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ABSTRACT 2 

Location-based social networks (LBSN) are social media sites where users’ check-in at venues 3 

and share content linked to their geo-locations. LBSN, considered as a novel data source, contain 4 

valuable information for urban planners and researchers. While earlier research efforts focused 5 

either on disaggregate patterns or aggregate analysis of social and temporal attributes, there is no 6 

attempt to relate the data to transportation planning outcomes. To that extent, the current study 7 

employs an LBSN service-based data for aggregate level transportation planning exercise by 8 

developing land-use planning models. Specifically, we employ check-in data aggregated at the 9 

census tract level to develop a quantitative model for activity intensity as a function of land use 10 

and built environments attributes for the New York City (NYC) region. A statistical exercise based 11 

on clustering of census tracts and negative binomial regression analyses are adopted to analyze the 12 

aggregated data. We demonstrate the implications of the estimated models by presenting the spatial 13 

aggregation profiling based on the model estimates. The findings provide insights on relative 14 

differences of activity engagements across the urban region. The proposed approach thus provides 15 

a complementary analysis tool to traditional transportation planning exercises. 16 

 17 

Keywords: Location-based social networks, land use profiles, check-in, activity intensity, urban 18 

planning, clustering, negative binomial regression  19 
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1. INTRODUCTION 1 

Smartphone ownership among Americans has rapidly risen to 77% in 2018 from 35% in 2011 (1). 2 

The ubiquity of smartphones with an embedded global position services (GPS) allows for 3 

obtaining precise individual level location information. In fact, according to a recent report by Pew 4 

Research Center (1), 90% of smartphone users obtain directions, recommendations and other 5 

location specific information from their phone. Several social networking sites (such as Twitter, 6 

Foursquare, Gowalla, and Facebook) allow users to share content on their websites with geo-coded 7 

information often referred to as location based social networks (LBSN). These location-based 8 

services allow users to “check-in” at a venue (such as restaurant or public park) based on their 9 

GPS coordinates providing them with location specific status update. While privacy concerns 10 

among users have ensured that the usage of location-based services is not universal, a large share 11 

of the population still adopts these services. For instance, 28% of American adults use a mobile or 12 

LBSN service. Furthermore, 12% of smartphone owners use their phone to check-in locations 13 

using the LBSN service. More interestingly, 7% of all adults allow the social media service they 14 

are using to automatically share their locations when they update their status. As is expected, the 15 

usage is higher among younger individuals - ages between 18-29 (16%), 30-49 (11%), 50-64 (9%) 16 

and 65+ (11%). These usage rates for LBSN clearly highlight the small share of adoption. 17 

However, given the large number of smartphone users, the data from these services would be larger 18 

than the data collected from traditional transportation data collection approaches (such as 19 

household surveys). Thus, it is not surprising that in recent years several studies have explored the 20 

use of such LBSN based datasets acquired from websites for data mining, land use planning, urban 21 

mobility analysis and transportation analysis (see (2)). 22 
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 To be sure, the data available from LBSN services is not without limitations (as identified 1 

in (3)). First, the data does not provide detailed information (on gender, age, education) at the 2 

individual level. Second, even avid LBSN service users are unlikely to “check-in” every event in 3 

their day (particularly the routine activities). The activity start and end times are also unlikely to 4 

be available. Finally, the sample of individuals providing the information represents a sample of 5 

the population that is unlikely to be representative of the broader population. In fact, recently a 6 

study by Rzeszewski (4) illustrated that the data obtained from are inherently different based on 7 

the user behavior and the social media platform adopted. The authors cautioned analysts 8 

considering merging data from multiple platforms. Given these inherent biases, the data obtained 9 

from such services are prone to bias at a disaggregate level. On the other hand, employing the data 10 

for aggregate level analysis might provide a more representative population behavior. For 11 

example, rather than focusing on an individual’s activity locations, based on the LBSN data 12 

identifying number of “check-ins” at a spatial unit such as census tract might offer relative 13 

differences of activity engagement across the urban region. More importantly, the traditional data 14 

collection methods (such as household surveys) provide sparse information on such activity 15 

engagement information. Thus, employing LBSN data check-ins to identify activity centers (based 16 

on attractiveness) across the urban regions will provide a complementary analysis to traditional 17 

land use transportation planning exercises (5).  18 

Given the large number of LBSN users, the data available provide us with large-scale 19 

datasets for activity analysis. The LBSN users provide analysts with detailed spatio-temporal data 20 

that can be utilized for planning applications. The main objective of our study effort is to employ 21 

LBSN service-based data for aggregate level planning exercise by developing land-use 22 

transportation planning models. To elaborate, using activity check-ins within a spatial aggregation 23 
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as a surrogate measure of attractiveness, the study provides a quantitative relationship between 1 

attractiveness and various socio-demographic, points of interest, transportation infrastructure and 2 

land-use attributes. The established relationship will allow transportation and land-use planners to 3 

identify what factors affect zonal/destination attractiveness and pro-actively plan for potential new 4 

demand with changing socio-demographic, land-use and/or transportation infrastructure patterns. 5 

Example of changes that can be analyzed include development of mixed use developments in dense 6 

neighborhoods or addition of public transit infrastructure.   7 

In our research effort, data from LBSN provider Foursquare that allows users to check-in 8 

at indoor and outdoor venues (such as café, restaurant or public spaces) via smartphones is utilized. 9 

The geo-coded data is aggregated using Geographical Information System (GIS) techniques to 10 

obtain check-ins at a census tract level also referred to as “activity intensity” for the New York 11 

City (NYC) region. The relationship of the computed activity intensity variable with socio-12 

demographics, land use variables, transportation and infrastructure variables, and points of 13 

interests at the census tract level is analyzed to offer insights on interconnectedness of activity 14 

intensity and other attributes.  15 

A statistical exercise based on clustering and negative binomial regression analysis are 16 

adopted to analyze the aggregated data. The cluster analysis is performed in order to categorize 17 

the census tracts in the NYC region as a function of various exogenous variables. The clustering 18 

approach, rather than considering the entire city as homogenous allows us to distinguish across 19 

different clusters. Subsequently, cluster specific regression analysis is employed to identify the 20 

factors that affect the “check-ins” in the cluster. As the “check-ins” are non-negative integer 21 

values, negative binomial regression models were adopted for cluster specific regression models. 22 

The models estimated are employed to illustrate the impact of various parameters on check-ins 23 
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using a hot spot analysis. Hence, we illustrate how spatial distribution of activity patterns derived 1 

by LBSN data can be utilized to reveal urban activity patterns. 2 

The remainder of the paper is organized as follows: Section 2, provides a review of earlier 3 

research and positions the current work in context.  In Section 3, data source and description are 4 

provided. The research methods employed, model results, validation statistics and hot spot analysis 5 

are presented in Section 4. Finally, Section 5 concluded the paper. 6 

 7 

2. EARLIER RESEARCH AND CURRENT STUDY IN CONTEXT 8 

The traditional research efforts examine activity travel patterns (and related choices) based on 9 

traditional household travel surveys. The literature in this context is quite vast and it is beyond the 10 

scope of the paper to document (see (6) and (7) for a detailed summary of earlier work). With the 11 

increasing adoption of mobile devices, there is growing research employing innovative data 12 

sources for transportation planning analysis. In this context, we present the review of earlier studies 13 

along two streams: (1) research employing social media data for non-transportation research 14 

context and (2) research employing social media data for transportation research contexts.  15 

The first stream of studies has mainly originated in the fields of social sciences and 16 

computer science. The emphasis of these research efforts is to extract behavioral insights on online 17 

activity and offline interactions (8). Cheng et al. (9) derived an algorithm to understand the 18 

mobility patterns of LBSN users. By studying several different metropolitan areas, user 19 

displacement, radius of gyration, and returning probability of individuals were determined. Their 20 

findings can be summarized as; LBSN users follow simple reproducible patterns which refer to 21 

Levy Flight type patterns, social status is coupled to mobility, and content analysis can reveal 22 

hidden context between people and locations. More recently, Ahas et al. (10) and Cao et al. (11) 23 
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employed mobile and/or location based social network data to study temporal and spatial 1 

differences in urban regions from multiple countries. A hierarchical statistical approach -  the 2 

nested Chinese Restaurant Franchise (nCRF) - based on tweet contents of LBSN data of the US 3 

was proposed by Ahmad et al. (12) to infer a latent distribution of user locations. Kling and 4 

Pozdnoukhou (13) also used topic modeling for investigating space-time dynamics of time-5 

stamped and geo-located check-in information. Topic modeling was also employed to process 6 

urban activity patterns and classify them for LBSN data of NYC (3).  7 

The second stream of research has explored the viability of social media data for 8 

transportation planning purposes. Frias-Martinez et al. (5) used an unsupervised Neural Networks 9 

technique named Self Organizing Maps (SOM) to Manhattan area of NYC. The study findings 10 

indicate that LBSN data can serve as a complimentary source of information for urban planning 11 

development. Cranshaw et al. (9) employed the fine spatial resolution based on geo-located tweets 12 

by clustering nearby locations with similar activities and revealing social-spatial divisions in 13 

Pittsburgh. Wakamiya et al. (14) used LBSN data of three cities in Japan (Osaka, Nagoya, Tokyo) 14 

to study the crowd and individual movements across geography by aggregate and dispersion 15 

models as well as semantics of the tweet contents. They combined temporal analysis with k-means 16 

clustering based on the spatial check-ins and urban types by tracking common patterns in different 17 

regions. Their findings confirmed that crowd activities determined via Twitter can characterize 18 

living spaces in cities. Noulas et al. (15) used rank based movement model by ranking transitions 19 

by distance in order to capture urban mobility pattern variations. A similar study using rank-based 20 

models was conducted aiming to determine how a large-scale geo-location data set can be analyzed 21 

to classify and refer to individual activity patterns (11). As a result of aggregate and disaggregate 22 

level analysis in New York, Chicago and Los Angeles areas, the study concluded that people 23 
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choose their destinations mainly based on the popularity of these places. Bawa-Cavia (16) 1 

conducted inter urban analysis of Foursquare data in three metropolitan cities (NYC, London, and 2 

Paris) to understand difference in spatial structures across these cities. Zhan et al. (17) deployed 3 

supervised (random forest algorithm) and unsupervised (k-means clustering) approaches to infer 4 

land use of NYC based on LBSN data. The findings confirm that LBSN data can be used as a 5 

complementary data source in land use planning. 6 

While a number of research studies have been conducted to analyze mobile or location 7 

based social network data, the research is still in its infancy. The analysis has been focused either 8 

on disaggregate patterns or aggregate analysis of social and temporal attributes. While these efforts 9 

provide useful insights, linkages to transportation planning outcomes such as socio-demographics, 10 

land use variables, transportation and infrastructure variables, and points of interests are poorly 11 

understood. The main objective of our proposed effort is to employ check-in data aggregated at 12 

the census tract level to develop a quantitative model for activity intensity as a function of socio-13 

demographics, transportation infrastructure, land use and built environment attributes. The study 14 

also recognizes that developing a single model for NYC would be restrictive and of limited use. 15 

Hence, prior to modeling, we classify the census tracts in NYC into four clusters as a function of 16 

land use variables. Subsequently, for each cluster a Negative Binomial Regression model is 17 

developed to study activity intensity across the city. The results from these models are employed 18 

to conduct a hot spot analysis highlighting the impact of independent variables across the urban 19 

region. The hot spot analysis illustrated how the data from LBSN users can assist planners to make 20 

informed decisions on mobility and infrastructure needs.  21 
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3. DATA SOURCE AND DESCRIPTIVE STATISTICS 1 

The original check-in dataset used in a previous study by Cheng et al. (9) was employed in this 2 

research. The data consisted of 220,000 unique users checked-in at 1,200 venues from December 3 

2011 to April 20121. The data was obtained from Location Sharing Services (LSS) applications 4 

such as Foursquare, Twitter, TweetDeck, Gowalla. Up to 2,000 most recent geo-labeled tweets for 5 

each user were saved (for more details on the dataset format see (9)). Using GIS analysis 6 

procedures, the check-in data in the NYC region were selected. NYC’s population in 2011 was 7 

8.273 million with 2,166 census tract zones based on the zoning system of the US Census Bureau. 8 

The aggregated check-in counts were augmented with census tract characteristics including socio-9 

demographics, land-use characteristics, and points of interests. After the data processing, 624,595 10 

geo-coded check-ins were considered for analysis. The check-ins in the census tract range from 0 11 

through 11,159 with an average of about 288. 12 

In our analysis, we generated a host of variables from four broad categories including: (1) 13 

land use characteristics (such as one and two family buildings, multi-family walk-up buildings, 14 

multi-family elevator buildings, residential buildings, commercial and office buildings, industrial 15 

and manufacturing, transportation and utility, public facilities and institutions, open space and 16 

outdoor recreation, and parking facilities), (2) socio-demographics (such as population density, 17 

population by age, gender, race, and household characteristics), (3) points of interest (locations 18 

such as leisure, tourism, recreational, library, airport, sidewalk café, health places), and (4) built 19 

environment (such as bus line, bus stops, subway stops, train stops, ferry landing, park and ride 20 

stations, bike route, street center line, school counts, building footprint, and green area). We have 21 

                                                 
1 The proposed prediction framework of activity check-ins can be employed by using LBSN data from other regions 

or for any other year if the data is available. 
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extracted the abovementioned variables at the Census Tract level for the year 2010 to reflect the 1 

available LBSN data. A descriptive summary of the characteristics generated for our analysis are 2 

presented in Table 1.   3 

 4 

TABLE 1 Descriptive Statistics of NYC Census Tracts 5 

Variables Name Definition 
Zonal 

Minimum Maximum Average 

Dependent variable 

Check-in Counts per 

CT* 
Total number of check-ins per CT 0 11159 288.41 

Socio-Demographic Characteristics  

Median Age  Median CT Age / 10 0 8.45 3.57 

Caucasian Proportion 
Caucasian Population of CT / Total 

Population of CT 
0 1.00 0.43 

African – American 

Proportion 

African-American population of CT / Total 

population of CT 
0 1.00 0.27 

Hispanic Proportion 
Hispanic population of CT / Total 

population of CT 
0 1.00 0.26 

Asian Proportion 
Asian population of CT / Total population 

of CT 
0 1.00 0.12 

Children in HH× Total number of children of CT / Total 

number of HH of CT 
0 0.64 0.29 

Family HH 
Total number of family HH of CT / Total 

number HH of CT 
0 1.00 0.64 

Average Family Size Average family size of CT 0 6.09 3.27 

Rental Vacancy Rate 

(%) 

Rental vacancy units*100 / Total number of 

units within CT 
0 61.20 4.75 

CT Area CT area in acres 0.0134 4502.98 89.34 

Total Population Total population per CT 0 26588 3778.70 

Points of Interest Characteristics 

Automotive  
Number of Automotive Related Places per 

CT 
0 7 0.04 

Government Number of Governmental Places per CT 0 75 4.50 

Leisure Number of Leisure Points per CT 0 13 0.72 

Tourism Number of Touristic Places per CT 0 16 0.07 

Health Number of Health Related Places per CT 0 8 0.12 

Library Number of Libraries per CT 0 2 0.10 

Nursing Number of Nursing Places per CT / 10 0 12 0.56 

Senior Number of Senior places per CT 0 2 0.12 

Airport Number of Airports per CT 0 1 0.00 

Ferry Landing Number of Ferry Landing per CT 0 4 0.02 

Beach, Garden, Natural 

state parks 

Number of beaches, gardens, natural state 

parks per CT /102 0 422 2.59 
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Subway Yard Number of subway yards per CT 0 2 0.02 

Food Places Number of food aid related places per CT 0 10 0.52 

Other Transportation 

Fac. 

Number of other transportation facilities per 

CT / 10 
0 17 0.09 

Waste Management 

Fac. 

Number of waste management facilities per 

CT / 10 
0 47 0.24 

Children Daycare 
Number of children daycare points per CT / 

10 
0 11 1.19 

Bus Depot Number of bus depots per CT 0 1 0.01 

Recreation, Plaza, Mall 
Number of recreation areas, plazas, malls 

per CT / 10 
0 12 0.51 

Sidewalk Café Number of sidewalk café per CT / 103 0 13.60 0.93 

Transportation Infrastructure Characteristics  

Street Centerline 
Total length of street center lines in ft in CT 

/ 104 0 90.01 5.38 

Bus line Total length of bus lines in ft in CT / 103 0 14.47 1.07 

Building Footprint Total area of building footprints in CT / 107 0 0.87 0.29 

Building Elevation Total number of building floors in CT / 103 0 6.08 1.19 

Green Area Density Total green area by CT area in sq-ft / 103 0 6597.24 3.60 

Railroad Total length of railroads in ft in CT / 105 0 22.92 0.36 

Bike Route Total length of bike routes in ft in CT / 104 0 6.09 0.20 

Number of Buildings Total number of buildings in CT / 103 0 3.25 0.49 

Bus Stop Total number of bus stops in CT / 10 0 6 0.61 

Subway Entrances 
Total number of subway entrances in CT / 

10 
0 3.60 0.08 

Subway Stops Total number of subway stops in CT  0 6 0.22 

Land Use Characteristics 

One and Two Family 

Buildings Density 

Total one and two family building lands by 

CT area in sq-ft / 10 
0 6.79 1.78 

Multi-Family Walk-Up 

Buildings Density 

Total multi-family walk-up buildings lands 

by CT area in sq-ft / 10 
0 5.42 0.96 

Multi-Family Elevator 

Buildings Density 

Total multi-family elevator buildings lands 

by CT area in sq-ft / 10 
0 11.86 0.72 

Residential and Comm. 

Buildings Density 

Total residential and commercial lands by 

CT area in sq-ft / 10 
0 8.64 0.51 

Commercial and Office 

Buildings Density 

Total commercial and office buildings lands 

by CT area in sq-ft / 10 
0 6.12 0.39 

Industrial and 

Manufacturing Density 

Total industrial and manufacturing lands by 

CT area in sq-ft / 10 
0 5.90 0.19 

Transportation and 

Utility Density 

Total transportation and utility lands by CT 

area in sq-ft / 10 
0 8.92 0.16 

Public Facilities and 

Institutions Density 

Total public facilities and institution lands 

by CT area in sq-ft / 10 
0 9.10 0.57 

Open Space and 

Outdoor Recreation 

Density 

Total open space and outdoor recreation 

lands by CT area in sq-ft / 10 
0 27.37 0.39 

Parking Facilities 

Density 

Total parking facility lands by CT area in 

sq-ft / 10 
0 1.58 0.10 

*Census Tract 1 
×Household 2 
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4. EMPIRICAL ANALYSIS 1 

(a) 4.1 Cluster Analysis 2 

Clustering is a widely used statistical analysis tool to categorize items together based on their 3 

similarities or dissimilarities (18). The aim of clustering algorithm is to classify the population into 4 

k categories based on a multivariate set of exogenous variables. The clusters generated should be 5 

internally homogenous while being heterogeneous relative to other clusters (19). k-means 6 

clustering is a common and straightforward model that uses minimum Euclidean distance between 7 

observations (see (20) for similar examples).  8 

Based on the host of exogenous variables, a cluster analysis is conducted to categorize the 9 

census tracts. Specifically, eight land use characteristics were employed to undertake the clustering 10 

exercise. These characteristics are; one and two-family buildings, multi-family walk-up buildings, 11 

multi-family elevator buildings, mixed residential and commercial buildings, commercial and 12 

office buildings, industrial and manufacturing, transportation and utility, public facilities and 13 

institutions. The k-means clustering algorithm provided good fit for a 4-cluster classification. Also, 14 

Bonferroni post-hoc test was used to validate the results of k-means clustering and multiple 15 

pairwise comparisons obtained with over 75% of each cluster was found to be statistically 16 

significant. The characteristics of the final clusters obtained are presented in Table 2. The spatial 17 

distribution of census tracts identified with cluster analysis results are illustrated in Figure 1. 18 

Cluster 1 consists of census tracts with single family and/or townhouses. Cluster 2 is represented 19 

by a mix of public facilities, commercial buildings and offices, transportation as well as 20 

elevated/high rise buildings. Cluster 3 is composed of low rise residential and commercial 21 

buildings. Finally, as can be seen from the figure, a large portion of Cluster 4 are census tracts 22 

surrounding central park in Manhattan area. This cluster is predominantly covered by high rise 23 
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buildings in addition to public facilities and institutions. Based on the characteristics, the clusters 1 

are labelled as follows: Cluster 1 – Low-rise residential, Cluster 2 – Public facilities and 2 

Commercial, Cluster 3 – Low-rise residential and commercial, Cluster 4 – High-rise residential 3 

and public facilities (see Figure 1). 4 

 5 

TABLE 2 Final Cluster Centers 6 

Land Use Variables 

Cluster 1 

(Low Rise 

Residential) 

Cluster 2 

(Public 

Facilities and 

Commercial) 

Cluster 3 

(Low Rise 

Residential and 

Commercial) 

Cluster 4 

(High Rise 

Residential and 

Public 

Facilities) 

One and Two Family Buildings 4.01 0.50 1.65 0.43 

Multi-Family Walk-Up Buildings 0.47 0.54 1.95 0.68 

Multi-Family Elevator Buildings 0.13 0.56 0.38 3.30 

Mixed Residential and Commercial 

Buildings 
0.17 0.72 0.53 0.72 

Commercial and Office Buildings 0.21 0.70 0.29 0.31 

Industrial and Manufacturing 0.08 0.44 0.11 0.06 

Transportation and Utility 0.06 0.37 0.09 0.08 

Public Facilities and Institutions 0.30 0.90 0.50 0.57 

Number of Census Tract Zones 587 664 650 265 

 7 
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 1 
FIGURE 1 Spatial Distribution of Clusters 2 

 3 

(b) 4.2 Negative Binomial (NB) Regression Model Results 4 

Given that activity intensity is represented based on non-negative integers, Negative Binomial 5 

(NB) regression approach is employed for our analysis. For the sake of brevity, details on the 6 

model formulation are not provided (see (21) for more details). For model estimation, two sets of 7 

models were estimated. First, a single NB model for New York City CT’s (census tracts) was 8 

developed (pooled model). Second, NB models specific to each cluster (obtained above) were 9 

estimated.  10 

5 0 5 10 15 202.5

Miles
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Prior to discussing the estimation results, we compare the performance of the pooled model 1 

and cluster models. The model performance was tested based on the computation of Bayesian 2 

Information Criterion (BIC) that penalizes the model with large number of parameters. The BIC 3 

for a given empirical model is equal to: 𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄); where 𝐿𝐿 is the log likelihood 4 

value at convergence, 𝐾 is the number of parameters, and 𝑄 is the number of observations. The 5 

model with the lower BIC is the preferred model. The corresponding BIC values for pooled and 6 

cluster models are: 23376.2 and 23304.3, respectively. The comparison clearly illustrates the 7 

improved fit offered by the cluster specific NB models. For the sake of brevity, we restrict 8 

ourselves to the discussion of cluster-based NB models. The model estimation results for the 9 

cluster-based NB models are presented in Table 3.  10 

 11 

(c) Socio-Demographic Characteristics 12 

Several sociodemographic characteristics influence the activity intensity at the census tract level 13 

including: median age by gender, proportion of population by ethnicity, average number of 14 

children at the household level, average family size, the proportion of family households within 15 

census tracts and percentage of rental vacancy rate.  16 

Across the four clusters, the increase in median age has an overall negative effect. While 17 

median age coefficients by gender are positive (male median age for cluster 2 and 3 or female 18 

median age for cluster 4), the other median age coefficient is negative and slightly larger in 19 

magnitude. The result confirms the finding of Sloan et al. (22) that increasing median age in the 20 

census tract reduces activity intensity. Proportion of population by ethnicity has varying trends 21 

across clusters. In cluster 1, higher proportion of Caucasian and African-American increases 22 

activity intensity. On the other hand, for cluster 2, higher proportion of African-American and 23 
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Hispanic ethnicities are likely to reduce check-in activity. In cluster 3, Hispanic proportion has a 1 

positive influence while Caucasian proportion has a positive influence in cluster 4. On the other 2 

hand, according to Pew Research Center (1), overall statistics indicate that Hispanic and African-3 

American social media users proportion are slightly higher than Caucasian users proportion. The 4 

findings provide evidence that the same variable can affect census tracts across the region 5 

differently. These trends could not have been captured using a pooled model. The increase in the 6 

average number of children at the household level, as expected, reduces the activity intensity across 7 

clusters with varying magnitudes. The presence of higher proportion of family households reduces 8 

activity in Cluster 3. Correspondingly, a study effort by Do et al. (23) observed that family 9 

households have lower average weekly visited places compared to other household types. The 10 

increase in average family size has a positive influence on activity intensity for Cluster 2. Finally, 11 

the rental vacancy rate has a negative influence on Cluster 3, probably because the increase in 12 

rental vacancy represents lower occupancy rate resulting in lower number of activities. 13 
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Table 3 Negative Binomial Regression Results 1 

Variable Names* 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant 6.32 5.65 6.12 21.17 8.20 13.10 8.97 12.13 

Socio-Demographic Characteristics 

Median Age -0.67 -3.77 -0.27 -5.78 -0.38 -3.13 -0.74 -5.79 

Caucasian Proportion 2.26 4.50 - - - - 0.790 2.21 

African – American Proportion 1.48 2.98 -0.61 -3.99 - - - - 

Hispanic Proportion - - -0.73 -3.97 0.55 3.04 - - 

Asian Proportion 2.65 4.34 - - - - - - 

Children in HH -12.91 -7.62 -8.36 -13.01 -5.90 -5.41 -9.30 -8.15 

Family HH - - - - -4.01 -6.29 - - 

Avg. Family Size - - 0.39 5.94 - - - - 

Rental Vacancy Rate (%) - - - - -0.05 -3.63 - - 

Points of Interest Characteristics 

Automotive  - - - - - - 1.22 2.68 

Government - - 0.03 5.43 - -  - -  

Leisure - - 0.06 2.23 - - 0.24 3.71 

Tourism - - - - - - 0.87 3.20 

Health - - - - -0.25 -2.91 - - 

Library - - -0.27 -2.49 - - - - 

Nursing - - - - 0.12 2.48 - - 

Senior 0.75 3.43 - - - - - - 

Airport - - 0.31 4.49 - - - - 

Ferry Landing - - - - - - 0.92 2.20 

State Parks, National and Cultural Inst. - - - - - - -0.43 -1.99 

Food Places 0.47 4.92 - - -0.09 -2.64 - - 

Other Transportation Fac. - - - - 0.32 2.52 -1.55 -2.19 

Waste Management Fac. - - - - -0.29 -3.35 0.35 2.72 

Children Daycare - - - - 0.04 1.69 0.08 2.03 

Bus Depot - - - - - - -2.84 -2.23 

Recreation, Plaza, Mall 0.16 2.56 0.05 2.08 - - - - 

Sidewalk Café 0.18 1.82 0.08 2.00 - - - - 

Transportation Infrastructure Characteristics 

Street Centerline 0.07 3.48 0.03 4.55 0.08 2.80 - - 

Bus line 0.08 2.14 - - - - - - 

Railroad - - 0.05 2.24 - - 0.18 1.74 

Bike Route - - 0.39 5.65 - - - - 
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Bus Stop - - 0.12 1.86 0.18 1.69 - - 

Subway Entrances -0.99 -1.76 - - 1.45 4.72 1.44 3.21 

Land Use Characteristics 

One and Two Family Buildings Density 0.12 2.58 -0.61 -7.84 - - -0.61 -6.28 

Multi-Family Walk-Up Build. Density 0.242 2.05 - - - - -0.17 -1.81 

Residential and Comm. Build.  Density - - 0.129 2.74 0.516 4.52 - - 

Commercial and Office Build. Density 1.06 5.38 0.28 5.88 0.43 3.78 - - 

Industrial and Manufacturing Density 0.36 1.74 -0.13 -2. 60 - - - - 

Transportation and Utility Density - - - - 0.67 3.73 - - 

Building Footprint - - 1.35 3.05 - - - - 

Building Elevation 0.18 2.29 0.17 2.35 1.31 4.55 0.93 6.06 

Green Area Density - - - - - - -0.06 -3.06 

Number of Buildings - - - - -1.70 -2.81 - - 

Parking Facilities Density - - 0.36 2.25 -0.06 -1.78 - - 

Summary Statistics 

Number of Census Tracts 587 664 650 265 

Log-Likelihood -2551.57 -4080.90 -3245.30 -1486.77 

LR chi square (Number of Predictors) 395.12 (17) 1151.98 (22) 793.80 (20) 323.38 (18) 

Pseudo R2 0.072 0.12 0.11 0.09 
* Variable definitions are presented in Table 1 1 



 

 

 

(d) Points of Interest Characteristics 1 

Several points of interest characteristics influence the activity intensity observed. Cluster 1 is 2 

positively influenced by senior centers, food places, recreation plaza and malls, and sidewalk cafes. 3 

According to the venue cloud for check-ins generated by Cheng et al. (9), it is clear that the largest 4 

clouds are café’s (i.e. coffee shop), food places, and centers (i.e. shopping malls). In Cluster 2, 5 

government related, leisure related, airport recreation plaza and mall, and sidewalk cafes have a 6 

positive influence while libraries have a negative influence. Li et al. (24) indicated that a large 7 

proportion of users are likely to check-in at particular places such as airports. For cluster 3, the 8 

variable affecting activity intensity positively include nursing related, other transportation 9 

facilities, children day care and sidewalk facilities. On the other hand, variables affecting 10 

negatively include health related, food places, and waste management facilities. Finally, for 11 

Cluster 4, automotive related, leisure related, tourism related, ferry landing, beach, garden and 12 

natural facilities, waste management, children day care show positive influence. Other 13 

transportation facilities, and bus depot affect activity negatively in Cluster 4.  Overall, the results 14 

capture the variation across the various clusters based on the points of interest. The results are hard 15 

to compare to earlier work because detailed information of this resolution has rarely been 16 

employed in transportation planning applications.  17 

 18 

(e) Transportation Infrastructure 19 

The impact of transportation infrastructure offers significant differences across the clusters. The 20 

street centerline length has a positive association with activity intensity in clusters 1 through 3. 21 

The bus line length in the census tract has a positive effect on cluster 1 activity intensity. In 22 

contrast, Sengstock et al. (25) and Frias-Martinez et al. (26) imply that national parks are highly 23 

associated with social media check-ins. The length of rail road has a positive impact on activity 24 



 

 

 

intensity for cluster 2 and 4. The bicycle route length variable affects positively the intensity in 1 

cluster 2 only. The number of building variable in cluster 3 has a negative impact on activity 2 

intensity. The number of bus stops has a positive influence on cluster 3 ridership. Finally, number 3 

of subway entrances has a negative influence on cluster 1 activity intensity while positively 4 

influencing activity intensity in clusters 3 and 4. According to the tweet content models developed 5 

for NYC, Kling et al. (13) indicated that transportation facilities are highly mentioned in the 6 

morning period while in Manhattan and East Village they were highly references in the evening 7 

period. 8 

 9 

(f) Land Use Characteristics 10 

Land use characteristics in the census tracts exhibit significant influence on activity intensity. A 11 

higher density of one and two-family buildings has a positive effect on activity intensity in cluster 12 

1 while reducing activity intensity in clusters 2 and 4. The increase in density of multi-family 13 

walkup units has a positive effect on cluster 1 activity intensity. The residential and commercial 14 

density variable has a positive influence on activity intensity for cluster 2 and 3. Commercial and 15 

office building density is associated with positive influence for clusters 1 through 3. Similarly, Hu 16 

et al. (27) indicates that commercial zones attract people’s attention. Industrial and manufacturing 17 

density has a positive influence on activity intensity for cluster 1 and a negative influence on 18 

activity intensity for cluster 2. This finding might be affected by the fact highlighted by Frias-19 

Martinez et al. (26), that industrial land use is at a minimum in most regions of NYC (i.e. less than 20 

8% in Manhattan). Transportation and utility density are positively associated with cluster 3 21 

activity intensity. Building footprint significantly increases activity intensity for clusters 2. 22 

Building elevation increase is associated with higher activity intensity for all clusters (except 2). 23 



 

 

 

Interestingly, green area density is negatively associated with activity intensity in cluster 4. The 1 

building density of the area affects the type of businesses and accordingly affects the behavior of 2 

people visiting these areas (8). Finally, parking facility density has a positive influence on check-3 

in activity for cluster 2. 4 

 5 

(g) 4.3 Model Validation 6 

To validate the model performance, we spatially represent (a) observed check-ins per unit area, (b) 7 

check-ins per unit area based on pooled model and (c) check-ins per unit area based on cluster-8 

based models. The patterns of activity check-ins are presented in Figure 2. The categories 9 

considered for the three figures are: 0 - 0.05, 0.05 – 0.3, 0.3 – 0.5, 0.5 – 1, 1 – 3, 3 – 5, 5 – 10, 10 10 

– 25, 25 – 50, 50 – 100, 100 – 200, 200 – 250, 250 and higher. From the visual comparison, across 11 

the three patterns, it is evident that the activity check-in patterns for cluster-based models are closer 12 

to the observed patterns. For instance, the pooled model over-predicts activity around central park 13 

and John F. Kennedy airport while the cluster-based models are closer to the observed patterns. 14 

To be sure, the cluster-based model also produces slightly different estimates for some census 15 

tracts. But overall, it offers more close resemblance to observed patterns.  16 

 17 

(h) 4.4 Hot Spot Analysis 18 

In this section, to illustrate the influence of exogenous variables, we undertake a unique hot spot 19 

analysis. The hot spot analysis is based on the value of the contribution of the individual parameter 20 

to the count propensity (β ∗ xn). The contribution to count propensity is plotted by implementing 21 

Optimized Kernel Density tool of GIS ArcMap. The tool automatically aggregates the predicted 22 

check-in frequency, identifies an appropriate scale of analysis, and corrects for both multiple 23 



 

 

 

testing and spatial dependence by calculating the mean center of the input points using a radius 1 

search (bandwidth) algorithm. This tool allows us to identify statistically significant spatial groups 2 

of high values (hot spots) and low values (cold spots). Statistically significant hot and cold spots 3 

indicate that rather than a random pattern, the corresponding explanatory variable prediction 4 

exhibit statistically significant spatial dispersion. The variables chosen for the hot spot analysis 5 

are: Children by HH, One and Two-Family Buildings, Sidewalk Café, Median Age, Street 6 

Centerline and Building Elevation. The spatial representations are presented in Figure 3. Light 7 

green background color indicates that both hot and cold spots exist on the figure, whereas blue 8 

background indicates that the heat map includes only hot or cold spots along with neutral areas.  9 

The results clearly illustrate the spatial regions that are significantly affected by these variables 10 

across the NYC region.  11 



 

 

 

 1 
FIGURE 2 New York City Check-in Density Predictions 2 
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 1 
FIGURE 3 Kernel Density Estimate Heat Maps for Selected Exogenous Variables; (a) Children 2 

by HH, (b) One and Two Family Buildings, (c)Sidewalk Café, (d) Median Age, (e) Street 3 

Centerline, (f) Building Elevation, (g) Subway Entrance, (h) Commercial and Office Buildings  4 
 5 

5. CONCLUSION 6 

The current study employed a location-based social networks (LBSN) service-based data for 7 

aggregate level transportation planning exercise by developing land-use planning models. 8 

Specifically, we employed check-in data aggregated at the census tract level to develop a 9 

quantitative model for activity intensity as a function of land use and built environments attributes 10 

for the New York City (NYC) region. The detailed exogenous variables considered were socio-11 

demographics, land use variables, transportation variables, and points of interests at the census 12 

tract level. The study also recognized that developing a single model for NYC would be restrictive 13 

and of limited use. Hence, prior to modeling, we classified the census tracts in NYC into four 14 

groups as a function of eight different land use variables. The clusters identified were labelled as 15 

follows: Cluster 1 – Low-rise residential, Cluster 2 – Public facilities and Commercial, Cluster 3 16 

5 0 5 10 15 202.5

MilesBorough Borders:  
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– Low-rise residential and commercial, and Cluster 4 – High-rise residential and public facilities. 1 

The clustering approach, rather than considering the entire city as homogenous allowed us to 2 

distinguish across different clusters. Subsequently, for each cluster as well as for the whole region, 3 

Negative Binomial (NB) Regression models were developed to study activity intensity patterns 4 

across the city. We compared the performance of the pooled model and cluster models by using 5 

Bayesian Information Criterion. The comparison clearly illustrated the improved fit offered by the 6 

cluster specific NB models. 7 

 From the estimation results, we found that there are variations across the different clusters 8 

based on different exogenous variables. Moreover, the variables effects found to be different for 9 

some clusters and the pooled model supporting our hypothesis that activity intensity profile is not 10 

same across the entire region. To further validate the model performance, we spatially represented 11 

the observed check-ins and predicted check-ins based on pooled and cluster-based models. From 12 

the visual comparison, across the three patterns, it was evident that the activity check-ins pattern 13 

for cluster-based models is closer to the observed patterns. We also illustrated the impact of various 14 

parameters on check-ins using a hot spot analysis. This tool enabled us to identify statistically 15 

significant spatial groups of high values (hot spots) and low values (cold spots). The results clearly 16 

illustrated the spatial regions that are significantly affected by different variables across the NYC 17 

region. The findings from our study provided insights on relative differences of activity 18 

engagements across the urban region. The proposed approach thus provides a complementary 19 

analysis tool to traditional transportation planning exercises. 20 

The paper is not without limitations. The dataset employed in our analysis is from 21 

December 2011 through April 2012. Ideally, the consideration of a more recent time would be 22 

beneficial. The reader would note that the methodology developed could be applied to analyze 23 
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newer versions of data that are freely available or purchased at a cost for an urban region of interest. 1 

The data used in our analysis is for a part of the year. Hence, accommodating for seasonality effects 2 

was not possible. Towards accommodating for these effects, it would be useful to consider 3 

obtaining data for a full year and generating the Check-in measures across different seasons. The 4 

dependent variable thus generated can be analyzed using the proposed model to identify 5 

seasonality differences. For our analysis, we did not consider the spatial correlations across 6 

different neighboring census tracts. In the future, it might be beneficial to examine for the influence 7 

of spatial correlation in the count models.   8 
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