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Abstract 

In recent years, there has been increasing attention on bicycle-sharing systems (BSS) as a viable 

and sustainable mode of transportation for short trips. However, due to relatively recent adoption 

of BSS there is very little research exploring how people consider these systems within the existing 

transportation alternatives. Given the recent growth of BSS across the world, there is substantial 

interest in identifying contributing factors that encourage individuals to use these systems. The 

current study contributes to the growing literature by examining BSS behavior at a trip level to 

analyze bicyclists’ destination preferences. Specifically, we study the decision process involved in 

identifying destination locations after picking up a bicycle at a BSS station using a random utility 

maximization approach in the form of a multinomial logit model (MNL). The quantitative 

frameworks developed have been estimated using data from Chicago’s Divvy system for 2013. In 

our modeling effort, we distinguish between BSS users with annual membership and short-term 

customers with daily passes. The developed model will allow bicycle-sharing system operators to 

better plan their services by examining the impact of travel distance, land use, built environment 

and access to public transportation infrastructure on users’ destination preferences. Using the 

estimated model we generate utility profiles as a function of distance and various other attributes 

allowing us to visually represent the trade-offs that individuals make in their decision process. To 

further illustrate the applicability of the proposed framework for planning purposes, destination 

station choice probability prediction is undertaken. 

 

Keywords: bicycle sharing systems, Divvy Chicago, destination choice, location choice, 

Multinomial logit model, bicycle infrastructure, land use and built environment 



1. Introduction 

In recent years, bicycle-sharing systems (BSS) have attracted increasing attention as a viable mode 

of transportation for short trips. Currently, there are about half a million public bicycles around 

the world; about 400 cities have installed or are planning to install a bicycle-sharing system 

(Fishman et al., 2013). Bicycle-sharing systems free the user from the need to secure their bicycles 

avoiding bicycle theft issues (van Lierop et al., 2013; Rietveld and Daniel, 2004). At the same 

time, the decision to make a trip can be made in a short time frame providing an instantaneously 

accessible alternative for a one-way or a round trip. Bicycle-sharing systems provide a healthier 

and affordable transport mode for the younger generation. These systems can enhance accessibility 

to public transportation systems by improving the last mile connectivity (Jäppinen et al., 2013) 

while normalising the image of cycling as an everyday travel mode and thus broadening the cycling 

demographic (Goodman et al., 2014). The recent observed trends in travel behavior among the 

millennial generation (or millennials) demonstrate that the younger generation is willing to drive 

less. They are more environmentally conscious and incline more towards shared transportation 

systems (Benjamin et al., 2012; Dutzik and Baxandall, 2013). Moreover, installing bicycle-sharing 

systems promotes active transportation that can enhance physical activity levels to obtain better 

health outcomes. 

Cities, by installing bicycle-sharing systems, are focusing on inducing a modal shift to 

cycling, and subsequently decrease traffic congestion and air pollution. There is significant 

evidence from the travel behavior data in the United States to support bicycle-sharing system 

installation in urban areas. According to data from the 2009 National Household Travel Survey 

(NHTS), about 37.6% of the trips by private vehicles in the United States are less than 2 miles 

long. The NHTS data also indicates that about 73.6% of bicycle trips in the US are less than 2 

miles long. Even if a small proportion of the shorter private vehicle trips (around dense urban 

cores) are substituted with bicycle-sharing system trips it offers substantial benefits to individuals, 

cities and the environment. A well designed and planned bicycle-sharing system can play a 

complimentary role to existing public transportation infrastructure.  

While cities are supporting bicycle-sharing systems as a more sustainable transport mode, 

due to their relatively recent adoption there is very little research exploring how people consider 

these systems within existing transportation alternatives. Given the recent growth of bicycle-

sharing systems across major cities in China, Europe and US, there is a substantial interest in 

identifying contributing factors that encourage individuals to use these systems. Understanding the 

individuals’ decision processes in adoption and usage of bicycle-sharing systems will enable 

bicycle-sharing system operators to better plan their services. The current study contributes to the 

growing literature on bicycle-sharing systems by examining bicycle-sharing system behavior at a 

trip level to analyze bicyclists’ destination preferences. Specifically, we study the decision process 

involved in identifying destination locations after picking up the bicycle at a BSS station. The 

decision process formulated for the bicycle destination choice is analogous to the destination 

choice component of the traditional travel demand modeling framework for vehicular demand. In 

the destination choice module, given the origin locations of the trips, we apply a quantitative model 

to determine the destinations of the trips in the study region. The proposed research effort develops 

an analogous model within the realm of bicycle-sharing systems.  

The objective of the proposed research effort is to evaluate the impact of socio-

demographics, built environment, bicycle infrastructure and bicycle-sharing system on the trip 

making behavior. There has been substantial research exploring how individuals choose activity 



destinations in transportation with specific interest from travel behavior and geography research 

communities. Distance to destination has been an essential component of earlier studies of 

individuals’ activity destination choices. Reducing the trip distance is a central part of the 

sustainable mobility paradigm so that proximity becomes a key role in pursuing activities 

(Banister, 2011). In some studies, the surrogate measure of trip distance is studied to understand 

travel choice behavior. For example, studies examined trip distances by travel mode in different 

cities (Scheiner, 2010; Kim and Ulfarsson, 2008; Frändberg and Vilhelmson, 2011). Another 

group of studies investigates the trip distances by different population types such as elderly 

population or students (Mercado and Paez, 2009; Whalen et al., 2013; Hu and Schneider, 2014). 

The acceptable trip distance for walking and cycling modes have also been studied (Rahul and 

Verma, 2014). The typically accepted trip distance for bicycle mode is between 1 and 5 km. Earlier 

research has also recognized that bicycle infrastructure and facilities can positively impact the rate 

of bicycle ridership in urban areas (Schoner and Levinson, 2014; Krizek et al., 2009; Santos et al., 

2013). 

In transportation literature, location choice processes have received substantial attention as 

part of the activity based travel demand frameworks (Jonnalagadda et al., 2001; Shiftan and Ben-

Akiva, 2011). Several researchers explored individual destination choice by activity purpose – 

such as shopping trips (Scott and He, 2012), and recreational trips (Pozsgay and Bhat, 2001; 

Sivakamur and Bhat, 2007). Other examples of destination choice models include analysis of 

railway station choice (Chakour and Eluru, 2014; Givoni and Rietveld, 2014), airport choice 

(Marcucci and Gatta, 2011), and vacation location choice (Hong et al., 2006). Another stream of 

research in this area is focused on residential location and work place location choices (Waddell 

et al., 2007; Sermons and Koppelman, 2001).  

In our analysis, we extend earlier work on destination choice behavior for newly developed 

BSS. Specifically, we explore how the land-use and urban form at the potential destinations 

accessible from the origin affect the decision making. Within a bicycle-sharing system, you would 

expect proximity to play a crucial role. However, it is possible that individuals would ride longer 

in the presence of bicycle infrastructure, access to opportunities (such as restaurants and 

employment) and weather conditions. A quantitative model developed appropriately will allow us 

to understand the trade-off between distance and other attributes. The information will allow urban 

planners and BSS operators to enhance their understanding of decision maker preferences and 

enable them to re-orient the urban form to facilitate BSS usage and non-motorized usage in general. 

Additionally, the framework developed will allow us to identify BSS stations that have very high 

arrivals – thus allowing the BSS operators to optimally rebalance their vehicle fleet in the urban 

region.  

The decision process is studied using a random utility maximization approach where 

individuals choose the destination that offers them the highest utility from the universal choice set 

of stations in the study region. In the random utility maximization approach, the destination station 

utility is affected by individual bicyclist attributes (such as age and gender), trip attributes (such 

as time period of the day) and destination attributes (such as distance from the origin station, 

bicycle infrastructure variables and land use and built environment attributes). There have been 

several location choice studies in traditional travel demand literature that adopt a random utility 

maximization approach for understanding destination/location preferences (Chakour and Eluru 

2014 Waddell et al. 2007; Sivakamur and Bhat, 2007). The current study adapts this approach to 

the bicycle-sharing system data. 



The proposed quantitative analysis is conducted employing BSS trip data for Chicago’s 

Divvy bicycle-sharing system from July to December 2013. Chicago’s bicycle-sharing system was 

launched in June 2013 with 300 stations and 3000 bicycles. The trips information including origin 

and destination stations, time and duration of trips and type of user are available online on Divvy 

website (https://www.divvybikes.com/datachallenge). The Divvy trip database is augmented with 

temporal characteristics, bicycle infrastructure, land use, and built environment attributes allowing 

us to examine the influence of these factors on BSS users’ destination station choice. In our 

modeling effort, we distinguish between BSS users with annual membership and short-term 

customers with daily passes and present separate models for each of these rider types due to the 

inherent differences among the two bicycling groups. The random utility framework employed in 

our analysis takes the form of a multinomial logit model (MNL). The quantitative framework 

developed will allow bicycle-sharing system operators to examine the impact of travel distance, 

land use, built environment and access to public transportation infrastructure on users’ destination 

preferences. The estimated model is validated using a hold out sample data that has not been used 

for estimation. To illustrate the applicability of the proposed framework for planning purposes, 

destination station choice probability prediction is undertaken. Finally, a trade-off analysis to 

illustrate the relationship between important attributes affecting the destination choice process is 

also undertaken. 

The remainder of the paper is organized in the following order. A brief overview of earlier 

research is presented in Section 2. Section 3 describes the data and the sample formation 

procedures. In Section 4, model structure, estimation results are described. Section 5 describes 

model validation, prediction and elasticity profiles for important variables generated using the 

model developed. Finally, Section 6 summarizes and concludes the paper. 

 

2. Literature Review 

The first bicycle-sharing system was introduced in the 1960s in the Netherlands (DeMaio, 2009; 

Shaheen et al., 2010). However, these systems became popular and relatively successful around 

the world only over the past few years. The first generation of public bikes in the 1960s was free 

and without time limitation. This program failed because of many stolen and vandalized bicycles. 

Then, next generation of BSS introduced the coin-deposit systems. Unfortunately, this program 

was also unsuccessful because of the lack of time constraints and the issue of bicycle theft due to 

user anonymity (Shaheen et al., 2010). Adding the transaction kiosks to docking stations and 

limiting bicycle rental periods have helped these systems become quite successful around the 

world. In our literature review, we focus on research exploring the use of the latest generation of 

bicycle-sharing systems. The research is broadly based on two perspectives: (1) systems 

perspective and (2) user perspective.  

Under the systems perspective, earlier quantitative studies employed actual bicycle usage 

data to capture the determinants of BSS usage (Rixey, 2013; Faghih-Imani et al., 2014; Zhao et 

al., 2014). In these studies, usage is usually characterized as arrivals (depositing bicycles) and 

departures (removal of bicycles). These studies examine the influence of BSS infrastructure (such 

as number of BSS stations and stations’ capacity), transportation network infrastructure (such as 

length of bicycle facilities, streets and major roads), land use and urban form (such as presence of 

metro and bus stations, restaurants, businesses and universities), meteorological data (such as 

temperature and humidity), and temporal characteristics (such as time of day, day of the week and 

https://www.divvybikes.com/datachallenge


month) on BSS usage. Several studies demonstrate that increasing BSS infrastructure (number of 

stations and capacity) increases BSS usage (Wang et al., 2013; Faghih-Imani et al., 2014). Land 

use and urban form variables such as higher job or population density also contribute to BSS usage 

(Rixey, 2013; Faghih-Imani et al., 2014). Studies that examined usage at a fine time resolution 

(within a day) highlighted that temporal characteristics affect BSS usage – with the peak usage 

observed during the evening peak hours (Faghih-Imani et al., 2014). These studies have also found 

that BSS usage is higher for weekdays compared to weekends indicating that BSS is used on 

weekdays for commuting purposes. The studies examining the impact of point of interests (such 

as restaurants, retail stores and universities) near BSS stations found evidence that BSS usage was 

higher for stations with higher number of point of interests in the vicinity (Rixey, 2013; Faghih-

Imani et al., 2014). Moreover, several studies investigated and identified the socio-demographic 

disparities in using London's bicycle-sharing system (Ogilvie and Goodman, 2012; Goodman and 

Cheshire, 2014). More recently, Faghih-Imani and Eluru, 2014 considered the self-selection of 

bicycle-sharing system infrastructure installation in high bicycle usage areas. In their analysis, the 

authors found evidence for the self-selection hypothesis indicating that ignoring the installation 

decision process in modeling usage tends to over-estimate the impact of bicycle-sharing system 

infrastructure and under-estimate the impact of land use, bicycle facilities and built environment 

attributes. To be sure, even after accounting for self-selection bias, increasing BSS infrastructure 

contributed to increased usage. 

The second set of studies focussed on the user perspective contributes to the literature by 

studying user behavior in response to bicycle-sharing systems. Examining Montreal’s bicycle-

sharing system using survey data, Bachand-Marleau et al. (2012) and Fuller et al. (2011) found 

that convenience of BSS as well as having a BSS station closer to home location significantly 

encouraged individuals to use the system. Lathia et al. (2012) analyzed the effect of opening 

London bicycle share system to casual users on system usage. Their study showed that allowing 

casual users to use the system resulted in increased BSS usage on weekends and overall usage 

increase at a number of stations. Fishman et al. (2014) investigated ridership and mode substitution 

data from BSS in 5 cities around the world. The authors examined if the reduction in vehicle 

kilometers travelled due to bicycle-sharing system usage was offset by the motor vehicle use for 

fleet redistribution and maintenance by program operators. They highlighted the importance of 

encouraging people to shift from car to BSS to reduce total vehicle kilometers traveled. Buck et 

al. (2013) studied the differences between regular cyclists, BSS short-term users and BSS annual 

members in Washington, D.C. and concluded that BSS’s implementation in the city could motivate 

new segments of the society to cycle and thus increase the overall bicycling mode share. Schoner 

and Levinson (2014) modeled the origin’s station choice of Nice Ride Minnesota bicycle-sharing 

system using survey data to study how people use bicycle-sharing system and underscored the 

difference between preference of workers and non-workers. 

 

2.1.   Current Study in Context 

As is evident from the literature review, the bicycle-sharing system literature is still in its infancy 

and there are several dimensions that are unexplored in earlier research. In our research, we focus 

on user based decision processes with a particular focus on destination station choice behavior. 

Specifically, we employ destination choice data from Chicago Divvy bicycle-sharing system to 

examine the factors that influence individuals’ destination choice behavior. The analysis process 

considers that an individual who picks a bicycle at one of the stations makes destination station 



choice based on a host of attributes including individual’s age and gender, time period of the day, 

and destination attributes such as distance from the origin station, points of interest, bicycle 

infrastructure, land use and built environment variables. While destination choice models are 

prevalent in transportation literature, we believe our study is the first attempt to accommodate for 

bicycle-sharing system destination choice behavior. While Schoner and Levinson (2014) research 

effort studies origin station choice, their analysis was based on survey data and not on revealed 

usage data. Furthermore, while using the system wide data, we need to examine a larger destination 

choice set. In summary, the current study contributes to bicycle literature in the following ways. 

First, we develop a model to quantify the impact of various attributes on bicycle-sharing system 

destination choice. Second, using the estimated model we generate utility profiles as a function of 

distance and various other attributes allowing us to visually represent the trade-offs that individuals 

make in their decision process. Finally, the model developed is employed to generate probability 

functions of trips originating at an origin station to various destinations – a very useful 

representation for understanding system wide usage patterns. 

 

3. Data 

3.1. Data Source  

Chicago’s Divvy system belongs to the latest generation of bicycle-sharing systems which has 

benefited from the recent advances in technology such as solar powered docking stations. The 

location of Divvy stations is presented in Figure 1. Chicago is the third most populous city in the 

US and a host to millions of visitors every year. The Chicago downtown area is the second largest 

commercial business district in the US. According to NHTS 2009, bicycle trips accounts for 1.7% 

of total trips in Chicago while 80.6% of trips are pursued by private vehicles. About 44.8% of trips 

are less than 2 miles; within the trips less than 2 miles, share of private vehicles reduces to 66.3% 

while the share for bicycle mode increases to 2.9%.  The statistics clearly indicate the scope for 

shifting some of the urban core trips from private vehicle to shared bicycling. 

The data used in our research was obtained from Divvy website 

(https://www.divvybikes.com/datachallenge). The dataset consists of more than 750,000 trips with 

trip related information including origin and destination stations, start time and end time of trips, 

user types i.e. whether the user was a subscriber of system with annual membership or a customer 

with a 24hr pass, and the age and gender for members’ trips only. In addition, the dataset has the 

coordinates of Divvy system stations as well as the capacity of stations. The land use and urban 

form attributes such as road network, and bicycle routes are derived from City of Chicago data 

portal (https://data.cityofchicago.org/) while the socio-demographic characteristics are gathered 

from US 2010 census. 

 

3.2. Sample Formation 

The sample formation exercise involved a series of steps. First, trips with missing or inconsistent 

information were removed. Second, trips longer than 90 minutes in duration (only 1.8% of all the 

trips) were deleted considering that only the first 30 minutes of Divvy system is free and the users 

are encouraged to use bicycle-sharing systems for short trips. The trips longer than 90 minutes are 

not typical bicycle-sharing rides and could also be a result of misplacing the bicycle when returning 

it to the station. At the same time, trips that had the same origin and destination were also 



eliminated. For trips with the same origin and destination, it is possible that the bicycle was not 

functioning well and the users returned them to the origin station. Also to accommodate for 

intentional same origin and destination trips would require additional trip purpose information and 

is beyond the scope of this work. Therefore, we focus on trips that were destined outward. Further, 

we expect that the behavior of users with annual membership will differ from the behavior of 

customers with daily passes. Thus, we separated trips made by members and daily customers; 

about 53% of all the trips were made by members. To obtain a reasonable sample size for model 

estimation, 6000 trips by members and 6000 trips by daily customers were randomly selected. The 

sample size was adopted to maintain a reasonable data processing and model estimation related 

computational effort. 

Divvy system has 300 stations across the city. From each origin station, individuals have 

299 other stations to choose to return the bicycle to. However, considering all the stations in the 

universal choice set will result in substantial computational burden. Hence, for the purpose of our 

modeling effort we resort to a sampled choice set. Specifically, for every destination choice record, 

we sample 30 alternatives from the universal choice set including the chosen alternative. The 

process of random sampling does not affect the parameter estimates in multinomial logit models 

(see McFadden, 1987). The random sampling approach is consistent with the earlier research in 

destination choice modelling (for example see Pozsgay and Bhat, 2002; Scott et al., 2005; Scott 

and He, 2012). With the sampled choice set, information for the 30 stations is augmented with the 

individual trip records.  

 

3.3. Independent Variable Generation 

Several independent variables were generated to examine the users’ destination station choice 

process. These variables can be grouped into: 1) Trip attributes 2) Station attributes. Trip attributes 

include the street network distance between the origin and destination of every trip. This distance 

was computed using the shortest path between origin and destination stations to investigate the 

travel distance influence along with other attributes. While the actual trip might involve a different 

route, the shortest distance would be an appropriate indicator of the distance traveled. Moreover, 

for the users with annual membership, the gender and age information were available and were 

considered in our analysis. Also, considering the start time of the trips, five time periods were 

created: AM (6:00-10:00), Midday (10:00-16:00), PM (16:00-20:00), Evening (20:00-24:00), and 

Night (0:00-6:00) to capture the time of the day effect on trips.  

Destination station attributes considered in our analysis are: 1) Bicycle infrastructure 

variables 2) Land use and built environment attributes. The spatial variables included are at both 

the census track level and the buffer level. A 300 meter buffer around each station was found to 

be an appropriate walking distance considering the distances between Divvy stations (Shaheen et 

al., 2013). The length of bicycle facilities (bicycle lanes and bicycle paths) within the buffer was 

calculated to examine the effect of cycling facilities on the destination station preferences. The 

length of minor roads (local streets and collectors) and major roads (arterials and highways) within 

300 meter of stations were calculated to identify cyclist preference of routes. In addition to the 

destination station capacity, the number and capacity of Divvy stations in the 300 meter buffer 

(excluding the destination station) were computed to capture the influence of neighbouring 

stations.  



Land-use and built environment characteristics considered include distance from central 

business district (CBD), presence of transit in the 300 meter buffer, various points of interest, job 

and population density. To study the influence of the central business district (CBD), the distance 

from each station to the CBD was computed. Moreover, a categorical variable indicating the 

presence of station in the CBD was created. The presence of stations of bus and train system near 

a Divvy station and the length of train lines in the 300 meter buffer were generated to examine the 

influence of public transit on people preference of destination station. We included the rapid train 

system in city of Chicago, the L system, the regional train system in Chicago Metropolitan Area, 

Metra system, and Chicago Transit Authority (CTA) bus system in generation of public transit 

variables. We also considered three types of points of interest near each station: (1) the number of 

restaurants (including coffee shops and bars), (2) the number of grocery stores and (3) the area of 

parks in the buffer around the station. The elevation of destination stations relative to origin station 

was another characteristic taken into account. Population density and job density associated with 

each Divvy station was considered at the census track level.  

 

3.4. Descriptive Analysis 

To provide an illustration of the dataset, a descriptive summary of the sample is presented in Table 

1. The average duration of trips is about 20.66 minutes and the average network distance between 

origins and destinations is about 2.54 km. Daily customers use Divvy system for longer trips 

compared to annual members. Within members, the median age is 34 years old and 79% of trips 

are made by males. However, while number of female members is less than their male 

counterparts, we observe that they pursue longer trips both in terms of duration and distance.  

In order to better understand the variation of destination choices from each origin in the 

Divvy system, we visualize the number of trips destined to every station from specific origins. 

Since illustrating all trips for all the origins and destinations is quite undesirable in the context of 

this paper, we focus only on three types of stations i.e. stations with number of trips originating 

equals to the 25, 50, 75 percentile of total trips (Figure 2). For this purpose, we identified three 

stations for trips made by members and three stations for trips made by daily customers (Figure 

2). This way we present six stations that have different usage patterns and serve as a representation 

of the entire system. In Figure 2, we categorized the number of trips destined to each station in 

quartiles: Low (trips destined are less than 25% of total originating trips), Medium (trips destined 

are between 25-50% of total originated trips), High (trips destined are between 50-75% of total 

originating trips) and Very High (trips destined are more than 75% of total originating trips). 

Overall, the visualization provides a brief overview of bicycle flows in Chicago using the Divvy 

system. As can be seen in this figure, the chosen destination clearly depends on the distance from 

the origin station. Furthermore, we can observe that a subset of stations is typically chosen for trips 

originated from a station. However, stations in CBD area attract reasonable number of trips from 

farther origin stations from CBD. Further, we used the same stations to show the prediction 

applicability of the estimated MNL model (in Section 5).  

 

4. Analysis and Discussion 

4.1. Multinomial Logit Model 



The use of Multinomial Logit Model (MNL) is common to study location choice in transportation 

and related literature (Rashidi et al., 2012; Zolfaghari et al., 2013; Chakour and Eluru, 2014). A 

brief description of the MNL model employed in our study is provided below.   

 Let s = 1, 2, …, 30 be an index to represent each station, q = 1, 2, …, Q be an index to 

represent the BSS users. Then, the random utility formulation takes the following form: 

 𝑢𝑞𝑠 = 𝛽′𝑋𝑞𝑠 + 𝜀𝑞𝑠                (1) 

Where uqs is the utility obtained by user q by selecting station s from the choice set of 30 stations. 

Xqs is the vector of attributes and β is the model coefficients to be estimated. The random error 

term, ε, is assumed to be independent and identically Gumbel-distributed across the dataset. The 

BSS user q will choose the station as destination that offers the highest utility. With this notation, 

the probability expression takes the typical multinomial logit form given by: 

𝑃𝑞𝑠 =
exp (𝛽′𝑋𝑞𝑠)

∑ exp (𝛽′𝑋𝑞𝑠)30
𝑠=1

                (2) 

 The log-likelihood function can be defined as: 

𝐿 = ∑ ln (𝑃𝑞𝑠)𝑞                     (3) 

By maximizing this log-likelihood function, the model parameters β are estimated. The maximum 

likelihood model estimation is programmed in GAUSS matrix programming language.  

The reader would note here that the discrete alternatives are not labelled i.e. the alternatives 

are not differentiable by name. So, for destination choice models alternative specific parameter 

estimation is not possible. The parameter set is considered to be the same for all alternatives i.e. 

no alternative specific parameters are estimated. Hence, even though there are a large number of 

alternatives we end up with a parsimonious model structure. The parameters are estimated for 

exogenous variables that vary across the alternatives such as distance or capacity around the 

destination station. The exogenous variables such as gender or age cannot be directly considered 

within the model structure because the variable does not change across the alternatives. Hence, to 

obtain the impact of such variables we consider the interaction effects such as gender * distance. 

Several such interaction variables were examined and the parameters that were significant were 

retained in the model specification. 

  

4.2. Results 

In this section, we discuss the results of multinomial logit model estimation to understand the 

different factors influencing users’ choice of destination in the Chicago’s Divvy bicycle-sharing 

system. The final Log-likelihood values for the station destination choice’s multinomial logit 

model for the annual member and daily customer samples are -15740.44 and -15491.61, 

respectively. The corresponding value for equal probability model is -20407.18. The log-likelihood 

ratio test-statistic value is 9333.48 and 9831.14, significantly higher than the corresponding chi-

square value for 21 and 17 additional degrees of freedom for the annual member and daily 

customer, respectively. The Akaike Information Criterion (AIC) penalizes the modelling 

framework for additional parameters. For a given empirical model, 𝐴𝐼𝐶 =  2𝐾 −  2𝑙𝑛(𝐿) where 

K is the number of parameters and ln(L) is the log–likelihood value at convergence. The model 



with the lowest value of AIC is preferred. The AIC value for the members’ model is 31522.9 and 

for the daily customers’ model is 31017.2 while AIC value for equal probability model is 40814.4. 

The improvement in the data fit clearly illustrates the superiority of the MNL based destination 

choice models. The model specification process was guided by intuition and parsimony 

considerations. The reader would note that we considered several specifications but only the 

statistically significant results for members’ and daily customers’ destination choice models are 

presented in Table 2. As expected, there are distinct impacts of several contributing factors in 

decision making of customers and members towards destination station choice. 

 

4.2.1. Bicycle infrastructure variables 

People tend to choose stations with longer bicycle paths nearby as highlighted by the positive 

coefficient of the bicycle facility variable in both members’ and daily customers’ model. On the 

contrary, as the length of major roads increases around the station, it is less likely that Divvy users 

choose that station as destination of their trip. The number of stations and the capacity of stations 

within the buffer variables take into account the impact of neighbouring stations on destination 

choice; the results are different for daily customers and members models. Overall, the BSS 

infrastructure has a positive effect on influencing destination choice.  However, the impact has 

distinct trends in members and daily customer models. For members, the number of stations in the 

buffer has a positive impact and the capacity of stations in the buffer has a negative impact on the 

destination choice utility. The impact is opposite for daily customers; the number of stations in the 

buffer has a negative impact and the capacity of stations in the buffer has a positive impact. It is 

possible that daily customers are likely to be unfamiliar with the Divvy system and the presence 

of multiple stations close by serves as competition while on the other hand, for members, the 

presence of multiple stations reflects access to multiple opportunities thus encouraging them to 

use these parts of the system. This clearly shows the distinct behaviour of annual members and 

daily customers. It must be noted that the coefficients of number and capacity of stations in the 

buffer should be examined as a combination recognizing that as the number of stations in the buffer 

increases we simultaneously increase the capacity in the buffer. For members, the positive impact 

associated with the number of Divvy stations on likelihood of choosing a station as destination is 

about 20 times larger than the negative impact of capacity of stations in the buffer. Hence, the 

result indicates that adding one new station without increasing capacity (by reallocating from 

existing stations) is nearly as useful as adding 20 docks to existing stations. For daily customers, 

the negative impact of the number of stations in the buffer is about 80 times larger than the positive 

effect of buffer capacity. The results imply that from members standpoint, more stations with 

smaller capacity is preferable while from daily customers’ point of view, fewer stations with larger 

capacity is more desirable i.e. daily customers prefer larger stations – a new station in the buffer 

needs to result in an increase of capacity by 80 units to have a positive impact on the station choice. 

Faghih-Imani et al. (2014), by examining the station level arrivals and departures at Montreal’s 

BIXI system, concluded that adding additional stations (either by relocating existing capacity from 

large stations or adding new bicycle slots) is more beneficial in terms of usage compared to adding 

capacity to existing stations. However, their study did not distinguish between annual members 

and daily customers. Faghih-Imani et al. (2014) and current study differ in the bicycle-sharing 

system studied and dependent variable analyzed; hence, further investigation on the influence of 

number of stations and capacity of stations is required considering different bicycle-sharing 

systems and user types. In terms of the destination station, the stations with higher capacity are 



more likely to be chosen as they are likely to have more available docking stations. Moreover, 

people tend to easily remember larger stations.  

 

4.2.2. Land-use and built environment characteristics 

In this section, the results for parameters related to land-use and built environment characteristics 

are discussed. The Divvy stations near metro system and regional train system tend to be chosen 

as destination by members highlighting the support of BSS on use of public transport. However, 

the results is opposite for daily customers. This shows that for regular members, BSS is likely to 

complement existing public transit services whereas for daily customers BSS serves as a substitute 

for existing public transit services. Since the purpose of daily customers’ trips are more likely to 

be for recreational activities, the Divvy stations in the vicinity of parks are also more likely to be 

chosen by daily customers as highlighted by area of parks in the buffer variable. Interestingly, the 

parks variable for annual members has contrasting effect for trips during weekdays and weekends. 

During weekdays, there is a negative impact on choosing a destination near parks while during 

weekends, the Divvy stations near parks are more likely to be chosen. As expected, both short-

term users and annual members incline towards Divvy stations with higher number of restaurants 

in the vicinity.  

 Members choose stations that bring them closer to CBD as highlighted by negative 

coefficient of destination station distance to CBD. This negative impact is about 3 times higher in 

the AM period while its effect becomes positive during the PM period, indicating the use of Divvy 

system for daily commute to/from work in downtown area. Daily customers are inclined towards 

the stations in CBD area as highlighted by the positive coefficient of destination in CBD variable. 

Daily customers use the system to get closer to CBD in the AM period and farther from CBD in 

the PM period. Population density variable has positive impact on likelihood of choosing a Divvy 

station by members in general. However, for both short-term users and annual members, during 

AM period, the Divvy stations with lower population density are more likely to be chosen since 

trips in AM period are mostly originated from home. During AM period, stations with higher job 

density are more likely to be chosen.  

The coefficients of population density, job density and station distance from CBD variables 

in AM and PM periods clearly demonstrate the use of Divvy system for daily commute to work in 

the morning and back to home in the evening especially for annual member users. Further, the 

results show that there is clear distinction in the use of Divvy system by daily customers and annual 

members. This provides further support to our hypothesis that separate behavior models are 

appropriate for daily customers and annual members.  

 

4.2.3. Trip level attributes 

The most important variable in destination station decision making process in a bicycle-sharing 

system is expected to be the distance of trip between origin and destination. For members we 

examined the distance of trips as well as age and gender effects while for daily customers we were 

limited to only trip distance variable due to lack of users’ information. In general, it is expected 

that the likelihood of choosing a station very close to origin station or very far from origin station 

is lower than stations in between. In order to better model the distance impact on the utility of 

choosing a station, we distinguish the very short distance and very far distance by dummy variables 



and a continuous variable for distance in between. We tried several different distance combinations 

determining thresholds for distance to define close and far stations from the origin. Dummy 

variables indicating stations within 500m or farther than 3000m of origin and a continuous form 

of distance for stations within 500m to 3000m from origin provided better results for members’ 

final model specifications. For daily customers’ model, stations within 500m dummy and a 

continuous form for after 500m distance from origin yielded better results. As expected, the 

network distance variables have negative impact on likelihood of choosing a station as destination 

for both annual members and short-term users.  

  Moreover, gender and age effects were also considered in members’ model estimation. It 

is important to note that since the user attribute remains the same for all the destination station 

alternatives, these effects were captured by multiplying gender and age variables with distance 

variables. The age influence does not become statistically significant – this is intuitive given that 

annual members self-select themselves from the pool of active bicyclists. The gender impact, on 

the other hand, offers interesting results. The results show that male members are more likely to 

have shorter trips. This might be due the fact that in Chicago Divvy system, only about 21% of 

members are female. It is possible that women who join are actually regular bicyclists and are 

more likely to be fit and pursue longer trips. However, this result might be different in other 

bicycle-sharing systems especially in bicycle-friendlier cities.  

 

5. Validation and Elasticity Analysis 

5.1. Model Validation 

The model estimated is validated using the hold-out samples set aside i.e. 2000 trips for annual 

members and 2000 trips for daily customers. The same approach of choice set generation for 

estimation sample is exercised for validation sample. The utility and the probability of choosing a 

station are computed for 30 stations of choice set for each of the 2000 trips.  The predictive LL for 

members’ model is -5275.76 and for daily customers’ model is -5249.32 while the corresponding 

value for equal probability model is -6802.39 clearly indicating that the proposed model provides 

an improved fit. Subsequently, the predicted probability is compared with the actual observed 

destination station. We compute two metrics for this analysis: (1) percentage of correct prediction 

(correct prediction is defined as assigning the highest probability to the chosen alternative) and (2) 

average probability of the chosen station. For member and customers models, we observe that the 

probability of correct prediction is 21.7% and 22.0% respectively. The average of predicted 

probability of observed destination station is 11.52% and 11.72% which is about 4 times the 3.33% 

chance of the probability of prediction without any model (i.e. choosing a station among 30 

stations). The two proposed measures highlight the improved fidelity of prediction with our 

proposed model as opposed to an equal likelihood prediction. 

To further highlight the applicability of estimated models, we illustrate the probability of 

choosing destination stations from the entire sample for the same stations discussed in Section 3.4 

in Figure 3. Again to better compare the results, we categorized the stations into 4 types 

considering the likelihood of station to be chosen: low probability stations (first quartile), medium 

probability stations (second quartile), high probability stations (third quartile), and very high 

probability stations (fourth quartile). The computed probability is for off-peak period on weekdays 

for male members and daily customers. Comparison of Figure 2 and Figure 3 clearly show the 

applicability of estimated results. The zero arrival trips in Figure 2 are mostly in lower predicted 



probability categories in Figure 3 while higher arrivals are mainly in higher predicted probability 

categories. 

 

5.2. Elasticity analysis 

In order to better understand the magnitude of the effects of variables on destination choice, Figure 

4 illustrates the utility function trade-offs between origin and destination network distance and 

other attributes such as length of bicycle facilities in the buffer and destination station capacity. 

As is indicated from the model estimates, the utility decreases when the trips’ distance between 

origin and destination increases; while it increases with increase in the length of bicycle facilities 

near a station and station capacity. We can observe from the three dimensional relationship that 

the negative impact of distance is compensated to some degree by positive impact of bicycle 

facilities and station capacity. This is illustrated by how the utility for various distances remains 

the same with appropriate increase in the other two attributes. For example, moving a destination 

station from 1 km to 2 km farther from origin without changing other variables would result in 

about 0.65 and 0.45 unit reduction in utility for members and non-members, respectively. Now if 

we want to maintain the attraction of that station constant (i.e. keep the utility constant), we can 

compensate that reduction in utility by adding to existing bicycle routes or adding more capacity. 

To offset the utility reduction caused by increased distance of 1 km we will need to increase bicycle 

facility length by about 2.6 km and 3.5 km for members and non-members, respectively. In terms 

of capacity, the 1 km increase in distance can be offset by increasing the capacity by 22 and 10 for 

members and non-members, respectively. Hence, one could argue that adding to bicycle capacity 

is an easier proposition. Of course, if the changes were made simultaneously only a 1 km increase 

in bicycle route length in conjunction with a capacity increase of 14 and 7 for members and 

customers can offset the 1 km increase in distance. The figures and the subsequent analysis 

illustrate the applicability of the proposed model for system operators in reallocating capacity or 

installing new capacity while regional planners can adopt the model to enhance land-use to 

encourage shared bicycling usage. 

. 

6. Conclusion 

Despite the growing installation of bicycle-sharing systems around the world, there is very little 

research exploring how people consider these systems within the existing transportation 

alternatives. This study examines the individuals’ decision processes in adoption and usage of 

bicycle-sharing systems. The current study contributes to growing literature on bicycle-sharing 

systems by examining bicycle-sharing system behavior at a trip level to analyze bicyclists’ 

destination preferences. The decision process is studied using a Multinomial Logit Model where 

the destination station utility is affected by individual bicyclist attributes (such as age and gender), 

trip attributes (such as time period of the day) and destination attributes (such as distance from the 

origin station, bicycle infrastructure variables and land use and built environment attributes). In 

our analysis, we distinguish between BSS annual users and daily customers. 

The proposed quantitative analysis is conducted employing trip data for Chicago’s Divvy 

bicycle-sharing system from July to December 2013. The model estimation results provide 

intuitive findings for both members and daily customers. It is observed that people tend to choose 

stations with longer bicycle paths nearby. In terms of the destination station, the stations with 



higher capacity are more likely to be chosen. The network distance between origin and destination 

station has negative impact on likelihood of choosing a station as destination for Divvy users. 

During AM period, stations with higher job density and stations with lower population density are 

more likely to be chosen. The coefficients of population density, job density and station distance 

from CBD variables in AM and PM periods clearly demonstrate the use of Divvy system for daily 

commute to work in the morning and back to home in the evening especially for annual member 

users. It is demonstrated that there is clear distinction in the use of Divvy system by daily customers 

and annual members. The effects of number and capacity of neighbouring stations are opposite for 

daily customers and annual members. Specifically, members are likely to favor higher density of 

stations with smaller capacity while daily customers have a preference for fewer stations with large 

number of docks. The BSS operators will need to carefully balance requirements of members and 

daily customers. For instance, during high tourist activity months, a reallocation plan to reduce the 

number of stations but increase per station capacity on weekends might be beneficial. 

The model estimated is validated using hold-out samples. The validation exercise 

highlights the improved fidelity of prediction with our proposed model as opposed to an equal 

likelihood prediction. To further demonstrate the applicability of estimated models, we compute 

the probability of choosing destination stations from the entire sample. The zero arrival trips from 

the observed data are mostly in lower predicted probability categories while higher arrival trips 

from the observed data are mainly in higher predicted probability categories. In order to better 

understand the magnitude of the effects of variables on destination choice, the utility function 

trade-offs between network distance between origin and destination and other attributes such as 

length of bicycle facilities in the buffer and destination station capacity are also computed. It is 

observed that the negative impact of distance is compensated to some degree by positive impact 

of bicycle facilities and station capacity. Overall, our analysis provides a framework for planners 

and BSS operators a framework to examine the impact of changes to the system (BSS and land 

use) on user destination choice preferences. 

The model estimates generated have several applications. For example, the quantitative 

framework developed will allow bicycle-sharing system operators to examine the impact of travel 

distance, land use, built environment and access to public transportation infrastructure on users’ 

destination preferences. The model results will also be useful in determining time of day based 

bicycle demand profiles so as to better plan the bicycle availability (or empty slot availability) and 

rebalancing operations at bicycle stations. The model will also provide guidance on how the 

expansion of the existing bicycle-sharing system will affect the current station demand by 

providing potential destination locations to be used from the newly proposed bicycle stations. 

Further, the station choice model developed in conjunction with an arrivals and departures model 

(similar to the one proposed in Faghih-Imani et al. 2014) will allow the BSS operators to study the 

influence of land use, BSS infrastructure and bicycle facility infrastructure on BSS usage and 

operation. 

To be sure, the study is not without limitations. The study does not explicitly control for 

the BSS infrastructure installation process (see Faghih-Imani and Eluru, 2014). It is possible that 

the impact of bicycle infrastructure might be over-estimated as a result of this. Also, this paper 

does not account for the trips’ origin effects; the trips originating from one station might have 

common characteristics. We do intend to capture the origin’s common unobserved heterogeneity 

in our future research. In future research attempts a more comprehensive analysis considering the 

decision to make a trip by bicycle-sharing system, the origin station choice and the destination 



station choice simultaneously could be undertaken. Of course, to undertake such analysis, the 

bicycle-sharing trip data needs to be augmented with much more detailed information (such as 

home and work location) on BSS users. 
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Figure 1: Chicago’s Bicycle-Sharing System (Divvy)  

  



 
 

 

       

       

 

 

Figure 2: Bicycle-Sharing Trips in Chicago’s Divvy System  
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Figure 3: Probability of Choosing a Station in Chicago’s Divvy System 
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Figure 4: The Variation of Utility as a function of Distance, Bike Route Length and Station Capacity 
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Table 1: Descriptive Summary of Sample Characteristics 

Trip Attributes 

Members and 

Daily Customers 
Members Daily Customers 

Mean 
Std. 

Deviation 
Mean 

Std. 

Deviation 
Mean 

Std. 

Deviation 

Annual Membership 53% -     

Male   79% -   

Age   36.15 10.44   

Network Distance (km) 2.54 1.99 2.40 1.72 3.02 2.12 

Network Distance (male only)   2.31 1.73   

Network Distance (female only)   2.52 1.77   

Duration (min) 20.66 45.96 11.19 7.11 22.70 14.04 

Duration (male only)   11.53 23.66   

Duration (female only)   13.94 26.71   

 

Station Attributes Mean Std. Deviation 

Elevation (m) 185.16 5.68 

Station Distance to CBD (km) 5.27 2.99 

Length of Bicycle Facility in 300m Buffer (km) 1.00 0.63 

Length of Major Roads in 300m Buffer  (km) 1.31 0.95 

Length of Minor Roads in 300m Buffer (km) 4.79 1.35 

Length of Metra Lines in 300m Buffer (km) 0.11 0.25 

Length of L Lines in 300m Buffer (km) 0.31 0.43 

Number of Bus Stops in 300m Buffer 11.67 7.40 

Area of Parks in 300m Buffer (km2) 0.017 0.037 

Number of Restaurants in 300m Buffer 21.17 27.82 

Number of Grocery Stores in 300m Buffer 0.44 0.70 

Number of Divvy stations in 300m Buffer 0.54 0.95 

Capacity of Divvy stations in 300m Buffer 11.29 22.82 

Station Capacity 16.7 4.67 

Population Density (people per m2 ×1000)  6.89 4.55 

Job Density (jobs per m2 ×1000) 13.76 32.21 

Station in CBD area 20.7% - 

Presence of Metra Station in 300m Buffer 7.7% - 

Presence of L Station in 300m Buffer 28.3% - 

 

  



Table 2: Model Estimation Results 

Parameter 
Members Customers 

Coefficient t-statistic Coefficient t-statistic 

Bicycle Infrastructure Variables     

Length of Bicycle Facility in 300m Buffer 0.2491 10.465 0.1259 5.42 

Length of Major Roads in 300m Buffer -0.2243 -7.306 -0.0771 -2.313 

Number of Divvy Stations in 300m Buffer 0.1078 2.042 -0.344 -6.023 

Capacity of Divvy Stations in 300m Buffer -0.0053 -2.554 0.0042 1.82 

Destination Station Capacity 0.029 10.496 0.0456 18.204 

     

Land-use and Built Environment Characteristics     

Presence of L System Station in 300m Buffer 0.16 4.631 -0.0937 -2.067 

Length of L System Lines in 300m Buffer - - -0.2585 -5.908 

Presence of Metra System Station in 300m Buffer 0.2965 6.363 -0.2833 -5.354 

Area of Parks in 300m Buffer -0.1129 -2.178 1.04 37.736 

Area of Parks in 300m Buffer *Weekend 0.4635 5.105 - - 

Number of Restaurants in 300m Buffer 0.2721 5.017 0.6583 12.087 

Destination Station in CBD - - 0.6548 14.206 

Destination Station Distance to CBD -0.055 -5.145 - - 

Destination Station Distance to CBD*AM -0.164 -8.336 -0.0901 -2.998 

Destination Station Distance to CBD*PM 0.0612 4.653 0.0263 2.046 

Population Density 0.015 4.623 - - 

Population Density*AM -0.0188 -2.929 -0.0287 -2.742 

Job Density -0.0067 -11.286 - - 

Job Density*AM 0.0096 12.087 0.0029 2.212 

     

Trip Attributes     

Dummy Network Distance to Destination < 500m -0.6868 -6.706 -0.3793 -3.507 

Network Distance (500m< &<3000m) -0.6503 -25.415 - - 

Dummy Network Distance to Destination > 3000m -2.9221 -38.702 - - 

Network Distance (500m<) - - -0.4472 -57.153 

Male* Dummy Network Distance to Destination > 

3000m 
-0.1623 -2.096 - - 

 

 

 


