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ABSTRACT 

 

While there is widespread acceptance of the health benefits of bicycling, recent research has 

highlighted that the benefits may be partially offset by the potential adverse health impacts as a 

result of bicyclists’ exposure to traffic-related air pollution. Using a stated preference experiment, 

data from 695 commuter cyclists was compiled through a web-based survey and analyzed using a 

random utility approach to evaluate whether and to what extent cyclists are willing to trade-off air 

pollution exposure with other attributes such as roadway characteristics, bike facilities, and travel 

time. Mean and maximum concentrations of nitrogen dioxide (in parts per billion or ppb), a 

common marker of traffic-related air pollution, were used as the attributes to represent the 

externality (ranging from 5-60 ppb). Empirical results indicate that travel time and traffic volume 

remain the most important attributes for commuter cyclists in their route decision. We also 

computed a unique marginal rate of substitution called “Value of Clean Ride” (VCR). For mean 

exposure, the VCR is: 0.72 min/ppb and for maximum exposure, the VCR is: 0.25 min/ppb (95% 

distribution: -0.16, 0.67). This essentially suggests that if an alternative route was available with 

an average nitrogen dioxide concentration that is lower by 5 ppb (a realistic goal in light of the 

high spatial variability in air pollution within urban areas), then cyclists would be willing to take 

it if it added no more than about 4 minutes to their travel time. We also observed that cyclists who 

received information on short-term impacts of traffic-related air pollution tended to be more 

concerned with avoiding maximum exposure. 

 

Keywords: Bike route choice, traffic-generated pollution, panel mixed multinomial logit, clean 

ride, travel time trade-off, pollution exposure  
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1. INTRODUCTION 

 

The reliance on private automobile for travel has resulted in a vast array of negative externalities 

– traffic congestion, air, and noise pollution. Transportation professionals and metropolitan 

planning organizations are challenged to find potential solutions to reduce vehicle use while 

promoting environmentally friendly and physically active transportation alternatives. Towards this 

end, transportation demand management strategies that encourage active transportation, 

particularly bicycling, for both commuting and short distance utilitarian trips are encouraged 

(Eluru et al., 2008; Mailbach et al., 2009; Rojas-Rueda et al., 2011). For instance, in addition to 

investing in infrastructure and bike share programs, local governments often sponsor and endorse 

events such as “bike to work day” or “bike month” to promote bicycle use among the general 

public (Ahmed et al., 2013). The adoption of bicycling has the potential to reduce congestion and 

air pollution (and greenhouse gas emissions) in well-connected dense urban regions while offering 

individuals a low-cost travel option that provides personal health and fitness benefits (Wen and 

Rissel, 2008). In fact, there is evidence to suggest that the health benefit is one of the primary 

stimuli for people wanting to participate in active commuting (Anable and Gatersleben, 2005).  

While there is widespread acceptance of the potential health benefits of bicycling, recent 

research has highlighted that the benefits may be partially offset by the potential adverse health 

impacts as a result of exposure to traffic-related air pollution. In fact, it has been reported that in 

some cases, cyclists may be exposed to higher concentrations of traffic-related air pollutants than 

other road users owing to their close proximity to traffic, high respiration rates, and longer journeys 

(Panis et al., 2010; Bigazzi et al., 2016; Broach and Bigazzi, 2017). In addition, data suggest that 

exposure to traffic-related air pollution during cycling may contribute to altered autonomic 

regulation of the heart (Weichenthal et al., 2011), increased oxidative DNA damage (Vinzents et 

al., 2005), and acute myocardial infarction (Peters et al., 2004). The exposure is particularly of 

concern for the vulnerable segments of the community including children, pregnant women, 

seniors, and individuals with pre-existing respiratory conditions such as asthma (Sharker and 

Karimi, 2014; McLaren and Williams, 2015). 

Given growing evidence of the adverse health effects of traffic-related air pollution on 

bicyclists, there is a need to provide solutions to reduce exposure. While it may be impossible to 

entirely rid urban environments of anthropogenic air pollutants, one potential solution could be 

supplying bicyclists with a route planning tool that would inform them of a “lower exposure 

alternative” (Hertel et al., 2008; Sharker and Karimi, 2014). This tool could be especially beneficial 

to those who regularly spend more than 45-60 minutes on daily commutes. For some users, altering 

their route may result in increasing their daily commute by only a few minutes, but could reduce 

their long-term commute-time pollution exposure significantly. This was demonstrated by 

Hatzopoulou et al. (2013) using origin-destination (O-D) survey data for more than 2,000 cycling 

trips in Montréal, Canada. On average, exposures to ambient Nitrogen dioxide (NO2) were 

estimated to be lower by 0.76 parts per billion (ppb) (95% CI: 0.72, 0.80) relative to the shortest 

route, with decreases of up to 6.1 ppb for a single trip. In general, the benefits of decreased 

exposure were achieved with little increase (less than 1km) in the overall route length. 

The tool provides clear evidence of benefits from assessing route choice options in the 

context of exposure. However, bicycling route choices are seldom made in isolation with only 

emphasis on exposure. In this context, a critical question to ask is, what impact, if any, will such 

exposure information have on bicyclists’ route choice decisions? Will they be willing to make 

trade-offs in terms of travel time or distance or other roadway attributes to reduce their exposure 
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to traffic-generated emissions? There has been scant research investigating the issue. The emphasis 

of our research effort therefore is to bridge the research on bicycling route preferences with 

emerging research on examining the influence of air pollution on travel behavior. More 

specifically, we attempt to investigate the influence of exposure information on route choice while 

controlling for the other major dimensions (such as travel time, roadway characteristics, traffic 

characteristics, and bike facility characteristics) that influence the decision process. The study 

employs a stated preference (SP) elicitation approach for individual level route choice preference 

data compilation. The data compiled is analyzed using a random utility approach to evaluate 

whether and to what extent individuals are willing to trade-off exposure with other route attributes. 

In addition, a policy analysis exercise is also conducted to illustrate the applicability of the 

proposed approach. 

The remainder of the paper is organized as follows. A discussion of the relevant literature 

is presented in Section 2. In Section 3, the materials and methods are described in detail including 

survey design, experimental setup, survey administration, and econometric approach used in the 

analysis. Section 4 provides the model estimation and trade-off analysis results. Section 5 

concludes the paper and presents directions for future research. 

 

2. HIGHLIGHTS OF PREVIOUS RESEARCH 

 

To the best of authors’ knowledge, there has been no earlier work examining the influence of 

exposure to traffic related air pollution on bicycling route choices. Hence, we focus our review 

along two dimensions: (1) studies exploring bicycle route choice preferences and (2) earlier work 

examining the impact of air pollution in the context of travel decisions.  

 

2.1 Route Choice Preferences 

There is a vast body of literature examining the impacts of different exogenous factors on cyclist’s 

route choice preferences (Sener et al., 2009 provides a detailed review). Of particular interest to 

our research are studies conducted to evaluate underlying behavioral mechanisms that actually 

guide the bicyclist’s decision process. The majority of these studies have examined preferences 

for commuter cyclists and/or recreational cyclists. However, some have investigated preferences 

of would-be or potential cyclists (Su et al., 2010; Winters et al., 2011). The data elicitation 

approaches considered include stated preference and revealed preference (RP) techniques with a 

clear preference for the SP approach (for SP studies see Stinson and Bhat, 2003; Hunt and 

Abraham, 2007; Tilahun et al., 2007; Sener et al., 2009; Caulfield et al., 2012; Chen and Chen, 

2013; for RP studies see Menghini et al., 2010; Hood et al., 2011; Broach et al., 2012; Yeboah and 

Alvanides, 2015). This approach allows the analyst to explore various attributes that affect route 

choice behavior, most often unavailable under real world conditions. In an SP survey, routes that 

have varying attribute levels across multiple attributes can be easily generated with rigorous 

experimental design. On the other hand, employing RP data would significantly limit the potential 

routes, route attributes, and attribute levels that can be explored in the analysis. The approaches 

employed for data analysis include ordinary least squares (OLS), binary logit (BL) or multinomial 

logit (MNL), mixed multinomial logit (MMNL), multinomial probit (MNP) models, and heuristic 

approaches.  

 These earlier studies provide valuable insights into the multitude of factors impacting route 

evaluation and subsequent route choice. For instance, for commuter cyclists (individuals who use 

the bicycle for commuting to and from work or school), travel time has the paramount importance 
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with regards to their route choice decision (Stinson and Bhat, 2003; Sener et al., 2009). That is, 

they are more likely to choose the quickest route to reach their destination. However, commuter 

cyclists are willing to incur additional travel time for using bicycle facilities (if present on the 

route). This is particularly so for less experienced cyclists, women, and bike share system users 

(Abraham et al., 2002; DeGruyter, 2003; Tilahun et al., 2007; Garrard et al., 2008; Winters and 

Teschke, 2010; Hood et al., 2011; Gonzalez et al., 2016). Interestingly, in a study in Montreal, it 

was found that bicycle facilities are associated with higher air pollution levels (Strauss et al., 2012). 

It was also observed that cyclists tend to avoid uphill routes as well as routes with increased traffic 

control devices at intersections and higher vehicular traffic volumes particularly bus services 

(Parkin et al., 2008; Winters et al., 2011; Broach et al., 2012; Gonzalez et al., 2016). Preference 

for attractive aesthetics alongside the route was also reported in some studies. In addition to 

observed factors, latent psychological traits of bicyclists such as emotions, feelings, and personal 

perceptions can be important predictors of their route choice decisions as well (Fernández-Heredia 

et al., 2014). For example, Bhat et al. (2015), using survey data collected in Austin, Texas, found 

that “pro-bicyclist attitude” and “safety (from traffic crashes) consciousness” moderate the impact 

of the observed individual attributes on bicycle route choice. 

 

2.2 Impact of Air Pollution on Travel Decisions 

Researchers have sought to develop user-friendly tools that can be used by pedestrians and cyclists 

to plan their route so as to limit their exposures to air pollution. A list of studies in this context is 

presented in Table 1. The majority of these studies focus on cycling and compare shortest routes 

with low air pollution routes. Shortest routes are identified either in terms of travel time or travel 

distance while lowest exposure routes are identified based on exposure to a variety of air pollutants. 

We observe that irrespective of the method of analysis, a general consensus that emerges from 

these studies is that changing route can lead to reductions in exposure while cycling, without 

considerable increase in the travel time or distance. This, in turn, lends credence to the idea that a 

route planning tool identifying less polluted routes could help deliver potential health benefits for 

both pedestrians and bicyclists. 

 Interestingly, in our review, we only found a handful of studies that investigated the 

relationship between environmental knowledge/information and subsequent travel behavior or 

willingness-to-pay to be sustainable in travel behavior (not specific to bicycling). For instance, 

Flamm (2009) found that environmental knowledge and attitudes significantly impacted vehicle 

ownership and use. Along similar lines, using stated choice experiments, Walker and colleagues 

(Gaker et al., 2010; Gaker et al., 2011; Gaker and Walker, 2013) investigated how individuals 

respond to feedback about personal carbon footprint in the context of auto ownership, mode 

choice, and route selection. Their research was motivated by the ‘nudge’ theory of behavioral 

economics which postulates that providing personalized information is one of the most effective 

ways to influence people to change their behavior. The results indicated that most of their study 

subjects (university students) were willing to modify their travel behavior to reduce greenhouse 

gas (GHG) emissions.  

 In the transportation and travel behavior literature, there are three choice contexts - 

residential location, mode choice, and recreational site selection - where people’s reaction to 

pollution exposure in their choice making has been investigated. The Air Quality Index (AQI) has 

been used as a predictor for residential location and mode choice (Hunt et al., 1995; Ortúzar and 

Rodríguez, 2002; Wardman and Bristow, 2004; Sillano and Ortúzar, 2005; Jara-Diaz et al., 2006; 

Bunch et al., 1993). In recreational site choice studies, pollution has been represented in terms of 
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water quality (Parsons and Kealy, 1992; Tay and McCarthy, 1994; Adamowicz et al., 1994; Kaoru 

et al., 1995). Several of these SP experiments have shown that individuals and households are 

indeed willing to incur additional costs to avoid deleterious environmental conditions. 

 

2.3 Current Study Context 

In our review, we found two studies which reported that cyclists do consider air pollution in their 

decision process (Winters et al., 2011; Badland and Duncan, 2009). However, no quantification in 

terms of how long cyclists are willing to travel to avoid exposure while making their choice of 

route is provided. Overall, it is evident that there are no studies examining how people perceive or 

value reducing their air pollution exposure while cycling. Noting the gap in the literature, the 

objectives of our research effort were set as follows. First, to determine whether and to what extent 

cyclists are willing to modify their route choice decisions to avoid air pollution exposure. Second, 

to systematically examine if and by how much bicyclists’ preferences are affected based on the 

stylistic presentation of the potential health effects of short and long term exposure. Third, to 

understand the factors that affect commuter cyclists’ route choice preferences. Fourth, similar to 

Sener et al. (2009), to investigate the potential taste (sensitivity) variation across individuals to 

route attributes due to unobserved individual characteristics and attitudes. The policy implications 

of this work are threefold – (1) information on the level of exposure could be used to encourage 

cyclists to change their routes, (2) the nature of information on exposure could guide agencies in 

devising effective dissemination strategies, and (3) understanding which roadway infrastructure 

characteristics impact route choice aids in the decisions of where to invest and what type of facility 

to install, e.g. bike lanes or separate paths (Broach et al., 2012). 

 

3. MATERIALS AND METHODS 

 
3.1 Survey Design  

Our survey elicited responses from bicyclists along four dimensions. These are:  

(1) Personal and household characteristics (such as gender, age, education level, 

employment type and schedule, nearest intersections at the place of residence and 

work, household income, number of persons in the household, level of automobile and 

bicycle ownership, and commute time in minutes),  

(2) Cycling habits (frequency of cycling, if accompanied by children while making the 

trip, regular bicycling experience in years, primary reasons for cycling, seasons of 

cycling, and how often they switch their usual biking route),  

(3) Hypothetical commuting choice scenarios with three route options per scenario, and  

(4) A cyclist’s perception about the characteristics of his/her usual commuting route.  

Of these sections, apart from section 3, all other sections entailed direct responses to questions. 

The centerpiece of this survey and our study is a stated choice experiment in Section 3 that required 

the development of an experimental design to allow bicyclists to compare various attributes of the 

hypothetical routes before making their choice. Prior to the experimental design exercise, an 

important step in SP survey design consisted in identifying and defining, clearly and adequately, 

the attributes that characterize the available alternatives of the choice context (Hensher, 1994; 

Ortúzar and Rodríguez, 2002). From the existing bicycle route choice literature, we found that the 

factors affecting a cyclist’s route choice decision can be broadly classified into three major 

categories (Sener et al., 2009): 
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 Roadway characteristics: grade, number of stop signs, red lights, cross streets, on-

street parking, traffic volume, and roadway speed limit, 

 Bicycle route characteristics: segregation of bicycle lane, and facility continuity, 

 Trip characteristics: travel time. 

The attributes that were adopted in our study include: roadway characteristics: grade, traffic 

volume, and roadway type; bike route characteristics: cycling infrastructure continuity and 

segregation; and trip characteristics: travel time.  

The valuation of air pollution exposure information and capturing the trade-offs with other 

attributes was the primary objective of our study. However, identifying appropriate indicators 

representing ambient air pollution exposure information is far from straightforward, for two 

specific reasons. First, the general public (including cyclists) is most likely unaware of the 

analytical measurement units of air pollutant concentrations (for example, parts per billion or ppb1) 

and what they signify. Second, individuals (including cyclists) are also not privy to the potential 

amount of pollution they are exposed to while on the road. They cannot see, touch, feel or smell 

it. Thus, our goal was to include measures that would bear meaningful and readily understandable 

information to the respondents. For this purpose, two measures that reflect the amount of traffic-

related air pollution the cyclists are exposed to were identified. The first measure is the mean 

exposure that refers to the average air pollution level over the length of the route. The second 

measure is the maximum exposure i.e. the maximum level of air pollution that cyclists would 

encounter for a short part of their trip (for example, when biking behind a bus/truck). The mean 

and maximum exposures have both been associated with human health effects in the 

epidemiological literature.  

A detailed description of the attribute and the corresponding attribute levels are presented 

in Table 2.  Considering all of these attributes for experimental design would burden the respondent 

significantly. Hence, we opted to use an innovative partitioning technique where only five 

attributes were used to characterize routes in each of the SP scenarios. Of these five attributes, the 

environmental exposure, and travel time attributes were always retained. On the other hand, one 

attribute from roadway characteristics and bike route characteristics were randomly chosen for 

each individual. The selection of the attributes from these two categories was undertaken in a 

carefully designed rotating and overlapping fashion to enable the capture of all variable effects 

when the responses from the different SP choice scenarios across different individuals are brought 

together.  
 

3.2 Experimental Design 

Within each choice question, three alternative routes (with different levels of the five route 

attributes selected) were presented, and the individual was asked to make a choice among the 

alternatives presented. We used the experimental design routines in SAS (fractional factorial 

design) to develop the route choice alternatives in each scenario presented to the respondents. Each 

respondent was presented with five choice experiments in the survey. The design was checked to 

                                                           
1 In our survey, air pollution exposure was measured as a concentration of Nitrogen dioxide (NO2). This concentration 

is listed in units of parts per billion (ppb). NO2 concentrations in cities like Toronto and Montréal in Canada typically 

range between 5 ppb and 50 ppb. We chose NO2 for representing air pollution because NO2 is a marker of traffic-

related air pollution and is highly associated with air pollution from traffic in urban areas. It is therefore of most 

concern for cyclists. Other pollutants such as CO, SO2 are also generated from other sources and it becomes a lot more 

difficult for participants to understand. NO2 is routinely monitored in urban areas and the vast majority of the 

epidemiology literature on air pollution and health effects is based on exposure to NO2. 
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ensure that the attribute levels of the alternatives did not create dominating alternatives. The design 

also enables the estimation of (1) models more general than the multinomial logit model by 

maintaining factor orthogonality within and between alternatives, and (2) main effects of 

attributes, as well as all two-way interaction effects of attributes. The SP scenarios were preceded 

by clear definitions of the attributes – pictorial representations were provided to give respondents 

a clearer idea about exclusive/shared and continuous/discontinuous cycling infrastructure.  

We also conducted an “information provision” experiment to understand two issues. First, 

to identify if receiving information on the potential health effects resulting from exposure to 

traffic-related air pollution has any impact on a cyclist’s route choice decision and second, to study 

the sensitivity towards the nature of information provided. For this purpose, we devised three types 

of informational messages. One (or none) of these messages would appear to the respondent in a 

window preceding the scenarios and following the description of attributes. The survey was 

designed so that information display was randomized to ensure that a quarter of the respondents 

received no information while the rest of them received at least one of the three messages below: 

(1) short term exposure (short term exposures to high levels of NO2 have been associated 

with immediate effects on heart rate (magnitude of the effect depends on the 

individual)),  

(2) long term exposure (long term exposure to traffic related air pollution has been 

associated with a range of respiratory and cardiovascular health effects as well as 

some types of cancers),  

(3) specific information citing findings on long term exposure (long-term exposure to 

traffic-related air pollution has been associated with a range of respiratory and 

cardiovascular health effects. Also, a recent study demonstrated that a 5 ppb increase 

in exposure to NO2 was associated with 10% increase in the risk of breast cancer. 

Another study also demonstrated that a 5ppb increase in exposure to NO2 was 

associated with 18% increase in the risk of prostate cancer).  

 

3.3 Survey Administration 

The survey design was coded on a Survey Monkey platform (www.surveymonkey.net) for web 

dissemination. It was approved by the Health Sciences Research Ethics Board (HSREB) of the 

University of Toronto, Canada and was widely pilot tested to ensure that the experimental design 

and attribute randomization worked efficiently. It was open to cyclists who are 18 years of age or 

older. This ensured that data was obtained from individuals who were able to cycle unsupervised 

and also most likely to possess a driving license. The final survey included 33 questions requiring 

about 10-15 minutes to complete. The instrument for commuter cyclists is available from the 

authors upon request. Figure 1 presents a screenshot of sample choice task in the survey. 

 We adopted several survey dissemination, distribution, and advertisement schemes for 

collecting responses. For instance, web-links to the surveys were emailed to individuals, university 

electronic mailing lists, various bicyclist forums, organizations, and groups; posts related to the 

survey were uploaded in different social media platforms including Facebook, LinkedIn, and 

Twitter; bicycle-related websites placed web-links on their own web pages; advertisement posters 

placed in public message sharing spaces alongside major roadways. Individuals who learnt about 

our survey from these sources may have distributed it to their peers, colleagues, family, and 

friends. Owing to the sampling technique, it is likely that most of the respondents were bicyclists 

with access to computers and/or smart phones. Our dissemination was mostly focused on the cities 

http://www.surveymonkey.net/
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of Toronto, Montreal, Calgary, New York, and Orlando in light of the presence of collaborators 

who could provide assistance in distribution.   

 

3.4 Econometric Approach 

In this analysis, we use a panel mixed multinomial logit (MMNL) model formulation for our data 

with 5 responses per cyclist. Let 𝑐 (𝑐 = 1,2, … , 𝐶) be the index for cyclists, 𝑟 (1, 2, … , 𝑅) be the 

index for route alternative, and 𝑘 (1, 2, … , 𝐾) be the index for choice occasions for each cyclist. In 

our case, 𝑅 = 3 and 𝐾 = 5   for all 𝑐. With this notation, the random utility formulation takes the 

following familiar form: 

 𝑈𝑐𝑟𝑘 = (𝛼′ + 𝜂𝑐
′ )𝑧𝑐𝑟𝑘 + 𝜉𝑐𝑟𝑘 (1) 

𝑧𝑐𝑟𝑘 is a (M x 1) column vector of route attributes including all interactions influencing the utility 

of cyclist 𝑐 for route alternative 𝑟 at the 𝑘𝑡ℎ choice occasion. 𝛼′ is a corresponding (M x 1) column 

vector of coefficients (representing mean effects), 𝜂𝑐
′  is another  (M x 1) column vector 

representing unobserved factors specific to cyclist 𝑐 – the elements of 𝜂𝑐
′  are usually considered to 

be independent realizations from a normal population distribution (𝜂𝑐
′ ~𝑁(0, 𝜎2)), and 𝜉𝑐𝑟𝑘 is an 

idiosyncratic random error term assumed to be identically and independently Type 1 Extreme 

Value distributed. Then, the probability that any cyclist 𝑐 will select route 𝑟 for a given value of 

𝜂𝑐
′  can be expressed as:  

 𝑃𝑐𝑟𝑘|𝜂𝑐
′ =  

𝑒[(𝛼′+𝜂𝑐
′ )𝑧𝑐𝑟𝑘]

∑ 𝑒[(𝛼′+𝜂𝑐
′ )𝑧𝑐𝑟𝑘]𝑅

𝑟=1

 (2) 

The unconditional probability then can be written as: 

 𝑃𝑐𝑟𝑘 = ∫ (𝑃𝑐𝑟𝑘|𝜂𝑐
′ )

𝜂𝑐
′

𝑑𝑭(𝜂𝑐
′ |𝜎) (3) 

where 𝑭 is the multivariate cumulative normal distribution and 𝜎 is a vector. The log-likelihood 

(LL) function is constructed based on the above probability expression and maximum simulated 

likelihood (MSL) estimation is employed to estimate parameters 𝛼′ and 𝜎. For this particular 

study, we use a quasi-Monte Carlo (QMC) approach with 500 draws for the MSL estimation (see 

Bhat, 2001 for more details). Please note that in the current context, we do not have any alternative 

specific variables since the alternatives are “unlabeled” and characterized by route attributes. 

 We began our analysis by estimating the main effects of the variables. Then we introduced 

the first order interaction variables including interaction effects of route attributes with any 

bicyclist characteristics and interactions among route attributes. The final variable specification 

was based on a systematic process of removing statistically insignificant variables (in our analysis 

we considered 95 percent significance level). The specification process was also guided by prior 

research, intuitiveness and parsimony considerations. 

 

4. RESULTS 

 

The survey data was downloaded from the on-line Survey Monkey platform in an SPSS compatible 

file format. After removing data with incomplete information, our final estimation sample 
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comprised of 3475 choice occasions from 695 commuter cyclists. Next, we checked if our 

collected sample meets the minimum sample size requirement for stated choice experiments. 

Towards that end, we used the empirical equation proposed by Johnson and Orme (2003) for 

experiments considering two-way interaction effects. The equation is: 𝑛 ≥
500𝑐

𝑡𝑎
, where 𝑛 is the 

number of respondents, 𝑡 is the number of tasks, 𝑎 is the number of alternatives, and 𝑐 is the 

number of analysis cells (in our case, 𝑐 is the  largest product of levels of any two attributes since 

we are considering two-way interaction effects in addition to the main effects). According to this 

equation, minimum sample size needs to be greater than or equal to 500 respondents; our collected 

sample is greater than the minimum requirement (695 respondents). 

  

4.1 Demographic Profile of Commuter Cyclists 

Of the 695 commuter cyclists, fifty-eight percent are males and 42 percent are females. This gender 

difference reflects the lower participation of women in bicycle commuting. By age, two-fifths 

(40%) of the respondents are between the ages of 25 and 34, suggesting that commuter cyclists 

tend to belong to a younger age cohort. The majority is highly educated (80%), 46 percent held 

graduate degrees while 34 percent had completed a bachelor degree. More than three-fifths of the 

respondents are employed full-time, approximately 7 percent are employed part-time, and 30 

percent are students. More than half the respondents have a flexible work schedule. The major 

proportion (52%) of the commuter cyclists belong to a household earning a minimum of $75,000 

a year or more. This over-representation of affluent and highly educated individuals in a web-

based survey has been observed in other studies as well (Sener et al., 2009; Hansen and Nielsen, 

2014). Although it may indicate bias in the data collection method, it also reflects that cycling, 

especially commuting, is popular among professionals with higher education level. The vast 

majority of cyclists reside in multi-individual households (77%). The prevalence of cyclists from 

households owning multiple bicycles (78 percent of cyclists’ households owned at least 2 bicycles) 

and reduced automobile fleet size (42 percent of cyclists’ households did not own a car and 38 

percent owned a single vehicle) is perhaps indicative that our commuter cyclist sample is 

predominantly composed of avid cyclists. Descriptive statistics for the sample used in this study 

are presented in Table 32. For the sake of brevity, we provide full details of the demographic 

composition and other bicyclist characteristics in a companion paper (Anowar et al., 2017). 

 

4.2 Model Results 

Our model performs well in that all parameters have expected signs and most are highly significant. 

The yardstick equal probability model has the log-likelihood of -3817.68. The log-likelihood at 

convergence of the mixed multinomial logit model with interactions is -2759.65. The 

corresponding log-likelihood value at convergence for the traditional multinomial logit model 

without unobserved heterogeneity terms is -2765.47. Clearly, the two models are substantially 

                                                           
2 Please note that our sample includes bicyclists from multiple cities and this makes the task of checking the 

representativeness of the sample a challenging task. However, we compared the sociodemographic characteristics of 

our Toronto sub-sample with the 2011 Transportation Tomorrow Survey (TTS) of the city. Even this comparison was 

difficult since our variable categories didn’t exactly match with the TTS. Moreover, cyclists’ education level and 

household income are not collected in the TTS. From the comparison, we found that our commuter cyclist subsample 

of Toronto has an overrepresentation of females, young cyclists of 25-34 years of age, and an underrepresentation of 

older cyclists who are more than 45 years of age. It is important to note that the 2011 TTS data was predominantly 

based on phone calls (land-line) which underrepresents the younger generation and downtown residents in high-rise 

condominium buildings.     
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superior to the equal probability model. Among the two models, the likelihood ratio (LR) test value 

computed is 11.64 which is higher than the critical chi-square (𝜒2)value with 1 degrees of freedom 

at any reasonable level of confidence. This clearly indicates the presence of unobserved individual 

factors that influence bicyclist route choice decisions. Therefore, in the subsequent sections, we 

discuss the effects of variables by variable category obtained from the MMNL model only. The 

estimation results are presented in Table 4. 
 

4.2.1 Roadway Characteristics 

We tried three roadway characteristics in our model: grade, volume, and functional type. The effect 

of roadway grade is introduced with the flat grade type as the base. The negative sign on the steep 

grade indicates that commuter cyclists prefer flat or moderate grades to steep grades. This is 

particularly so for females (relative to male). The result might be attributable to the fact that 

pedaling is difficult and strenuous where there is steep incline and high speed on steep declines 

might be discomforting too. Moreover, women might be less willing to undertake additional 

physical activity and effort leading to perspirations while commuting to work (see similar results 

in Sener et al., 2009). As expected, bicyclists were disinclined to use routes with higher motorized 

traffic presumably due to safety concerns (Akar and Clifton, 2009). Furthermore, the larger 

magnitude of the coefficient on heavy traffic volume indicates that bicyclists prefer moderate 

traffic to heavy traffic. This is intuitive, since increased number of motor vehicles means greater 

possibility of conflict, particularly with turning vehicles which poses a serious safety threat. The 

negative sign on major and minor arterial street classes suggest that commuter cyclists prefer 

residential streets to non-residential streets (see Winters et al., 2010 for similar results). On 

residential streets, there are generally less motor vehicle traffic, hence there is reduced potential of 

conflict. Moreover, speed limits on these roadways are usually lower, forcing vehicles to travel at 

a lower speed, reducing the safety hazards to the cyclists. Females perhaps feel more comfortable 

riding with vehicles traveling at lower speed, hence they favorably evaluate residential streets.  

 

4.2.2 Bike Route Characteristics 

The effect of bicycle facility type is also as expected. Positive coefficient on continuous and 

exclusive cycling infrastructures clearly underscores the preference among bicyclists for 

uninterrupted and laterally separated facilities. Exclusivity of bike facilities from motor vehicle 

traffic is more desired by females. Researchers have found that riding alongside motor vehicles 

create emotional stress to cyclists (O’Connor and Brown, 2010; Heesch et al., 2011; Heesch et al., 

2015; Kaplan and Prato, 2013). Since, females are more risk averse by nature (Garrard et al., 2008; 

Byrnes et al., 1999), they tend to be more concerned about cycling in mixed traffic than men 

(Garrard et al., 2006). 
 

4.2.3 Air Pollution 

Exposure to air pollution was expressed in terms of two attributes. The first is the mean exposure 

level ranging from 5-15 ppb (for NO2) and the second is the maximum exposure level ranging 

from 20-60 ppb (for NO2). This type of variable is novel in bicycle route choice analysis. First, as 

expected, we observed that commuter cyclists tend to choose routes with lower air pollution levels. 

The higher negative coefficient for mean exposure level indicates that cyclists are more sensitive 

towards a constant level of pollution on a regular basis rather than instantaneous exposure to high 

levels of NO2 which typically occur while riding behind a transit bus or diesel truck. The 
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coefficients on mean exposure and its interaction term with biking experience indicate that 

inexperienced cyclists are more willing to avoid air pollution. 

 We also found that cyclists react to information provided to them. Intuitively, compared to 

the cyclists who didn’t receive any air pollution related health hazard information, those who were 

informed about short term impacts tended to be more concerned about avoiding maximum 

exposure. However, cyclists were found to be indifferent towards long term exposure information. 

The results obtained have interesting implications. First, it is perhaps indicating towards types of 

cyclists – one group who are air pollution conscious and the other who are air pollution neutral. 

Second, dissemination of simplistic, easily relatable and comprehensible health impacts (such as 

increased heart rate/breathing stress) of air pollution exposure might have more effect on cyclists’ 

route choice decision. The issue certainly requires further investigation. Moreover, there is a 

statistically significant variation due to unobserved effects in the sensitivity to maximum exposure 

levels. The results indicate that nearly 12% of the respondents have a positive value for the 

parameter for the maximum exposure. The result highlights how a small subset of individuals in 

the sample are indifferent to maximum exposure.  
 

4.2.4 Trip Characteristics 

The final set of variables in the results table corresponds to travel time effects. The coefficient of 

this variable is negative as expected and highly significant indicating commuter cyclists’ high 

preference for shorter travel times. The travel time variable has several interactions, including 

those with gender, age, biking frequency, and actual commute length. It reveals the following 

trends: (1) females are less time sensitive, (2) young (aged 25-34 years) commuter cyclists are 

more sensitive to travel time, perhaps because they prefer more fast-paced lifestyle, (3) older 

individuals (more than 55 years) have a lower sensitivity to travel time, perhaps because they have 

more time availability in general, (4) frequent riders prefer shorter commute time, and (5) those 

who make long commute trips are willing to endure longer commute durations.   
 

4.3 Trade-off Analysis 

Based on our estimation results, we conducted two additional analyses. First, based on the 

estimated coefficients in our model, we evaluated the relative magnitudes of the effects of route 

attributes on the route choice decision of cyclists. Note that all of our route attributes except mean 

exposure, maximum exposure, and travel time were indicator variables. Hence, we computed the 

contribution to utility of these three variables at their average value in the sample. For instance, 

the average value of travel time across all routes presented to respondents was 30 minutes and the 

contribution to utility was -0.081 from the model. Therefore, the average contribution to utility of 

travel time was computed as 30 × -0.081 = -2.43. Similarly, the average contribution to utility of 

mean and maximum exposures were -0.54 and -0.76, respectively. When compared with the 

coefficient values of the indicator variables in Table 4, it was no surprise that we found that travel 

time is the most important route characteristics for bicycle commuters, followed by heavy traffic 

volume, whether the bicycle route is along a major arterial, and steepness of roadway. On the other 

hand, whether the route is along minor arterial or not is the least important attribute in route choice 

evaluation decision of commuter cyclists. 
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Second, we computed the time-based trade-offs, i.e. how much (in minutes) bicyclists are 

willing to travel extra for using routes with better facilities or less traffic-generated pollution3. The 

results are presented in Table 5. We compared the travel time trade-offs across genders. Following 

conventional literature, these time-values are calculated by dividing the coefficients of each 

attribute by the coefficient of travel time. Note that the positive value signifies the additional travel 

time bicyclists are ready to incur to avoid that attribute, while negative values signify the additional 

time bicyclists would be willing to travel to avail themselves of the attribute. The results show that 

time values of attributes are quite similar for male and female commuter cyclists. However, the 

exceptions occurred for steep grade, whether the bicycle facility is located on a major arterial or 

not, and exclusivity of the facility. We also found that our computed trade-off values for roadway 

and bike attributes are in line with previous route choice studies. For instance, Tilahun et al. (2007) 

reported that cyclists are willing to travel 16.41 minutes extra to travel on a designated bike lane. 

In our study, we observed that cyclists are willing to travel 11-17 minutes to travel on continuous 

and exclusive bike facilities. The study by Sener et al. (2009) reported that commuter bicyclists 

are willing to travel approximately 11 minutes more to avoid moderate traffic and 31-39 minutes 

extra to avoid heavy traffic. In our case, commuter cyclists are willing to travel 9 minutes more to 

avoid moderate traffic and 20 minutes more to avoid heavy traffic. 

 Finally, we computed a unique marginal rate of substitution called “Value of Clean Ride” 

(VCR). This value is obtained by dividing the parameter on exposure level (both mean and 

maximum) by the parameter on travel time thus capturing the trade-off that a cyclist can make 

between these two attributes yet maintain the same utility. Since this is the first time any such 

value is being computed, we didn’t have any a priori expectations regarding the value. For mean 

exposure, the VCR was estimated at 0.72 min/ppb and for maximum exposure, the VCR was 

estimated at 0.25 min/ppb (95% distribution: -0.16, 0.67)4 suggesting that commuter cyclists are 

more sensitive to mean exposure than maximum exposure. The value obtained for mean exposure 

is far from being insignificant. In most urban areas, the spatial variability in near-road 

concentrations of NO2 is high. It is not uncommon to observe differences on the order of 5-7 ppb 

between two parallel streets (arterial road and nearby residential road). Based on this study, we 

can estimate that if an alternative route was available with an average exposure level that is lower 

by 5 ppb, cyclists would be willing to take it if it added no more than about 4 minutes to their 

travel time.    

 

5. CONCLUSION 

 

In most metropolitan areas, biking is promoted as a healthier, “greener”, viable alternative to 

motorized travel. However, an issue of concern is, that the “green” mode users, often have to ride 

in not-so-green roadway conditions and endure exposure to traffic-related air pollution. But how 

can they be helped? Switching to routes with reduced exposure can be one solution. The question 

then arises: do cyclists consider air pollution levels on roadways while selecting their route? We 

endeavor to find an answer to this question. Through this study, we conducted a web-based stated 

preference survey of bicycle commuters and carried out a rigorous statistical analysis and 

generated trade-offs that cyclists consider across the host of attributes in relation to air pollution 

                                                           
3 Of the 695 commuter cyclists, we found that only four respondents consistently made route selection based on the 

minimum travel time, only one on lowest mean exposure, and only four on lowest maximum exposure. So, we can 

see that the majority of the respondents were actually evaluating trade-offs. 
4 The band is calculated as: Mean (-0.019) ±1.96×Standard Deviation Parameter (0.016) 
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exposure. Mean and maximum exposure levels were used as the attributes to represent the 

externality. In addition, roadway, bike route, and trip characteristics were used as well in the 

experiment. To the best of our knowledge, this is the first study to assess bicycle route choice 

decision considering information on traffic-related air pollution exposure.  

 Our study findings strengthen the understanding of bicycle route choice behavior on a 

number of fronts. First, the results suggest that even if the respondents do not consciously know 

what their exposure level is while biking on the roadway, they still know how to evaluate it and 

exhibit intentions to modify their behavior to avoid it. Good general fit of the estimated models, 

intuitive parameter signs, and high significance of the parameter estimates suggest that our 

statistical design was able to represent the respondents’ preferences for the variables included in 

the experiment. Second, commuter cyclists tend to be more sensitive towards mean exposure along 

the route than the maximum exposure levels and there is a variation in sensitivity to maximum 

exposure due to unobserved factors. Third, travel time is the most important attribute for commuter 

cyclists in their route choice decision. But they are willing to travel extra minutes to reduce their 

exposure from traffic-related air pollution. For mean exposure, the value of clean ride (VCR) is: 

0.72 min/ppb and for maximum exposure, the VCR band is computed as 0.25 min/ppb (95% 

distribution: -0.16, 0.67). Fourth, our study highlights bicyclists’ preference for continuous and 

exclusive bicycle facilities, lower traffic volume, and lower speed limits on roadways. Moreover, 

gender sensitivity to roadway characteristics and bike facilities is also established. This is in line 

with the results reported in existing studies in the literature.  

 In conclusion, the value obtained for mean exposure is far from being insignificant. In most 

urban areas, the spatial variability in near-road concentrations of nitrogen dioxide (NO2) is high. 

It is not uncommon to observe differences on the order of 5-7 ppb between two parallel streets 

(arterial road and nearby residential road). Based on this study, we can estimate that if an 

alternative route was available with an average exposure level that is lower by 5 ppb, cyclists 

would be willing to take it if it added no more than about 4 minutes to their travel time. Hence, 

there is merit in developing routing algorithms that can propose lower exposure alternatives 

combined with easily understandable health impact information. The results also suggest that 

bicyclists’ exposure to air pollution should be incorporated and emphasized in bicycle facility 

planning. In addition, findings of the model can be used to assess and improve existing bike routes 

as well as to plan and implement better new routes.  

 However, the study is not without limitations. The estimated coefficients for mean 

exposure and maximum exposure rely on how respondents visualized the air pollution. While we 

provided general information on the impact of air pollution, it was beyond the scope of the analysis, 

to educate bicyclists on impact of pollution ppb on health. So, in general, the respondents are 

unlikely to “evaluate” exact impacts of air pollution on health. Rather, they are likely to make 

decisions as per their expectations of air pollution represented by values provided in the SP game. 

A more involved study can be conducted for investigation into defining the attribute with varying 

pollutant types and if the VCR value varies with the change in pollutant type. We leave that for 

future research explorations. 
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FIGURE 1 Screenshot of Sample Choice Task in the Survey 1 
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TABLE 1 Literature Review Matrix 1 

No. Study Choice Context Study Area 

Pollutants 

Considered 

(Units) 

Method of Analysis 

Shortest Routes Exposure 

1. Hankey et al. (2017) 
Bicycle and pedestrian 

streets and trails 

Minneapolis, 

USA 

PM2.5 (𝜇𝑔/𝑚3), 

BC (𝜇𝑔/𝑚3) 
--- 

Land use regression 

(LUR) model 

2. Good et al. (2016) Bicycle route 
Fort Collins, 

USA 

BC(𝜇𝑔/𝑚3),  

PM2.5 (𝜇𝑔/𝑚3),  

PNC (#/cm3), 

CO (ppm) 

Manually selected routes Field measurement 

3. Molter and Lindley (2015) 

Walking routes of 

primary school 

children 

Manchester, UK 
NO2 (𝜇𝑔/𝑚3),  

PM10 (𝜇𝑔/𝑚3) 
Simulation 

Land use regression 

(LUR) model 

4. Davies and Hyatt (2014) 
Walking route of 

pedestrians 
Lancaster, UK PM2.5 (𝜇𝑔) ArcGIS network analysis Dispersion modeling 

5. Sharker and Karimi (2014) Road network routes Pittsburgh, USA O3 (ppb) --- EPA data 

6. Hatzopoulou et al. (2013) Bicycle route 
Montreal, 

Canada 
NO2 (ppb) 

ArcGIS network analysis 

based on real life origins 

and destinations 

Land use regression 

(LUR) model 

7. Jarjour et al. (2013) Bicycle route 
Berkeley, 

California 

PM2.5 (𝜇𝑔/𝑚3),  

CO (ppm),  

BC (𝜇𝑔/𝑚3) 

Manually selected routes Actual measurement 

8. Cole-Hunter et al. (2013) Bicycle route 
Queensland, 

Australia 
PNC (ppcc) Manually selected routes Actual measurement 

9. Su et al. (2010) Bicycle route 
Vancouver, 

Canada 
NO2 (ppb) Google map interface 

Land use regression 

(LUR) model 

10. Hertel et al. (2008) 
Bicycle and transit 

route 

Copenhagen, 

Denmark 

NOx(𝜇𝑔/𝑚3),  

CO(𝜇𝑔/𝑚3),  

NO2(𝜇𝑔/𝑚3),  

PM10(𝜇𝑔/𝑚3),  

PM2.5(𝜇𝑔/𝑚3) 

ArcGIS network analysis Street pollution model 

2 
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TABLE 2 Attribute Levels for the SP Experiments 1 

Attribute 

Category 
Attribute Definition of Attribute Attribute Levels 

Roadway 

characteristics 

Grade Nature of terrain 

1. Flat 

2. Moderate  

3. Steep 

Traffic volume Amount of traffic on the roadway 

1. Light 

2. Moderate 

3. Heavy 

Roadway type Functional classification of roadway 

1. Residential /Local roads  

2. Minor arterial 

3. Major arterial 

Bike route 

characteristics 

Cycling infrastructure 

continuity 

Continuous bike route – if the whole 

route has a bicycle facility (a bike 

lane or shared-use path)  

Discontinuous - otherwise 

1. Continuous 

2. Discontinuous 

Cycling infrastructure 

segregation 

Exclusive/Segregated – if physically 

separated from motor vehicle traffic 

Shared – otherwise 

1. Exclusive 

2. Shared 

Environmental 

condition 

Amount of traffic-

related air pollution 

subjected to while 

cycling 

Mean exposure levels to pollutants 

1. 5 ppb 

2. 10 ppb 

3. 15 ppb 

Maximum exposure levels to 

pollutants 

1. 20 ppb 

2. 40 ppb 

3. 60 ppb 

Trip 

characteristics 
Duration of trip Travel time to destination 

1. 20 minutes 

2. 25 minutes 

3. 30 minutes 

4. 35 minutes  

5. 40 minutes  

  2 
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TABLE 3 Sample Characteristics 1 

 2 

3 

Demographics Percentages within Sample of Respondents 

Gender 
Males: 58% 

Females: 42% 

Age 

18-24 years: 19% 

25-34 years: 41% 

35-44 years: 20% 

45-54 years: 13% 

55-64 years: 6% 

≥ 65 years: 1% 

Education 

High school: 10% 

College: 10% 

Bachelors: 33% 

Graduate or higher: 47% 

Employment Type 

Student: 30% 

Full-time worker: 61% 

Part-time worker: 7% 

Retired: 1% 

Not/self-employed: 1% 

Household Income 

≤ $30K: 21% 

$30K-$45K: 8% 

$45K-$60K: 9% 

$60K-$75K: 11% 

$75K-$100K: 13% 

$100K-$150K: 20% 

≥ $150K: 19% 

Household Size 

1 person: 23% 

2 persons: 36% 

3 persons: 18% 

≥4 persons: 22% 
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TABLE 4 Estimation Results 1 

Attribute 

Category 
Attribute Attribute Levels Coefficient t-statistics 

Roadway 

characteristics 

Grade  

(Base: Flat) 

Steep -0.982 -10.579 

 Female -0.804 -5.601 

Traffic volume  

(Base: Light) 

Moderate -0.657 -7.729 

Heavy -1.508 -16.662 

Roadway type  

(Base: Residential  roads) 

Minor arterial -0.398 -4.776 

Major arterial -1.290 -15.025 

 Female -0.345 -2.576 

Bike route 

characteristics 

Infrastructure continuity 

(Base: Discontinuous) 
Continuous 0.879 13.485 

Infrastructure segregation 

(Base: Shared) 

Exclusive 0.939 10.353 

 Female 0.306 2.561 

Environmental 

condition 

Mean exposure 

Mean exposure -0.054 -8.791 

 Biking experience (Base: 2 or more years) 

  Less than 2 years -0.021 -1.961 

Maximum exposure 

Maximum exposure -0.019 -10.271 

Standard deviation 0.016 6.480 

 Exposure impact information (Base: No information) 

  Short-term  -0.007 -2.148 
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Trip 

characteristics 
Travel time 

Travel time -0.075 -4.551 

 Female 0.018 2.942 

 Age (Base: 18-24 years) 

  25-34 years -0.043 -6.740 

  55-64 years 0.027 2.656 

  65 years or more 0.056 2.762 

 Biking frequency (Base: Rarely) 

  Once or several times a month -0.049 -2.988 

  Daily -0.080 -4.982 

 Commute length (Base: Short commute) 

  Moderate 0.030 4.831 

  Long 0.072 7.997 

Log-likelihood at convergence (N = 3475): -2759.65 

1 
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TABLE 5 Time based Trade-offs across Gender 1 

Attribute Attribute Levels 

Time Value (minutes) 

Male Female 

Grade Steep 13.10 23.81 

Traffic volume 

Moderate 8.76 8.76 

Heavy 20.11 20.11 

Roadway type 

Minor arterial 5.31 5.31 

Major arterial 17.20 21.80 

Infrastructure continuity Continuous 11.72 11.72 

Infrastructure segregation Exclusive 12.52 16.60 

Environmental condition 

Mean exposure (10 ppb) 7.20 7.20 

Maximum exposure (40 ppb) 10.13 (-6.6/26.8) 10.13 (-6.6/26.8) 

 2 


