
 

 

RECENT ADVANCES IN DISCRETE AND DISCRETE-

CONTINUOUS MODELING SYSTEMS 

 

 

 

 

Chandra R. Bhat 

 

The University of Texas at Austin 

Department of Civil, Architectural & Environmental Engineering 

1 University Station, C1761, Austin, TX 78712-0278, 

Phone: (512) 471-4535, Fax: (512) 475-8744 

Email: bhat@mail.utexas.edu 

 

 

 

Naveen Eluru 

 

The University of Texas at Austin 

Department of Civil, Architectural and Environmental Engineering 

1 University Station, C1761, Austin, TX 78712-0278 

Phone: 512-471-4535, Fax: 512-475-8744 

Email: naveeneluru@mail.utexas.edu 

 

 

 

 

ABSTRACT 

This chapter discusses the importance of discrete choice and discrete-continuous modeling 

methods in the cost-benefit evaluation of transportation infrastructure improvement and other 

related projects. Specifically, discrete choice and discrete-continuous methods constitute the 

backbone of travel demand models that are used to predict travel characteristics and usage of 

transportation services under alternative socio-economic scenarios, and for alternative 

transportation service and land-use configurations. The chapter proceeds to identify some recent 

developments in the field, with an emphasis on advances in discrete-continuous modeling 

approaches.  
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1. BACKGROUND 

Transportation planners and engineers have to be able to forecast the response of transportation 

demand to changes in the attributes of the transportation system and changes in the attributes of 

the people using the transportation system. Travel demand models are used for this purpose; 

specifically, travel demand models are used to predict travel characteristics and usage of 

transport services under alternative socio-economic scenarios, and for alternative transport 

service and land-use configurations. The need for realistic representations of behavior in travel 

demand modeling is well acknowledged in the literature. This need is particularly acute today as 

emphasis shifts from evaluating long-term investment-based capital improvement strategies to 

understanding travel behavior responses to shorter-term congestion management policies such as 

alternate work schedules, telecommuting, and congestion-pricing.  

Of course, travel demand modeling is also relevant for intercity travel, especially as 

increasing congestion on intercity highways and at intercity air terminals has raised serious 

concerns about the adverse impacts of such congestion on regional economic development, 

national productivity and competitiveness, and environmental quality. Recent studies suggest 

that intercity travel congestion is likely to grow even further through the next two decades (TIA, 

2004; APTA, 2005; US DOT, 2006). To alleviate such current and projected congestion, 

attention has been focused in recent years on identifying and evaluating alternative proposals to 

improve inter-city transportation services. Some of these proposals include construction of new 

(or expansion of existing) express roadways and airports (Koppelman and Bhat, 2006), adding or 

upgrading conventional rail services (ASA, 2003), and construction of new high-speed ground 

transportation based on magnetic levitation technology (Persch, 2008). 

The large scale nature of the congestion alleviation proposals makes it imperative to 

undertake a careful a priori cost-benefit evaluation with respect to capital investment costs, 

environmental impacts, job market and economic development impacts, and revenues. Travel 

demand modeling contributes in an important way to one or more of these elements of a cost-

benefit evaluation. For example, in the context of a new transportation intercity travel service 

being considered, one needs to estimate reliable intercity mode choice models to estimate 

ridership share on the proposed new (or improved) intercity service and to identify the modes 

from which existing intercity travelers will be diverted to the new (or upgraded) service. This 

enables an estimation of the revenues from the fare box as well as the potential reduction in 

congestion at airports and on roadways. This can be translated to revenues and to environmental 

impacts due to reductions in roadway/airport congestion. Of course, travel mode choice models 

can also aid in designing the new service by evaluating the service attributes travelers are most 

sensitive to.  

There are obviously many different kinds of models that may be used in travel demand 

modeling, though discrete choice models are becoming particularly ubiquitous today for 

modeling several elements of travel demand such as residential choice, car ownership, 

activity/trip generation, activity location choice, travel mode choice, and route choice. In 

particular and regardless of the conceptual paradigm used for modeling (for example, whether a 

trip-based or an activity-based paradigm is used), discrete choice models and their extensions 

such as discrete-continuous models constitute the backbone of travel demand models. Thus, the 

focus of the rest of this chapter will be on discrete choice and discrete-continuous models. 

Further, because there have been several comprehensive reviews of discrete choice models, we 

will emphasize more on some recent developments in discrete-continuous modeling in this 

chapter. 
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2. DISCRETE CHOICE MODELS 

2.1 The Basic Multinomial Logit Model 

Most discrete choice models are based on the cross-sectional random utility maximization 

(RUM) framework of microeconomic theory. The RUM framework assumes that an individual's 

choice at any choice occasion is a reflection of underlying indirect utilities associated with each 

of the available alternatives and that the individual selects the alternative which provides her or 

him the highest utility (or least disutility). The indirect utility that an individual associates with 

each alternative is not observed to the demand analyst, who then assumes that this utility is 

composed of two components: (a) a deterministic portion that is based on observed (to the 

analyst) characteristics of the decision-maker, the choice environment, and the alternative, and 

(b) an unobserved (to the analyst) component associated with the decision-maker, the choice 

environment, and/or the alternative. Let the utility U qi  that an individual q associates with an 

alternative i be as follows: 

qiqi

’

qqi
 + x  = U                   (1) 
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x  is a vector of observed variables (including alternative specific constants), 
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corresponding coefficient vector which may vary over individuals, and 
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where 
qi

  is a scale parameter that is related to the variance of 
qi

  as follows: 

.6/)(
22

qiqi
Var    Also note that the deterministic portion , 

qiq
x , is linear-in-parameters and 

is considered as an additive function (for convenience).  

 The set-up above is very general, and one obtains different model structures based on the 

assumptions on 
q

 and the 
qi

  terms. The simplest model, labeled as the multinomial logit 

(MNL) model, is obtained by imposing three assumptions on the above set-up. The first 

assumption is that the random components of the utilities of the different alternatives are 

independent and identically distributed (IID). The assumption of independence implies that there 

are no common unobserved factors affecting the utilities of the various alternatives. This 

assumption is violated, for example, if a decision-maker assigns a higher utility to all transit 

modes (bus, train, etc.) in a mode choice modeling context because of the opportunity to 

socialize, or if the decision maker assigns a lower utility to all the transit modes because of the 

lack of privacy. In such situations, the same underlying unobserved factor (opportunity to 

socialize or lack of privacy) impacts on the utilities of all transit modes. The assumption of 

identically distributed (across alternatives) random utility terms implies that the extent of 

variation in unobserved factors affecting modal utility is the same across all modes (that is 

qqi
  ). In general, there is no theoretical reason to believe that this will be the case. For 
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example, if comfort is an unobserved variable whose values vary considerably for the train mode 

(based on, say, the degree of crowding on different train routes) but little for the automobile 

mode, then the random components for the automobile and train modes will have different 

variances. Both the assumptions of independence and equal error variances across alternatives 

have significant implications for the competitive structure. 

The second assumption of the MNL model is that it maintains homogeneity in 

responsiveness to attributes of alternatives across individuals (i.e., an assumption of response 

homogeneity). More specifically, the MNL model does not allow sensitivity (or taste) variations 

to an attribute of alternatives due to unobserved individual characteristics. In equation (1), this 

implies that  
q

1
. However, unobserved individual characteristics can and generally will 

affect responsiveness. For example, some individuals by their intrinsic nature may be extremely 

time-conscious while other individuals may be “laid back” and less time-conscious. Ignoring the 

effect of unobserved individual attributes can lead to biased and inconsistent parameter and 

choice probability estimates (see Chamberlain, 1980).  

The third assumption of the MNL model is that the random utility component of each 

alternative is independent and identical across individuals. The assumption of independence 

implies that there are no common unobserved factors across individuals affecting the utility of a 

particular alternative. This assumption is violated, for example, if the utility for the transit 

alternative in a mode choice context is higher for individuals residing in a particular area because 

of such unobserved factors as pedestrian path continuity and good lighting to transit stops. The 

assumption of identical variance across individuals implies that the extent of variation in 

unobserved factors affecting an alternative’s utility is the same across individuals (i.e., 
q

 = ). 

Further, given the assumptions made thus far, and since the scale of the error term is not 

identified,   is set to 1.  

The three assumptions discussed above together lead to the simple and elegant closed-

form mathematical structure of the MNL. However, these assumptions also leave the MNL 

model saddled with the “independence of irrelevant alternatives” (IIA) property at the individual 

level (Luce and Suppes 1965; for a detailed discussion of this property see also Ben-Akiva and 

Lerman 1985). Thus, relaxing the three assumptions may be important in many choice contexts. 

 

2.2 Advanced Discrete Choice Model Structures 

This section discusses four types of advanced discrete choice model structures: (1) The GEV 

class of models, (2) The mixed multinomial logit (MMNL) class of models, (3) The mixed GEV 

(MGEV) class of models, and (4) Other mixed discrete choice models. 
 

2.2.1 The GEV Class of Models 

The GEV-class of models relaxes the independence from irrelevant alternatives (IIA) property of 

the multinomial logit model by relaxing the independence assumption between the error terms of 

alternatives. In other words, a generalized extreme value error structure is used to characterize 

                     
1
 Note, however, that if 

q
  is a linear function of observed exogenous variables, the net result is a situation identical 

to having  
q

 with additional interaction terms now included in the 
qi

x  vector. Thus, this situation can be 

accommodated in the MNL model.  
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the unobserved components of utility of the alternatives as opposed to the univariate and 

independent extreme value error structure used in the multinomial logit model. There are three 

important characteristics of all GEV models: (1) The overall variances of the alternatives (i.e., 

the scale of the utilities of alternatives) are assumed to be identical across alternatives, (2) The 

choice probability structure takes a closed-form expression, and (3) all GEV models collapse to 

the MNL model when the parameters generating correlation take values that reduce the 

correlations between each pair of alternatives to zero. With respect to the last point, it has to be 

noted that the MNL model is also a member of the GEV class, though we will reserve the use of 

the term “GEV class” to models that constitute generalizations of the MNL model. 

The general structure of the GEV class of models was derived by McFadden (1978) from 

the random utility maximization hypothesis, and generalized by Ben-Akiva and Francois (1983). 

Several specific GEV structures have been formulated and applied within the GEV class, including 

the Nested Logit (NL) model (for example: Williams, 1977; McFadden, 1978; Daly and Zachary, 

1978, Berkovec and Rust, 1985; Hensher and Greene, 2002; Abdel-Aty and Abdelwahab, 2004; 

Garrow and Koppelman, 2004; Lo et al., 2004), the Paired Combinatorial Logit (PCL) model (Chu, 

1989; Koppelman and Wen, 2000), the Cross-Nested Logit (CNL) model (Vovsha, 1997; Papola, 

2004; Antonini et al., 2006; Bekhor et al., 2006; Bierlaire, 2006; Hess and Polak, 2006; Abbe et al., 

2007; Marzano and Papola, 2008; Robin et al., 2009), the Ordered GEV (OGEV) model (Small, 

1987), the Multinomial Logit-Ordered GEV (MNL-OGEV) model (Bhat, 1998a), the ordered GEV-

nested logit (OGEV-NL) model (Whelan et al., 2002) and the Product Differentiation Logit (PDL) 

model (Breshanan et al., 1997). Wen and Koppelman (2001) proposed a general GEV model 

structure, which they referred to as the Generalized Nested Logit (GNL) model. Swait (2001), 

independently, proposed a similar structure, which he refers to as the choice set Generation Logit 

(GenL) model; Swait’s derivation of the GenL model is motivated from the concept of latent choice 

sets of individuals, while Wen and Koppelman’s derivation of the GNL model is motivated from 

the perspective of flexible substitution patterns across alternatives.  Wen and Koppelman (2001) 

illustrate the general nature of the GNL model formulation by deriving the other GEV model 

structures mentioned earlier as special restrictive cases of the GNL model or as approximations to 

restricted versions of the GNL model. Swait (2001) presents a network representation for the GenL 

model, which also applies to the GNL model. More recent applications and refinements involving 

the GNL model include Bekhor and Prashker (2001), Koppelman and Sethi (2005), and Gelhausen 

and Wilken (2006). 

One impediment to the generation of new GEV models, however, is that the conditions 

developed by McFadden for qualification as a GEV structure are based on a generating function 

G, which may not map easily into a desired correlation structure. Research by Bierlaire (2002) 

and Daly and Bierlaire (2006) alleviate this impediment. These two researchers propose a 

network-based structure to characterize the underlying correlation structure in any choice 

situation, and show how this network-based representation, if it satisfies some simple conditions 

(non-emptiness, finiteness, and being circuit-free), can immediately be translated to a model 

consistent with the GEV structure (this work constitutes a formal and rigorous extension of 

Swait’s network representation for the GenL model). Newman (2008) enhanced this network 

structure developed by Daly and Bierlaire (2006) by describing methodologies to correctly 

normalize the allocation parameters in the network GEV models. Sener et al. (2009) and 

Newman (2009) developed a new form of a Network GEV model that allows the incorporation 

of error covariance heterogeneity across individuals. Of course, GEV models based on complex 

network representations, while allowing flexibility in substitution patterns, also entail the 
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estimation of a substantial number of dissimilarity and allocation parameters. The net result is 

that the analyst will have to impose informed restrictions on these GEV models, customized to 

the application context under investigation.  

An important point to note here is that GEV models are consistent with utility 

maximization only under rather strict (and often empirically violated) restrictions on the 

dissimilarity and allocation parameters (specifically, the dissimilarity and allocation parameters 

should be bounded between 0 and 1 for global consistency with utility maximization, and the 

allocation parameters for any alternative should add to 1). The origin of these restrictions can be 

traced back to the requirement that the variance of the joint alternatives be identical in the GEV 

models. Also, GEV models do not relax assumptions related to taste homogeneity in response to 

an attribute (such as travel time or cost in a mode choice model) due to unobserved decision-

maker characteristics, and cannot be applied to panel data with temporal correlation in 

unobserved factors within the choices of the same decision-making agent. However, GEV 

models do offer computational tractability, provide a theoretically sound measure for benefit 

valuation, and can form the basis for formulating mixed models that accommodate random taste 

variations and temporal correlations in panel data. 

 

2.2.2 The MMNL Class of Models 

The MMNL class of models, like the GEV class of models, generalizes the MNL model. 

However, unlike the closed form of the GEV class, the MNL class involves the analytically 

intractable integration of the multinomial logit formula over the distribution of unobserved 

random parameters. It takes the structure shown below: 
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x  is a vector of observed variables 

specific to individual q and alternative i,   represents parameters which are random realizations 
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qs
  in the equation above can be further parameterized as a function of observable individual 

attributes using any function that satisfies  

s

qs
1  (usually a multinomial logit form is used). 

In this first form of a discrete distribution for the vector  , the MMNL model becomes 

equivalent to the latent-class model that has been used in marketing and in transportation (see 

Kamakura and Russell, 1989; Greene and Hensher, 2003; Bhat, 1997; Gupta and Chintagunta, 

1994). A second possible discrete distribution approach is to use a non-parametric form 

separately for each coefficient in the model. This approach does not impose any prior continuous 

distribution function, and allows the data to identify the mass points and the associated mixing 

weights for each coefficient separately. Of course, such a non-parametric distribution 

specification can lead to convergence problems unless the number of mass points for each 

coefficient is limited to a small number. 

In the rest of this section, we focus on a continuous distribution assumption for )(f , 

since this has been the more dominant assumption under the label of mixed logit. The first 

applications of the mixed logit structure of Equation (2) appear to have been by Boyd and 

Mellman (1980) and Cardell and Dunbar (1980). However, these were not individual-level 

models and, consequently, the integration inherent in the mixed logit formulation had to be 

evaluated only once for the entire market. Train (1986) and Ben-Akiva et al. (1993) applied the 

mixed logit to customer-level data, but considered only one or two random coefficients in their 

specifications. Thus, they were able to use quadrature techniques for estimation. The first 

applications to realize the full potential of mixed logit by allowing several random coefficients 

simultaneously include Revelt and Train (1998) and Bhat (1998b), both of which were originally 

completed in the early 1996 and exploited the advances in simulation methods.  

The MMNL model structure of Equation (2) can be motivated from two very different 

(but formally equivalent) perspectives (see Bhat, 2000a). Specifically, a MMNL structure may 

be generated from an intrinsic motivation to allow flexible substitution patterns across 

alternatives (error-components structure) or from a need to accommodate unobserved 

heterogeneity across individuals in their sensitivity to observed exogenous variables (random-

coefficients structure) or a combination of the two. Examples of the error-components 

motivation in the literature include Brownstone and Train (1998), Bhat (1998c), Bekhor et al. 

(2002), Jong et al. (2002a, 2002b), Whelan et al. (2002), Batley et al. (2001a, 2001b), 

Vichiensan et al. (2005), Srinivasan and Mahmassani (2003), Adler et al. (2005), Antonini et al. 

(2006), Pinjari and Bhat (2006), Srinivasan and Ramadurai (2006), and Hess et al. (2008). The 

reader is also referred to the work of Walker and her colleagues (Ben-Akiva et al., 2001; Walker, 

2002, Walker et al., 2004) and Munizaga and Alvarez-Daziano (2001) for important 

identification issues in the context of the error components MMNL model. Examples of the 

random-coefficients structure include Revelt and Train (1998), Bhat (2000b), Hensher (2001), 

Rizzi and Ortúzar (2003), Amador et al. (2005), Brownstone and Small (2005), Hess et al. 

(2005), Small et al. (2005), Bhat and Sardesai (2006), Cirillo and Axhausen (2006), Greene et al. 

(2006), Lijesen (2006), Sivakumar and Bhat (2007), Srinivasan and Ramadurai (2006), Gkritza 

and Mannering (2008), and Milton et al. (2008). 

 A normal distribution is assumed for the density function f(.) in Equation (2) when an 

error-components structure forms the basis for the MMNL model. However, while a normal 

distribution remains the most common assumption for the density function f(.) for a random-

coefficients structure, other density functions may be more appropriate. For example, a log-

normal distribution may be used if, from a theoretical perspective, an element of β has to take the 
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same sign for every individual (such as a negative coefficient on the travel cost parameter in a 

travel mode choice model; see Cirillo and Axhausen, 2006). Other distributions that have been 

used in the literature include triangular and uniform distributions (see Revelt and Train, 2000; 

Train, 2001; Hensher and Greene, 2003; Amador et al., 2005), the Rayleigh distribution 

(Siikamaki and Layton, 2001), the censored normal (Cirillo and Axhausen, 2006; Train and 

Sonnier, 2005), Johnson’s SB (Cirillo and Axhausen, 2006; Train and Sonnier, 2005), and 

nonparametric and semi-parametric distributions (Fosgerau, 2006; Fosgerau and Bierlaire, 

2007).
2
 

  

2.2.3 The Mixed GEV Class of Models 

The MMNL class of models is very general in structure and can accommodate both relaxations 

of the IID assumption as well as unobserved response homogeneity within a simple unifying 

framework. Consequently, the need to consider a mixed GEV class may appear unnecessary. 

However, there are instances when substantial computational efficiency gains may be achieved 

using a MGEV structure. Consider, for instance, Bhat and Guo’s (2004) model for household 

residential location choice. It is possible, if not very likely, that the utility of spatial units that are 

close to each other will be correlated due to common unobserved spatial elements. A common 

specification in the spatial analysis literature for capturing such spatial correlation is to allow 

contiguous alternatives to be correlated. In the MMNL structure, such a correlation structure may 

be imposed through the specification of a multivariate MNP-like error structure, which will then 

require multidimensional integration of the order of the number of spatial units (see Bolduc et 

al., 1996).  On the other hand, a carefully specified GEV model can accommodate the spatial 

correlation structure within a closed-form formulation.
3
 However, the GEV model structure of 

Bhat and Guo cannot accommodate unobserved random heterogeneity across individuals. One 

could superimpose a mixing distribution over the GEV model structure to accommodate such 

random coefficients, leading to a parsimonious and powerful MGEV structure. Thus, in a case 

with 1000 spatial units (or zones), the MMNL model would entail a multidimensional integration 

of the order of 1000 plus the number of random coefficients, while the MGEV model involves 

multidimensional integration only of the order of the number of random coefficients (a reduction 

of dimensionality of the order of 1000!). 

 In addition to computational efficiency gains, there is another more basic reason to prefer 

the MGEV class of models when possible over the MMNL class of models. This is related to the 

fact that closed-form analytic structures should be used whenever feasible, because they are 

always more accurate than the simulation evaluation of analytically intractable structures (see 

Train, 2003; pg. 191). In this regard, superimposing a mixing structure to accommodate random 

coefficients over a closed form analytic structure that accommodates a particular desired inter-

alternative error correlation structure represents a powerful approach to capture random taste 

variations and complex substitution patterns. Examples of the MGEV class of models employed 

in the literature include: Bhat and Guo (2004), Hess et al. (2004), Dugundji and Walker (2005), 

Srinivasan and Athuru (2005), Antonini et al. (2006), Bajwa et al. (2006), and Lapparant (2006). 

                     
2
 The reader is referred to Hess and Axhausen (2005), Hess et al., (2005), and Train and Sonnier (2005) for a review 

of alternative distributional forms and their ability to approximate several different types of true distributions. Also, 

Sørensen and Nielson (2003) propose a method for determining the best distributional form prior to estimation. 
3
 The GEV structure used by Bhat and Guo is a restricted version of the GNL model proposed by Wen and 

Koppelman. Specifically, the GEV structure takes the form of a paired GNL (PGNL) model with equal dissimilarity 

parameters across all paired nests (each paired nest includes a spatial unit and one of its adjacent spatial units). 



9 

2.2.4 Other Mixed Discrete Choice Models 

The mixing of a distribution with a closed form analytic expression has application far beyond 

the MMNL and MGEV structures discussed above. For example, random coefficients can be 

imposed in an ordered-response multinomial model or a count model. For instance, Eluru and 

Bhat (2007) formulate a mixed ordered logit model to analyze crash related driver injury 

severity. The moderating influence of unobserved factors associated with the impact of various 

attributes affecting injury severity is accommodated by imposing a random coefficients structure 

in the ordered logit model. The results indicate clear biases in the effects of different variables on 

injury severity level when unobserved factors moderating the impact of variables are ignored. 

 

3. DISCRETE-CONTINUOUS MODELS 

Several consumer demand choices related to travel and other decisions are characterized by a 

discrete dimension as well as a continuous dimension. Examples of such choice situations 

include vehicle type holdings and usage, appliance choice and energy consumption, and rent or 

purchase a home and square footage. In the rest of this chapter, our emphasis will be on recent 

advancements in modeling discrete-continuous choice situations. In particular, we discuss a 

flexible copula-based approach for the estimation of joint discrete-continuous systems with 

dichotomous or polychotomous (or multinomial) discrete endogenous variables. In the remainder 

of this section, we present the general background of copulas, discuss copula properties and 

dependence structures, provide an overview of alternative copula structures, and describe a 

copula application to examine an empirical discrete-continuous choice context. 

  

3.1. General Background 

A copula is a multivariate functional form for the joint distribution of random variables derived 

purely from pre-specified parametric marginal distributions of each random variable. The word 

copula itself was coined by Sklar, 1959 and is derived from the Latin word “copulare”, which 

means to tie, bond, or connect (see Schmidt, 2007). Thus, a copula is a device or function that 

generates a stochastic dependence relationship (i.e., a multivariate distribution) among random 

variables with pre-specified marginal distributions. The copula approach separates the marginal 

distributions from the dependence structure, so that the dependence structure is entirely 

unaffected by the marginal distributions assumed. This provides substantial flexibility in 

correlating random variables, which may not even have the same marginal distributions. Further, 

the incorporation of dependency effects in econometric models can be greatly facilitated by 

using a copula approach for modeling discrete-continuous choices, so that the resulting model 

can be in closed-form and can be estimated using direct maximum likelihood techniques (the 

reader is referred to Trivedi and Zimmer, 2007 or Nelsen, 2006 for extensive reviews of copula 

theory, approaches, and benefits). 

The effectiveness of a copula approach has been recognized in the statistics field for 

several decades now (see Schweizer and Sklar, 1983, Ch. 6), but it is only recently that copula-

based methods have been explicitly recognized and employed in the finance, actuarial science, 

hydrological modeling, and econometrics fields (see, for example, Embrechts et al., 2002; 

Cherubini et al., 2004; Frees and Wang, 2005; Genest and Favre, 2007; Grimaldi and Serinaldi, 

2006; Smith, 2005; Prieger, 2002; Zimmer and Trivedi, 2006; Cameron et al., 2004;  Junker and 

May, 2005; and Quinn, 2007). The precise definition of a copula is that it is a multivariate 
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distribution function defined over the unit cube linking uniformly distributed marginals. Let C be 

a K-dimensional copula of uniformly distributed random variables U1, U2, U3, …, UK with 

support contained in [0,1]
K
. Then,  

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK), (4) 

where   is a parameter vector of the copula commonly referred to as the dependence parameter 

vector. A copula, once developed, allows the generation of joint multivariate distribution 

functions with given marginals. Consider K random variables Y1, Y2, Y3, …, YK, each with 

univariate continuous marginal distribution functions Fk(yk) = Pr(Yk < yk), k =1, 2, 3, …, K. Then, 

by the integral transform result, and using the notation (.)
1

k
F  for the inverse univariate 

cumulative distribution function, we can write the following expression for each k (k = 1, 2, 3, 

…, K): 

)).(Pr())(Pr()Pr()(
1

kkkkkkkkkk
yFUyUFyYyF 


 (5) 

Then, by Sklar’s (1973) theorem, a joint K-dimensional distribution function of the random 

variables with the continuous marginal distribution functions Fk(yk) can be generated as follows: 

F(y1, y2, …, yK) = Pr(Y1 < y1, Y2 < y2, …, YK < yK) = Pr(U1 < F1(y1),, U2 < F2(y2), …,UK < FK(yK))  

                         = Cθ (u1 = F1(y1), u2 = F2(y2),…, uK = FK(yK)).  (6) 

Conversely, by Sklar’s theorem, for any multivariate distribution function with continuous 

marginal distribution functions, a unique copula can be defined that satisfies the condition in 

Equation (6). 

 Copulas themselves can be generated in several different ways, including the method of 

inversion, geometric methods, and algebraic methods (see Nelsen, 2006; Ch. 3). For instance, 

given a known multivariate distribution F(y1, y2, …, yK) with continuous margins Fk(yk), the 

inversion method inverts the relationship in Equation (6) to obtain a copula: 

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK)  

 = Pr(Y1 < F
–1

1(u1), Y2 < F
–1

2(u2), ..., Y3 < F
–1

3(u3)) (7) 

 = F(y1 = F
–1

1(u1), y2 = F
–1

2(u2), ..., yK = F
–1

k(uk)). 

Once the copula is developed, one can revert to Equation (6) to develop new multivariate 

distributions with arbitrary univariate margins.  
 A rich set of copula types have been generated using the inversion and other methods, 

including the Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and the 

Archimedean class of copulas (including the Clayton, Gumbel, Frank, and Joe copulas). These 

copulas are discussed later in the context of bivariate distributions. In such bivariate 

distributions, while θ can be a vector of parameters, it is customary to use a scalar measure of 

dependence. In the next section, we discuss some copula properties and dependence structure 

concepts for bivariate copulas, though generalizations to higher dimensions are possible. 

 

3.2 Copula Properties and Dependence Structure 

Consider any bivariate copula ) ,(
21

uuC


. Since this is a bivariate cumulative distribution 

function, the copula should satisfy the well known Fréchet-Hoeffding bounds (see Kwerel, 
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1988). Specifically, the Fréchet lower bound ) ,(
21

uuW  is )0 ,1max(
21
 uu  and the Fréchet 

upper bound ) ,(
21

uuM  is ) ,min(
21

uu . Thus, 

). ,() ,() ,(
212121

uuMuuCuuW 


 (8) 

From Sklar’s theorem of Equation (6), we can also re-write the equation above in terms of 

Fréchet bounds for the multivariate distribution ) ,(
21

yyF  generated from the copula ) ,(
21

uuC


: 

)).( ),(min() ,()0 ,1)()(max(
2211212211

yFyFyyFyFyF   (9) 

If the copula ) ,(
21

uuC


 is equal to the lower bound ) ,(
21

uuW  in Equation (8), or equivalently if 

) ,(
21

yyF  is equal to the lower bound in Equation (9), then the random variables 
1

Y  and 
2

Y  are 

almost surely decreasing functions of each other and are called “countermonotonic”. On the 

other hand, if the copula ) ,(
21

uuC


 is equal to the upper bound ) ,(
21

uuM  in Equation (8), or 

equivalently if ) ,(
21

yyF  is equal to the upper bound in Equation (9), then the random variables 

1
Y  and 

2
Y  are almost surely increasing functions of each other and are called “comonotonic”. 

The case when 
2121

) ,( uuuuC 


, or equivalently )()() ,(
221121

yFyFyyF  , corresponds to 

stochastic independence between 
1

Y  and 
2

Y . 

Different copulas provide different levels of ability to capture dependence between Y1 and 

Y2 based on the degree to which they cover the interval between the Fréchet-Hoeffding bounds. 

Comprehensive copulas are those that (1) attain or approach the lower bound W as θ approaches 

the lower bound of its permissible range, (2) attain or approach the upper bound M as θ 

approaches its upper bound, and (3) cover the entire domain between W and M (including the 

product copula case Π as a special or limiting case). Thus, comprehensive copulas parameterize 

the full range of dependence as opposed to non-comprehensive copulas that are only able to 

capture dependence in a limited manner.  

To better understand the generated dependence structures between the random variables 

) ,(
21

YY  based on different copulas, and examine the coverage offered by non-comprehensive 

copulas, it is useful to construct a scalar dependence measure between 
1

Y  and 
2

Y  that satisfies 

four properties as listed below (see Embrechts et al., 2002): 

(1) ),(),(
1221

YYYY     

(2) 1),(1
21

 YY   (10) 

(3) otoniccountermon ),(1 ),( c;comonotoni ),(1),(
21212121

YYYYYYYY    

(4) )),(),((),(
221121

YGYGYY    where 
1

G  and 
2

G  are two (possibly different) strictly 

increasing transformations. 

The traditional dependence concept of correlation coefficient   (i.e., the Pearson’s 

product-moment correlation coefficient) is a measure of linear dependence between Y1 and Y2. It 

satisfies the first two of the properties discussed above. However, it satisfies the third property 

only for bivariate elliptical distributions (including the bivariate normal distribution) and adheres 

to the fourth property only for strictly increasing linear transformations (see Embrechts et al., 

2002 for specific examples where the Pearson’s correlation coefficient fails the third and fourth 

properties; also see Boyer et al., 1999 for limitations of Pearson’s correlation coefficient for 
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asymmetric distributions). These limitations of the traditional correlation coefficient have led 

statisticians to the use of concordance measures to characterize dependence. Basically, two 

random variables are labeled as being concordant (discordant) if large values of one variable are 

associated with large (small) values of the other, and small values of one variable are associated 

with small (large) values of the other. This concordance concept has led to the use of two 

measures of dependence in the literature: the Kendall’s   and the Spearman’s 
S

  (see Bhat and 

Eluru, 2009 for a discussion of the Kendall’s  and the Spearman’s 
S

  measures). The Kendall’s 

 and the Spearman’s 
S

  measures can be shown to satisfy all the properties listed in Equation 

(10). In addition, both assume the value of zero under independence and are not dependent on the 

margins (.)
1

F  and (.)
2

F . Hence, it is customary to use these two concordance measures to 

characterize dependence structures in the copula literature, as opposed to using the familiar 

Pearson’s  .  

 

3.3 Alternative Copulas 

Several copulas have been formulated in the literature, and these copulas can be used to tie 

random variables together. We focus on bivariate forms of the Gaussian copula, the Farlie-

Gumbel-Morgenstern (FGM) copula, and the Archimedean class of copulas in this discussion. 

Table 1 provides a concise summary for each of the copulas along with the properties of the 

Kendall’s  and the Spearman’s 
S

  measures. 

 

3.3.1 The Gaussian copula 

The Gaussian copula is the most familiar of all copulas, and forms the basis for Lee’s (1983) 

sample selection mechanism. The copula belongs to the class of elliptical copulas, since the 

Gaussian copula is simply the copula of the elliptical bivariate normal distribution (the density 

contours of elliptical distributions are elliptical with constant eccentricity). The Gaussian copula 

takes the following form: 

),),(),((),(
2

1

1

1

221



uuuuC


   (11) 

where )(.,.,
2

 is the bivariate cumulative distribution function with Pearson’s correlation 

parameter )11(   . The Gaussian copula is comprehensive in that it attains the Fréchet 

lower and upper bounds, and captures the full range of (negative or positive) dependence 

between two random variables. However, it also assumes the property of asymptotic 

independence. That is, regardless of the level of correlation assumed, extreme tail events appear 

to be independent in each margin just because the density function gets very thin at the tails (see 

Embrechts et al., 2002). Conversely, in the Gaussian copula, a positive (negative) correlation 

gets manifested as clustering along the southwest-to-northeast (northwest-to southeast) plane 

close to the center point of the joint distribution. However, toward extreme tails, there is 

scattering or dependence reduction. Further, the dependence structure is radially symmetric 

about the center point in the Gaussian copula. That is, for a given correlation, the level of 
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dependence is equal in the upper and lower tails.
4
 On the other hand, extreme tail dependence 

and asymmetric tail dependence may be important characteristics in bivariate data (even after 

conditioning each marginal variable in terms of observed covariates).  

 

3.3.2 The Farlie-Gumbel-Morgenstern (FGM) copula 

The FGM copula was first proposed by Morgenstern (1956), and also discussed by Gumbel 

(1958) and Farlie (1960). It has been well known for some time in Statistics (see Conway, 1979; 

Kotz et al., 2000; Section 44.13). However, until Prieger (2002), it does not seem to have been 

used in Econometrics. In the bivariate case, the FGM copula takes the following form: 

)1)(1(1[),(
212121

uuuuuuC  


].  (12) 

For the copula above to be 2-increasing (that is, for any rectangle with vertices in the 

domain of [0,1] to have a positive volume based on the function), θ must be in [–1, 1]. The 

presence of the θ term allows the possibility of correlation between the uniform marginals 
1

u  and 

2
u . Specifically, the density function for the FGM copula is: 

)21)(21(1),(
2121

uuuuc  


.  (13) 

From above, it is clear that, when θ is positive, the density is higher if 
1

u  and 
2

u  are both 

high (both close to 1) or both low (both close to zero). On the other hand, when θ is negative, the 

density is higher if 
1

u  is high and 
2

u  is low, or if 
2

u  is high and 
1

u  is low. When θ is zero, it 

corresponds to independence. Otherwise, depending on whether θ is positive or negative, a 

positive or negative correlation, respectively, is generated between the continuous variables 
1

U  

and 
2

U . Thus, the FGM copula has a simple analytic form and allows for either negative or 

positive dependence. Like the Gaussian copula, it also imposes the assumptions of asymptotic 

independence and radial symmetry in dependence structure. However, the FGM copula is not 

comprehensive in coverage, and can accommodate only relatively weak dependence between the 

marginals.  

 

 3.3.3 The Archimedean class of copulas 

The Archimedean class of copulas is popular in empirical applications (see Genest and MacKay, 

1986 and Nelsen, 2006 for extensive reviews). This class of copulas includes a whole suite of 

closed-form copulas that cover a wide range of dependency structures, including comprehensive 

and non-comprehensive copulas, radial symmetry and asymmetry, and asymptotic tail 

independence and dependence. The class is very flexible, and easy to construct. Archimedean 

copulas are constructed based on an underlying continuous convex decreasing generator function 

  from [0, 1] to [0, ∞] with the following properties: ,0)(,0)1(  t and 0)(  t  for all 

)./)(;/)(( 10
22
ttttt    Further, in the discussion here, we will assume that 

                     
4
 Mathematically, the dependence structure of a copula is labeled as “radially symmetric” if the following condition 

holds: Cθ (u1, u2) = u1 + u2 – 1 + Cθ (1 – u1, 1 – u2), where the right side of the expression above is the survival 

copula (see Nelsen, 2006, page 37).  Consider two random variables Y1 and Y2 whose marginal distributions are 

individually symmetric about points a and b, respectively. Then, the joint distribution F of Y1 and Y2 will be radially 

symmetric about points a and b if and only if the underlying copula from which F is derived is radially symmetric.  
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)0( , so that an inverse 1
  exists. With these preliminaries, we can generate bivariate 

Archimedean copulas as: 

)],()([),(
21

1

21
uuuuC 





  (14) 

where the dependence parameter θ is embedded within the generator function. Note that the 

above expression can also be equivalently written as: 

)]()([)],([ 
2121

uuuuC 


 .   (15) 

Using the differentiation chain rule on the equation above, we obtain the following important 

result for Archimedean copulas that will be relevant to the sample selection model discussed in 

the next section: 

,
)],([

)(),(

21

2

2

21

uuC

u

u

uuC

















 where ttt  /)()(  .  (16) 

The density function of absolutely continuous Archimedean copulas of the type discussed later in 

this section may be written as: 

 

  
.

),(

)( )( ),(
),(

3

21

2121

21

uuC

uuuuC
uuc









    (17) 

Another useful result for Archimedean copulas is that the expression for Kendall’s   collapses 

to the following simple form (see Genest and MacKay, 1986 or Embrechts et al., 2002 for a 

derivation): 

dt
t

t






1

0
)(

)(
41




 .  (18) 

In the rest of this section, we provide an overview of four different Archimedean copulas: the 

Clayton, Gumbel, Frank, and Joe copulas.  

 

3.3.3.1 The Clayton copula 

The Clayton copula has the generator function )1)(/1()( 
 

 tt , giving rise to the following 

copula function (see Huard et al., 2006): 

. 0  ,)1(),(
/1

2121








uuuuC   (19) 

The above copula, proposed by Clayton (1978), cannot account for negative dependence. It 

attains the Fréchet upper bound as  , but cannot achieve the Fréchet lower bound. Using 

the Archimedean copula expression in Equation (18) for  , it is easy to see that  is related to 

 by )2/(   , so that 0 <   < 1 for the Clayton copula. Independence corresponds to 

0 .  
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3.3.3.2 The Gumbel copula 

The Gumbel copula, first discussed by Gumbel (1960) and sometimes also referred to as the 

Gumbel-Hougaard copula, has a generator function given by 
 )ln()( tt  . The form of the 

copula is provided below: 

   . 1  , )ln()ln(exp),(
/1

2121
 




uuuuC    (20) 

Like the Clayton copula, the Gumbel copula cannot account for negative dependence, but attains 

the Fréchet upper bound as  . Kendall’s   is related to   by )/1(1   , so that 0 <   

< 1, with independence corresponding to 1 .  

 

3.3.3.3 The Frank copula 

The Frank copula, proposed by Frank (1979), is the only Archimedean copula that is 

comprehensive in that it attains both the upper and lower Fréchet bounds, thus allowing for 

positive and negative dependence. It is radially symmetric in its dependence structure and 

imposes the assumption of asymptotic independence. The generator function is 

)]1/()1ln[()( 
 

 eet
t , and the corresponding copula function is given by: 

.   ,
1

)1)(1(
1ln

1
),(

21

21


































e

ee
uuC

uu

  (21) 

Kendall’s   does not have a closed form expression for Frank’s copula, but may be written as 

(see Nelsen, 2006, pg 171): 

  dt
e

t
DD

t

t

FF

1

1
)( , )(1

4
1

0


 








 .  (22) 

The range of   is –1 <   < 1. Independence is attained in Frank’s copula as .0  

 

3.3.3.4 The Joe copula 

The Joe copula, introduced by Joe (1993, 1997), has a generator function 

])1(1ln[)(


 tt  and takes the following copula form: 

  . 1  ,)1()1()1()1(1),(
/1

222121
 




uuuuuuC   (23) 

The Joe copula is similar to the Clayton copula. It cannot account for negative dependence. It 

attains the Fréchet upper bound as  , but cannot achieve the Fréchet lower bound. The 

relationship between   and   for Joe’s copula does not have a closed form expression, but takes 

the following form: 

 
dt

t

tt
DD

t

JJ 1

1

0

)1( )1ln(
)(),(

4
1






  






 .  (24) 

The range of   is between 0 and 1, and independence corresponds to .1   
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3.4 Copula Based Application of Household Residential Location Choice and Vehicle Miles 

Travelled 

In the preceding sections, we presented an overview of copulas and different types of copulas. In 

this section we provide a discussion of a copula based application to residential location choice 

and daily vehicle miles of travel (VMT). The material in this section is drawn from Bhat and 

Eluru (2009). 

There has been considerable interest in the land use-transportation connection in the past 

decade, motivated by the possibility that land-use and urban form design policies can be used to 

control, manage, and shape individual traveler behavior and aggregate travel demand. A central 

issue in this regard is the debate whether any effect of the neighborhood on travel demand is 

causal or merely associative (or some combination of the two; see Bhat and Guo, 2007). To 

explicate this, consider a cross-sectional sample of households, some of whom live in a neo-

urbanist neighborhood and others of whom live in a conventional neighborhood. A neo-urbanist 

neighborhood is one with high population density, high bicycle lane and roadway street density, 

good land-use mix, and good transit and non-motorized mode accessibility/facilities. A 

conventional neighborhood is one with relatively low population density, low bicycle lane and 

roadway street density, primarily single use residential land use, and auto-dependent urban 

design. Assume that the VMT of households living in conventional neighborhoods is higher than 

the VMT of households residing in neo-urbanist neighborhoods. The question is whether this 

difference in VMT between households in conventional and neo-urbanist households is due to 

“true” effects of the built environment, or due to households self-selecting themselves into 

neighborhoods based on their VMT desires. For instance, it is at least possible (if not likely) that 

unobserved factors that increase the propensity or desire of a household to reside in a 

conventional neighborhood (such as overall auto inclination, a predisposition to enjoying travel, 

safety and security concerns regarding non-auto travel, etc.) also lead to the household putting 

more vehicle miles of travel on personal vehicles. If this self selection is not accounted for, the 

difference in VMT attributed directly to the variation in the built environment between 

conventional and neo-urbanist neighborhoods can be mis-estimated. On the other hand, 

accommodating for such self-selection effects can aid in identifying the “true” causal effect of 

the built environment on VMT.  

The situation just discussed can be cast in the form of Roy’s (1951) endogenous 

switching model system (see Maddala, 1983; Chapter 9), which takes the following form: 

*

11

*

1

*

00

*

0

***

]1[1   ,

]0[1  ,

,0 if  0    ,0 if  1     ,

qqqqqq

qqqqqq

qqqqqqq

mrmwm

mrmzm

rrrrxr













   (25) 

The notation ]0[1 
q

r  represents an indicator function taking the value 1 if 0
q

r  and 0 

otherwise, while the notation ]1[1 
q

r  represents an indicator function taking the value 1 if 

1
q

r  and 0 otherwise. The first selection equation represents a binary discrete decision of 

households to reside in a neo-urbanist built environment neighborhood or a conventional built 

environment neighborhood.  *

q
r  in Equation (25) is the unobserved propensity to reside in a 

conventional neighborhood relative to a neo-urbanist neighborhood, which is a function of an (M 

x 1)-column vector 
q

x  of household attributes (including a constant).   represents a 
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corresponding (M x 1)-column vector of household attribute effects on the unobserved 

propensity to reside in a conventional neighborhood relative to a neo-urbanist neighborhood. In 

the usual structure of a binary choice model, the unobserved propensity *

q
r  gets reflected in the 

actual observed choice 
q

r (
q

r = 1 if the qth household chooses to reside in a conventional 

neighborhood, and 
q

r = 0 if the qth household decides to reside in a neo-urbanist neighborhood). 

q
  is usually a standard normal or logistic error tem capturing the effects of unobserved factors 

on the residential choice decision.  

The second and third equations of the system in Equation (25) represent the continuous 

outcome variables of log(vehicle miles of travel) in our empirical context. *

0q
m  is a latent 

variable representing the logarithm of miles of travel if a random household q were to reside in a 

neo-urbanist neighborhood, and *

1q
m  is the corresponding variable if the household q were to 

reside in a conventional  neighborhood. These are related to vectors of household attributes 
q

z  

and 
q

w , respectively, in the usual linear regression fashion, with 
q

  and 
q

  being random error 

terms. Of course, we observe *

0q
m  in the form of 

0q
m  only if household q in the sample is 

observed to live in a neo-urbanist neighborhood. Similarly, we observe *

1q
m  in the form of 

1q
m  

only if household q in the sample is observed to live in a conventional neighborhood.  

The potential dependence between the error pairs ),(
qq

  and ),(
qq

 has to be 

expressly recognized in the above system, as discussed earlier from an intuitive standpoint.
5
 The 

classic econometric estimation approach proceeds by using Heckman’s or Lee’s approaches or 

their variants (Heckman, 1974, 1976, 1979, 2001; Greene, 1981; Lee, 1982, 1983; Dubin and 

McFadden, 1984). Lee’s full information maximum likelihood approach has seen more 

application in the literature relative to the other approaches because of its simple structure, ease 

of estimation using a maximum likelihood approach, and its lower vulnerability to the 

collinearity problem of two-step methods. But Lee’s approach is also critically predicated on the 

bivariate normality assumption on the transformed normal variates in the discrete and continuous 

equation, which imposes the restriction that the dependence between the transformed discrete 

and continuous choice error terms is linear and symmetric. The copula-based approach, 

described in the preceding section, allows us to test alternative bivariate distributional 

assumptions for the discrete and continuous error terms. The model estimation approach to 

implementing alternative functional forms is described subsequently. 

 

3.4.1 Model Estimation 

In the current section, we discuss the maximum likelihood estimation approach for estimating the 

parameters of Equation system (25) with different copulas. 

Let the univariate standardized marginal cumulative distribution functions of the error 

terms ),,(
qqq

  in Equation (25) be ),,,(


FFF respectively. Assume that 
q

  has a scale 

parameter of 


 , and 
q

  has a scale parameter of 


 . Also, let the standardized joint 

                     
5 
The reader will note that it is not possible to identify any dependence parameters between (ηq, ξq) because the 

vehicle miles of travel is observed in only one of the two regimes for any given household. 
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distribution of ),(
qq

  be F(.,.) with the corresponding copula (.,.)
0


C , and let the standardized 

joint distribution of ),(
qq

 be G(.,.) with the corresponding copula (.,.)
1


C .  

Consider a random sample size of Q (q=1,2,…,Q) with observations on 

),,,,,(
10 qqqqqq

wzxmmr . The switching regime model has the following likelihood function: 
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Any copula function can be used to generate the bivariate dependence between ),(
qq

  

and ),(
qq

 , and the copulas can be different for these two dependencies (i.e., 
0


C  and 

1


C  need 

not be the same). Thus, there is substantial flexibility in specifying the dependence structure, 

while still staying within the maximum likelihood framework and not needing any simulation 

machinery. In the current paper, we use normal distribution functions for the marginals 

(.)


F , (.)


F  and (.)


F , and test various different copulas for 
0


C  and 

1


C .  

 

3.4.2 Empirical Analysis 

The data used for this analysis is drawn from the 2000 San Francisco Bay Area Household 

Travel Survey (BATS) designed and administered by MORPACE International Inc. for the Bay 

Area Metropolitan Transportation Commission (MTC). The dependent variables of interest in the 

current effort are (1) household residential location characterized as neo-urbanist and 

conventional neighborhoods (see Pinjari et al., 2008 for details) and (2) household VMT.  

The empirical analysis involved estimating models with the same structure for ),(
qq

  

and ),(
qq

 , as well as different copula-based dependency structures. This led to 6 models with 

the same copula dependency structure (corresponding to the six copulas discussed in Section 

3.3), and 24 models with different combinations of the six copula dependency structures for 

),(
qq

  and ),(
qq

 .  We also estimated a model that assumed independence between 
q

  and 

q
 , and 

q
  and 

q
 . 

 The maximum-likelihood estimation of the sample selection model with different copulas 

leads to a case of non-nested models. The most widely used approach to select among the 

competing non-nested copula models is the Bayesian Information Criterion (or BIC; see Trivedi 

and Zimmer, 2007, page 65).The BIC collapses to a comparison of the log-likelihood values 

across different models. The log-likelihood values for the five best copula dependency structure 

combinations are: (1) Frank-Frank (-6842.2), (2) Frank-Joe (-6844.2), (3) FGM-Joe (-6851.0), 

(4) Independent-Joe (-6863.7), and (5) FGM-Gumbel (-6866.2). It is evident that the log-

likelihood at convergence of the Frank-Frank and Frank-Joe copula combinations are higher 
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compared to the other copula combinations. Between the Frank-Frank and Frank-Joe copula 

combinations, the former is slightly better. The log-likelihood value for the structure that 

assumes independence (i.e., no self-selection effects) is -6878.1. All the five copula-based 

dependency models reject the independence assumption at any reasonable level of significance, 

based on likelihood ratio tests, indicating the significant presence of self-selection effects. 

Interestingly, however, the log-likelihood value at convergence for the classic textbook structure 

that assumes a Gaussian-Gaussian copula combination is -6877.9, indicating that there is no 

statistically significant difference between the Gaussian-Gaussian (G-G) and the independence-

independence (I-I) copula structures. Clearly, the traditional G-G copula combination indicates 

the absence of self-selection effects. However, this is simply an artifact of the normal 

dependency structure, and is indicative of the kind of incorrect results that can be obtained by 

placing restrictive distributional assumptions.  

 In the following presentation of the empirical results, we focus our attention on the 

results of the Independent-Independent (or I-I copula) specification that ignores self-selection 

effects entirely and the Frank-Frank (or F-F copula) specification that provides the best data fit. 

Table 2 provides the results, which are discussed below.  
 

3.4.2.1 Binary choice component 

The results of the binary discrete equation of neighborhood choice provide the effects of 

variables on the propensity to reside in a conventional neighborhood relative to a neo-urbanist 

neighborhood. The parameter estimates indicate that younger households (i.e., households whose 

heads are less than 35 years of  age) are less likely to reside in conventional neighborhoods and 

more likely to reside in neo-urbanist neighborhoods, perhaps because of higher environmental 

sensitivity and/or higher need to be close to social and recreational activity opportunities (see 

also Lu and Pas, 1999). Households with children have a preference for conventional 

neighborhoods, potentially because of a perceived better quality of life/schooling for children in 

conventional neighborhoods compared to neo-urbanist neighborhoods. Also, as expected, 

households who own their home and who live in a single family dwelling unit are more likely to 

reside in conventional neighborhoods.  

 

3.4.2.2 Log(VMT) continuous component for neo-urbanist neighborhood regime 

The estimation results corresponding to the natural logarithm of vehicle miles of travel (VMT) in 

a neo-urbanist neighborhood highlight the significance of the number of household vehicles and 

number of full-time students. As expected, both of these effects are positive. In particular, 

log(VMT) increases with number of vehicles in the household and number of students. The 

effect of number of vehicles is non-linear, with a jump in log(VMT) for an increase from no 

vehicles to one vehicle, and a lesser impact for an increase from one vehicle to 2 or more 

vehicles (there were only two households in neo-urbanist neighborhoods with 3 vehicles, so we 

are unable to estimate impacts of vehicle increases beyond 2 vehicles in neo-urbanist 

neighborhoods). Interestingly, we did not find any statistically significant effect of employment 

and neighborhood characteristics, in part because the variability of these characteristics across 

households in neo-urbanist zones is relatively small.  

The copula dependency parameter between the discrete choice residence error term and 

the log(VMT) error term for neo-urbanist households is highly statistically significant and 

negative for the F-F model. The   estimate translates to a Kendall’s  value of -0.26. The 
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negative dependency parameter indicates that a household that has a higher inclination to locate 

in conventional neighborhoods would travel less than an observationally equivalent “random” 

household if both these households were located in a neo-urbanist neighborhood (a “random” 

household, as used above, is one that is indifferent between residing in a neo-urbanist or a 

conventional neighborhood, based on factors unobserved to the analyst). Equivalently, the 

implication is that a household that makes the choice to reside in a neo-urbanist neighborhood is 

likely to travel more than an observationally equivalent random household in a neo-urbanist 

environment, and much more than if an observationally equivalent household from a 

conventional neighborhood were relocated to a neo-urbanist neighborhood. This may be 

attributed to, among other things, such unobserved factors characterizing households inclined to 

reside in neo-urbanist settings as a higher degree of comfort level driving in dense, one-way 

street-oriented, parking-loaded, traffic conditions.  

The lower travel tendency of a random household in a neo-urbanist neighborhood 

(relative to a household that expressly chooses to locate in a neo-urbanist neighborhood) is 

teased out and reflected in the high statistically significant negative constant in the F-F copula 

model. On the other hand, the I-I model assumes, incorrectly, that the travel of households 

choosing to reside in neo-urbanist neighborhoods is independent of the choice of residence. The 

result is an inflation of the VMT generated by a random household if located in a neo-urbanist 

setting. 

  

3.4.2.3 Log(VMT) continuous component for conventional neighborhood regime 

The household socio-demographics that influence vehicle mileage for households in a 

conventional neighborhood include number of household vehicles, number of full-time students, 

and number of employed individuals. As expected, the effects of all of these variables are 

positive. The household vehicle effect is non-linear, with the marginal increase in log(VMT) 

decreasing with the number of vehicles. In addition, two neighborhood characteristics – density 

of vehicle lanes and accessibility to shopping – have statistically significant effects on log(VMT) 

in the conventional neighborhood regime. Both these effects are negative, as expected.  

The dependency parameter in this segment for the F-F model is highly statistically 

significant and positive. The   estimate translates to a Kendall’s   value of 0.36. The positive 

dependency indicates that a household that has a higher inclination to locate in conventional 

neighborhoods is likely to travel more in that setting than an observationally equivalent random 

household.  Again, the I-I model ignores this residential self-selection in the estimation sample, 

resulting in an over-estimation of the VMT generated by a random household if located in a 

conventional neighborhood setting (see the higher constant in the I-I model relative to the F-F 

model corresponding to the conventional neighborhood VMT regime). 
 

4. CONCLUSION 

This chapter has presented an overview of discrete choice models structures including 

multinomial logit model, generalized extreme value (GEV) models, mixed multinomial logit 

(MMNL) models, mixed generalized extreme value models and other mixed discrete choice 

models. The formulations presented are quite flexible although estimation using the maximum 

likelihood technique requires the evaluation of multi-dimensional integrals (in the MMNL and 

MGEV models). Since, there have been several comprehensive reviews of discrete choice 

models, the current chapter has emphasized more on some recent developments in discrete-
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continuous modeling in this chapter. In particular, the chapter presents a discussion of the 

recently formulated copula-based methodology for modeling discrete-continuous choices.  

The approach is based on the concept of a “copula”, which is a multivariate functional 

form for the joint distribution of random variables derived purely from pre-specified parametric 

marginal distributions of each random variable. The copula concept has been recognized in the 

statistics field for several decades now, but it is only recently that it has been explicitly 

recognized and employed in the econometrics field. The reasons for the recent interest in the 

copula approach for modeling discrete-continuous choices can be summarized as follows: First, 

the copula approach does not entail any more computational burden than the commonly used 

Lee’s approach (Lee, 1983). Second, the approach allows the analyst to stay within the familiar 

maximum likelihood framework for estimation and inference, and does not entail any kind of 

numerical integration or simulation machinery. Third, the approach allows the marginal 

distributions in the discrete and continuous equations to take on any parametric distribution, just 

as in Lee’s method. Finally, under the copula approach, Lee’s coupling method is but one of a 

suite of different types of couplings that can be tested.  

In addition to the general overview of copulas, the current chapter provides a discussion 

of copula properties and several alternate copula dependency structures employed in the 

econometrics and statistics literature. Further, to illustrate the copula approach, we discuss a 

copula based approach to model residential neighborhood choice and daily household vehicle 

miles of travel (VMT) using the 2000 San Francisco Bay Area Household Travel Survey 

(BATS). The self-selection hypothesis in the current empirical context is that households select 

their residence locations based on their travel needs, which implies that observed VMT 

differences between households residing in neo-urbanist and conventional neighborhoods cannot 

be attributed entirely to built environment variations between the two neighborhoods types. This 

example is based on the result of Bhat and Eluru (2009). 

To summarize, the recent advancements in econometrics should facilitate the application 

of behaviorally rich structures in transportation-related discrete and discrete-continuous choice 

modeling in the years to come. 
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Table 1 Characteristics of Alternative Copula Structures† 
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Table 2 Estimation Results of the Switching Regime Model‡ 

Variables 

Independence-Independence 

Copula 
Frank-Frank Copula 

Parameter t-stat Parameter t-stat 

Propensity to choose conventional neighborhood relative to neo-

urbanist neighborhood 
    

Constant 0.201 4.15 0.275 5.72 

Age of householder < 35 years -0.131 -2.35 -0.143 -2.75 

Number of children (of age < 16 years) in the household 0.164 4.62 0.161 4.59 

Household lives in a single family dwelling unit 0.382 6.79 0.337 6.28 

Own household 0.597 10.37 0.497 8.81 

Log of vehicle miles of travel in a neo-urbanist neighborhood     

Constant -0.017 -0.16 -0.638 -5.48 

Household vehicle ownership     

      Household Vehicles = 1 2.617 21.50 2.744 24.26 

      Household Vehicles ≥ 2 3.525 25.44 3.518 27.40 

Number of full-time students in the household 0.183 2.13 0.112 1.41 

Copula dependency parameter (θ) -- -- -2.472 -6.98 

Scale parameter of the continuous component 1.301 40.62 1.348 34.31 

Log of vehicle miles of travel in a conventional neighborhood     

Constant  0.379 2.28 0.163 1.08 

Household vehicle ownership     

      Household Vehicles = 1 3.172 21.77 3.257 25.43 

      Household Vehicles = 2 3.705 25.32 3.854 29.92 

      Household Vehicles ≥ 3 3.931 25.92 4.102 30.41 

Number of employed individuals in the household 0.229 7.24 0.208 6.66 

Number of full-time students in the household 0.104 5.06 0.131 6.27 

Density of bicycle lanes -0.023 -3.08 -0.024 -3.24 

Accessibility to shopping (Hansen measure) -0.024 -7.34 -0.027 -8.19 

Copula dependency parameter (θ)
 
 -- -- 3.604 7.22 

Scale parameter of the continuous component 0.891 75.78 0.920 63.59 

Log-likelihood at convergence -6878.1 -6842.2 

            

 ‡ Source: Bhat and Eluru (2009) 


