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ABSTRACT 

 

This paper focuses on the relevance of alternate discrete outcome frameworks for modeling 

driver injury severity. The study empirically compares the ordered response and unordered 

response models in the context of driver injury severity in traffic crashes. The alternative 

modeling approaches considered for the comparison exercise include: for the ordered response 

framework- ordered logit (OL), generalized ordered logit (GOL), mixed generalized ordered 

logit (MGOL) and for the unordered response framework - multinomial logit (MNL), nested 

logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit 

(MMNL) model. A host of comparison metrics are computed to evaluate the performance of 

these alternative models. The study provides a comprehensive  comparison exercise of the 

performance of ordered and unordered response models for examining the impact of exogenous 

factors on driver injury severity. The research also explores the effect of potential underreporting 

on alternative frameworks by artificially creating an underreported data sample from the driver 

injury severity sample. The empirical analysis is based on the 2010 General Estimates System 

(GES) data base – a nationally representative sample of road crashes collected and compiled 

from about 60 jurisdictions across the United States. The performance of the alternative 

frameworks are examined in the context of model estimation and validation (at the aggregate and 

disaggregate level). Further, the performance of the model frameworks in the presence of 

underreporting is explored – with and without corrections to the estimates. The results from these 

extensive analyses point towards the emergence of the GOL framework (MGOL) as a strong 

competitor to the MMNL model in modeling driver injury severity.  

 

Keywords: Comparison of discrete outcome models, MGOL, MMNL, underreporting, validation  



INTRODUCTION 
 

The problem of morbidity and mortality from motor vehicle crashes is now acknowledged to be 

a global phenomenon. According to World Health Organization (WHO), more than one million 

people get killed in traffic accidents each year (WHO 2004). These incidents affect the society as 

a whole both emotionally and economically (Subramanian 2006, Blincoe et al. 2002). These road 

crashes not only result in loss of life, but also impact the quality of life and productivity of the 

motor vehicle crash survivors. Given the import of the consequences of motor vehicle crashes, 

the issue has received significant attention from researchers and practitioners. In particular, the 

emphasis is on examining the influence of several factors, comprising of driver characteristics, 

vehicle characteristics, roadway design and operational attributes, environmental factors and 

crash characteristics on motor vehicle crash related severity.  

The commonly available traffic crash databases compile injury severity data, primarily, 

as an ordinal discrete variable (for example: no injury, minor injury, major injury, and fatal 

injury). Naturally, many earlier studies examining the influence of exogenous factors employ 

ordered discrete outcome modeling approaches to evaluate their influence on crash severity (for 

example O’Donnell and Connor 1996, Renski et al. 1999, Eluru et al. 2008). However, 

researchers have also employed unordered discrete outcome frameworks to study the influence 

of exogenous variables (for instance Shankar et al. 1995, Chang and Mannering 1999, 

Khorashadi et al. 2005). The ordered response models represent the decision process under 

consideration using a single latent propensity. The outcome probabilities are determined by 

partitioning the uni-dimensional propensity into as many categories as the dependent variable 

alternatives through a set of thresholds. Unordered discrete outcome frameworks offer a potential 

alternative to the analysis of ordered discrete variables. These models are characterized, usually, 

by a latent variable per alternative and an associated decision rule. The unordered models, 

usually, allow for additional parameter specification because they are tied to alternatives as 

opposed to a single propensity in the ordered models. 

The applicability of the two frameworks for analyzing ordinal discrete variables has 

evoked considerable debate on using the appropriate model for analysis. There are many 

strengths and weaknesses for the ordered framework vis-à-vis the unordered framework (Eluru 

2013). The ordered response models explicitly recognize the inherent ordering within the 

decision variable whereas the unordered response models neglect the ordering or require 

artificial constructs to consider the ordering (for example the ordered generalized extreme value 

logit model). On the other hand, the traditional ordered response models restrict the impact of 

exogenous variables on the outcome process to be same across all alternatives while the 

unordered response models allow the model parameters to vary across alternatives (see Eluru et 

al. 2008 for a discussion). The restricted number of parameters ensures that ordered response 

models have a parsimonious specification. The unordered response models might not be as 

parsimonious but offer greater explanatory power because of the additional exogenous effects 

that can be explored. In fact, several studies highlight the advantages of multinomial logit model 

over the ordered response models (see for example Bhat and Pulugurta 1998). Hence, an 

empirical examination of alternative approaches in the context of injury severity analysis will 

allow us to determine the appropriateness of the two frameworks. Further, the recent revival of 

generalized ordered logit model (proposed by Terza 1985) offers an ordered framework that 

allows the analyst to estimate the same number of parameters as the multinomial logit for an 



ordinal discrete variable. Hence, an exercise comparing the alternative frameworks is incomplete 

without considering the generalized ordered logit. 

The conventional police/hospital reported crash databases may not include precious 

behavioural, physiological and psychological characteristics of individual involved in collisions. 

Due the presence of such unobserved information, the effect of exogenous variables might not be 

the same across individuals in the event of a crash (see for example Srinivasan 2002, Eluru et al. 

2008, Morgan and Mannering 2011, Kim et al. 2013). For example, careful driving on behalf of 

a safe driver might moderate the severity outcome of a crash during night-time and while less 

cautious driving of an aggressive driver might exacerbate the crash severity in the same situation. 

In non-linear models, neglecting the effect of such unobserved heterogeneity can result in 

inconsistent estimates (Chamberlain 1980, Bhat 2001). Our study incorporates the influence of 

unobserved heterogeneity in both the ordered and unordered response frameworks.  

The comparison exercise is particularly relevant in the context of injury severity data. 

The estimation of injury severity models correspond to the assumption of random sampling of 

severities from a population, where the probability of occurring for each individual crash is equal 

(Savolainen et al. 2011). However, the unknown population shares of such outcome-based crash 

severity data make the estimation of parameters even more challenging. Moreover, most of the 

crash data are sampled from police reported crash database. Several previous studies (Elvik and 

Mysen 1999, Yamamoto et al. 2008) have provided evidence of underreporting issues related to 

the police-reported crash database. In such cases, the application of traditional econometric 

frameworks may result in biased estimates (Yamamoto et al. 2008). In the presence of 

underreported data, the unordered response framework is considered to be more effective 

compared to the ordered response framework. In the case of an underreported decision variable, 

the traditional multinomial logit model provides estimates that are unbiased i.e. the elasticity 

effects of the variables are not affected by the underreported data. This is often considered as a 

strong reason for promoting the use of unordered models over ordered models in modeling injury 

severity. It is important to recognize that the potential advantage applies only to MNL models 

under the condition that the dataset under examination satisfies the Independence of Irrelevant 

Alternatives (IIA) property (Ben-Akiva and Lerman 1985). Hence, the nested logit and other 

advanced logit models that relax the IIA property are unlikely to yield unbiased estimates in the 

presence of under-reporting. Moreover, the comparison of these two frameworks has mostly 

been undertaken in the context of traditional ordered models. The generalized ordered logit 

framework with its improved flexibility will provide the true benchmark for a fair comparison. It 

is also essential to examine how alternative modeling frameworks are impacted by 

underreporting; thus allowing us to adopt frameworks that are least affected by underreporting.  

In summary, an accurate estimation of the associated risk factors is critical to assist 

decision makers, transportation officials, insurance companies, and vehicle manufacturers to 

make informed decisions to improve road safety. Yet, there is little research on empirically 

examining the differences between the ordered and unordered frameworks. Further, the influence 

of underreporting on alternative model frameworks has also received little attention. The current 

study proposes a framework to compare and contrast the alternative frameworks available for 

modeling driver injury severity. Further, the study also incorporates the underreporting issue 

associated with traditional crash databases. Specifically, the current study examines the 

performance of alternative modeling frameworks in the context of estimation from an observed 

sample and also in the context of an artificially created underreported data sample. Further, the 

study generates elasticity measures for the true and underreported samples to illustrate the 



influence of underreporting. The parameters from these model estimations are also used on a 

validation hold-out sample to evaluate model predictions (in the true as well as underreported 

case). The alternative modeling approaches considered for the exercise include: for the ordered 

response framework- ordered logit (OL), generalized ordered logit (GOL), mixed generalized 

ordered logit (MGOL) and for the unordered response framework - multinomial logit (MNL), 

nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit 

(MMNL) model. We generate a series of measures to evaluate model performance in estimation 

and prediction thus allowing us to draw conclusions on model applicability for injury severity 

analysis.  

The rest of the paper is organized as follows. Section 2 provides a discussion of earlier 

research on driver injury severity modeling while positioning the current study. Section 3 

provides details of the various econometric model frameworks used in the analysis. In Section 4, 

the data source and sample formation procedures are described. The model comparison results, 

elasticity effects and validation measures are presented in Section 5. Section 6 concludes the 

paper and presents directions for future research. 

 

EARLIER RESEARCH 

 

A number of research efforts have examined driver injury severity to gain a comprehensive 

understanding of the factors that affect injury severity. In our review of earlier research we focus 

on studies examining severity at a disaggregate accident or individual level models of driver 

injury severity.  For a detailed review of modeling frameworks employed in transportation safety 

the reader is referred to review studies: for example Savolainen et al. (2011) and Eluru et al. 

(2008).  More recently, Eluru (2013) examined the performance of the MNL and GOL models 

by examining the issue from the data generation perspective; the authors argued that it is not 

possible to conclude which of the MNL and GOL is the better model without considering the 

dataset structure. Also, notably, even in cases where MNL performs better than GOL, the 

difference in data fit measures was relatively small.  

A summary of earlier research on driver injury severity analysis from the perspective of 

the various ordered and unordered response models is provided in Table 1. The information 

presented in the table includes model structure employed for the analysis and identifies the 

variable categories considered in the analysis from the five broad categories of variables 

identified earlier. The following observations may be made from the table. First, the most 

prevalent mechanisms to study driver injury severity are logistic regression
1
 and ordered 

response models (twenty four out of thirty one). The number of studies employing unordered 

models has been steadily increasing in recent years. Second, the most prevalent unordered 

response structure considered is the multinomial logit model. Third, it is evident from the 

analysis that very few studies (except Abdel-Aty 2003, Ye and Lord 2011) have empirically 

examined the different frameworks for modeling injury severity
2
. Finally, the maturity of the 

                                                           
 
1
 To be sure, the logistic regression with two alternatives can be regarded as an ordered logit model with two 

alternatives. 
2
 To be sure, Ye and Lord (2011) have compared the ordered probit, multinomial logit and mixed logit model in 

terms of underreported data. The authors conclude that all the three models considered in the study perform poorly 

in the presence of underreported data. The exact impact of underreporting on these model frameworks needs further 

investigation. The study employs data simulation; however, the models are estimated with just one parameter and 

for a particular aggregate sample share. 



transportation safety community in examining driver injury severity is highlighted by the fact 

that a majority of studies (seventeen out of thirty one) have considered exogenous variables from 

all broad categories of variables. 

 

Current Study in Context 
 

Given the significance of examining the influence of exogenous variables on injury severity it is 

important that we undertake a comparison based on the performance of alternative frameworks. 

The current study contributes to literature on driver injury severity in multiple ways. First, the 

study provides a comparison exercise of the performance of ordered and unordered response 

models for examining the impact of exogenous factors on driver injury severity. We consider  

multiple models from ordered (OL, GOL and MGOL) and unordered frameworks (MNL, NL, 

OGEV and MMNL) to undertake the comparison exercise. Second, a host of comparison metrics 

are computed to evaluate the performance of the alternative models. Third, we compare the 

performance of the various models in the presence of underreporting. Elasticity measures are 

generated for the “true” dataset and the “artificial” dataset to compare the predicted elasticities 

for different models. Finally, we undertake the examination of driver injury severity using a 

comprehensive set of exogenous variables.  

 

ECONOMETRIC FRAMEWORK 

 

In this section, we provide a brief description of the methodology of all the models considered 

for examining driver injury severity in our research. 
 

Standard Ordered Logit Model 

 

In the traditional ordered response model, the discrete injury severity levels      are assumed to 

be associated with an underlying continuous latent variable    
  . This latent variable is typically 

specified as the following linear function:   

  
        , for           N (1)  

where, 

                represents the drivers 

   is a vector of exogenous variables (excluding a constant) 

  is a vector of unknown parameters to be estimated 

  is the random disturbance term assumed to be standard logistic 

Let               ) denotes the injury severity levels and    represents the 

thresholds associated with these severity levels. These unknown   s are assumed to partition the 

propensity into     intervals. The unobservable latent variable   
  is related to the observable 

ordinal variable    by the    with a response mechanism of the following form: 

                
    , for             (2)  

In order to ensure the well-defined intervals and natural ordering of observed severity, the 

thresholds are assumed to be ascending in order, such that               where 



      and      . Given these relationships across the different parameters, the resulting 

probability expressions for individual   and alternative   for the OL take the following form: 

           |     (      )   (        ) (3)  

where      represents the standard logistic cumulative distribution function. 
 

Generalized Ordered Logit Model 

 

The GOL model relaxes the constant threshold across population restriction to provide a flexible 

form of the traditional OL model. The basic idea of the GOL is to represent the threshold 

parameters as a linear function of exogenous variables (Maddala 1983, Terza 1985, Srinivasan 

2002, Eluru et al. 2008). Thus the thresholds are expressed as: 

           (4)  

where,     is a set of exogenous variable (including a constant) associated with      threshold. 

Further, to ensure the accepted ordering of observed discrete severity (         

            ), we employ the following parametric form as employed by Eluru et al. 

(2008): 

                   (5)  

where,    is a vector of parameters to be estimated. The remaining structure and probability 

expressions are similar to the OL model. For identification reasons, we need to restrict one of the 

   vectors to zero. 

 

Mixed Generalized Ordered Logit Model 

 

The MGOL accommodates unobserved heterogeneity in the effect of exogenous variable on 

injury severity levels in both the latent injury risk propensity function and the threshold functions 

(Srinivasan 2002, Eluru et al. 2008). Let us assume that    and     are two column vectors 

representing the unobserved factors specific to driver   and his/her trip environments in equation 

1 and 5, respectively. Thus the equation system for MGOL model can be expressed as: 

  
             , for           N (6)  

and 

                                 (7)  

In equations 6 and 7, we assume that    and     are independent realizations from normal 

distribution for this study. Thus, conditional on    and    , the probability expressions for 

individual   and alternative   in MGOL model take the following form: 



      (    |      ) 

                                                                  
(8)  

The unconditional probability can subsequently be obtained as: 

    ∫    (    |      )    (      )         
      

 (9)  

In this study, we use a quasi-Monte Carlo (QMC) method proposed by Bhat (2001) for 

discrete outcome model to draw realization from its population multivariate distribution. Within 

the broad framework of QMC sequences, we specifically use the Halton sequence (200 Halton 

draws) in the current analysis (see Eluru et al. 2008 for a similar estimation process).  
 

Multinomial Logit Model 

 

Let us consider the probability of a driver   ending in a specific injury-severity level  . The 

alternative specific latent variables for MNL take the form of: 

              (10)  

where 

   is a vector of coefficients to be estimated for outcome   

    is a vector of exogenous variables 

    is a function of covariates determining the severity  

    is the random component assumed to follow a  gumbel type 1 distribution. 

Thus, the MNL probability expression is as follows: 

      
           

∑            
 
   

 (11)  

 

Nested Logit Model 

 

The NL model allows the incorporation of correlation across alternatives and results in two kinds 

of alternatives: those that are part of a nest (i.e. alternatives that are correlated) and alternatives 

that are not part of nest. The crash severity probabilities for the nested alternatives in the NL are 

composed of the nest probability as well as the alternative probability (same structure as the 

MNL applies).  

In the first step, the probability of choosing the nest is determined followed by the 

probability of choosing alternative within the nest 

      
                 

∑                     
 (12)  



    

    |   
       |     

∑        |        
 

where, 

      is the unconditional probability of  th crash falling in nest   
    |   is the conditional probability of  th crash having severity outcome   (lower level) 

conditioned on the nest   (higher level) 

  is the actual severity and   is the alternative represented by the nest 

   is the inclusive value (log sum) representing the expected value of the attributes from 

the nest j 

   is the nesting coefficient  

The alternative probabilities for non-nested alternatives take a form similar to the MNL 

probabilities while considering the utility of the nested alternatives as a composite alternative. To 

be consistent with the NL derivation, the value of the    should be greater than 0 and less than 1 

(McFadden 1981). If the estimated value of    is not significantly different from 1, then the NL 

model collapses to a simple MNL model. 

 

Ordered Generalized Extreme Value model 
 

Injury levels of a crash are typically progressive (ranging from non-injury to fatal). MNL and NL 

models do not account for any inherent ordering in the outcomes. Small (1987) proposed the 

OGEV model for such ordered discrete outcomes. The OGEV model allows for the correlations 

between the error terms of outcomes which are close to each other in the ordered scale.  

We employ the structure proposed in Wen and Koppelman (2001) for the OGEV model 

with   alternatives as follows: 

      ∑   |    
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(13)  

The probability of alternative   in an accident for driver   is computed as the sum of 

probability computed from all nests to which   belongs. In the above notation,   is the number of 

contiguous alternatives considered in a nest,     represents the allocation weight for each 

alternative   to nest  , The total number of nests is given as a combination    . The allocation 

parameter satisfies the property ∑     =1.    represents the log-sum parameter for nest  . Nm 

represents the set of alternatives in nest  . In our analysis we set   = 1 i.e. we consider the 

following nests 1, 1 2, 2 3, 3 4, and 4 (where 1= No Injury, 2= Possible Injury, 3= Non-

incapacitating Injury and 4= Incapacitating/Fatal Injury). 



 

Mixed Multinomial Logit Model 

 

The MMNL is a generalized version of traditional MNL model. It allows the parameters for 

exogenous variables to vary across individual involved in the collision by accommodating 

unobserved heterogeneity on the utility functions for different injury severity levels. Let us 

assume that     is a column vectors representing the unobserved factors specific to driver   and 

his/her trip environments in equation 10. Thus the equation system for MMNL model can be 

expressed as: 

                    (14)  

In equation 14, we assume that     is an independent realization from normal distribution 

for this study. Thus, conditional on    , the probability expression for individual   and 

alternative   in MMNL model take the following form: 

   |    
                 

∑                  
 
   

 (15)  

The unconditional probability can subsequently be obtained as: 

    ∫     |    
   

   (   )     (16)  

To estimate the MMNL model, we apply the QMC simulation techniques in a similar 

fashion as described in MGOL model section. 

 

DATA  
 

Data Source 
 

The data for the current study is sourced from the “General Estimates System (GES)” database 

for the year 2010. The GES database is a nationally representative sample of road crashes 

collected and compiled from about 60 jurisdictions across the United States. The data is obtained 

from the U. S. Department of Transportation, National Highway Traffic Safety Administration’s 

National Center for Statistics and Analysis (ftp://ftp.nhtsa.dot.gov/GES/GES10/). The data 

includes information of reports compiled by police officers for crashes involving at least one 

motor vehicle travelling on a roadway and resulting in property damage, injury or death to the 

road users. The GES crash database has a record of 46,391 crashes involving 81,406 motor 

vehicles and 116,020 individuals for the year of 2010. A five point ordinal scale is used in the 

database to represent the injury severity of individuals involved in these crashes: 1) No injury; 2) 

Possible injury; 3) Non-incapacitating injury; 4) Incapacitating injury and 5) Fatal injury. 

Further, the dataset compiles information on a multitude of factors (driver characteristics, vehicle 

characteristics, roadway design and operational attributes, environmental factors and crash 

characteristics) representing the crash situations and events. Accordingly, a number of crash-

ftp://ftp.nhtsa.dot.gov/GES/GES10/


related factors are extracted from this database in order to explore the variables that might 

influence the driver injury severity.  
 
 
 

Sample Formation and Description 
 

The main focus of this study is injury severity of drivers of passenger vehicles (passenger car, 

sport utility vehicle, pickup or van). Thus, the following criteria were employed for sample 

formation: 

 The crashes that involve only non-commercial (private) passenger vehicle drivers are 

selected (to avoid the potential systematic differences between commercial and non-

commercial driver groups). 

 The passenger vehicle crashes that involve another passenger vehicle or a fixed object are 

examined. 

 The crashes that involve more than two vehicles are excluded from the analysis. 

The final dataset of non-commercial driver of passenger vehicles, after removing records 

with missing information for essential attributes consisted of about 30,371 records. In this final 

sample of accidents the percentage of fatal crashes sustained by drivers is extremely small 

(0.7%). Therefore, both the fatal and incapacitating injury categories are merged together to 

ensure a representative share for each alternative crash level. From this dataset, a sample of 

12,170 records is sampled out for the purpose of analysis and 18,201 records are set aside for 

validation. In the final estimation sample, the distributions of driver injury severities are: no 

injury 65.9%, possible injury 15.1%, non-incapacitating injury 12.1 % and incapacitating/fatal 

injury 6.9%. 
 

EMPIRICAL ANALYSIS 
 

Variables Considered 
 

In our analysis, we selected a host of variables from five broad categories: Driver characteristics 

(including driver gender, driver age, restraint system use, alcohol consumption and drug use), 

Vehicle characteristics (including vehicle type and vehicle age), Roadway design and operational 

attributes (including roadway class, speed limit, types of intersection and traffic control device), 

Environmental factors (including time of day and road surface condition) and Crash 

characteristics (including driver ejection, vehicle rolled over, air bag deployment, manners of 

collision and collision location). It should be noted here that several variables such as presence of 

shoulder, shoulder width, point of impact, number of lanes, lighting condition could not be 

considered in our analysis because either the information was entirely unavailable or there was a 

large fraction of missing data for these attributes in the dataset. To be sure, we employ the 

manner of collision and time of day variables to act as surrogates for point of impact and lighting 

condition, respectively. In the final specification of the model, statistically insignificant variables 

were removed (95% confidence level). Further, in cases where the variable effects were not 

significantly different, the coefficients were restricted to be the same.  

 



Overall Measures of Fit 

 

In the research effort, we estimated seven different models: 1) OL, 2) GOL, 3) MGOL, 4) MNL, 

5) OGEV, 6) NL and 7) MMNL model. After extensively testing for different nesting structures 

for NL and parametric assumptions for OGEV models we found that these models collapsed to 

the MNL model. Hence, the entire comparison exercise is focussed on five models: OL, GOL, 

MGOL, MNL and MMNL. Prior to discussing the estimation results, we compare the 

performance of these models in this section.  

The log-likelihood values at convergence for the various frameworks are as follows: (1) 

OL (with 29 parameters) is -10617.51; (2) GOL (with 50 parameters) is -10517.83, (3) MGOL 

(with 55 parameters) is -10506.97, (4) MNL (with 57 parameters) is -10517.59 and (5) MMNL 

(with 61 parameters) is -10508.76. The corresponding value for the “constant only” model is -

12164.58. The ordered models (OL, GOL and MGOL) are nested version of each other.  Thus, 

we can compare the ordered models among those by using likelihood ratio (LR) test for selecting 

the preferred model. Similarly, the MNL and MMNL models can be compared using LR test.  

However, to compare the ordered approaches with the unordered approach, the LR test is not 

appropriate because these structures are not nested within one another. Hence, to undertake the 

comparison we employ a two-step process. In the first step, we use the LR test to determine the 

superior model within each framework. Subsequently, we compare the best model from each 

framework using the non-nested measures applicable for such comparison.   

 

Comparison within Ordered and Unordered Frameworks 

 

The LR test statistic is computed as           , where     and     are the log-likelihood of 

the unrestricted and the restricted models, respectively. The computed value of the LR test is 

compared with the  2
 value for the corresponding degrees of freedom (dof). The resulting LR 

test values for the comparison of OL/GOL, OL/MGOL and GOL/MGOL models are 199.36 (21 

dof), 221.08 (26 dof) and 21.72 (5 dof), respectively. The LR test values indicate that MGOL 

outperforms the OL model at any level of statistical significance. The MGOL outperforms the 

GOL model at the 0.001 significance level indicating that MGOL offers superior fit compared to 

both OL and GOL models. In the unordered context, the LR test value (17.66, 4 dof) for the 

comparison of MNL/MMNL indicates that MMNL offers superior fit over MNL model at the 

0.001 significance level. 

 

Comparison between ordered and unordered frameworks - Non-nested Test 
 

To evaluate the performance of the ordered and unordered models, we employ different 

measures that are routinely applied in comparing econometric models including: 1) Bayesian 

Information Criterion (BIC), 2) Akaike Information Criterion corrected (AICc)
3
  and 3) Ben-

Akiva and Lerman’s adjusted likelihood ratio (BL) test. The BIC for a given empirical model is 

equal to − 2ln(L) + K ln(Q) and the AICc for an empirical model is given by AIC + [2 

K(K+1)/(Q −K−1)], where ln(L) is the log-likelihood value at convergence, K is the number of 

parameters, and Q is the number of observations. The model with the lower BIC and AICc 

values is the preferred model. The BIC (AICc) values for the final specifications of the MGOL 

and MMNL models are 21531.31 (21124.45) and 21591.33 (21140.14), respectively.  

                                                           
3
 AICc is a more stringent version of the AIC [AIC = 2K− 2ln(L)] in penalizing for additional parameters 



The BL test statistic (Ben-Akiva and Lerman 1985) is computed as: 

    { [√    ̅ 
   ̅ 

               ]}  where
2

 represents the McFadden’s adjusted 

rho-square value for the model. It is defined as  ̅ 
     

        

    
, where       represents log-

likelihood at convergence for the i
th

 model, L(C) represents log-likelihood at sample shares and 

Mi is the number of parameters in the model (Windmeijer 1995). The  (.) represents the 

cumulative standard normal distribution function. The resulting   value for the comparison of 

MGOL and MMNL is 0, clearly indicating that MGOL offers superior fit compared to MMNL 

model. The comparison exercise clearly highlights the superiority of the MGOL in terms of data 

fit compared to MMNL model. In the subsequent section, we discuss the results from MGOL 

and MMNL frameworks. 

 

Estimation Results 

 

Table 2 presents the results of the MGOL and MMNL models. The reader would note that the 

interpretation of the MGOL is slightly different from the MMNL model. In MGOL, when the 

threshold parameter is positive (negative) the result implies that the threshold is bound to 

increase (decrease); the actual effect on the probability is quite non-linear and can only be judged 

in conjunction with the influence of the variable on propensity and other thresholds. MMNL 

represents the effect of exogenous variables on each injury category relative to the base category. 

In the following sections, the estimation results are discussed by variable groups. 
 

Driver Characteristics  
 

In safety research, driver demographics, particularly driver’s age and gender have always been 

considered to have a significant influence on injury severity. In the current research, the effects 

of these variables are found to be significant. In particular, MGOL estimates indicate that 

compared to the female drivers, the latent injury propensity is lower for male drivers, while the 

negative sign of threshold demarcating the possible and non-incapacitating injury indicates a 

higher likelihood of non-incapacitating and incapacitating/fatal injuries for the male drivers. It is 

important to note that the variable impacts in propensity and thresholds are counteracting one 

another and the exact impact realized is specific to every individual. Corresponding results from 

MMNL indicate that male drivers are more likely to evade injury relative to their counterparts. 

The estimates associated with driver age, from both the MGOL and MMNL, suggest a reduction 

in the likelihood of severe injuries for the young drivers (age<25) compared to middle-aged 

drivers (age 25 to 64). However, the parameter characterizing the effect of older age (age≥65) on 

driver injury severity is found significant in the MMNL model only. The result suggests that the 

odds of suffering an incapacitating/fatal injury are significantly higher for the older drivers 

compared to the middle-aged drivers.  

Seat belt use is found to have a significant influence on driver injury severity. Consistent 

with several previous studies (Preusser et al. 1991, Janssen 1994, Eluru and Bhat 2007), our 

analysis showed an unequivocal benefit for employing seat belts. MGOL model estimates for the 

driver not wearing safety belts results in a parameter that is normally distributed with a mean 

1.528 and standard deviation 0.844, which indicates that almost 96% of the drivers involved in 

the collision cannot evade injury if they do not wear seat belts at the time of crash. MMNL 



model estimates indicate that the likelihood of suffering from possible, non-capacitating and 

incapacitating/fatal injuries is higher for the unrestrained driver and these effects are fixed.  

As expected, drivers under the influence of alcohol are likely to have a higher injury risk 

propensity compared to the sober drivers. Positive sign of the latent propensity of MGOL model 

estimate indicates that the latent injury risk propensity is higher for drivers who are impaired by 

alcohol, while the negative sign of threshold demarcating the non-incapacitating and 

incapacitating/fatal injury indicates a higher likelihood of incapacitating/fatal injury for this 

group of drivers. MMNL model estimates also reveal that the odds of suffering 

incapacitating/fatal injury are higher for non-sober drivers. The effect of impairment by drugs is 

found significant in MMNL model only and the result shows that the drivers are more likely to 

suffer an incapacitating/fatal injury when they are impaired by drugs. The MGOL model is 

unable to pick such an effect of drugs involvement on driver injury severity and the reason might 

be attributed to a small share (0.9%) of drivers under the influence of drug in the dataset. 

 

Vehicle Characteristics  
 

With respect to driver’s vehicle type, the MGOL model results indicate that the latent injury 

propensity is higher for the driver of a passenger car compared to the driver of other passenger 

vehicles (sports utility vehicle (SUV), pickup and vans). This is expected because in collisions 

with other vehicles or fixed objects, the drivers in passenger cars are usually the most likely to be 

severely injured (Mayrose and Jehle 2002, O’Neill and Kyrychenko 2004, Fredette et al. 2008). 

The corresponding results from MMNL suggest that the likelihood of sustaining possible, non-

capacitating and incapacitating/fatal injuries is higher for the drivers in a passenger car relative to 

drivers in other passenger vehicles. 

The vehicle age result of MGOL model demonstrates that the drivers in older vehicles (6-

10 years and above 10 years) have a higher injury risk propensity compared to the drivers in 

newer vehicles (vehicle age<6 years). The MMNL model estimates indicate that the drivers in 

older vehicles (6-10 years old and above 10 years old) have a higher likelihood of suffering from 

possible, non-capacitating and incapacitating/fatal injuries relative to the drivers in newer 

vehicles. The higher injury risk of older vehicle’s driver might be attributed to the mechanical 

defect, lack of safety equipment, exposure of younger driver to these vehicles or the involvement 

of suspended and unlicensed drivers of these vehicles (Lécuyer and Chouinard 2006). The lower 

injury risk for the driver of new vehicles may reflect the advancement in the vehicle-based safety 

equipments (such as airbag, antilock braking system, center high-mounted stoplight, crash cage, 

shatter resistant windshield).  

 

Roadway Design and Operational Attributes 
 

With respect to the roadway functional class, the MGOL model estimates show that the injury 

risk propensity of drivers is higher when the crash occurs on an interstate highway. Again, the 

effect of “interstate highway” variable on the threshold demarcating non-incapacitating and 

incapacitating/fatal injuries shows a higher likelihood of incapacitating/fatal injuries of the 

drivers during crashes on an interstate highway. The MMNL model estimates show that the 

likelihood of both possible and incapacitating/fatal injury increases when crash occur on 

interstate highway. The MGOL results for speed limit indicate that latent injury propensities are 

higher for crashes occurring on roads with medium (26 to 50 mph) and higher (above 50 mph) 



speed limits relative to crashes on lower speed limit (less than 26 mph). The effect of speed limit 

variables on the threshold indicates increased likelihood of non-incapacitating and 

incapacitating/fatal injuries at higher speed limits. The corresponding results from MMNL 

suggest that the likelihood of sustaining possible, non-incapacitating and incapacitating/fatal 

injuries is higher for crashes on both the medium and higher speed limit roads compared to the 

crashes on lower speed limit roads. As is expected, within the two speed categories considered 

the higher speed category has a larger impact relative to the medium speed category. 

With respect to the types of intersection, only four way intersections are found to have 

significant influence on driver injury severity. The MGOL model estimates reflect the higher 

injury risk propensity to drivers on a four-way intersection. The MMNL results also indicate 

very similar impact of four-way intersection on injury severity. The four way intersection 

reduces the likelihood of no injury crashes and in turn increases the likelihood of a driver 

sustaining severe injury. The presence of traffic control device is also found to have significant 

effect on the severity of crashes. MGOL estimates reveal that the presence of a traffic 

signal/stop/yield sign reduces the likelihood of injury risk propensity of the drivers relative to the 

absence of a control measure. The MMNL estimates show that the likelihood of non-

incapacitating injury reduces with the presence of a traffic signal/stop/yield sign. However, 

MGOL estimates also indicate that the injury risk propensity increases when there are other 

traffic control system or a warning sign present on the roadway. The corresponding result of 

MMNL specify that the odds of suffering an incapacitating/fatal injury increase significantly 

with the presence of these control measures relative to uncontrolled measure. 

 

Environmental Factors 
 

Time-of-day and surface condition are two of the environmental factors that are found to 

significantly influence driver injury severity. Compared to the evening peak, the likelihood of 

injury risk propensities are found to be higher for both the morning peak and off-peak periods in 

the MGOL estimates. At the same time, the effect of night-time variable on the threshold 

demarcating possible and non-incapacitating injuries shows a higher likelihood of non-

incapacitating and incapacitating/fatal injuries. The MMNL estimates reveal that the drivers are 

less likely to evade no injury during morning peak and off-peak period. However, the effect of 

night-time variable results in an estimate that is normally distributed with 0.032 and standard 

deviation 0.772. But, the mean coefficient for night-time is not significantly different from zero, 

while the standard deviation is highly significant. This result indicates that driver injury severity 

outcome varies widely during night-time crash and the exact nature of injury severity is 

determined by the unobserved factors specific to the crash.   

The findings of MGOL estimates indicate that if collisions occur on a snowy road 

surface, the consequence is likely to be less injurious as compared to the accident on dry road 

surface. The MMNL results also indicate very similar impacts of snowy road surface on driver 

injury severity. On a snowy road the drivers are more likely to evade serious injury relative to 

crashes on a dry surface. The effect of wet road surface condition is found significant only in the 

MMNL model estimates and the result indicates a lower likelihood of non-incapacitating injury 

on wet roads. The reduced risk of injury on snowy/wet road can be attributed to more careful 

driving and reduced speeding possibility (Edwards 1998, Mao et al. 1997, Eluru and Bhat 2007). 

 

Crash Characteristics  
 



Several crash characteristics considered are found to be significant determinants of driver injury 

severity. Among those, the injury risk propensities are observed to be higher in MGOL estimates 

when a driver is ejected out from his/her vehicle or when the vehicle rolled over. At the same 

time, the positive values of the first thresholds of driver ejection reflect an increase in possible 

injury probability. But, the first threshold of vehicle rolled over is found to be random with a 

statistically insignificant mean and a highly significant standard deviation. The result indicates 

that while injury risk propensity is likely to increase the impact on crash severity, the threshold is 

determined by unobserved factors specific to the crash.     

The likelihood of injury risk propensity for the deployment of air bag is also found to be 

significant and normally distributed in the MGOL model estimate. The result implies that air bag 

deployment increases the probability of injury in almost 97% cases. At the same time, the 

positive values of the first thresholds of air bag deployment reflect an increase in possible injury 

probability. The corresponding results from the MMNL model estimates indicate that the drivers 

are less likely to avoid serious injury when the vehicle rolled over or an air bag deployed during 

a crash. However, none of the aforesaid two variable estimates are found to be random, while the 

effect of driver ejection is found to be insignificant both as fixed and random parameter in 

MMNL. 

With respect to the collision object, MGOL and MMNL model estimates indicate very 

similar effects indicating that the odds of suffering serious injury is higher when a vehicle strikes 

a stationary object (such as: pole, guard rail, tree and post) compared to the crashes with a 

moving vehicle. However, the threshold demarcating non-incapacitating injury to incapacitating/ 

fatal injury of MGOL is distributed normally. With the estimated parameter, 39.36% of the 

distribution is greater than zero and 60.64% of the distribution is less than zero. At the same 

time, MMNL model also results in a random parameter for incapacitating/fatal injury category, 

which indicates that 82.12% of the distribution is above zero and only 17.88% is less than zero. 

The parameters characterizing the effects of manner of collision in Table 2, for both MMNL and 

MGOL models, suggest that the drivers are less likely to evade serious injury in the event of 

head-on or angular collision relative to the rear-end collision. Side-swipe collisions with vehicles 

travelling in the same direction and rear to sideswipe collisions are less severe than rear end 

collision. 

Finally, both the MGOL and MMNL model estimates indicate that collision location has 

a significant influence on injury severity profile. Specifically, collisions at an intersection or 

entry/exit ramp or driveway access or intersection related collisions are less likely to result in 

injuries to the drivers in the event of a crash relative to non-intersection location. At the same 

time, the latent propensity of MGOL and the possible/non-incapacitating injury coefficient of 

MMNL for intersection related collision indicate the presence of significant unobserved 

heterogeneity in those estimates. The driveway access related variable also results in a random 

parameter for incapacitating/fatal injury category in only MGOL model. Further, the MGOL 

estimates show that collision on driveway access or entrance/exit ramp has a reduced likelihood 

of severe injury, while railway grade crossing has a positive impact on possible injury outcome. 

In the MMNL model, the variable representing through roadway results in a higher likelihood of 

possible and non-incapacitating injuries, while the variable representing other location reduces 

the likelihood of possible and non-incapacitating injuries. 

The broad characterization of exogenous variable effects across the MGOL and MMNL 

model systems is similar with some differences. These differences can be attributed to the 

different model structures and different outcome mechanism. The reader would note that in both 



systems, the impact of exogenous variables was moderated by unobserved effects resulting in 

statistically significant standard deviation parameters. 

 

MODEL COMPARISON 

 

In the preceding section, we have presented a discussion of model results for the MGOL and the 

MMNL model. To investigate the comparison further, we examine the model performance under 

two contexts: (1) presence of underreporting and (2) validation on a hold-out sample. 

 

Underreporting 

 

In police reported crash database, many property damage and minor injury crashes might go 

underreported since lower crash severity levels make reporting to authorities less likely 

(Savolainen and Mannering 2007). Researchers have argued that underreporting of data will 

have minimal impact on the model estimation result of standard MNL model (Kim et al. 2007, 

Shankar and Mannering 1996, Savolainen and Mannering 2007, Islam and Mannering 2006). On 

the other hand, ordered response models are particularly susceptible to underreporting issue 

(Savolainen and Mannering 2007, Ye and Lord 2011) and can result in biased or inconsistent 

parameter estimates. However, recent evidence on examining underreporting suggests that none 

of the models (including unordered response systems) are immune to the underreporting issue 

(Ye and Lord 2011). This is expected because the presence of underreporting would not affect 

the unordered systems only when the dataset under consideration satisfies the independence of 

irrelevant alternatives property. Hence, even the MNL model will yield biased estimates if the 

IIA property does not hold for the dataset. To reinforce this, we undertake a comparison in the 

context of underreported data. For this purpose, we generate an underreported data set by 

randomly removing 50% of no injury crash records from the estimation sample. This reduced 

dataset is used to re-estimate MGOL and MMNL models. To compare the differences between 

the estimates from “true” and underreported dataset we compute elasticity effects for a selected 

set of independent variables - Male, Age less than 25, Passenger car, High speed limit, Snowy 

road surface and Head-on collision (see Eluru and Bhat 2007 for a discussion on computing 

elasticities). The elasticity estimates are presented in Table 3. For the ease of presentation, we 

focus on the elasticity effects for the two severe injury categories. The results from the “true” 

sample and underreported sample indicate that the underreported sample consistently obtains the 

wrong elasticities, as expected. The percentage error in computing elasticity for the selected 

variables for the two injury severity categories has an average of (33.69, 19.11) and (31.81, 

25.96) while the range of the errors is (2.97, 75.99) and (5.85, 57.83) for MGOL and MMNL 

models, respectively. From the estimated measures we can argue that neither of the models 

results in unbiased estimates in the underreporting context. 

 In addition to direct comparison in the context of underreporting, we also undertake a 

comparison of the elasticity effects with corrections to the MMNL and MGOL models. The 

correction exercise for altering constants estimated from an underreported sample is relatively 

straight forward. Specifically, all parameter estimates are kept the same and the constants are 

altered to match the population shares in the “true” sample. A trial and error approach to alter the 

constants is employed to generate “corrected” constants for the MMNL model. Further, we 

employ a similar approach to correct the threshold parameters for the MGOL model. In the 

MGOL model the population share can be influenced by altering the threshold constants thus 



achieving the same correction process as the MMNL model. In both correction exercises, 

adequate care is taken to ensure that the population shares match with the “true” shares after the 

parameters are corrected. Subsequent to the constant and threshold corrections, the elasticity 

values are recomputed for the updated estimates. The results are presented in the last block of 

rows in Table 3.  

The elasticity errors reduce substantially for both MGOL and MMNL models as a result 

of the parameter corrections. The average percentage errors in computing elasticity for the 

selected variables ranges are (15.73, 12.12) and (18.80, 11.27) for MGOL and MMNL models 

with a range of (0.74, 38.41) and (1.2, 35.89), respectively. We can argue that both the unordered 

and ordered frameworks perform almost equivalently with underreported dataset and the 

performance for both of these structures can be improved with the correction measure if the true 

population share is available to the analyst. 

  

Validation Analysis 

 

A validation experiment is also carried out in order to ensure that the statistical results obtained 

above are not a manifestation of over fitting to data. For testing the predictive performance of the 

models, 100 data samples, of about 4000 records each, are randomly generated from the hold out 

validation sample consisting of 18,201 records. We evaluate both the aggregate and disaggregate 

measure of predicted fit by using these 100 different validation samples. For these samples, we 

present the average measure from the comparison, and also the confidence interval (C.I.), of the 

fit measures at 95% level.  

At the disaggregate level we computed predictive log-likelihood (computed by 

calculating the log-likelihood for the predicted probabilities of the sample), AICc, BIC, 

predictive adjusted likelihood ratio index, probability of correct prediction, and probability of 

correct prediction >0.7. The results are presented in Table 4. In terms of disaggregate validation 

measures, the MMNL model consistently outperforms the MGOL model (except for probability 

of correct prediction >0.7). At the aggregate level, root mean square error (RMSE) and mean 

absolute percentage error (MAPE) are computed by comparing the predicted and actual 

(observed) shares of injuries in each injury severity level. We compute these measures for each 

set of full validation sample and specific sub-samples within that validation population - Driver 

age less than 25, Air bag deployed, Off-peak hour crash, Snowy surface and Passenger car. The 

results for aggregate measure computation are presented in Table 5.  

The comparison of MGOL and MMNL model at the aggregate level is far from 

conclusive. However, it is clear that MGOL and MMNL models perform very well at the 

aggregate level. For the full sample, both the MAPE and RMSE values are very close for both 

models. The RMSE and MAPE values show that the predicted performance for the MGOL 

model is superior to that of the MMNL model for sub-samples air bag deployed and off-peak 

hour crash while the MMNL model is superior to that of the MGOL model for driver age less 

than 25, snowy surface and for passenger car. Thus, we can argue that the differences in the 

validation measures at aggregate level are not as conclusive as the measures at disaggregate 

level.  Further, the differences in the aggregate level characteristics between the models are very 

small. 

 We extend the validation exercise to examine the performance of underreported sample 

estimates (uncorrected and corrected) as well on the 100 randomly selected validation samples. 

We compute these measures only for each of the full validation samples (results are presented in 



Table 6). Clearly, based on the underreported sample estimates, the overall errors at disaggregate 

and aggregate levels are much larger than previously for both systems. In the uncorrected 

system, MGOL has lower AICc and BIC values, but MMNL has lower RMSE and MAPE 

values. But in the corrected system, MGOL consistently outperforms the MMNL model (except 

for RMSE) and the aggregate predicted shares from MGOL model is closer to the actual shares 

for three out of four injury categories compared to those from MMNL model. 

In summary, from the host of validation statistics we can argue that neither the ordered 

nor the unordered frameworks exclusively outperforms each other both at the aggregate and the 

disaggregate levels. The relatively close performance of the two model systems is further 

illustrated through the computation of the validation measures for various sub-samples of the 

population. Overall, the results indicate that MGOL and MMNL offer very similar prediction for 

the various sub-samples at the aggregate and disaggregate level. The results reinforce that 

MGOL model performs very close to the MMNL model in examining driver injury severity 

 

CONCLUSIONS AND IMPLICATIONS 

 

This paper focuses on the relevance of alternate discrete outcome frameworks for modeling 

driver injury severity. The most prevalent framework employed to model injury severity is the 

ordered response mechanism. However, unordered response models were also employed in the 

past to model crash injury severity. The applicability of the two frameworks for analyzing 

ordinal discrete variables has evoked considerable debate on using the appropriate framework for 

analysis. An empirical examination of alternative approaches to modeling injury severity would 

enable us to determine the appropriateness of the two frameworks. 

Further, the two frameworks are also influenced by the underreporting issue associated 

with crash data sample. Most of the crash data are sampled from police reported crash database, 

where many property damage and minor injury crashes might go underreported. In the case of an 

underreported decision variable, the application of traditional econometric frameworks may 

result in biased estimates. Unfortunately, the unknown population shares of such outcome-based 

crash severity data make the estimation of parameters even more challenging. In this context, it 

is essential to examine how alternative modeling frameworks are impacted by underreporting; 

thus allowing us to adopt frameworks that are least affected by underreporting. 

The current paper addresses the aforementioned issues of identifying the more relevant 

framework to model crash injury severity by empirically comparing the ordered response and 

unordered response models. The performances of these models are also tested in the presence of 

underreported crash data by creating an artificial reduced dataset. Elasticity measures are 

generated for the “true” dataset and the artificial underreported dataset to compare the predicted 

elasticities for the different models. Thus, the current research contributes to the safety analysis 

literature from both the methodological and empirical standpoint. 

The alternative modeling approaches considered for the exercise include: for the ordered 

response framework - ordered logit, generalized ordered logit, mixed generalized ordered logit 

and for the unordered response framework - multinomial logit, nested logit, ordered generalized 

extreme value logit and mixed multinomial logit model. The empirical analysis is based on the 

2010 General Estimates System (GES) data base. The focus in the analysis is exclusively on non-

commercial passenger vehicle driver crash-related injury severity. Several types of variables are 

considered in the empirical analysis, including driver characteristics, vehicle characteristics, 

roadway design and operational attributes, environmental factors and crash characteristics. The 



empirical results indicate the important effects of all of the above types of variables on injury 

severity. The model comparison for the estimation sample clearly indicates that the MGOL 

model outperforms the MMNL model.  

To investigate the comparison further, we studied the model performance under two 

contexts: (1) presence of underreporting and (2) validation on a hold-out sample. We generated a 

series of measures to evaluate model performance in estimation and prediction thus allowing us 

to draw conclusions on model applicability for injury severity analysis. In the context of 

underreporting, the comparison between the elasticity estimates from “true” and “underreported” 

sample indicates that the underreported sample consistently obtains the wrong elasticities for 

both MGOL and MMNL models. The most striking finding is the fact that the MMNL model 

does not perform any better in the underreporting context than MGOL. Moreover, the correction 

measures for the thresholds/constants based on the true aggregate shares reduce the elasticity 

errors substantially for both MGOL and MMNL models. In the context of validation analysis at 

the aggregate and disaggregate level, we can argue that neither the ordered nor the unordered 

frameworks exclusively outperforms each other. The relatively close performance of the two 

model systems is further illustrated through the computation of the validation measures for 

various sub-samples of the population and in the presence of underreporting. Overall, the results 

of the empirical comparison provide credence to the belief that an ordered system that allows for 

exogenous variable effects to vary across alternatives and accommodates unobserved 

heterogeneity offer almost equivalent results to that of the corresponding unordered systems in 

the context of driver injury severity.  

The results have significant implications for safety research. There is growing recognition 

in the safety community that modeling injury severity as exogenous to seat belt use, alcohol 

consumption, or collision type is not realistic. For instance, the common unobserved factors that 

influence seat belt usage might also influence injury severity (see Eluru and Bhat, 2007). 

Incorporating such interactions in a joint framework increases the complexity of the models 

involved. However, by allowing for injury severity to follow an ordered response structure we 

can reduce the complexity of the joint model because of the single error term of this structure. 

The unordered model would lead to a more cumbersome modeling approach because of the 

multiple error terms involved (Eluru 2013). Recent research has demonstrated the advantages of 

such joint frameworks (see for example Castro et al. 2012, Narayanmoorthy et al. 2012). 
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TABLE 1 Summary of Existing Driver Injury Severity Studies 

Paper 
Methodological 

Approach 

Driver injury 

Severity Representation 

Accident Characteristics Considered 

Driver 

Characteristics 

Vehicle 

Characteristics 

Roadway 

Design 

& Operational 

Attributes 

Environmental 

Factors 

Crash 

Characteristics 

Shibata and 

Fukuda (1994) 

Logistic 

Regression 
Fatal; Non-fatal Yes ˗ ˗ ˗ Yes 

Krull et al. 

(2000)  

Logistic 

Regression 

Fatal/Incapacitating 

Injury; Non-

incapacitating/ Possible/ 

No injury 

Yes Yes Yes Yes Yes 

Toy and 

Hammitt 

(2003) 

Logistic 

Regression 

Serious injury/Death; 

Non-fatal 
Yes Yes ˗ ˗ Yes 

Conroy et al. 

(2008) 

Logistic 

Regression 
Severe injury Yes Yes ˗ ˗ Yes 

Fredette et al. 

(2008) 

Logistic 

regression 

Fatality, Major injury 

(hospitalized) 
Yes Yes Yes ˗ Yes 

Bédard et al. 

(2002)  

Multivariate 

Logistic 

Regression 

Fatal; Non-fatal Yes Yes ˗ ˗ Yes 

Dissanayake 

and Lu (2002) 

Sequential 

Binary Logistic 

Regression 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

Injury; Fatality  

Yes ˗ Yes Yes Yes 

Huang et al. 

(2008) 

Bayesian 

Hierarchical 

Binomial 

Fatal/Severe injury; 

Slight/No injury 
Yes Yes Yes Yes Yes 



Logistic 

Regression 

Khattak et al. 

(2002) 
Ordered Probit 

Fatality; Incapacitating 

injury; Evident injury; 

Possible injury 

Yes Yes Yes Yes Yes 

Kockelman 

and Kweon 

(2002)  

Ordered Probit 
No injury; Minor injury; 

Severe injury; Fatal injury 
Yes Yes ˗ Yes Yes 

Abdel-Aty 

(2003) 

Ordered Probit, 

Ordered Logit, 

Multinomial 

Logit, Nested 

Logit 

Property damage only, 

Possible injuries, Evident 

injuries, Severe/fatal 

injuries 

Yes Yes Yes Yes Yes 

Khattak and 

Rocha (2003) 
Ordered Logit 

No injury; Minor injury; 

Moderate injury; Serious 

injury; Severe injury; 

Critical injury; Max 

injury 

Yes Yes Yes ˗ Yes 

Kweon and  

Kockelman 

(2003)  

Ordered Probit 

& Poisson 

Model 

No injury; Not severe 

injury; Severe injury; 

Fatal injury 

Yes Yes ˗ ˗ ˗ 

Khattak et al. 

(1998) 

Binary Probit & 

Ordered Probit 

Fatal; Severe injury; 

Moderate Injury; Minor 

injury 

Yes Yes Yes Yes ˗ 

Yamamoto 

and Shankar 

(2004) 

Bivariate 

ordered-

response probit 

Property damage only, 

Possible injury, Evident 

injury, Disabling injury, 

Fatality 

Yes Yes Yes Yes Yes 

Yamamoto et 

al. (2008) 

Sequential 

Binary Probit 

Model; 

Ordered- Probit 

Property damage only; 

Possible injury; Evident 

injury; Disabling injury; 

Fatality 

Yes Yes Yes Yes Yes 



Model 

Xie et al. 

(2009) 

Bayesian 

Ordered Probit  

No injury, Possible injury, 

Non-incapacitated 

injury, Capacitated injury, 

and Fatal injury 

Yes Yes Yes Yes Yes 

Eluru and 

Bhat (2007) 

Mixed Joint 

Binary Logit-

Ordered Logit 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

injury; Fatal injury 

Yes Yes Yes Yes Yes 

Paleti et al. 

(2010) 

Random 

Coefficients 

Heteroscedastic 

Ordered-Logit 

No injury; Possible 

injury; Non-incapacitating 

injury; 

Incapacitating/Fatal injury 

Yes Yes Yes Yes ˗ 

de Lapparent 

(2008) 

Bivariate 

Ordered Probit 

No injury; Light injury; 

Severe injury; Fatal injury 
Yes ˗ Yes Yes Yes 

Srinivasan 

(2002) 

Ordered Logit; 

Ordered Mixed 

Logit 

No Injury/ Property 

Damage; Moderate injury; 

Severe injury; Fatal injury 

Yes Yes ˗ Yes Yes 

Ulfarsson and 

Mannering 

(2004) 

Multinomial 

Logit 

No injury; Possible 

injury; Evident injury; 

Fatal/Disabling injury 

Yes Yes Yes Yes Yes 

Rana et al. 

(2010)   

Copula-based 

Joint Ordered 

Logit–Ordered 

Logit; Copula-

Based Joint 

Multinomial 

Logit–Ordered 

Logit 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

injury; Fatal injury 

Yes Yes Yes Yes Yes 

Eluru et al. 

(2012)  

Latent  

Segmentation  

Based  Ordered 

No  injury; Injury; Fatal  

injury 
Yes Yes Yes Yes ˗ 



Logit   

Eluru et al. 

(2010) 

Copula Based 

Approach 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating/ 

Fatal injury 

Yes Yes Yes Yes Yes 

Khorashadi et 

al. (2005) 

Multinomial 

Logit 

No injury; Complaint of 

pain; Visible injury; 

Severe/Fatal injury 

Yes Yes Yes Yes Yes 

Islam and  

Mannering 

(2006) 

Multinomial 

Logit 
No injury; Injury; Fatality Yes Yes Yes Yes Yes 

Awadzi et al. 

(2008)  

Multinomial 

Logit 
No injury; Injury; Fatality Yes Yes Yes Yes Yes 

Schneider et 

al. (2009)  

Multinomial 

Logit 

Property damage only; 

Possible injury; Non-

incapacitating injury; 

Incapacitating injury; 

Fatal 

Yes Yes Yes Yes Yes 

Morgan and 

Mannering 

(2011) 

Mixed 

Multinomial 

Logit 

Severe injury, Minor 

injury, No injury 
Yes Yes Yes Yes Yes 

Kim et al. 

(2013) 

Mixed 

Multinomial 

Logit 

Fatal injury, Severe 

injury, Visible injury, 

Complaint of pain/no 

injury 

Yes Yes ˗ Yes Yes 

Xie et al. 

(2012) 

Latent  Class  

Logit 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

injury; Fatal injury 

Yes Yes Yes Yes Yes 

  



TABLE 2 MGOL and MMNL Estimates 

Variables 

MGOL MMNL 

Latent 

Propensity 

Threshold 

between 

Possible and 

Non-

incapacitating 

Injury 

Threshold between 

Non-incapacitating 

and 

Incapacitating/Fatal 

Injury 

No Injury 
Possible 

Injury 

Non-

incapacitating 

Injury 

Incapacitating/ 

Fatal Injury 

Constant -1.819 0.208 0.624 − -2.239 -2.989 -5.215 

Driver Characteristics 

 
Driver gender (Base: Female) 

  
Male -0.565 (0.046) -0.258 (0.046) − − -0.656 (0.057) -0.540 (0.064) -0.500 (0.090) 

 
Driver age (Base: Age 25 to 64) 

  
Age less than 25 -0.441 (0.050) − − 0.411 (0.051) − − − 

  
Age above 65+ − − − − − − 0.403 (0.137) 

 
Restraint system use  (Base: Restrained) 

  
Unrestrained 1.528 (0.142) − − − 1.303 (0.065) 1.695 (0.073) 2.127 (0.101) 

  
SD Unrestrained 0.844 (0.223) − − − − − − 

 

Under the influence of 

alcohol 
0.489 (0.130) − -0.353 (0.122) − − − 0.887 (0.166) 

 

Under the influence of 

drug 
− − − − − − 0.776 (0.293) 

Vehicle Characteristics 

 
Vehicle Type (Base: SUV, pickup and vans) 

  
Passenger car 0.269 (0.046) − − -0.262 (0.047) − − − 

 
Vehicle age (Base: Vehicle age less than 6) 

  
Vehicle Age 6 to 10 0.144 (0.052) − − − 0.122 (0.057) 0.122 (0.057) 0.308 (0.111) 

  
Vehicle age above 0.405 (0.055) − − − 0.312 (0.067) 0.444 (0.073) 0.684 (0.111) 



10 

Roadway Design and Operational Attributes 

 
Interstate Highways 0.303 (0.088) − -0.246 (0.090) − 0.224 (0.092) 0.224 (0.092) 0.672 (0.163) 

 
Speed limit (Base: Speed limit less than 26 mph) 

  

Speed limit 26 to 50 

mph 
0.462 (0.072) -0.127 (0.046) − − 0.268 (0.088) 0.541 (0.105) 0.985 (0.172) 

  

Speed limit above 

50mph 
0.715 (0.089) − − − 0.616 (0.107) 0.767 (0.123) 1.122 (0.196) 

 
Types of Intersection 

  

Four way 

intersection 
0.177 (0.062) − − -0.172 (0.060) − − − 

 
Traffic Control Device (Base: Non traffic control device) 

  

Traffic 

signal/Stop/Yield 

sign 

-0.119 (0.059) − − − − -0.252 (0.073) − 

  

Other traffic control 

device 
0.376 (0.142) − − − − − 0.567 (0.239) 

Environmental Factor 

 
Time (Base: 3 pm to 6 pm) 

  
6 pm to 6 am − -0.141 (0.048) − − − 0.032 (0.091) 0.032 (0.091) 

  
SD 6 pm to 6 am − − − − − 0.772 (0.211) 0.772 (0.211) 

  
6 am to 9 am 0.173 (0.069) − − -0.214 (0.073) − − − 

  
9 am to 3 pm 0.195 (0.048) − − -0.244 (0.052) − − − 

 
Surface condition (Base: Dry) 

  
Wet − − − − − -0.179 (0.087) − 

  
Snowy -0.648 (0.120) − − − -0.592 (0.123) -0.592 (0.123) -1.041 (0.263) 

Crash Characteristics 

 
Driver ejected out of 6.040 (2.655) 1.583 (0.751) − − − − − 



the vehicle 

 
Vehicle rolled over 2.111 (0.209) 0.177 (0.220) − − 1.923 (0.224) 1.923 (0.224) 2.877 (0.286) 

 
SD Vehicle rolled over − 0.989 (0.343) − − − − − 

 
Air bag deployment 1.595 (0.066) 0.270 (0.073) − − 1.303 (0.065) 1.695 (0.073) 2.127 (0.101) 

 
SD Air bag deployment 0.844 (0.223) − − − − − − 

 
Collision object (Base: Another moving vehicle) 

  

Collision with 

stationary  object 
0.774 (0.081) -0.283 (0.074) -0.226 (0.087) − 0.416 (0.097) 0.936 (0.098) 1.203 (0.257) 

  

SD Collision with 

stationary  object 
− − 0.847 (0.233) − − − 1.310 (0.379) 

  

Collision with other 

object 
-1.174 (0.189) -1.162 (0.313) − − -1.774 (0.329) -0.647 (0.233) − 

 
Manner of collision 

  
Head on 0.966 (0.100) − -0.393 (0.100) − 0.805 (0.109) 0.805 (0.109) 1.974 (0.175) 

  
Angular 0.382 (0.063) -0.150 (0.061) -0.244 (0.067) − 0.317 (0.068) 0.317 (0.068) 1.153 (0.155) 

  

Side swipe-same 

direction 
-0.534 (0.097) − 0.316 (0.151) − -0.334 (0.122) -0.512 (0.150) -1.206 (0.330) 

  

Rear to side 

collision 
− -3.683 (0.717) 2.309 (0.182) − − − − 

  

Other manners of 

collision 
-1.258 (0.627) − 1.651 (0.178) − − − − 

 
Collision location (Base: Non-intersection) 

  
Intersection − 0.227 (0.061) − − − − -0.369 (0.141) 

  
Intersection related -0.255 (0.071) − − − -0.430 (0.155) -0.430 (0.155) -0.530 (0.170) 

  

SD Intersection 

related 
0.007 (0.002) − − − 0.915 (0.323) 0.915 (0.323) − 

  
Driveway access -0.477 (0.243) − − − − − − 

  
Entrance and exit -0.323 (0.150) − − − − − − 



ramp 

  

Railway grade 

crossing 
− 1.181 (0.421) -3.981 (0.987) − − − − 

  

Driveway access 

related 
-0.427 (0.087) − − − -0.335 (0.090) -0.335 (0.090) -2.649 (1.210) 

  

SD Driveway 

access related 
− − − − − − 2.332 (0.896) 

  
Through roadway − − − − 0.913 (0.428) 0.913 (0.428) − 

  
Other location − − − − -0.768 (0.375) -0.768 (0.375) − 

  



TABLE 3 Elasticity Effects 

Variables 

MGOL MMNL 

Non-

incapacitating 

injury 

Incapacitating 

/Fatal injury 

% of error in 

Non-

incapacitating 

injury 

% of error in 

incapacitating 

/Fatal injury 

Non-

incapacitating 

injury 

Incapacitating 

/Fatal injury 

% of error in 

Non-

incapacitating 

injury 

% of error in 

Incapacitating/

Fatal injury 

Estimation sample 

Male  -17.28 -20.35 ˗ ˗ -25.26 -14.51 ˗ ˗ 

Age less than 25 -24.07 -29.69 ˗ ˗ -19.97 -14.72 ˗ ˗ 

Passenger car 15.23 18.76 ˗ ˗ 13.02 9.50 ˗ ˗ 

High speed limit 43.77 57.44 ˗ ˗ 38.41 63.82 ˗ ˗ 

Snowy surface -32.69 -38.40 ˗ ˗ -24.20 -44.32 ˗ ˗ 

Head-on collision 27.54 153.04 ˗ ˗ 20.27 173.52 ˗ ˗ 

Underreported sample without corrections 

Male  -11.33 -12.06 34.44 40.74 -16.42 -7.07 35.00 51.25 

Age less than 25 -18.47 -25.14 23.26 15.31 -18.80 -13.62 5.85 7.49 

Passenger car 12.25 16.76 19.60 10.65 11.08 6.03 14.89 36.47 

High speed limit 36.23 55.73 17.23 2.97 28.37 47.52 26.15 25.54 

Snowy surface -22.36 -28.92 31.61 24.70 -11.83 -34.33 51.13 22.53 

Head-on collision 6.61 121.98 75.99 20.30 8.55 151.89 57.83 12.46 



Average Error ˗ 33.69 ˗ 19.11 ˗ 31.81 ˗ 25.96 

Underreported sample with corrections 

Male  -15.57 -17.32 9.88 14.87 -23.19 -12.78 8.17 11.90 

Age less than 25 -20.96 -26.24 12.93 11.62 -23.14 -17.43 15.88 18.39 

Passenger car 13.95 17.49 8.43 6.78 17.69 10.42 35.89 9.70 

High speed limit 43.44 58.88 0.74 2.51 38.87 57.10 1.20 10.53 

Snowy surface -24.85 -29.97 23.99 21.96 -16.83 -37.70 30.46 14.94 

Head-on collision 16.96 130.13 38.41 14.96 24.56 177.21 21.19 2.13 

Average Error ˗ ˗ 15.73 12.12 ˗ ˗ 18.80 11.27 

  



TABLE 4 Disaggregate Measures of Fit in Validation Sample 

DISAGGREGATE MEASURE OF FIT IN VALIDATION SAMPLE 

Summary statistic MGOL predictions MMNL predictions 

Number of observations 3993.9900 3993.9900 

Number of parameters 55 61 

Log-likelihood at zero -5536.8458 -5536.8458 

Log-likelihood at sample shares -3962.5600 -3962.5600 

Predictive Log-likelihood -3671.0702 -3643.0636 

 C.I. -3685.6638/-3656.4766 -3657.3289/-3628.7984 

AICc 7453.7050 7410.0514 

 C.I. 7424.5207/7482.8892 7381.5246/7438.5782 

BIC 7798.2252 7791.9668 

 C.I. 7768.9357/7827.5147 7763.3179/7820.6156 

Predictive adjusted likelihood ratio index 0.0597 0.0652 

 C.I. 0.0578/0.0615 0.0638/0.0667 

Average probability of correct prediction 0.6649 0.6663 

 C.I. 0.6636/0.6662 0.6650/0.6677 

Average probability for chosen probability>0.70 0.4787 0.4620 

 C.I. 0.4774/0.4799 0.4609/0.4632 

 

  



TABLE 5 Aggregate Measures of Fit in Validation Sample 

AGGREGATE MEASURE OF FIT IN VALIDATION SAMPLE 

Injury categories/Measures of fit Actual shares MGOL predictions MMNL predictions 

No injury 66.4311 65.8805 65.9509 

 C.I. - 65.8118/65.9492 65.8842/66.0174 

Possible injury 15.0667 15.1281 15.0362 

 C.I. - 15.1034/15.1528 15.0139/15.0583 

Non-incapacitating injury 11.3647 12.0757 12.0754 

 C.I. - 12.0449/12.1064 12.0476/12.1032 

Incapacitating/Fatal injury 7.1375 6.9157 6.9376 

 C.I. - 6.8823/6.9492 6.9029/6.9722 

RMSE - 0.6319 0.6105 

 C.I. - 0.5883/0.6756 0.5667/0.6544 

MAPE - 3.7679 3.6586 

 C.I. - 3.7651/3.7706 3.6558/3.6613 
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No injury 69.1630 67.9434 67.8363 

C.I. - 67.8059/68.0809 67.71094/67.9617 

Possible injury 12.8669 14.1267 13.3549 

C.I. - 14.0783/14.1751 13.3131/13.3967 

Non-incapacitating injury 11.2528 11.3173 11.7434 

C.I. - 11.2599/11.3747 11.6869/11.7999 

Incapacitating/Fatal injury 6.7173 6.6126 7.0653 

C.I. - 6.5453/6.6799 6.9988/7.1319 

RMSE - 1.1199 1.0354 

C.I. - 1.0377/1.2023 0.9641/1.1067 

MAPE - 6.6456 6.1554 

C.I. - 6.6408/6.6505 6.1509/6.1600 

Predictive Log-likelihood - -1028.3794 -1015.5878 

C.I. - -1036.0795/-1020.6794 -1023.1219/-1008.0537 

A
ir
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a

g
 d
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y
ed

 No injury 34.6793 34.8052 34.4638 

C.I. - 34.6797/34.9307 34.3658/34.5619 

Possible injury 23.7389 23.7988 23.4669 

C.I. - 23.7434/23.8541 23.4176/23.5162 

Non-incapacitating injury 23.1525 23.0632 24.1901 

C.I. - 22.9902/23.1361 24.1354/24.2449 



Incapacitating/Fatal injury 18.4293 18.3329 17.8792 

C.I. - 18.2296/18.4362 17.7821/17.9762 

RMSE - 1.2129 1.2902 

C.I. - 1.1276/1.2984 1.1869/1.3934 

MAPE - 4.2884 4.6403 

C.I. - 4.2852/4.2915 4.6364/4.6441 

Predictive Log-likelihood - -1385.1886 -1318.6118 

C.I. - -1394.7695/-1375.6077 -1327.2064/-1310.0172 

O
ff
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No injury 66.9671 65.8187 65.6960 

C.I. - 65.7138/65.9236 65.5950/65.7969 

Possible injury 15.8240 16.1584 16.4015 

C.I. - 16.1176/16.1993 16.3655/16.4375 

Non-incapacitating injury 10.9846 11.9150 11.8761 

C.I. - 11.8676/11.9624 11.8398/11.9123 

Incapacitating/Fatal injury 6.2242 6.1078 6.0265 

C.I. - 6.0606/6.1550 5.9774/6.0755 

RMSE - 0.9911 1.0427 

C.I. - 0.9119/1.0703 0.9637/1.1218 

MAPE - 5.7662 6.0102 

C.I. - 5.7612/5.7711 6.0054/6.0150 

Predictive Log-likelihood - -1226.6454 -1207.2053 

C.I. - -1234.7771/-1218.5138 -1215.5970/-1198.8135 
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No injury 
73.0563 71.9579 71.7287 

C.I. - 71.6597/72.2560 71.4244/72.0330 

Possible injury 10.7654 12.2862 11.4324 

C.I. - 12.1692/12.4032 11.3389/11.5259 

Non-incapacitating injury 11.6573 9.9632 11.6253 

C.I. - 9.8255/10.1009 11.4894/11.7612 

Incapacitating/Fatal injury 4.5210 5.7927 5.2135 

C.I. - 5.6498/5.9356 5.0748/5.3523 

RMSE - 2.1626 1.8423 

C.I. - 1.9874/2.3379 1.6628/2.0217 

MAPE - 20.8766 16.7887 

C.I. - 20.8500/20.9033 16.7651/16.8122 

Predictive Log-likelihood - -150.5851 -149.2434 

C.I. - -153.9116/-147.2586 -152.4695/-146.0173 
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No injury 
63.3983 62.5658 62.6231 

C.I. - 62.4731/62.6584 62.5320/62.7141 

Possible injury 16.4833 16.3340 16.5008 

C.I. - 16.3018/16.3661 16.4707/16.5309 

Non-incapacitating injury 12.3735 13.2977 13.3121 

C.I. - 13.2583/13.3371 13.2753/13.3489 

Incapacitating/Fatal injury 7.7449 7.8026 7.5640 

C.I. - 7.7552/7.8499 7.5178/7.6102 

RMSE - 0.8573 0.8286 

C.I. - 0.7917/0.9229 0.7598/0.8974 

MAPE - 4.6446 4.5066 

C.I. - 4.6412/4.6479 4.5029/4.5102 

Predictive Log-likelihood - -2311.8055 -2301.2185 

C.I. - -2322.8512/-2300.7599 -2313.0902/-2289.3468 

 

  



TABLE 6 Measures of Fit in Validation for Underreported sample 

MEASURE OF FIT IN UDERREPORTED SAMPLE 

Injury categories/Measures of fit Actual shares MGOL predictions MMNL predictions 

No injury 66.4311 52.4731 52.6582 

C.I. - 52.4051/52.5411 52.5779/52.7386 

Possible injury 15.0667 21.6642 21.5562 

C.I. - 21.6359/21.6925 21.5045/21.6079 

Non-incapacitating injury 11.3647 17.0554 16.9202 

C.I. - 17.0207/17.0901 16.8876/16.9528 

Incapacitating/Fatal injury 7.1375 8.8073 8.8653 

C.I. - 8.7683/8.8463 8.8277/8.9029 

RMSE - 8.2760 8.1565 

C.I. - 8.2049/8.3470 8.0806/8.2324 

MAPE - 34.7376 34.3961 

C.I. - 34.7334/34.7418 34.3918/34.4005 

Predictive Log-likelihood - -4080.7320 -4089.1194 

C.I. - -4096.0726/-4065.3915 -4104.0381/-4074.2008 

AICc - 8264.8098 8293.9191 

C.I. - 8234.1313/8295.4884 8264.0853/8323.7529 

BIC - 8584.3790 8650.9086 

C.I. - 8553.6005/8615.1576 8620.9523/8680.8649 

MEASURE OF FIT IN UDERREPORTED SAMPLE WITH CORRECTION 

Injury categories/Measures of fit Actual shares MIXGOL predictions MIXMNL predictions 

No injury 66.4311 69.4232 69.4094 

C.I. - 69.3574/69.4889 69.3349/69.4839 

Possible injury 15.0667 13.7549 13.8957 

C.I. - 13.7262/13.7835 13.8526/13.9389 

Non-incapacitating injury 11.3647 10.9293 10.8844 

C.I. - 10.8999/10.9586 10.8553/10.9135 

Incapacitating/Fatal injury 7.1375 5.8926 5.8105 

C.I. - 5.8599/5.9253 5.7786/5.8423 

RMSE - 1.7944 1.7827 

C.I. - 1.7256/1.8633 1.7119/1.8536 

MAPE - 8.6295 8.7599 

C.I. - 8.6266/8.6325 8.7569/8.7629 

Predictive Log-likelihood - -3853.4807 -3881.9877 



C.I. - -3869.9209/-3837.0405 -3898.5934/-3865.3820 

AICc - 7810.3072 7879.6556 

C.I. - 7777.4290/7843.1853 7846.4471/7912.8641 

BIC - 8129.8764 8236.6451 

C.I. - 8096.9087/8162.8441 8203.3327/8269.9575 

 

 


