distribution function. Similarly, the probability of 

roadway segment 𝑖 representing the real-time crash risk is given by (conditional on 𝝆𝑖𝑡 𝑎𝑛𝑑 𝒘𝑖𝑡): 

𝑅𝑖𝑡𝑙𝑗|(𝝆𝑖𝑡, 𝝀𝑖𝑡) =
𝑒𝑥𝑝 ((𝜹 + 𝝆𝑖𝑡)𝒛𝑖𝑡𝑙𝑗 ± 𝜼𝑖𝑡)

∑ 𝑒𝑥𝑝 ((𝜹 + 𝝆𝑖𝑡)𝒛𝑖𝑡𝑙𝑗 ± 𝜼𝑖𝑡)𝑗∈𝐶𝑖𝑡𝑗

 (6)  

Thus the likelihood function for the joint probability can be expressed as: 

𝐿𝑖 = ∫ (∏ [∏(𝑃𝑖𝑡|(𝜸𝑖𝑡, 𝝀𝑖𝑡))
𝑑𝑖𝑘

1

𝑘=0

x ∏ ∏ [(𝑅𝑖𝑡𝑙𝑗|(𝝆𝑖𝑡, 𝝀𝑖𝑡))
𝑑𝑖𝑡𝑙𝑗

]
 𝜛𝑖𝑡

𝑗∈𝐶𝑖𝑡𝑙𝑗𝑙

]

𝑇

𝑡=𝑖

) 𝑑Ω

Ω

 (7)  

where, 𝑑𝑖𝑘 is a dummy with 𝑑𝑖𝑘 = 1 for the observed segment crash level, 𝑑𝑖𝑡𝑙𝑗 is a dummy with 

𝑑𝑖𝑡𝑙𝑗 = 1 for the crash time period and 0 elsewhere; 𝜛𝑖𝑡 is a dummy with 𝜛𝑖𝑡 = 1 if roadway 

segment 𝑖 has at least one crash in a given month 𝑡 and 0 otherwise. Finally, the log-likelihood 

function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (8)  
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All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 8. The parameters to be estimated in the model are: 𝜷, 𝝈, 𝜹, 𝝅 and 𝝀. To 

estimate the proposed model, we apply Quasi-Monte Carlo simulation techniques based on the 

scrambled Halton sequence to approximate this integral in the likelihood function and maximize 

the logarithm of the resulting simulated likelihood function across individuals (see Bhat, 2001; 

Eluru et al., 2008; Yasmin and Eluru, 2013 for examples of Quasi-Monte Carlo approaches in 

literature). The model estimation routine is coded in GAUSS Matrix Programming software 

(Aptech, 2015).   

 

5. DATA 

 

5.1 Study Area and Data Sources 

 

Our study draws data from three different expressways from Central Florida: State Roads 408, 

417, and 528. For these expressways, data were collected and compiled for 29 months from July, 

2013 through December, 2015. However, due to the absence of traffic data in April, 2014, the data 

from other months are used (traffic detector systems were under maintenance in April, 2014). Four 

different types of roadway influence areas, as defined by the Highway Capacity Manual (HCM, 

2010), are explored in current study context: (1) merge, (2) diverge, (3) weaving and (4) basic 

influence area. Figure 1 represents the illustrations for merge, diverge and weaving areas. The 

basic segments are segments on the roadways which are not impacted by merge, diverge, and 

weaving operations. Traffic and crash related data were collected for different road segments of 

these four influence areas of expressways other than toll-plaza related segments (toll plazas, and 

their upstream and downstream segments), segments with less than 500 feet, and segments with 

no traffic data. Finally, 247 segments were used for data analysis including: 45 merge segments, 

48 diverge segments, 25 weaving segments and 129 basic segments.  

Data for the empirical study is compiled from four different categories: crash data, 

geometry data, traffic data and weather data. The crash data is collected from the Signal Four 

Analytics (S4A) crash database. The database provides detailed information for each crash; such 

as, crash time, location, and crash type. The geometry data are mainly obtained from the Roadway 

Characteristic Inventory operated by the Florida Department of Transportation (FDOT). Length of 

segments are generated by using ArcGIS tool. The traffic data are collected from the Microwave 

Vehicle Detection System (MVDS) installed by Central Florida Expressway Authority. The 

MVDS detectors record traffic data including vehicle count, speed and lane occupancy for each 

lane in one-minute interval. Additionally, the MVDS detectors categorize vehicle into four groups 

based on vehicles’ lengths and provide vehicle count for each group. In current study context, the 

vehicles with length greater than 24 feet are defined as truck. For weather category, we consider 

time-of-day attributes gathered from the United States Naval Observatory (USNO) dataset. It 

documents the time of sunrise and sunset for every day of different cities in the United States. 

Daytime is assigned to a crash if the crash time is reported to be in between sunset and sunrise 

time, otherwise, the crash is considered to be occurred during nighttime. We have also considered 

weather condition (rain and clear) collected from Florida Automated Weather Network (FAWN) 

records.  
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5.2 Experimental Design and Data Description 

 

From the crash database, we identify the location and time of the reported crashes for the study 

period. The dependent variable for monthly crash risk component is defined from crash database 

for each segment. We develop the monthly crash risk model by using roadway geometry data that 

includes types of influence area, outer shoulder width, segment length, median width, speed limit 

and number of lanes. These variables are generated for roadway segment where the crash occurred 

and also for the closest upstream and closest downstream segments. On the other hand, the real-

time crash risk component is designed based on unmatched case-control scheme with a ratio 1:29 

for alternative generation. Each set of case-control is designed for multiple crashes (if recorded) 

in a month over 29-month study period. Controls are the non-crash event or conditions which did 

not result in a crash or were impacted by a crash. Hence, all conditions which are within five hours 

before or after a crash were excluded while selecting controls. Thus, for each crash event of a 

segment for a given month, 29 controls are randomly selected from all possible non-crash events 

of the same segment and in the same month of the respective crash event. The real-time crash risk 

model is estimated by using traffic data and weather data. Time-of-day and weather condition are 

the weather related variables considered in our study. Traffic data included are: traffic count, 

proportion of trucks, average vehicular speed, standard deviation of vehicular speed and average 

lane occupancy. These data are aggregated information over 5-minutes intervals. For the crash 

events, we extracted the traffic data which were 5–10 min prior to crash occurrence (see Xu et al., 

2013; Yu and Abdel-Aty, 2013 for similar approach). We have also incorporated traffic data in the 

form of interactions with the roadway geometry data. 

The final dataset, after removing records with missing information for essential attributes, 

consisted of 6,913 records in the monthly crash risk component. Among these records, 1,401 

records have at least one crash for that specific month. The associated data records for real-time 

crash model component is 58,470 with 1,949 (56,521) number of cases (controls). Table 1 offers 

a summary of the sample characteristics of the exogenous factors in the final estimation dataset. 

The table represents the definition of variables considered for final model estimation along with 

the minimum, maximum and average values for continuous/ordinal variables; and frequency and 

percentages for indicator variables. The final specification of the model development was based 

on removing the statistically insignificant variables in a systematic process based on statistical 

significance (90% significance level). The specification process was also guided by prior research 

and parsimony considerations. In estimating the models, several functional forms and variable 

specifications were explored. The functional form that provided the best result was used for the 

final model specifications and, in Table 1, the variable definitions are presented based on these 

final functional forms. 

 

6. EMPIRICAL ANALYSIS 

 

6.1 Model Specification and Overall Measures of Fit 

 

The empirical analysis involves estimation of two different models: 1) an independent binary logit 

(BL) and multinomial logit (MNL) model system, and 2) joint BL-MNL model with correlation 

parameterization. The independent models (separate BL and MNL models) were estimated to 

establish a benchmark for comparison. Prior to discussing the estimation results, we compare the 

performance of these models in this section. We employ the likelihood-ratio (LR) test to determine 
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the best model between independent and joint models. The LR test statistic for a given empirical 

model is computed as: 

𝐿𝑅 = 2[𝐿𝐿𝑈 − 𝐿𝐿𝑅] (9)  

where 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood of the unrestricted and the restricted models, 

respectively.  

The log-likelihood values at convergence for the models estimated are as follows: (1) 

Independent BL-MNL (with 21 parameters) is -8772.67 and (2) joint BL-MNL model with 

correlation parameterization (with 25 parameters) is -8767.41. The computed value of the LR test 

is compared with the ℵ2 value for the corresponding degrees of freedom (dof). The resulting LR 

test values for the comparison of independent BL-MNL and joint BL-MNL model is 10.51 (4 dof). 

The LR test values indicate that the joint model outperforms the independent indicating that joint 

model offers superior fit.  The comparison exercise clearly highlights the superiority of the joint 

model with the correlation parameterization in terms of data fit compared to independent model. 

 

6.2 Estimation Results 

 

In presenting the effects of exogenous variables, we will restrict ourselves to the discussion of the 

joint model with the correlation parameterization. For the ease of presentation, the monthly crash 

risk (BL model) and real-time crash risk (MNL model) components are presented and discussed 

separately. Table 2 presents the estimation results of the joint BL-MNL model with BL component 

results in the first row panel of the table, and MNL component results in the second row panel. 

The correlation parameters within joint model specification are presented in the last row panel of 

Table 2. 

 

6.2.1 Monthly Crash Risk Component – (BL Model) 

 

In the BL model, the positive (negative) coefficient corresponds to increased (decreased) crash 

risk propensity. The positive sign on the threshold term does not have any substantive 

interpretation.  

In terms of roadway segment characteristics, the result associated with length of segment, 

a surrogate for exposure, indicates that as segment length increases, the likelihood of crash risk 

also increases (see Anastasopoulos and Mannering, 2009 for similar results). The results associated 

with median width and outer shoulder width are found to have significant impact on crash 

likelihood of roadway segments. Increased median width of roadway segment is negatively 

associated with crash risk, perhaps indicating higher scope of driving error correction and/or scope 

of accommodation for vehicles in the event of impending crashes in the presence of wider median 

(Haleem et al., 2013; Shi et al., 2016). The model estimation results indicate an expected negative 

correlation of higher outer shoulder width with higher likelihood of crash risk, a result also 

observed in several previous studies (Noland and Oh, 2004; Xu et al., 2013). Wider shoulder 

provides spaces for errant vehicle and in turn may reduce the likelihood of crash risk (Bonneson 

and Pratt, 2009).  

In BL component of the joint model system, a higher number of lanes of the mainline 

segment has significant impact on crash risk. We find that in presence of higher number of lanes, 

the possibility of crash risk increases. This is potentially because higher number of lanes also 
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serves as surrogate for higher exposure. With regards to average vehicular speed, higher vehicular 

speed is found to be negatively associated with crash risk in the BL component. At the same time, 

higher variation of traffic speed is found to increase the likelihood of crash risk (see Taylor et al., 

2000 for similar result). 

The results for influence area reveal that the likelihood of crash risk is higher for merge 

and diverge influence areas of roadway segment relative to basic and weaving influence areas. It 

is interesting to note that, within these two indicator variables, diverge influence area has a larger 

impact relative to merge influence area. In general, the results can be explained by high 

competition of spaces for merging and diverging operations in traffic streams at these influence 

areas relative to other roadway areas (Mergia et al., 2013; Wu et al., 2013). The result for posted 

speed limit indicates that the likelihood of crash risk is higher for segments with speed limit 55 

and 65 mph relative to segments with 70 mph, plausibly indicating higher interactions of vehicles 

at a lower speed environment compared to the roadway environment with higher posted speed 

limits.  

Characteristics of the closest upstream and downstream section are also found to have 

significant impact on the likelihood of static crash risk in the study. With regards to closest 

upstream section, median width has positive impact indicating that the higher median width of the 

closest upstream section is likely to increase crash risk for the studied road section. It is possible 

drivers upstream with higher median width tends to drive less cautiously and are likely to take 

longer to slow down in an impending crash situation. Increasing distance from the nearest merging 

upstream section is found to be negatively associated with crash risk of the studied roadway 

sections. The result is perhaps indicative of the potential reduction in vehicle weaving conflicts in 

the absence of merging section. In terms of the characteristics of the closest downstream section, 

as expected a larger merging influence area of the downstream section is found to have negative 

association with the aggregate level crash risk of the studied road locations. 

 

6.2.2 Real-time Crash Risk Component – (MNL Model) 

 

In MNL model component, the positive (negative) coefficient corresponds to increased 

(decreased) crash risk.  

From the estimation results of real-time crash risk component, we can observe that 

potential crash risk increases with increasing average volume of traffic streams (see Christoforou 

et al., 2011 for similar results). Proportion of heavy vehicle volume is found to be a significant 

determinant of crash prone condition. The estimate for heavy vehicle proportion has a positive 

coefficient suggesting that presence of more heavy vehicles in traffic stream are likely to incur 

disruptive condition leading to crash occurrences. 

As found in previous studies (Xu et al., 2014), we also find that the likelihood of crash 

prone condition decreases with increasing average vehicular speed. The result can be explained by 

smooth flow of traffic in high vehicular speed environment. On the other hand, standard deviation 

of average vehicular speed has positive impact on real-time crash risk component. The result for 

average occupancy reveals that higher average occupancy is a significant indicator of hazardous 

traffic condition which may lead to crash occurrence. A similar positive relationship between 

average occupancy and crash prone condition is documented by several previous studies (Abdel-

Aty et al., 2004; Zheng et al., 2010).  

The potential crash risk is higher during daytime relative to nighttime period. In real-time 

crash risk component, we also find that the daytime indicator variable results in a parameter that 
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is normally distributed with mean 0.175 and standard deviation 0.587, which indicates that the 

crash risk for daytime is positive for 61.79% of the cases and negative for 38.21% of the cases.  

Several interaction terms between dynamic traffic and static segment-specific attributes are 

found to have significant impact on the real-time crash risk component of the joint model. The 

interaction terms reveal interesting results. From Table 2, we can see that interaction of merge area 

with higher vehicular speed increases the likelihood of crash occurrence. The result for interactions 

of posted speed limit with dynamic traffic attributes indicate that the likelihood of crash prone 

condition is higher for segments with speed limit 55 and 65 mph and with higher average volume 

of traffic stream. On the other hand, higher vehicle proportion on a roadway with speed limit 55 

and 65 mph are likely to reduce the crash risk.   

 

6.2.3 Common Unobserved Effects 

 

Significance of the unobserved heterogeneity parameters presented in the last row panel of Table 

2 highlights the presence of common unobserved factors affecting monthly crash risk and real-

time crash risk components. The reader would note that we cannot have the same variable across 

the two model components. Hence, we considered variables with different resolutions from 

different components of the joint model. From estimation results, we observe that the two crash 

risk components are correlated based on observed exogenous attributes. In terms of exogenous 

variables, we find that the correlation between the two dimensions of the joint model system are 

moderated by: (1) average vehicular speed over a month from static component and average 

vehicular speed over 5 minutes from dynamic component; and (2) speed limit 55 and 65 mph from 

static component and standard deviation of vehicular speed over 5 minutes from real-time 

component. This supports our hypothesis that static and real-time crash risks components are 

correlated in nature.  The correlation parameters are introduced with a " + " sign before 𝜼𝑖𝑡 in the 

real-time crash risk component (as described in econometric framework section) since these 

provided a substantially better fit compared to introducing them with a " − " sign. Overall, the 

results highlight that accommodating for common unobserved effects across the two model 

components improves the model fit substantially.  

 

7. CONCLUSIONS 

 

The paper proposed, formulated and estimated a joint reactive and proactive crash modeling 

framework by coupling the static monthly crash risk and dynamic real-time crash risk in a unified 

econometric framework for a microscopic analysis unit. The research effort bridges the gap 

between traditional crash risk and real-time crash risk models by developing a joint model that 

accommodates for both dimensions in developing crash risk analysis models. In the joint modeling 

approach, we estimated an alternative to the case-control binary logit based real-time crash risk 

analysis by employing a multinomial logit based approach where time periods serve as alternatives 

and the chosen alternative is the time period in which crash occurs. The joint model also allowed 

us to accommodate for the common unobserved factors that increase the likelihood of a crash in 

microscopic unit to affect the real-time crash risk propensity. To the best of the authors’ 

knowledge, this is the first attempt to employ such a joint framework for examining micro-level 

crash count events. 

We demonstrated the application of the proposed approach by using data on roadway 

segments from three expressways in Central Florida (State Roads 408, 417, and 528) for 29 
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months. The monthly crash risk component was examined by using binary logit model employing 

different static roadway attributes (roadway geometry and operational attributes). The real-time 

crash risk component was examined by using a random utility model employing different dynamic 

traffic attributes (volume, speed, lane occupancy and environmental conditions). The real-time 

crash risk component was designed based on unmatched case-control scheme with a ratio 1:29 for 

alternative generation. The empirical analysis involved estimation of two different models: 1) an 

independent binary logit (BL) and multinomial logit (MNL) model system, and 2) joint BL-MNL 

model with correlation parameterization. The independent models (separate BL and MNL models) 

were estimated to establish a benchmark for comparison. The comparison exercise based on 

Bayesian Information Criterion clearly highlighted the superiority of the joint model with the 

correlation parameterization in terms of data fit compared to independent model. From estimation 

results, we observed that two crash risk components are correlated based on different observed 

exogenous attributes. The outcome of the proposed approach allows us to predict both the static 

and dynamic crash risk simultaneously in a single econometric framework. 

The study is not without limitation. In examining, the real-time crash risk component, we 

did not consider the traffic characteristics of the closest downstream or upstream sections. It might 

be beneficial in future to consider those attributes in developing real-time crash risk model given 

the availability of the information. Moreover, we examined the monthly crash risk component by 

employing a binary logit model. It would be interesting to examine the aggregate level crash risk 

component by using either count regression or ordered logit modeling based approach. 
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Figure 1: Influence Area of Merge (a), Diverge (b), and Weaving (c) Segments 



Table 1: Sample Statistics for the Expressways 

SAMPLE STATISTICS FOR MONTHLY CRASH RISK COMPONENT 

Continuous/Ordinal Variables 

Variables Variable definitions Minimum Maximum Average 

Characteristics of the roadway section 

Segment length Ln(Segment length in feet) 6.428 10.227 7.761 

Median width Median width in feet 16.000 64.000 46.747 

Outside shoulder width Outer shoulder width in feet 2.000 12.000 9.641 

Inner shoulder width Inner shoulder width in feet 4.000 24.000 7.277 

Number of lanes Count of total number of lanes 2.000 5.000 2.668 

Average  vehicular speed over a month Average  vehicular speed over a month in mph 15.956 78.337 66.851 

Standard deviation of vehicular speed 

over a month 
Standard deviation of vehicular speed of over a month in mph 0.370 34.612 4.235 

Characteristics of the closest upstream section 

Median width Ln(Median width of the closest upstream segment in feet) 2.773 4.159 3.784 

Outer should width Outer should width of the closest upstream section in feet 2.000 12.000 9.698 

Inner should width Inner should width of the closest upstream section in feet 4.000 36.000 7.290 

Number of lanes Count of total number of lanes of the closest upstream section 2.000 5.000 2.668 

Distance to merging ramp 
Ln(Distance of the roadway segment from the closest merging 

ramp in upstream in feet) 
0.000 10.474 4.826 

Distance to diverging ramp 
Ln(Distance of the roadway segment from the closest diverging 

ramp in upstream in feet) 
0.000 9.733 3.052 

Characteristics of the closest downstream section 

Median width Ln(Median width of the closest downstream segment in feet) 2.773 4.159 3.782 

Outer should width Outer should width of the closest downstream section in feet 2.000 13.000 9.698 

Inner should width Inner should width of the closest downstream section in feet 0.000 36.000 7.251 

Number of lanes Count of total number of lanes of the closest downstream section 2.000 5.000 2.669 

Indicator Variables 

Variables Frequency Percentage 
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Characteristics of the roadway segment 

Influence area 

Merge area 1275.000 18.444 

Diverge area 1338.000 19.355 

Weaving area 667.000 9.648 

Basic area 3633.000 52.553 

Speed limit in mph 

Speed limit 55 and 65 mph 750.000 10.849 

Speed limit 70 mph 2172.000 31.419 

Characteristics of the closest upstream section 

Upstream influence area 

Merge section 4136.000 59.829 

Diverge section 2777.000 40.171 

Characteristics of the closest downstream section 

Downstream influence area 

Merge section 3006.000 43.483 

Diverge section 3878.000 56.097 

SAMPLE STATISTICS FOR REAL-TIME CRASH RISK COMPONENT 

Continuous/Ordinal Variables 

Variables Variable definitions Minimum Maximum Average 

Traffic count Ln(Traffic count) 0.693 6.887 4.464 

Proportion of trucks Count of trucks/Total traffic counts 0.000 1.000 0.135 

Average vehicular speed over 5 minutes Average vehicular speed over 5 minutes in mph 1.437 108.167 63.407 

Standard deviation of vehicular speed 

over 5 minutes 
Standard deviation of vehicular speed over 5 minutes in mph 0.000 36.403 2.547 

Average lane occupancy Average lane occupancy (%)/10 0.000 5.723 0.445 

Interaction terms 

Merge area*Average vehicular speed over 5 minutes 0.000 84.667 6.445 

Speed limit 55 and 65 mph*Traffic count 0.000 6.887 2.137 
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Speed limit 55 and 65 mph*Proportion of trucks 0.000 1.000 0.055 

Indicator Variables 

Variables Frequency Percentage 

Time of day 

Daytime 31293.000 53.520 

Nighttime 27177.000 46.480 

Weather condition 

Rain 3916.000 6.715 

Clear 54554.000 93.285 



Table 2: Joint Monthly Crash Risk-Real Time Crash Risk Model Results 

MONTHLY CRASH RISK COMPONENT – BL MODEL 

Variables Estimate t-stat 

Threshold (between zero and non-zero crash states) 13.940 7.680 

Characteristics of the roadway section 

Segment length 1.471 7.838 

Median width -0.023 -3.300 

Outside shoulder width -0.064 -1.847 

Number of lanes 0.324 5.316 

Average  vehicular speed over a month -0.026 -2.037 

Standard deviation of vehicular speed over a month 0.213 7.274 

Influence area (Base: Weaving and Basic area)  

Merge area 0.626 4.154 

Diverge area 1.142 6.342 

Speed limit in mph (Base: Speed limit 70 mph) 

Speed limit 55 and 65 mph 0.577 3.960 

Characteristics of the closest upstream section 

Median width 0.564 2.129 

Distance to merging ramp -0.046 -3.946 

Characteristics of the closest downstream section 

Downstream influence area 

Merge section -0.226 -2.497 

REAL-TIME CRASH RISK COMPONENT – MNL MODEL 

Variables Estimate t-stat 

Traffic count 0.530 8.934 

Proportion of trucks 2.149 6.837 

Average vehicular speed over 5 minutes -0.066 -8.029 

Standard deviation of vehicular speed over 5 minutes 0.117 8.776 

Average lane occupancy 0.309 4.036 

Time of day 

Daytime 0.175 2.053 

SD for Daytime 0.587 2.641 

Interaction terms 

Merge area*Average vehicular speed over 5 minutes 0.014 1.846 

Speed limit 55 and 65 mph*Traffic count 0.299 4.171 

Speed limit 55 and 65 mph*Proportion of trucks -1.351 -2.393 

CORRELATION PARAMETER 

Variables (Monthly crash risk component/Real-time crash risk component) Estimate t-stat 

Average vehicular speed over a month/Average vehicular speed over 5 minutes 0.015 2.273 

Speed limit 55 and 65 mph/Standard deviation of vehicular speed over 5 minutes 0.064 1.833 

 


