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ABSTRACT 

Decision makers (DM) – individuals, households, and firms among others - make several decisions 

as part of their life cycle. In understanding these decision processes that are usually discrete 

outcome variables, researchers across various fields including economics, psychology and 

transportation have developed different frameworks, referred to as Choice models. In this chapter, 

we illustrate how choice or outcome models can provide data supported analysis mechanisms in 

transportation. Specifically, we present models from three frameworks (a) random utility 

maximization and (b) random regret minimization approach and (c) ordered response structure. 

The study provides a brief overview of multiple case studies from different transportation contexts. 

We also discuss the application of choice models for travel mode share analysis.  

 

 

Keywords: Random utility approach, multinomial logit model, mixed logit, random regret 

minimization  
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1 INTRODUCTION 

Decision makers (DM) – individuals, households, and firms among others - make several decisions 

as part of their life cycle. These decisions could be short time decisions such as what mode of 

travel to consider to arrive at the next activity location (for individuals) or long-term decisions 

such as what house to purchase (for a household) or where to establish a place of residence or 

commercial enterprise (for a household or a firm respectively). In understanding these decision 

processes that are usually discrete outcome variables, researchers across various fields including 

economics, psychology and transportation have developed different frameworks, referred to as 

Choice models. These frameworks relying on assumptions about the choice environment and the 

decision maker provide a mathematical representation to study choice behavior. The formulation 

of the choice model will vary based on the assumptions incorporated within the representation 

structure. These mathematical formulations are employed to analyze data from wide-ranging fields 

including economics, statistics, marketing, transportation, psephology, political science, and bio-

statistics.  

In the transportation field, a large number of diverse examples of choice behavior is often 

encountered. At the individual level, the various choices situations encountered include: (a) travel 

mode choice - an individual chooses a transportation mode from a set of available transportation 

modes (such as car, bus, and walk), (b) route choice – a road user chooses a route from multiple 

alternatives for a trip (such as different Google Maps generated routes), (c) activity choice - an 

individual chooses an activity from a series of activities for the day (such as leisure and shopping), 

and (d) freight shipment size – an individual shipper determines the size of their shipment (such 

as under 50 pounds, 50-200 pounds and greater than 200 pounds). At the household level a sample 

of choices considered include (a) residential location choice – a household chooses a residential 

unit to buy or rent (spatial aggregated alternatives from the urban region such as traffic analysis 

zones or parcels), and (b) vehicle type choice – a household chooses to buy a vehicle defined by a 

combination of type (such as sedan minivan or coupe), make (such as Chevy, or Honda) and fuel 

type (electric or gasoline). At the firm level sample of choices evaluated include: (a) firm size and 

structure – a firm selects a size defined by the number of employees and hierarchy structure, and 

(b) firm location choice – a firm determines a location based on various incentives or tax 

implications. The examples illustrate the range and complexity of these choices.  

In this chapter, we illustrate how choice or outcome models provide data supported analysis 

mechanisms for such choice contexts. The rest of the chapter is organized as follows: Section 2 

summarizes mathematical frameworks commonly used for choice analysis in transportation. In 

Section 3, we provide a brief overview of case studies examining different choice contexts in 

transportation, Section 4 provides details of choice model application for travel mode share 

applications. Finally, section 5 concludes the chapter. 

 

2 CHOICE MODEL ARCHITECTURE AND MATHEMATICAL FORMULATIONS 

Across the various choice contexts described earlier, DMs have to process the available 

information regarding the choice environment in arriving at their preferred choice. A DM’s choice 

is dependent on how the DM defines the decision at hand, processes the alternatives (and their 

attributes) and the decision rule applied to arrive at the choice. The choice problem definition 

determines the potential alternatives of the choice problem. For example, if the DM’s choice 

context is to determine the travel mode for an out of home activity, the alternatives will possibly 

include all transportation modes (universal choice set of transportation modes) available in the 

study region. Of these alternatives, based on the DM’s characteristics only a subset are feasible 
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(feasible choice set). However, based on the attributes of the various alternatives it is possible that 

the decision maker will only consider a subset of alternatives from the feasible choice set (evoked 

choice set). The DM evaluates the alternatives in the evoked choice set based on the alternative 

attributes. For example, in travel mode choice context, alternative attributes include travel time 

and travel cost.  

In choice contexts with smaller number of alternatives in the evoked choice set, DM can 

compare across alternatives using various decision rules to arrive at the final choice. In other cases, 

decision makers may consider a small subset of the alternatives to determine their choice. Earlier 

choice frameworks attempted a process of elimination (using satisfaction criteria Murtaugh and 

Gladwin, 1980) or ranking approach using lexicographic criteria (Foerster, 1979) to determine the 

DM’s choice. However, these approaches might provide non-unique choices and/or choice 

outcomes that are impractical. Toward addressing these concerns, a scalar alternative utility based 

approach was proposed. In this approach, each alternative is accorded a score based on a utility 

function (usually a linear additive function) of various alternative attributes. The alternative with 

the highest utility is considered to be the chosen alternative. Through the utility function, the 

approach allows for trade-offs (compensatory effects) between various attributes. For example, in 

a utility approach for travel mode choice, increase in travel cost can be compensated by 

improvements in travel time. While DM’s are completely aware of the various attributes 

considered, analysts only observe the choice process partially. Hence, to allow for the influence of 

missing or unobserved information, utility is partitioned into two parts – observed component and 

unobserved component. The observed component accommodates for the impact of variables 

compiled in the data collection. The unobserved component takes the form of a stochastic error 

term to represent missing information. The alternative with the largest utility – computed as the 

sum of the two components - is considered the chosen alternative. Given the inherent stochasticity, 

the approach is referred to as the Random Utility Maximization (RUM) approach.  

RUM choice models represent the most commonly employed frameworks for choice model 

development. The approach allows for the consideration of trade-offs across various attributes 

affecting the choice process. This implicit compensatory nature of the formulation allows for a 

poor performance on an attribute to be compensated by a positive performance on another attribute 

(Chorus et al., 2008). Several researchers, motivated by research in behavioral economics, have 

considered alternative decision rules for developing discrete choice models such as relative 

advantage maximization (Leong and Hensher, 2015), contextual concavity (Kivetz et al., 2004), 

fully-compensatory decision making (Arentze and Timmermans, 2007; Swait, 2001), prospect 

theory (PT) (Kahneman and Tversky, 2013; Tversky and Kahneman, 1992), and random regret 

minimization (RRM) (Chorus, 2010; Chorus et al., 2008). Of these approaches RRM offers a 

framework that parallels RUM based models and is emerging as alternative modeling framework. 

The reader would note that while all the choice examples presented in the introduction are 

discrete/categorical variables, some of them are potentially ordered discrete variables (for example 

number of employees)1. The RUM and RRM approaches are applicable for analyzing all discrete 

variables. However, for modeling ordered dependent variables, another class of models referred to 

as ordered response frameworks also emerge as a potential model structure. In the following 

 
 

1 Other examples of ordered discrete variables in the field of transportation include: (1) driver and passenger injury 

severity in traffic collisions, (2) household vehicle (automobile and bicycle) ownership, and (3) activity participation 

indicators (such as number of tours, number of stops, activity episode participation frequency and activity duration).  
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discussion, we present the mathematical details of the widely adopted frameworks organized by 

dependent variable characterization: (a) unordered dependent variable models and (b) ordered 

dependent variable models.  

 

2.1 Unordered dependent variable models 

The unordered model frameworks are applicable for modeling all discrete choice or outcome 

dependent variables. In this section, we describe the RUM based multinomial logit model and its 

extensions (mixed logit and latent segmentation based multinomial logit model) followed by a 

discussion of RRM based multinomial logit model.  
 

 Multinomial logit model 

Consider that a DM 𝑛 has to choose an alternative 𝑖 from a set of alternatives (𝑗 = 1,2 … … ..J). 

With these notation, the utility in the RUM framework is defined as:  

 

 𝑣𝑛𝑖 =  𝛽𝑖𝑥𝑛𝑖 + 𝜀𝑛𝑖 (1) 

 

where 𝑣𝑛𝑖 is the utility obtained by individual 𝑛 by selecting alternative 𝑖 from the choice set 𝑗. 

𝑥𝑛𝑖 is the vector of alternative and DM’s characteristics, 𝛽 is a corresponding vector of parameters 

(including a constant) and 𝜀𝑛𝑖 is the stochastic term that captures the unobserved part of the utility. 

The DM is expected to select an alternative that provides the highest utility. Given the inherent 

stochasticity involved, the choice of an alternative can only be arrived as the probability that a 

particular alternative (i in our case) provides the highest utility. The mathematical formula for an 

alternative probability of choice is affected by the assumptions about the stochastic term (𝜀𝑛𝑖). 

Assuming 𝜀𝑛𝑖, to be independent and identically Type I Standard Extreme Value distributed across 

the dataset simplifies the probability evaluation to the following multinomial logit form 

 

 𝑃𝑛𝑖 =
𝑒𝑣𝑛𝑖

∑ 𝑒𝑣𝑛𝑗
∀𝑗

 (2) 

 

Under different stochastic assumptions, such as 𝜀𝑛𝑖 following a multivariate normal 

distribution would give rise to multinomial probit model.  

 The estimation of the parameters (𝛽) is achieved by maximizing the likelihood function 

across the dataset i.e. maximizing the probability of the chosen alternative across all records. The 

likelihood function for individual 𝑛 is defined as 

 

 𝐿𝑛 =  ∑ 𝑃𝑛𝑗
𝑦𝑛𝑗

∀𝑗

 (3) 

 

where 𝑃𝑛𝑗 is the probability of the individual 𝑛 choosing 𝑗 and 𝑦𝑛𝑗 is an indicator variable that 

takes the value 1 for chosen alternative, 0 otherwise.  

 

The likelihood function for the entire data is computed as the product of likelihood over all 

the responses in the data as follows  
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 𝐿 =  ∏ ∑ 𝑃𝑛𝑗
𝑦𝑛𝑗

∀𝑗

𝑁

𝑛=1

 (4) 

 

For mathematical convenience, the natural logarithm of the likelihood function – log-

likelihood - is maximized. The log-likelihood function takes the following form    

 

 𝐿𝐿 =  ∑ ∑ 𝑦𝑛𝑗𝑃𝑛𝑗

∀𝑗

𝑁

𝑛=1

 (5) 

 

The maximization of the function from Equation 5 is achieved using different non-linear 

optimization methods. With the increased access to computational resources, several proprietary 

and open-source software are available for estimating the models such as SPSS, SAS, ALOGIT 

and R. The reader would note that the likelihood approach and software are similar for all models 

presented in the remaining discussion.  

 

 Mixed logit model 

In the multinomial logit model, the vector of parameters estimated (𝛽) is restricted to be the same 

across all DM’s. The restriction is often referred to as the population homogeneity assumption. 

The mixed multinomial logit model accommodates for heterogeneity effects across DM’s by 

allowing for the vector of parameters to follow a distribution across the dataset (as opposed to a 

fixed value). Based on the distributional assumption, the parameters that define the distribution 

are estimated.  

 In mixed logit models, the random utility formulation takes the following form (building 

on the formulation from Equation 1):  

 

 𝑣𝑛𝑖 = (𝛽𝑖+𝜂𝑛𝑖)𝑥𝑛𝑖 +  𝜀𝑛𝑖 (6) 

 

where 𝜂𝑛 is another column vector representing unobserved factors, usually considered to be 

independent realizations from a normal population distribution (𝜂𝑛~𝑁(0, 𝜎2)). Then, the 

probability that any DM will select alternative 𝑖 for a given value of 𝜂 can be expressed as:  

 

 𝑃𝑛𝑖|𝜂 =  
𝑒[(𝛽+𝜂𝑛𝑖)𝑥𝑛𝑖]

∑ 𝑒[(𝛽+𝜂𝑛𝑖)𝑥𝑛𝑖]
∀𝑗

 (7) 

 

The unconditional probability then can be written as: 

 

 𝑃𝑛𝑖 = ∫(𝑃𝑛𝑖|𝜂𝑛𝑖)

𝜂

𝑑𝑭(𝜂𝑛𝑖|𝜎) (8) 

 

where 𝑭 is the multivariate cumulative normal distribution and 𝜎 is a vector of parameters. The 

integral in the probability expression cannot be evaluated using an analytical approach. Hence, the 

mixed logit model estimation is approximated using simulation methods for integral evaluations. 
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The most commonly used method of simulation are Pseudo-Monte Carlo (PMC) simulation and 

Quasi-Monte Carlo (QMC) simulation (Bhat, 2003). The wide adoption of QMC approaches have 

resulted in ubiquitous adoption of mixed logit models for analysis in transportation and several 

other fields.  

 

 Latent class multinomial logit model 

In the mixed logit model system, while the mean of the random coefficients can be allowed to vary 

across DM’s based on observed variables, the approach usually restricts the variance and the 

distributional form of a random coefficient to be the same across all drivers. An alternative 

approach to relax the population heterogeneity assumption is the latent (or sometimes also referred 

to as endogenous) segmentation approach.  In this approach, the DM’s are allocated 

probabilistically to different segments, and segment-specific multinomial models are estimated. 

Such a segmentation approach is appealing in many respects: (a) each segment is allowed to be 

identified with a multivariate set of exogenous variables, (b) the probabilistic assignment of DM’s 

to segments explicitly acknowledges the role played by unobserved factors in moderating the 

impact of observed exogenous variables, and (c) there is no need to specify a distributional 

assumption for the coefficients (Greene and Hensher, 2003; Yasmin et al., 2014).  

 Let us consider S homogenous segments of DM’s (the optimal number of S is to be 

determined). We need to determine how to assign the DM’s probabilistically to the segments for 

the segmentation model. The utility for assigning a DM n (1,2,..N) to segment s follows the 

multinomial logit structure as: 

 

 𝑈𝑛𝑠 = 𝛾𝑠𝑧𝑛 + 𝜉𝑛𝑠 (9) 

 

where 𝑧𝑛 is a matrix of attributes that influences the propensity of belonging to segment s, 𝛾𝑠 is a 

vector of coefficients and 𝜉𝑛𝑠 is an idiosyncratic random error term assumed to be identically and 

independently Type 1 Extreme Value distributed across DM’s n and segment s. Then the 

probability that DM n belongs to segment s is given as:  

 

 𝑃𝑛𝑠 =  
exp(𝛾𝑠𝑧𝑛)

∑  exp(𝛾𝑠𝑧𝑛)𝑠
 (10) 

 

Within the latent segmentation approach, the probability of DM n choosing alternative i is 

given as: 

 

 𝑃𝑛𝑖 =  ∑(

𝑆

𝑠=1

𝑃𝑛(𝑖) | 𝑠)(𝑃𝑛𝑠) (11) 

 

where 𝑃𝑛(𝑖)  represents the multinomial logit probability for selecting alternative i within segment 

s following notation from Equation 2.  

 

 Regret based multinomial logit model 

The prevalent framework for developing discrete choice models is the RUM approach. RUM based 

approaches assume that decision makers prefer routes that provide the highest utility or satisfaction 
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(Ben-Akiva et al., 1985; McFadden, 1974; Train, 2009). Among these approaches, the regret 

minimization approach offers a viable alternative approach due to its mathematical simplicity 

within a semi-compensatory decision framework.  

The random regret associated with the choice of alternative 𝑖 among 𝑗 alternatives, each 

characterized by 𝑚 attributes by the DM 𝑛 is given as 

 

 𝑅𝑅𝑛𝑖 =  ∑ ∑ 𝑙𝑛 {1 + 𝑒𝑥 𝑝[𝜏𝑚 (𝑥𝑛𝑗𝑚 − 𝑥𝑛𝑖𝑚)]

∀𝑚𝑗≠𝑖

 (12) 

 

where 𝜏𝑚 denotes the estimable parameter associated with attribute 𝑥𝑚. 𝑥𝑛𝑗𝑚 and 𝑥𝑛𝑖𝑚 denote the 

values associated with attribute 𝑥𝑚 for chosen alternative 𝑖 and considered alternative 𝑗 for DM 𝑛. 

In random regret models, the error term is assumed to be identically and independently Type 1 

Extreme Value distributed across the dataset, which yields a closed form of probability expression 

similar to utility based multinomial logit model.  

 

 𝑃𝑛𝑖 =
𝑒−𝑅𝑅𝑛𝑖

∑ 𝑒−𝑅𝑅𝑛𝑗
∀𝑗

 (13) 

 

The model estimation follows a similar procedure of maximizing likelihood described earlier. 

Finally, the reader would note that similar extensions described in Section 2.1.2 and 2.1.3 can be 

accommodated for RRM frameworks to relax population homogeneity assumptions. 

 

2.2 Ordered dependent variable models 

The ordered response models represent the decision process under consideration using a single 

latent propensity. The choice probabilities are determined by partitioning the uni-dimensional 

propensity into as many categories as the dependent variable alternatives through a set of 

thresholds. The reader would note that the distributional assumptions of the unobserved component 

of the latent propensity determines the exact formulation of the model. The prevalent mechanism 

to analyze ordered discrete variables including ordered logit and generalized ordered logit models 

are presented in this section.  

 

 Ordered logit model 

Let 𝑛 (𝑛 = 1,2, … … , 𝑁) and 𝑗 (j = 1,2, … … , 𝐽) be the indices to represent decision makers and 

alternatives, respectively. In the traditional OL model, alternative levels (𝑦𝑛) are assumed to be 

associated with an underlying continuous latent variable (𝑦𝑛
∗). This latent variable is typically 

specified as the following linear function:   

 

 

 
𝑦𝑛

∗ = 𝛼𝑧𝑛 + 𝜖𝑛 ,   𝑦𝑛 = 𝑖, 𝑖𝑓 𝜏𝑖−1 < 𝑦𝑛
∗ < 𝜏𝑖 (14) 

 

where, 𝑦𝑛
∗ is the latent propensity for DM 𝑛 choosing an alternative level 𝑖,  𝑥𝑛 is a vector of 

exogenous variables, 𝛼 is a vector of coefficients to be estimated and 𝜖𝑛 is a random disturbance 

term assumed to be standard logistic. The latent propensity 𝑦𝑛
∗ is mapped to the observed ownership 

levels 𝑦𝑛 by 𝜏 thresholds (𝜏0 = −∞ , 𝜏𝐽 = +∞) with the following ordering conditions: 
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(−∞ < 𝜏1 < 𝜏2 <  … … … < 𝜏𝐽−1 < +∞). Given these relationships across the different 

parameters, the resulting probability expression takes the following form: 

 

 

 
𝑃𝑛𝑖(𝑦𝑛 = 𝑗) = Λ(𝜏𝑛 − 𝛼𝑥𝑛) − Λ(𝜏𝑗−1 − 𝛼𝑥𝑛) (15) 

 

where, 𝛬(. ) is the standard logistic cumulative distribution function (see (Greene and Hensher, 

2010; Train, 2009) for more details). A standard normal distributional assumption for 𝜖𝑛 would 

result in an ordered probit model system. 

 

 Generalized ordered logit model 

The generalized ordered response model relaxes the constant threshold across population 

restriction to provide a flexible form of the traditional OL model. The basic idea of the GOL is to 

represent the threshold parameters as a linear function of exogenous variables (Eluru et al., 2008; 

Maddala, 1983; Srinivasan, 2002; Terza, 1985). Thus, the thresholds are expressed as: 

 

 
𝜏𝑛,𝑗 = function of (𝑍𝑛𝑗) (16) 

where, 𝑍𝑛𝑗 is a set of exogenous variable (including a constant) associated with 𝑗 th threshold. 

Further, to ensure the accepted ordering of observed discrete severity (−∞ < τi,1 < τi,2 <

 … … … < τi,J−1 < +∞). We employ the parametric form employed by (Eluru et al., 2008): 

 

 𝜏𝑛,𝑗 = 𝜏𝑛,𝑗−1 + 𝑒𝑥𝑝(𝛿𝑛𝑗𝑍𝑛𝑗) (17) 

 

where 𝛿𝑛𝑗 is a vector of parameters to be estimated. The remaining structure and probability 

expressions are similar to the OL model. For identification reasons, we need to either suppress the 

latent propensity of one of the 𝛿𝑛𝑗 vectors. The model estimation follows a similar procedure of 

maximizing likelihood described earlier. Also, the reader would note that similar extensions 

described in Section 2.1.2 and 2.1.3 can be accommodated for ordered response frameworks to 

relax population homogeneity assumptions. 

 

3 CASE STUDIES 

To illustrate the diverse application of choice models in transportation, we present a brief summary 

of choice model application for different transportation empirical contexts2. Table 1 provides the 

summary of studies with information on study region, transportation topic of interest, data 

elicitation approach employed in the study, dependent variable used along with the details of the 

alternatives considered, choice model estimated, and the independent variables found to affect the 

choice process. Several observations can be made from the summary presented in Table 1. First, 

choice models are applied for examining different transportation dimensions such as passenger 

and freight travel model choice, route choice, activity type choice, residential location choice, 

electric and autonomous vehicle purchase decisions, activity destination choice and comparison of 

 
 

2 The reader would note that an exhaustive review of studies employing choice models is beyond the scope of the 

chapter. 
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travel times by mode. Second, the dependent variables vary considerably in terms of the number 

of alternatives ranging from 2 through 30. Third, the methodologies considered in these studies 

span the spectrum of choice models including simple binary logit models to panel mixed 

multinomial logit models. The studies also encompass RUM and RRM based models. Finally, a 

detailed summary of the independent variables considered for each study is included in the table. 

This summary on factors highlight how the adoption of these choice model frameworks can offer 

insights on a host of independent variables such as (a) DM’s socio-economic and socio-

demographics, (b) alternative specific characteristics such as mode characteristics, and dwelling 

unit characteristics and (c) choice environment attributes such as transportation network 

infrastructure attributes, built environment factors, and regional and environmental factors. 
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Table 1 Literature Review of Choice Models in Transportation 
Study City / 

Country 

Field of 

Study 

Data 

Source 

Dependent 

Variable 

Modeling 

approach 

Factors affecting the choice 

Puan et al., 

2019 

Johor 

Bahru 

(Malaysia) 

Mode choice Survey Travel Mode 

(car or bus) 

Binary Logit Demographic and socio-economic characteristics: age, gender, 

education, employment, income, household size, and vehicle 

ownership,    

Mode characteristics: travel time, travel cost, toll cost, parking 

cost, parking availability, number of transfers, comfort, 

reliability, overall quality of bus service, and bus coverage 

Zhao et al., 

2019 

China Route choice Survey Driver’s 

route choice 

response to 

incident 

information 

through 

VMS 

Multinomial 

logit model 

Demographic and socio-economic characteristics: gender, 

driving experience, education, occupation, income 

Trip characteristics: trip purpose,  

Road information: alternate route information (delay, 

congestion message by text) 

VMS characterisitcs: color, text, graph 

Shabanpour 

et al., 2017 

Chicago, 

USA 

Activity type URACS 

Survey 

Activity start 

times with 6 

time periods 

of the day 

Hybrid 

RUM-RRM 

model 

Travel time, age, gender, income, employment, travel mode, 

activity location, and activity duration. 

Keya et al., 

2018 

USA Freight mode 

choice 

CFS Shipping 

mode (hire 

truck, private 

truck, air, 

courier and 

others) 

Hybrid 

Regret-

Utility based 

MNL, Latent 

Class model 

Mode Characteristics: Shipping cost and shipping time 

Freight Characteristics: Type of shipment and value of 

shipment 

Transportation Network and Demographic variables: Type of 

region, climate, road network density, population density, 

employment density, poverty level and seaports at origin and 

destination location.  

Marois et 

al., 2019 

Montreal 

(Canada) 

Residential 

location 

National 

Household 

Survey 

data 

Residential 

location 

choice (from 

30 

alternatives) 

Mixed Logit Demographic and socio-economic characteristics: Budget, 

previous residence, housing cost, income, and family 

structure.  

Dwelling characteristics: Type of the unit, number of rooms, 

state of repair and age of the house 

Neighborhood characteristics: Urban morphology and 

amenities. 

Nickkar et 

al., 2019 

Maryland, 

USA 

Electrical 

vehicle 

choice 

Survey Ownership of 

electrical 

vehicles by 

Multinomial 

Logit 

Demographic and socio-economic characteristics: Age, 

education, income, marital status, race, political affiliation, 

household size, number of vehicles in household.  
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Study City / 

Country 

Field of 

Study 

Data 

Source 

Dependent 

Variable 

Modeling 

approach 

Factors affecting the choice 

female 

drivers 

Jiang et al., 

2019 

Japan Autonomous 

vehicle 

Survey Ownership of 

autonomous 

vehicles  

Mixed Logit Alternative characteristics: Additional purchase cost, 

Insurance reduction rate, parking cost reduction, Choice 

environment attributes: release time of AVs to market, 

penetration rate of AVs, driving experience (short and long 

terms), age and income of the respondent.  

Hasnat et 

al., 2019 

Central 

Florida 

Region, 

USA 

Destination 

choice 

Location 

based 

social 

media 

data 

Destination 

choice 

among a 

choice set of 

30 census 

tracts 

Panel Latent 

Segmentation 

Multinomial 

Logit 

Origin and destination characteristics: residential, industrial, 

recreational, office, agricultural, land use mix, per capita 

income, number of schools, hospitals and civic centers.  

Distance between origin and destination 

Faghih-

Imani et al., 

2017 

New York, 

USA 

Bike share New York 

City bike 

data 

Faster mode 

of travel 

(bicycle or 

cab) 

Panel Mixed 

Multinomial 

Logit 

Trip characteristics: Time of day, trip distance, whether the 

trip includes crossing a bridge or not 

Origin and destination attributes: Station capacity, length of 

cycling facilities, length of streets, number of restaurants, 

population density, employment density, presence of transit 

station. 
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4 MODE SHARE MODELS 

In the transportation field, travel mode share models represent the most common application of 

choice models. Among choice models, the most commonly employed frameworks include 

unordered model systems such as RUM based multinomial logit and RUM based Mixed Logit. 

Recently RRM based multinomial logit and mixed logit have also been applied. These model 

systems provide an understanding of the impact of various attributes affecting mode choice.  

Traditionally, travel mode choice models are estimated using household travel survey data. 

In these surveys, individual travel diaries compile information on travel mode choice for every out 

of home travel episode. These travel episodes can be modeled individually as a trip or can be 

considered as a chain of trips in the form of trip chain or tour. Depending on the modal aggregation 

by trip or tour, the model developed will either represent a trip level mode choice or tour level 

mode choice. In all these models, the data compiled from the survey provides only a subset of 

information necessary for model estimation. To elaborate, the level of service information (such 

as travel time and cost by mode) is usually provided by respondents only for the chosen alternative. 

In the model estimation process, the analyst will need to build the other alternatives under 

consideration for the specific record (trip or tour) and then generate level of service measures for 

all these alternatives. The generation of level of service measures is likely to be challenging. For 

instance, the travel cost of a trip by public transit is not likely to be easy to estimate if the individual 

uses a monthly or annual pass. The analyst will need to estimate the number of potential instances 

the individual will use transit for in determining the record level cost. Similar challenges exist in 

evaluating automobile record level travel costs as maintenance and operational costs vary 

substantially based on the vehicle used for travel as well as the frequency of use. Thus, in 

transportation, analysts typically use urban regional traffic analysis zone (TAZ) level travel time 

and travel cost matrices for analysis. These matrices are generated using traffic assignment results 

from regional travel demand models. To be sure, the approach does result in some conceptual 

challenges. For example, changes to travel mode preferences will modify the level of service 

matrices and vice versa. Hence, it is prudent to consider multiple iterations between mode choice 

and the traffic assignment process to ensure the level of service estimates used in mode choice are 

realistic.  

The model estimation will consider several variables including level of service attributes, 

DM socio-demographic and socio-economic attributes, transportation infrastructure and built 

environment variables. The specification of mode choice models for level of service attributes is 

different from other discrete choice contexts. Usually, the coefficients for independent variables 

are estimated specific to each alternative. However, for level of service attributes, it is useful to 

consider a generic parameter across all alternatives. For example, the generic parameter ensures 

that level of service parameters for variables such as travel time and travel cost are same across all 

modes. Further, the presence of generic parameters allows us to evaluate the trade-off between 

various mode specific level of service attributes. The trade-off between travel time and cost, 

defined as the value of time (VOT) or willingness to pay (WTP) is generated using mode choice 

estimates. For RUM based multinomial model system, the measure is defined as 

 

 𝑉𝑂𝑇𝑅𝑈𝑀 =  
𝛽𝑡𝑡

𝛽𝑡𝑐
 (18) 

 

where 𝛽𝑡𝑡 and 𝛽𝑡𝑐 are estimates of travel time and travel cost respectively from the RUM based 

multinomial logit model.  
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For RRM framework, the trade-offs are dependent on levels of attributes and generated 

as: 

 

 𝑉𝑂𝑇𝑅𝑅𝑀 =  

∑ −𝛽𝑡𝑡 (1 +
1

exp[𝛽𝑡𝑡(𝑡𝑗 − 𝑡𝑖)]
)𝑗 ≠𝑖

∑ −𝛽𝑡𝑐 (1 +
1

exp[𝛽𝑡𝑐(𝑐𝑗 − 𝑐𝑖)]
)𝑗 ≠𝑖

 (19) 

 

where 𝛽𝑡𝑡 and 𝛽𝑡𝑐 are estimates of travel time and travel cost respectively from the RRM based 

multinomial logit model, 𝑡𝑖 and 𝑡𝑗 represent the travel time attributes for the chosen route 𝑖 and 

considered route 𝑗, respectively. 𝑐𝑖 and 𝑐𝑗 are represent the travel time attribute for the chosen route 

𝑖 and considered route 𝑗, respectively. To be sure, these value of time expressions will need to be 

appropriately modified for mixed logit and latent segmentation models.  

 

5 CONCLUSION 

The current chapter provides an overview of model frameworks employed to model Decision 

Maker choice behavior in the context of transportation. Given the wide range of choice outcomes 

examined in transportation, multiple choice models useful for analyzing unordered and ordered 

discrete variables are presented. The unordered frameworks described include random utility based 

multinomial logit model and random regret based multinomial logit model, and their mixed and 

latent segmentation variants. For ordered discrete variables, we present the traditional ordered 

model and its generalized variant. A brief overview of case studies covering a diverse set of choice 

contexts is also presented. The description of choice models was restricted due to space constraints. 

Several advanced modeling approaches (such as panel models, generalized extreme value 

extensions of traditional models) that build on the frameworks described in the chapter are 

developed in recent years in economics and transportation fields.  
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