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ABSTRACT 

 

A most commonly identified exogenous factor that significantly affects traffic crash injury 

severity sustained is the collision type variable. Most studies consider collision type only as an 

explanatory variable in modeling injury. However, it is possible that each collision type has a 

fundamentally distinct effect on injury severity sustained in the crash. In this paper, we examine 

the hypothesis that collision type fundamentally alters the injury severity pattern under 

consideration. Towards this end, we propose a joint modeling framework to study collision type 

and injury severity sustained as two dimensions of the severity process. We employ a copula 

based joint framework that ties the collision type (represented as a multinomial logit model) and 

injury severity (represented as an ordered logit model) through a closed form flexible 

dependency structure to study the injury severity process. The proposed approach also 

accommodates the potential heterogeneity (across drivers) in the dependency structure. Further, 

the study incorporates collision type as a vehicle-level, as opposed to a crash-level variable as 

hitherto assumed in earlier research, while also examining the impact of a comprehensive set of 

exogenous factors on driver injury severity. The proposed modeling system is estimated using 

collision data from the province of Victoria, Australia for the years 2006 through 2010.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. BACKGROUND 

 

According to the World Health Organization (WHO), road traffic crashes are one of the major 

causes of death in the world (WHO, 2013). The economic and societal cost, of road traffic 

crashes, accrues to billions of dollars (WHO, 2013). For example, in Australia, the total cost of 

motor vehicle crashes is estimated at approximately $18 billion per annum (Risbey et al., 2010). 

While improving road infrastructure design to reduce the occurrence of these crashes is essential, 

it is also important to provide solutions to reduce the consequences in the unfortunate event of a 

traffic crash. A critical component of identifying and gaining a comprehensive understanding of 

the factors that contribute to crash outcomes is the estimation and application of disaggregate 

level crash severity models. 

The commonly available traffic crash databases compile injury severity data as an ordinal 

discrete variable (for example: no injury, minor injury, severe injury, and fatal injury). Naturally, 

many safety research studies have employed logistic regression
1
 approaches (Conroy et al., 2008; 

Fredette et al., 2008) and ordered discrete outcome models to identify the contributing factors of 

crash severity (see Savolainen et al., 2011 and Yasmin and Eluru, 2013 for a review). 

Researchers have also employed unordered response models that allow the impact of exogenous 

variables to vary across injury severity levels. The most prevalent unordered response structure 

considered is the multinomial logit model (for examples see Schneider et al., 2009; Ulfarsson 

and Mannering, 2004). More recently, within the ordered response framework, the generalized 

ordered logit (GOL) (Terza, 1985; Eluru et al., 2008) that enhances the traditional ordered 

response models has been employed in several safety research efforts (see Yasmin and Eluru, 

2013 and Eluru, 2013; Mooradian et al., 2013). These research efforts have studied the impact of 

various exogenous factors that influence injury severity in traffic crashes (see Yasmin and Eluru, 

2013 for a detailed review).  

Most of these studies highlight the collision type variable as one of the most important 

determinants of vehicle occupant (driver and/or passenger) injury severity. As one would expect, 

the collision type, whether it is a head-on or a sideswipe, has significant implications for injury 

severity sustained. For example, the greater dissipation of kinetic energy associated with a head-

on collision is likely to result in severe injuries compared to a side-swipe crash. Most of the 

earlier studies define the collision type as a crash level variable (rear-end, sideswipe, angular, 

and head-on) – by assigning one collision type for all vehicles involved in the same collision. 

But, depending on the initial point of impact it is possible that the different vehicles involved in 

the same crash might have significantly different crash profiles. For example, in a rear-end 

collision involving two vehicles, one of the vehicle will be rear-ended and the other one will be 

the rear-ender. The driver of the rear-ended vehicle is likely to be pushed backward into the seat 

when struck by the rear-ender vehicle leading to a high probability of whiplash or neck injury 

due to the continuous movement of the neck at a different speed relative to the head and the rest 

of the body (Khattak, 2001; Chiou et al., 2013; Nordhoff, 2005). Due to the biomechanics of this 

type of crash, the driver in the rear-ended vehicle is likely to be more seriously injured in a rear-

end crash compared to the driver in the rear-ender vehicle. Hence, it is incorrect to assign the 

same collision type variable to all vehicles involved in the same crash in analyzing vehicle 

                                                 
 
1
 To be sure, the logistic regression with two alternatives can be regarded as an ordered logit model with two 

alternatives. 



occupant injury severity
2
. The first contribution of our research is to address this inconsistency 

and define a vehicle level collision type variable using a combination of collision type and the 

initial point of contact.  

Most of the earlier studies consider the collision type as an explanatory variable in 

modeling injury severity (except Ye et al., 2008 and Rana et al., 2010). In this approach, the 

analyst imposes the assumption that the injury severity profile for vehicle occupants in all types 

of crashes is the same and any potential differences between different collision types can be 

accurately captured by employing the collision type variable as an explanatory variable. 

However, it is possible that various collision types might lead to distinct vehicle occupant injury 

severity profiles i.e., the overall manifestation of injury severity is different by collision type. For 

example, consider the impact of the gender variable in injury severity models. It is possible that 

males due to their higher physiological strength are more equipped to resist severe injuries in 

crashes. However, in a head-on crash due to the greater dissipation of kinetic energy, the 

physiological advantage might be inadequate. At the same time, the additional strength might be 

beneficial for male occupants to avoid severe injury in the event of other collision types such as 

side-swipe. This is an example of how a collision type variable moderates the impact of gender. 

It is plausible to visualize that collision type variables might similarly affect multiple exogenous 

variables – indicating that the injury severity profile itself is moderated by the collision type. 

Thus, estimating a single injury severity model, when such distinct profiles of injury severity 

exist, will result in incorrect and biased estimates. In fact, several studies have recognized this in 

safety literature and estimated injury severity focused on a specific type of collision - Head-on 

collision: Gårder, 2006; Conroy et al., 2008; Zuxuan et al., 2006; Zhang and Ivan, 2005; Rear-

end collision: Khattak, 2001; Yan et al., 2005; Das and Abdel-Aty, 2011; Abdel-Aty and 

Abdelwahab, 2003; and Angular collision: Jin et al., 2010; Chipman, 2004. These studies 

provide evidence that collision type has a fundamentally distinct effect on injury severity 

sustained in the crash.  

Given the possibility of distinct injury severity profiles – the estimation of separate injury 

severity models for various collision types seems the appropriate solution. At the same time, it is 

also important to investigate the factors that result in crashes of a particular collision type. This 

necessitates a model for collision type; an unordered decision variable that can be studied using a 

multinomial logit model. Within this system, it is possible that the collision type and resulting 

injury severity are influenced by the same set of observed and unobserved factors. 

Accommodating for the impact of observed factors is relatively straightforward within the 

traditional discrete outcome models by estimating distinct outcome models for collision type 

(multinomial logit) and injury severity (ordered logit). The process of incorporating the impact of 

unobserved factors poses methodological challenges. Essentially, accommodating the impact of 

unobserved factors recognizes that the two dimensions of interest are realizations from the same 

joint distribution. Traditionally, in econometric literature, such joint processes are examined 

using simulation based approaches that stitch together the processes through common 

unobserved error terms (see Eluru and Bhat 2007, Abay et al., 2013 for examples in safety 

literature). In this direction, Ye et al., (2008) propose a simulation based simultaneous equation 

framework to study the collision type and injury severity dimensions. The framework employs 

maximum simulated likelihood approach and requires simulation in the order of the dimension of 

collision type variables. For instance, in our empirical context, if we have eight vehicle level 

                                                 
2
 To be sure, Abdel-Aty and Abdelwahab, (2003) examine the crash occurrence and Khattak, (2001) examine the 

driver injury outcome by considering the collision type as a vehicle level variable, but only for rear-end collision.   



collision types, it would require us to estimate at least an eight dimensional integral to 

accommodate for such potential correlations. The process of applying simulation for such joint 

processes is likely to be error-prone in model estimation as well as inference – particularly the 

estimation of standard errors (see Bhat , 2011 for a discussion). At the same time, ignoring the 

presence of such potential jointness may lead to biased and inconsistent parameter estimates in 

modeling injury severity outcome (Chamberlain, 1980; Eluru and Bhat, 2007; Washington et al., 

2003).  

More recently, a closed form approach that obviates the need for simulation has been 

proposed in transportation literature for examining joint decision processes. The approach, 

referred to as Copula Approach, allows for flexible dependency structures across joint 

dimensions while retaining the closed form structure (see Bhat and Eluru, 2009). In fact, Rana et 

al., (2010) employed a copula based approach to consider the crash type and injury severity as a 

joint process with success. However, both of these studies (Ye et al., 2008, Rana et al., 2010) that 

jointly model the collision type and injury severity outcome describe the collision type as a crash 

level variable. But, depending on the position of driver and the initial point of impact, it is 

possible that the individual vehicle might have different effects in the manner of collision for the 

same type of collision (see Khattak, 2001 for a discussion in the context of rear-end collision). 

The second contribution of our study is to develop a closed form copula based framework to 

accommodate the impact of observed and unobserved effects on collision type and injury 

severity while generating collision type as a vehicle level variable. 

The current study enhances the copula based methodology employed by Rana et al., 

(2010) to study collision type and injury severity. The earlier approach considers the dependency 

parameter in the copula model to be the same across the entire crash database. However, it is 

possible that several exogenous factors might actually affect the dependency profile. In other 

words, the correlation between collision type and injury severity might be stronger or weaker 

depending on the various attributes of the particular crash. Allowing for such flexibility in the 

dependency profile allows for more accurate model estimation. The proposed copula dependency 

parameterization is analogous to the covariance heterogeneity parameterization employed in 

nested logit models (Bhat, 1997). Ignoring such heterogeneity (when present) will lead to biased 

and inconsistent estimates (Chamberlain, 1980; Bhat, 1997). Earlier research efforts have 

recognized the advantage of such dependency parameterization within the copula framework 

(see Eluru et al., 2010 and Sener et al., 2010). However, these approaches are proposed in the 

context of joint ordered response structures whereas our study incorporates parameterization of 

dependency profile in an unordered and ordered joint structure. Our third contribution is to 

formulate the copula model to allow for such potential heterogeneity (across drivers).  

The proposed model is estimated using driver injury severity data for two vehicle crashes 

from the state of Victoria, Australia employing a comprehensive set of exogenous variables − 

driver characteristics, vehicle characteristics, roadway design attributes, environmental factors 

and crash characteristics. In summary, the current research effort contributes to safety literature 

on driver injury severity both methodologically and empirically. In terms of methodology, we 

formulate and estimate a copula-based MNL-OL framework to jointly analyze the collision type 

and injury severity outcome in a two-vehicle crash. Our study also accommodates the potential 

heterogeneity (across drivers) in the dependency effect of collision type and injury severity 

outcome within a closed form copula framework. In terms of empirical analysis, our study 

incorporates collision type as a vehicle level variable and addresses the inconsistency from 



earlier research while also examining the impact of a comprehensive set of exogenous variables 

on driver injury severity.  

The rest of the paper is organized as follows. Section 2 provides details of the 

econometric model framework used in the analysis. In Section 3, the data source and sample 

formation procedures are described. The model results and elasticity effects are presented in 

Section 4. Section 5 concludes the paper and presents directions for future research.  

        

2. MODEL FRAMEWORK 

 

The focus of our study is to jointly model the collision type and injury severity outcome of 

drivers involved in a two vehicle collisions using a copula-based joint multinomial logit-ordered 

logit modeling framework. The analysis in this paper focuses on driver injury severity in a crash. 

In this section, econometric formulation for the joint model is presented.   

 

3.1 The Collision Type Outcome Model Component 

 

Let                and                be the indices to represent driver and collision 

type, respectively. Let   be the index for the discrete outcome that corresponds to the injury 

severity level                of driver  . In the joint framework, the modeling of collision 

type is undertaken using the multinomial logit structure. Thus, the propensity of a driver   

involving in a collision of specific collision type   takes the form of: 

   
         

  
 (1)  

where,     is a column vector of exogenous variable,    is a row vector of unknown parameters 

specific to collision type   and     is an idiosyncratic error term (assumed to be standard type-I 

extreme value distributed) capturing the effects of unobserved factors on the propensity 

associated with collision type  . A driver   is assumed to be involved in a collision type   if and 

only if the following condition holds: 

   
     

                
   

  (2)  

The condition presented in equation 2 can be equivalently represented as a series of 

binary outcome models for each collision type,   (see Lee, 1983). For example, let     be a 

dichotomous variable with       if a driver   ends up in a collision type   and       

otherwise. Now, let us define     as follows: 

     
  

 {    
                

   
 } (3) 3

 

                                                 
3
 The reader would note that the     term applied here is different from the Lee’s transformation. If one uses a 

symmetric distribution, that allows both positive and negative dependencies (such as the Gaussian copula proposed 

by Lee), then Lee’s formulation would be adequate. However, when testing various copulas, some of which allow 

asymmetric and only positive dependencies, it is important to test our version as well as Lee’s formulation to ensure 

we capture the dependencies in asymmetric copulas. We formulate the model in this form because we expect that the 

dependency for collision type and subsequent injury to be positively correlated (due to unobserved factors, see 

Portoghese et al., 2011 for a similar formulation in a different context) 



By substituting the right side for    
  from equation 1 in equation 2, we can write: 

       if    
           (4)  

The system in equation 4 represents the multinomial discrete outcome model of collision 

type as an equivalent series of binary outcome model formulation, one for each collision type  . 

In equation 4, the probability expression of collision type outcome is dependent on the 

distributional assumption of    , which in turn depends on the distributional assumption of    . 

Thus an assumption of independent and identical Type 1 Gumbel distribution for     results in a 

logistic distributed    . Consequently, the probability expression for the corresponding discrete 

outcome (collision type) model resembles the multinomial logit probability expression as 

follows: 

  (     )    (          )  
∑               

            ∑               
 (5)  

 

3.2 The Injury Severity Outcome Model Component 

 

In the joint model framework, the modeling of driver injury severity is undertaken using an 

ordered logit specification. In the ordered response model, the discrete injury severity levels 

      are assumed to be associated with an underlying continuous latent variable     
  . This 

latent variable is typically specified as the following linear function:   

   
                                   

       (6)  

where,    
  is the latent injury risk propensity for driver   if he/she was involved in a collision 

type  ,      is a vector of exogenous variables,    is a row vector of unknown parameters and 

    is a random disturbance term assumed to be standard logistic.      (                 

represents the threshold associated with severity level   for collision type  , with the following 

ordering conditions: (                           ). Given these relationships 

across the different parameters, the resulting probability expressions for driver   sustaining an 

injury severity level   in a collision type   take the following form: 

             (       
    )    (         

    ) (7)  

where,       is the standard logistic cumulative distribution function. The probability expression 

of equation 7 represents the independent injury severity model for a collision type  .  

 

3.3 The Joint Model: A Copula-based Approach 

 

The collision type and the injury severity component discussed in previous two subsections may 

be brought together in the following equation system: 



       if            

   
                    [     ]   

  
(8)  

However, the level of dependency between the underlying collision type outcome and the 

injury severity level of driver depends on the type and extent of dependency between the 

stochastic terms     and    . These dependencies (or correlations) are explored in the current 

study by using a copula-based approach. A copula is a mathematical device that identifies 

dependency among random variables with pre-specified marginal distribution (Bhat and Eluru, 

(2009) and Trivedi and Zimmer, (2007) provide a detailed description of the copula approach). 

In constructing the copula dependency, the random variables               are transformed into 

uniform distributions by using their inverse cumulative distribution functions, which are then 

coupled or linked as a multivariate joint distribution function by applying the copula structure. 

Let us assume that        and        are the marginal distribution of     and    , respectively 

and             is the joint distribution of     and    . Subsequently, a bivariate distribution 

            can be generated as a joint cumulative probability distribution of uniform [0, 1] 

marginal variables    and    as below: 

                             

 [   
            

         ]  

 [                    ] 

(9)  

The joint distribution (of uniform marginal variable) in equation 9 can be generated by a 

function          (Sklar, 1973), such that: 

                                      (10)  

where          is a copula function and    the dependence parameter defining the link between 

    and    . It is important to note here that, the level of dependence between collision type and 

injury severity level can vary across drivers. Therefore, in the current study, the dependence 

parameter    is parameterized as a function of observed crash attributes as follows: 

             (11)  

where,     is a column vector of exogenous variable,    is a row vector of unknown parameters 

(including a constant) specific to collision type   and    represents the functional form of 

parameterization. Based on the dependency parameter permissible ranges, alternate 

parameterization forms for the six copulas are considered in our analysis. For Normal, Farlie-

Gumbel-Morgenstern (FGM) and Frank Copulas we use         , for the Clayton copula we 

employ               , and for Joe and Gumbel copulas we employ                 . 

 

3.4 Estimation Procedure 

 



The joint probability that the driver   gets involved in a collision type   and sustaining injury 

severity level  , from equation 5 and 7, can be written as:  

                 

   {(         ) ((            )       (          ))}   

   ((         ) (              ))

    ((         ) (                ))    

=    (          )      (            )  (  [                

 (          )]    [                 (            )] ) 

(12)  

The joint probability of equation 12 can be expressed by using the copula function in 

equation 10 as: 

                

    (          )      (            )

  [   (    
    

 )     (      
    

 )]  
(13)  

where     
  =    (          ),   

     (      )  (14)  

Thus the likelihood function with the joint probability expression in equation 13 for 

collision type and driver injury severity outcomes can be expressed as: 

  ∏[∏∏{                }
     

 

   

 

   

]

 

   

  (15)  

where,      is dummy with        if the driver   sustains collision type k and an injury 

severity level of   and   otherwise. All the parameters in the model are then consistently 

estimated by maximizing the logarithmic function of  . The parameters to be estimated in the 

model are:    in the MNL component,    and      in OL component, and finally    in the 

dependency component.  In our analysis we employ six different copulas structure - the Gaussian 

copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and set of Archimedean copulas 

including Frank, Clayton, Joe and Gumbel copulas (a detailed discussion of these copulas is 

available in Bhat and Eluru, 2009). 

 

4. DATA  

 

4.1 Data Source 

 



Data for our empirical analysis is sourced from the Victoria crash database of Australia for the 

years 2006 through 2010. For the five years, the crash database has a record of 67,809 crashes 

involving 118,842 motor vehicles and 166,040 individuals resulting in 1,550 fatalities and 

87,855 injuries to the crash victims. A four point ordinal scale is used in the database to represent 

the injury severity of individuals involved in these crashes: 1) No injury; 2) Minor injury; 3) 

Serious injury and 4) Fatal injury.  

 

4.2 Sample Formation and the Dependent Variables 

 

This study is confined to the injury severity outcome of drivers, who are involved in a two 

passenger vehicle collisions. Crashes involving only one vehicle or more than two vehicles are 

not included in the analysis. The crashes that involve commercial vehicles are also excluded to 

avoid the potential systematic differences between the crashes involving commercial and non-

commercial driver groups.   

In our analysis, the crash outcome is defined as the injury severity level sustained by the 

driver in each vehicle of the two vehicle collisions. The final dataset, after removing records with 

missing information for essential attributes consisted of about 34,278 driver records. In this final 

sample of drivers, the percentage of fatal crashes sustained by drivers is extremely small 

(0.40%). Therefore, both the fatal and serious injury categories are merged together. From this 

dataset, a sample of 8,509 driver records is randomly selected for the purpose of estimating 

models. In the final estimation sample, the distributions of the three driver injury severity levels 

are as follows: no injury 49.50%, minor injury 34.50% and serious/fatal injury 16.00%.  

As discussed earlier, the database compiles the types of collision at a high level of 

disaggregation, and as a combination of collision type (rear-end, sideswipe, angular, and head-

on) and the initial point of contact
4
.  

A schematic diagram of the initial point of impact relative to the driver’s seat position is 

shown in Figure 1. Based on the collision type and the point of impact, we identified eight 

categories for the “collision type”:  Rear-ender (the rear vehicle that is involved in rear-end 

collision), Rear-ended (the front vehicle that is involved in the rear-end collision), Near-

sideswipe (sideswipe/near-side), Far-sideswipe (sideswipe/far-side), Near-angular (angular/ near-

side), Far-angular (angular/ far-side), Short-side angular (angular/front and rear side) and Head-

on (head-on/front side). In the final estimation sample, the distribution of collision type variable 

is as follows: rear-ender 11.91% rear-ended 14.29%, near-sideswipe 2.49%, far-sideswipe 

3.04%, near-angular 17.95%, far-angular 16.61%, short-side angular 26.80% and head-on 

6.92%.  

Table 1 offers a summary of the sample characteristics of collision type and injury 

severity level sustained by drivers. From the descriptive analysis, it is evident that the injury 

severity distributions vary substantially by collision type. More interestingly, we observe that for 

collision types within the same accident, rear-ender vs. rear-ended, near-sideswipe vs. far-

sideswipe exhibit huge differences in the injury severity distribution. These observations 

                                                 
4
 It is worthwhile to mention here that several previous studies (Tsui et al., 2009; Schiff and Cummings, 2004; Loo 

and Tsui, 2007) have examined the reliability of crash related factors documented in police-reported crash databases. 

The unreliability in reporting is mostly observed for casualty of crash, occupant position in the vehicle, 

demographics and seat-belt. Compiling crash details based on collision type and initial point of impact are less likely 

to be error prone. More importantly, the incompleteness of these variables in the Victorian crash database is 

approximately zero (zero for collision type and 0.3% for initial point of impact). 



highlight the need to define the collision type variable at a vehicle level rather than at the crash 

level. The descriptive analysis identifies head-on as the most serious collision type in terms of 

severe injuries while far-sideswipe crashes result in the least severe injuries. Further, Table 2 

offers a summary of the sample characteristics of explanatory variables across different collision 

types. It can be observed from Table 2 that the proportions of different variables vary 

substantially across different collision types.   

 

5. EMPIRICAL ANALYSIS 

 

5.1 Variables Considered 

 

The collision attributes considered in the empirical study can be grouped into the following five 

broad categories:  

 Driver characteristics including driver age, gender, seat belt use and local driver 

information; 

 Vehicle characteristics including vehicle type (characterized as sedan, station wagon, 

utility and panel van) and vehicle age; 

 Roadway design attributes including type of road surface, presence of traffic control 

device, speed zones and type of intersection; 

 Environmental factors including time of day, day of week, weather condition, surface 

condition and lighting condition; and 

 Crash characteristics including presence of passenger and trajectory of vehicle’s motion.  

The final specification of the model development was based on combining the variables when 

their effects were not statistically different and by removing the statistically insignificant 

variables in a systematic process based on statistical significance (90% confidence level). The 

coefficient estimates across different collision types were also restricted to be same when the 

effects were not significantly different.    

 

5.2 Model Specification and Overall Measures of Fit 

 

The empirical analysis involves estimation of models by using six different copula structures: 1) 

Gaussian, 2) FGM, 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe (a detailed discussion of these 

copulas is available in Bhat and Eluru, 2009). The empirical analysis involved a series of model 

estimations. First, an independent copula model (separate MNL and OL models) were estimated 

to establish a benchmark for comparison. Second, 6 different models that restricted the 

dependency parameters across the eight collision types and injury severity models to be the same 

were estimated. Third, based on the copula parameter significance for each collision type, copula 

models that allow for different dependency structures for different collision type and injury 

severity combinations were estimated (for example Frank copula for the first three collision 

types Clayton copula for other collision types). Finally, to determine the most suitable copula 

model (including the independent copula model), a comparison exercise was undertaken. The 

alternative copula models estimated are non-nested and hence, cannot be tested using traditional 

log-likelihood ratio test. We employ the Bayesian Information Criterion (BIC) to determine the 

best model among all copula models (see Trivedi and Zimmer, 2007; Quinn, 2007; Eluru et al., 

2010). The BIC for a given empirical model is equal to: 



                     (16)  

where    is the log-likelihood value at convergence,   is the number of parameters, and   is the 

number of observations. The model with the lower BIC is the preferred copula model. With 

exclusively a single copula dependency structure, the best model fit is obtained with Clayton. 

However, the lowest BIC value was obtained for a combination model of Frank-Clayton copulas 

(Frank copula structure for rear-ender and head-on collision and Clayton dependency structure 

with the remaining collision type). The copula model BIC comparisons confirm the importance 

of accommodating dependence between collision type and injury severity outcome in the 

analysis of driver injury severity. 

 

5.3 Estimation Results 

 

In presenting the effects of exogenous variables in the joint model specification, we will restrict 

ourselves to the discussion of the Frank-Clayton specification. For the ease of presentation, the 

collision type component (Table 3) and injury severity component (Table 4) are presented and 

discussed separately. The copula parameters are presented in the last row panel of Table 3. 

 

5.3.1 Collision Type Component 

The coefficients in Table 3 represent the effect of exogenous variables on each collision type 

category relative to the base category. In the following sections, the estimation results are 

discussed by variable groups. 

 

Driver Characteristics: The impact of driver age on collision type indicates that young drivers are 

more likely to be the rear-ender and are less likely to be rear-ended in crashes relative to the 

adult drivers, perhaps reflecting a lack of driving experience and/or poor judgement and/or a 

greater risk-taking/aggressive driving propensity. The likelihood of being rear-ended or being 

involved in a far-sideswipe collision is lower for the older drivers. However, the older drivers are 

also more likely to be involved in angular collision (far- or near-angular) compared to the adult 

drivers, which might be a manifestation of longer time requirements for older drivers in complete 

turning movements (Alexander et al., 2002). Female drivers are more likely to be rear-ended or 

involved in a near-angular collision, while the odds of involving in a head-on collision is lower 

for female drivers compared to their male counterparts. The results also highlight that drivers 

who do not wear seat-belts are more likely to hit another vehicle from behind, a possible 

reflection of inherent aggressive personality of these drivers. 

 

Vehicle Characteristics: The effects of the vehicle characteristics indicate that the drivers of 

utility and panel van are more likely to be the rear-ender, while the likelihood of being involved 

in head-on collisions are also higher for the driver of utility vehicle compared to other drivers. 

These results point towards aggressive attitude in driving and a false sense of security among 

large vehicle owners. The vehicle age variables suggest that compared to the drivers of newer 

vehicles (vehicle age less than 6), the drivers of older vehicles (vehicle age 6-10 or vehicle age 

11 and above) are less likely to be rear-ended or involved in any form of sideswipe or angular 

collision (the effect of vehicle age 6-10 is insignificant for far-sideswipe collision).  

 



Roadway Design Attributes: Among the roadway design attributes, the effect of roadway surface 

type is significant only for the head-on collision with positive coefficient for the gravel road 

surface compared to the paved and unpaved roads. Usually, gravel roads are associated with 

fewer lanes increasing the odds of head-on collisions as the lanes are unlikely to be median 

separated. The estimation results corresponding to the presence of traffic control device highlight 

that the presence of traffic signal is associated with less sideswipe and head-on collision. Drivers 

are more likely to be rear-ended or involved in near-angular collision in the presence of 

roundabout. In the presence of a stop sign, the likelihood of rear-end, far-sideswipe and head-on 

collisions are lower, whereas the likelihood of near-angular collision is higher. The presence of 

yield sign has positive association with rear-ended and near-angular collision and negative 

association with sideswipe and head-on collision.  

With respect to the speed zone, the medium speed limit zone indicator increases the 

likelihood of rear-end collision; while the high speed limit zone indicators reveal increased  

likelihood of rear-ended, side-swipe and head-on collisions. The presence of T-intersection 

increases the odds of all collision types (except short-side angular). Five or more legged 

intersection is positively correlated with the occurrence of rear-end and far-sideswipe collision. 

The variable representing the location as a non-intersection is associated with higher crash 

propensity for all collision types except for far- and short side-angular collision. 

 

Environmental Factors: The effects of environmental factors indicate that the occurrence of far-

angular collision is less at late night compared to the other times of day. Crashes occurring on 

wet surface are more likely to be head-on collision than those occurring on the dry surface 

condition. Far-sideswipe collision is less likely to occur at dawn/dusk period relative to the 

daylight period. Dark-lighted condition results in reduced likelihood of rear-end collision. 

However, dark-unlighted condition is associated with high risk of head-on collision. During 

weekend, drivers are less likely to be involved in rear-ended situations, but are more likely to be 

involved in far-sideswipe and head-on collisions. 

 

Crash Characteristics: Among the crash characteristic variables considered, none of the variables 

show significant impact on collision type occurrence.  

 

5.3.2 Dependence Effects 

 

As indicated earlier, the estimated Frank-Clayton copula based MNL-OL model provides the 

best fit in incorporating the correlation between the collision type and injury severity outcome. 

An examination of the copula parameters presented in the last row panel of Table 3 highlights 

the presence of common unobserved factors affecting collision type and injury severity. The 

Frank copula dependency structure is associated with the rear-ender and head-on collision types, 

while the Clayton dependency structure is associated with the rest of the six collision types. 

Further, except for far-angular collision type, all other copula dependencies are characterized by 

at least one additional exogenous variable. This provides support to our hypothesis that the 

dependency structures are not constant across the entire database. The various exogenous 

variables that contribute to the dependency include Female (rear-ender), medium speed limit 

(near-angular and head-on), yield sign (rear-ended), utility vehicle (near-sideswipe), late night 

(far-sideswipe) and high wind (near-angular and short-side angular). The Frank copula offers a 

symmetric dependency structure i.e. a positive coefficient represents a positive dependency 



while negative coefficient represents negative dependency. The exact nature of the dependency 

for the Frank copula is based on the realized coefficient for rear-ender and head-on crash types 

considering all significant variables. For the Clayton copula, the dependency is entirely positive 

and the coefficient sign and magnitude reflects whether a variable increases or reduces the 

dependency and by how much. The proposed framework by allowing for such parameterizations 

allows us to improve the model estimation results. 

 

5.3.3 Injury Severity Component 

 

The coefficients in Table 4 represent the effect of exogenous variables on injury severity 

outcome of drivers for each collision type category. The results suggest that the impact of 

exogenous variables vary (for some variables) in magnitude as well as in sign across collision 

types. The impacts of these variables are also substantially different from the estimates of 

independent MNL-OL model (the results are not presented here to conserve on space). For 

instance, the differences in variable estimates  (independent MNL-OL model and copula based 

MNL-OL model) are more than 20% in rear-ender for high wind and T-intersection; in rear-

ended for high wind, presence of one passenger and two passenger; in far-angular for medium 

speed limit and high speed limit; in short-side angular for medium speed limit and high speed 

limit; and in head-on collision for weekend and morning peak-period.     

 

In the following sections, the estimation results for injury severity component of the joint model 

are discussed by variable groups. 

 

Driver Characteristics: The impacts of driver characteristics reveal significant variations based 

on driver age, gender, seat-belt use and driver knowledge of local conditions. The results indicate 

that the likelihood of being severely injured is lower for the young drivers compared to the adult 

drivers, particularly for rear-ended and short side-angular collisions, perhaps indicating the 

higher physiological strength of young drivers. Compared to the adult drivers, older drivers are 

more likely to sustain serious injury across a range of collision type, a result also observed in 

several previous studies (Bédard et al., 2002; Kim et al, 2013; Williams et al., 2003). Female 

drivers are consistently associated with higher injury risk propensity across all collision type 

presumably because of their lower physiological strength compared to their male counterparts. 

The negative impact of not using seat-belt is found significant only for near-angular collision 

type. The driver knowledge of local conditions characterized as local versus non-local drivers 

reveals that non-local drivers are likely to sustain serious injury for rear-ended, far-sideswipe and 

near-angular collisions. Driver unfamiliarity with the driving environment and road rules might 

contribute to severe driver injuries. 

 

Vehicle Characteristics: With respect to driver’s vehicle type, the results indicate that drivers in 

station wagon are less likely to be severely injured compared to other drivers for seven of the 

eight collision types. The finding is consistent with the notion that heavier vehicles provide 

increased protection to drivers from severe injury. The positive effect of driving larger vehicles 

is significant in short side-angular and head-on collision for drivers of SUV and panel van. 

Consistent with several previous studies (Kim et al, 2013; Islam and Mannering, 2006) for most 

of the collision types, drivers in older vehicles (either vehicle age 6-10 or vehicle age 11 and 



above) have higher injury risk propensity compared to drivers in newer vehicles (vehicle age < 6 

years); this can be attributed to the absence of advanced safety features in older vehicles. 

  

Roadway Design Attributes: In terms of roadway design attributes, the estimates indicate that 

crashes on gravel road surface tend to be less severe compared to crashes on paved and unpaved 

surfaces for head-on collision. On gravel road surfaces, drivers are compelled to drive cautiously 

at a slower speed contributing to a reduction in the severity of crash outcomes. It is very 

interesting to note that the presence of signal decreases the injury propensity for rear-ender 

collision, and increases the injury propensity for both angular collisions (near- and far-angular). 

Injury propensity reductions are observed for the presence of pedestrian control (for rear-ended 

and short side-angular), roundabouts (for near- and short side-angular), stop sign (for short side-

angular) and yield sign (for rear-ender and short side-angular).  

The results for speed zones indicate that the drivers are likely to sustain severe injuries 

for crashes occurring in zones with medium and higher speed limits highlighting that the 

probability of sustaining severe injuries increases with the increasing speed limits – a surrogate 

for vehicle speed at the time of crash. Among the type of intersection variables, T-intersection 

leads to higher injury propensity for rear-ender collisions and lower injury propensity for far-

sideswipe collisions. Five or more legged intersection reflects reduced injury risk propensity for 

rear-ended collision. The reduction is also observed for non-intersection location in rear-ended 

and short side angular collision propensities.  

 

Environmental Factors: In the category of environmental factors; time of day, weather condition 

and lighting condition have significant influence in moderating the driver injury severity across 

different collision types. With respect to the time of day, higher severity levels are associated 

with head-on collision during morning peak period. As expected, the injury severity for drivers is 

higher during late night. This is particularly so for rear-ender, short side-angular and head-on 

collision. The injury risk propensities of near-sideswipe and far-angular collision reflect higher 

severities for rainy/snowy/foggy weather. This may be due to unfavourable driving conditions 

resulting from the reduced visibility during adverse weather conditions. For high wind condition, 

rear-end collision propensities (rear-ender and rear-ended) indicate lower likelihood of severe 

injuries. The parameter characterizing the effect of weekend suggests lower injury severity level 

for head-on collision. The result is quite interesting and the reasons for the effect are not very 

clear. It is possibly a manifestation of unobserved information that is not considered in our 

analysis and warrants additional investigation in the future. 

 

Crash Characteristics: Presence of passenger and trajectory of vehicle’s motions are the crash 

characteristics that are found to affect driver injury severity. A higher injury risk propensity is 

observed for the presence of one passenger in the vehicle for the rear-ended and far-angular 

collision. However, the result associated with two passengers has a more uneven effect across 

different collision types indicating lower and higher likelihood of severe injury in the effect of 

rear-ender and rear-ended propensities, respectively. But presence of more than two passengers 

indicates lower likelihood of severe injury for rear-ender and short side-angular collision. 

Overall, the drivers with the presence of more passengers are less likely to be severely injured 

presumably a reflection of more responsible driving behavior in the presence of passengers (the 

same effect is observed in Eluru et al., 2010). Finally, the coefficients corresponding to the 

vehicle movement reveal that straight vehicle movement of the driver increases the injury risk 



propensity compared to other turning movements for far-sideswipe, near-, far- and short side-

angular collisions. The result is expected because the drivers are likely to be travelling at a 

higher speed while travelling straight. 

 

6. ELASTICITY EFFECTS AND VALIDATION ANALYSIS 

 

The parameter estimates of Table 3 and 4 do not provide the magnitude of the effects of 

exogenous variables on the probability of involving in a specific type of collision or sustaining a 

specific injury severity category for drivers, respectively. For this purpose, we compute the 

aggregate level “elasticity effects” for all independent variables (see Eluru and Bhat, (2007) for a 

discussion on the methodology for computing elasticities). The effects are computed for both the 

collision type and injury severity components and are presented in Table 5 and 6, respectively. 

However, to conserve on space, we present the elasticity effects only for the highest injury 

severity level (serious/fatal injury severity category) across all collision types.  

The following observations can be made based on the results presented in Table 5 and 6. 

First, the most significant variables in terms of collision type are: crashes at non-intersection 

location, crashes on gravel roads, presence of pedestrian control, driving a panel van, driver age 

less than 25, medium speed limit zone and not wearing seat-belt. Second, the most significant 

variables in terms of increase in serious/fatal injury for drivers are crashes in high speed limit 

zone and driver age 65 and above. In terms of serious/fatal injury reduction, the important factors 

are driving a station wagon, presence of roundabout and presence of pedestrian control. Third, 

the impacts, in magnitude, are substantially different in injury severity for several variables 

(driver age 65+, non-local driver, high speed limit road and collision during late-night) across 

different collision types. The effects are also different in direction (sign) for presence of signal 

and collision at T intersection. These differences clearly highlight that each collision type has a 

fundamentally distinct injury severity profile underscoring the importance of examining the 

effect of various exogenous variables on driver injury severity outcome by different collision 

types. 

In an effort to further assess the performance of the joint model, a validation experiment 

is also carried out. For testing the predictive performance of the models, 50 data samples, of 

about 5000 records each, are randomly generated from the hold out validation sample consisting 

of 25,769 records. For these samples, we present the average measures of predictive log-

likelihood and BIC values along with the 95% level confidence band. The average predictive 

log-likelihood measure for the copula model and independent model are -13,277.24 [(-13326.17) 

— (-13228.30)] and -13280.37 [(-13329.306) — (-13231.438)], respectively. The BIC values for 

the copula model and independent model are 27714.26 [27615.130 — 27813.394] and 27720.13 

[27621.79 — 27818.47], respectively, further highlighting the enhanced performance of the 

copula model. 

   

7. CONCLUSIONS 

 

The focus of this paper is to jointly model the collision type and injury severity outcome of 

drivers involved in a two vehicle collisions using a copula-based joint multinomial logit-ordered 

logit modeling framework. The current study contributes to the literature on driver injury 

severity in three ways. The first contribution of our research is to define a vehicle level collision 

type variable using a combination of collision type and the initial point of contact. The second 



contribution of our study is to develop a closed form copula based framework to accommodate 

the impact of observed and unobserved effects on collision type and injury severity while 

generating collision type as a vehicle level variable. Finally, our third contribution is to 

formulate the copula model by incorporating parameterization of dependency profile in an 

unordered and ordered joint structure. The proposed model is estimated using driver injury 

severity data for two vehicle crashes from the state of Victoria, Australia employing a 

comprehensive set of exogenous variables − driver characteristics, vehicle characteristics, 

roadway design attributes, environmental factors and crash characteristics.  

The empirical analysis involves estimation of models by using six different copula 

structures: 1) Gaussian, 2) FGM, 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe. The most suitable 

copula model is obtained for a combination model of Frank-Clayton copulas (Frank copula 

structure for rear-ender and head-on collision and Clayton dependency structure with the 

remaining collision type). Further, the comparison between copula and the independent models 

confirms the importance of accommodating dependence between collision type and injury 

severity outcome in the analysis of driver injury severity. The model estimation results presented 

in the current paper suggest that the impact of exogenous variables vary (for some variables) in 

magnitude as well as in sign across collision types. The variables in moderating the effect of 

different collision types also reveal varying effects.  

In our research, to further understand the impact of various exogenous factors, elasticity 

effects are estimated for both the collision type and injury severity components. The elasticity 

effects clearly highlight that each collision type has a fundamentally distinct injury severity 

profile underscoring the importance of examining the effect of various exogenous variables on 

driver injury severity outcome by different collision types. In summary, the findings of this paper 

provide a more complete picture of injury severity profile associated with different collision 

type, thus target based countermeasures could be devised to address the entire profile of collision 

mechanism. 
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TABLE 1 Sample Characteristics of Collision Type and Injury Severity Level Sustained by Drivers 

Injury Severity 

Collision Type 

Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

No injury 
612 422 101 183 701 803 1211 175 

(60.41%)* (34.70%) (47.64%) (70.66%) (45.91%) (56.83%) (53.11%) (29.71%) 

Minor injury 
261 659 72 59 526 432 718 210 

(25.77%) (54.19%) (33.96%) (22.78%) (34.45%) (30.57%) (31.49%) (35.65%) 

Serious/Fatal injury 
140 135 39 17 300 178 351 204 

(13.82%) (11.10%) (18.40%) (6.56%) (19.65%) (12.60%) (15.39%) (34.63%) 

Total 1013 1216 212 259 1527 1413 2280 589 

 

*The numbers in parenthesis correspond to column percentages 

 

 

 

 

 

 

 

 

 

 

 



TABLE 2 Sample Characteristics of Explanatory Variables across Different Collision Types 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

Driver characteristics 

Driver age 
        

Age less than 25 306 (30.21)* 212 (17.43) 57 (26.89) 55 (21.24) 343 (22.46) 332 (23.50) 556 (24.39) 131(22.24) 

Age 25 to 64 612 (60.81) 913 (75.09) 133(62.73) 190 (26.65) 952 (62.35) 885 (62.63) 1473 (64.6) 401 (68.08) 

Age above 65+ 91(8.98) 91 (7.48) 22 (10.38) 14 (5.41) 232 (15.19) 196 (13.87) 251 (11.01) 57 (9.68) 

Driver gender  
        

Female 439 (43.34) 693 (56.99) 92 (43.40) 113 (43.63) 790 (51.74) 648 (45.86) 1049 (46.01) 205 (34.80) 

Male 574 (56.66) 523 (43.01) 120 (56.60) 146 (56.37) 737 (48.26) 765 (54.14) 1231 (53.99) 384 (65.20) 

Restraint system use   

Seat belt not used 38 (3.75) 32 (2.63) 9 (4.25) 11 (4.25) 35 (2.29) 31 (2.19) 61 (2.68) 22 (3.74) 

Seat belt used 975 (96.25) 1184 (97.37) 203 (95.75) 248 (95.75) 1492 (97.71) 1382 (97.81) 2219 (97.32) 567 (96.26) 

Locality of driver         

Non-local driver 119 (11.75 ) 147 (12.09) 33 (15.57) 36 (13.90) 145 (9.50) 121 (8.56) 199 (8.73) 109 (18.51) 

Local Driver 894 (88.25) 1069 (87.91) 179 (84.43) 223 (86.10) 1382 (90.50) 1292 (91.44) 2081 (91.27) 480 (81.49) 

Vehicle characteristics 

Vehicle Type 
        

Car 688 (67.92) 887 (72.94) 154 (72.64) 182 (70.27) 1099 (71.97) 1013 (71.69) 1684 (73.86) 378 (64.18) 

Station wagon 177 (17.47) 219 (18.01) 34 (16.04) 50 (19.31) 285 (18.66) 248 (17.55)  395 (17.32) 118 (20.03) 

Utility 108 (10.66) 85 (6.99) 17 (8.02) 21 (8.11) 108 (7.07) 118 (8.35) 159 (6.97) 80 (13.58) 

Panel van 40 (3.95) 25 (2.06) 7 (3.30) 6 (2.32) 35 (2.29) 34 (2.41) 42 (1.84) 13 (2.21) 

Vehicle age  

Vehicle age less than 6 282 (27.84) 404 (33.22) 75 (35.38) 88 (33.98) 496 (32.48) 439 (31.07) 636 (27.89) 172 (29.20) 

Vehicle age 6-10 297 (29.32) 333 (27.38) 57 (26.89) 87 (33.59) 373 (24.43) 383 (27.11) 651 (28.55) 158 (26.83) 

Vehicle age 11 and above 434 (42.84) 479 (39.39) 80 (37.74) 84 (32.43) 658 (43.09) 591 (41.83) 993 (43.55) 259 (43.97) 

Roadway design attributes 
        

Type of road surface (Base: Paved) 

Paved 990 (97.73) 1189 (97.78) 206 (97.17) 254 (98.07) 1483 (97.12) 1385 (98.02) 2231 (97.85) 531 (90.15) 

Unpaved 1 (0.10) 1 (0.08) 0 (0.00) 1 (0.39) 1 (0.07) 0 (0.00) 2 (0.09) 6 (1.02) 

Gravel 22 (2.17) 26 (2.14) 6 (2.83) 4 (1.54) 43 (2.82) 28 (1.98) 47 (2.06) 52 (8.83) 

Traffic Control Device  

No Control 622 (61.40) 730 (60.03) 177 (83.49) 211 (81.47) 587 (38.44) 638 (45.15) 957 (41.97) 566 (96.10) 

Signal 237 (23.40) 304 (25.00) 23 (10.85) 34 (13.13) 319 (20.89) 437 (30.93) 764 (33.51) 4 (0.68) 



Other traffic control 13 (1.28) 29 (2.38) 0 (0.00) 4 (1.54) 26 (1.70) 24 (1.70) 40 (1.75) 8 (1.36) 

Pedestrian control 11 (1.09) 12 (0.99) 1 (0.47) 0 (0.00) 4 (0.26) 2 (0.14) 7 (0.31) 0 (0.00) 

Roundabout 30 (2.96) 44 (3.62) 8 (3.77) 6 (2.32) 70 (4.58) 65 (4.60) 86 (3.77) 4 (0.68) 

Stop sign 14 (1.38) 13 (1.07) 0 (0.00) 1 (0.39) 157 (10.28) 60 (4.25) 125 (5.48) 1 (0.17) 

Yield sign 86 (8.49)  84 (6.91) 3 (1.42) 3 (1.16) 364 (23.84) 187 (13.23) 301 (13.20) 6 (1.02) 

Speed zone  

Low speed (≤50 km/h) 118 (11.65) 141 (11.60) 30 (14.15) 42 (16.22) 326 (21.35) 298 (21.09) 461 (20.22) 74 (12.56) 

Medium speed (60-90 km/h) 783 (77.30) 952 (78.29) 141 (66.51) 164 (63.32) 1057 (69.22) 1016 (71.90) 1664 (72.98) 314 (53.31) 

High speed (≥100 km/h) 112 (11.06) 123 (10.12) 41 (19.34) 53 (20.46) 144 (9.43) 99 (7.01) 155 (6.80) 201 (34.13) 

Type of intersection 
        

Cross intersection 282 (27.84) 293 (24.10) 34 (16.04) 43 (16.60) 654 (42.83) 701 (49.61) 1108 (48.60) 16 (2.72) 

T intersection 263 (25.96) 361 (29.69) 52 (24.53) 66 (25.48) 569 (37.26) 471 (33.33) 832 (36.49) 69 (11.71) 

Y intersection 5 (0.49) 4 (0.33) 0 (0.00) 0 (0.00) 6 (0.39) 6 (0.42) 10 (0.44) 2 (0.34) 

Five and more legged intersection 28 (2.76) 43 (3.54) 2 (0.94) 9 (3.47) 39 (2.55) 43 (3.04) 78 (3.42) 1 (0.17) 

Non-intersection 435 (42.94) 515 (42.35) 124 (58.49) 141 (54.44) 259 (16.96) 192 (13.59) 251 (11.01) 501 (85.06) 

Environmental factors 
        

Time of day  

Morning peak 138 (13.62) 168 (13.82) 36 (16.98) 44 (16.99) 229 (15.00) 194 (13.73) 311 (13.64) 82 (13.92) 

Off peak 358 (35.34) 440 (36.18) 69 (32.55) 97 (37.45) 514 (33.66) 489 (34.61) 774 (33.95) 183 (31.07) 

Evening peak 291 (28.73) 352 (28.95) 54 (25.47) 52 (20.08) 419 (27.44) 368 (26.04) 588 (25.79) 148 (25.13) 

Late evening 197 (19.45) 233 (19.16) 49 (23.11) 54 (20.85) 324 (21.22) 329 (23.28) 532 (23.33) 144 (24.45) 

Late night 29 (2.86) 23 (1.89) 4 (1.89) 12 (4.63) 41 (2.69) 33 (2.34) 75 (3.29) 32 (5.43) 

Weather condition 

Clear 863 (85.19) 1058 (87.01) 183 (86.32) 228 (88.03) 1343 (87.95) 1270 (89.88) 1981 (86.89) 446 (75.72) 

Rainy/Snowy/Foggy 131 (12.93) 138 (11.35) 24 (11.32) 26 (10.04) 168 (11.00) 128 (9.06) 271 (11.89) 127 (21.56) 

High wind 19 (1.88) 20 (1.64) 5 (2.36) 5 (1.93) 16 (1.05) 15 (1.06) 28 (1.23) 16 (2.72) 

Surface condition  
        

Dry 837 (82.63) 1025 (84.29) 178 (83.96) 226 (87.26) 1297 (84.94) 1230 (87.05) 1906 (83.60) 403 (68.42) 

Wet 170 (16.78) 187 (15.38) 34 (16.04) 33 (12.74) 226 (14.80) 182 (12.88) 371 (16.27) 175 (29.71) 

Muddy 3 (0.30) 1 (0.08) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.07) 1 (0.04) 6 (1.02) 

Snowy 3 (0.30) 3 (0.25) 0 (0.00) 0 (0.00) 4 (0.26) 0 (0.00) 2 (0.09) 5 (0.85) 

Lighting condition  

Day 760 (75.02) 933 (76.73) 153 (72.17) 197 (76.06) 1139 (74.59) 1033 (73.11) 1617 (70.92) 412 (69.95) 

Dusk/dawn 79 (7.80) 78 (6.41) 18 (8.49) 10 (3.86) 92 (6.02) 88 (6.23) 166 (7.28) 29 (4.92) 

Dark-lighted 137 (13.52) 173 (14.23) 38 (17.92) 43 (16.60) 267 (17.49) 269 (19.04) 446 (19.56) 74 (12.56) 



Dark-unlighted 30 (2.96) 27 (2.22) 3 (1.42) 8 (3.09) 27 (1.77) 16 (1.13) 43 (1.89) 72 (12.22) 

Other lighting condition 7 (0.69) 5 (0.41) 0 (0.00) 1 (0.39) 2 (0.13) 7 (0.50) 8 (0.35) 2 (0.34) 

Days of Week 
        

Weekend 221 (21.82) 222 (18.26) 52 (24.53) 80 (30.89) 351 (22.99) 359 (25.41) 548 (24.04) 198 (33.62) 

Weekday 792 (78.18) 994 (81.74) 160 (75.47) 179 (69.11) 1176 (77.01) 1054 (74.59) 1732 (75.96) 391 (66.38) 

Crash characteristics         

Trajectory of vehicle’s motions         

Going straight 742 (73.25) 311 (25.58) 75 (35.38) 110 (42.47 ) 687 (44.99) 702 (49.68) 1655 (72.59) 418 (70.97 ) 

Other movement 271 (26.75) 905 (74.42) 137 (64.62) 149 (57.53) 840 (55.01) 711 (50.32) 625 (27.41) 171 (29.03) 

Presence of passenger         

No passenger 2 (0.20) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.17) 

One passenger 559 (55.18) 689 (56.66) 121 (57.08) 139 (53.67) 797 (52.19) 676 (47.84) 1081 (47.41) 258 (43.80) 

Two passenger 256 (25.27) 305 (25.08) 53 (25.00) 64 (24.71) 363 (23.77) 393 (27.81) 655 (28.73) 157 (26.66) 

More than two passengers 196 (19.35) 222 (18.26) 38 (17.92) 56 (21.62) 367 (24.03) 344 (24.35) 544 (23.86) 173 (29.37) 

 

*The numbers in parenthesis correspond to column percentages within each category 

 

 

 

 

 

 

 

 

 

 

  



TABLE 3 MNL (Collision Type) Model Estimates and Copula Parameters 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

Constant — -1.957(0.090)ǂ -1.617(0.106) -2.750(0.153) -2.705(0.132) -0.846(0.072) -0.352(0.056) -3.846(0.276) 

Driver characteristics 

Driver age (Base: Age 25 to 64) 
        

Age less than 25 0.361(0.077) -0.424(0.085) — — — — — — 

Age above 65+ — -0.416(0.125) — -0.711(0.286) 0.311(0.076) 0.311(0.076) — — 

Driver gender (Base: male) 
        

Female — 0.463(0.068) — — 0.239(0.060) — — -0.264(0.106) 

Restraint system use  (Base: seat belt used) 

Seat belt not used 0.378(0.180) — — — — — — — 

Vehicle characteristics 

Vehicle Type (Base: Sedan) 
        

Utility  0.310(0.100) — — — — — — 0.310(0.100) 

Panel van 0.609(0.184) — — — — — — — 

Vehicle age (Base: Vehicle age less than 6) 

Vehicle age 6-10 — -0.181(0.064) -0.341(0.074) — -0.341(0.074) -0.181(0.064) — — 

Vehicle age 11 and above — -0.169(0.076) -0.391(0.151) -0.474(0.142) -0.140(0.058) -0.140(0.058) — — 

Roadway design attributes 
        

Type of road surface (Base: Paved) 

Gravel — — — — — — — 1.361(0.250) 

Traffic Control Device (Base: No traffic control and other control device) 

Signal — — -0.7095(0.163) -0.709(0.163) — — — -2.8209(0.547) 

Pedestrian control 1.381(0.356) 1.381(0.356) — — — — — — 

Roundabout — 0.309(0.182) — — 0.494(0.148) — — — 

Stop sign -0.894(0.282) -1.261(0.301) — -2.406(1.017) 1.070(0.118) — — -2.657(1.162) 

Yield sign — 0.314(0.126) -2.094(0.426) -2.094(0.426) 0.937(0.80) — — -1.692(0.442) 

Speed zone (Base: Low speed zone ≤50 km/h) 

Medium speed (60-90 km/h)  0.616(0.073) 0.616(0.073) — — — — — — 

High speed (≥100 km/h) — 0.575(0.116) 0.575(0.116) 0.671(0.186) — — — 0.934(0.133) 

Type of intersection (Base: Cross intersection ) 
      

T intersection 0.217(0.092) 0.438(0.082) 0.4378(0.082) 0.634(0.182) 0.143(0.075) -0.136(0.071) — 1.384(0.296) 

Five and more legged intersection 0.449(0.215) 0.708(0.181) — 1.184(0.375) — — — — 

Non-intersection 1.807(0.077) 1.807(0.077) 2.141(0.137) 2.141(0.137) 0.768(0.093) — — 3.864(0.277) 



Environmental factors 
        

Time of day (Base: Morning peak, Off peak and Late evening) 

Late night — — — — — -0.3816(0.196) — — 

Surface condition (Base: Dry ) 
        

Wet — — — — — — — 0.933(0.113) 

Lighting condition (Base: Daylight) 

Dusk/dawn — — — -0.557(0.339) — — — — 

Dark-lighted -0.407(0.101) -0.243(0.091) — — — — — — 

Dark-unlighted — — — — — — — 0.969(0.176) 

Days of Week 
        

Weekend — -0.278(0.083) — 0.406(0.145) — — — 0.504(0.111) 

Copula Parameters 

 

Frank Clayton Clayton Clayton Clayton Clayton Clayton Frank 

Constant 3.047(1.667) 1.423(0.383) 0.495(0.625) 0.636(0.602) 0.772(0.511) 2.661(0.582) 1.473(0.414) 1.783(1.046) 

Female Driver 0.971(0.540) — — — — — — — 

Medium Speed limit — — — — 1.482(0.228) — — 0.943(0.527) 

Yield Sign — 1.651(0.285) — — — — — — 

Utility Vehicle — — 3.978(0.737) — — — — — 

Late night — — — 5.079(0.904) — — — — 

High wind — — — — 2.783(0.599) — 2.318(0.497) — 

 

ǂStandard errors are presented in parenthesis 

 

 

 

 

  



TABLE 4 OL (Injury Severity) Model Estimates 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

Threshold 1 1.970(0.406)ǂ 1.405(0.207) 1.405(0.207) 2.122(0.192) 1.405(0.207) 3.010(0.343) 2.122(0.192) 0.332(0.400) 

Threshold 2 3.413(0.347) 4.021(0.163) 2.947(0.172) 4.021(0.163) 2.947(0.172) 4.593(0.294) 3.685(0.164) 1.904(0.319) 

Driver characteristics 
        

Driver age (Base: Age 25 to 64) 
        

Age less than 25 — -0.437(0.131) — — — — -0.195(0.086) — 

Age above 65+ 0.454(0.107) — 1.182(0.385) — 0.569(0.080) 0.454(0.107) 0.569(0.080) — 

Driver gender (Base: Male) 
        

Female 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 

Restraint system use  (Base: seat belt used) 

Seat belt not used — — — — 0.616(0.288) — — — 

Locality of driver (Base: Local driver) 
       

Non-local driver — 0.272(0.103) — 0.718(0.384) 0.272(0.103) — — — 

Vehicle characteristics 
        

Vehicle Type (Base: Sedan) 
        

Station wagon -0.4827(0.071) -0.237(0.079) — -1.100(0.508) -0.483(0.071) -0.237(0.079) -0.483(0.071) -0.237(0.079) 

Utility  — — — — — — -0.690(0.178) — 

Panel van — — — — — — — -0.846(0.491) 

Vehicle age (Base: Vehicle age less than 6) 

Vehicle age 6-10 0.214(0.059) — 0.214(0.059) — — 0.214(0.059) 0.214(0.059) — 

Vehicle age 11 and above 0.297(0.047) 0.297(0.047) 0.297(0.047) 0.297(0.047) 0.297(0.047) — 0.297(0.047) — 

Roadway design attributes 
        

Type of road surface (Base: Paved) 

Gravel — — — — — — — -0.558(0.332) 

Traffic Control Device (Base: None traffic control and other control device) 

Signal -0.392(0.148) — — — 0.228(0.113) 0.572(0.101) — — 

Pedestrian control — -0.969(0.440) — — — — -0.969(0.440) — 

Roundabout — — — — -1.227(0.188) — -1.227(0.188) — 

Stop sign — — — — — — -0.409(0.165) — 

Yield sign -0.942(0.275) — — — — — -0.317(0.113) — 

Speed zone (Base: Low speed  zone ≤50 km/h) 

Medium speed (60-90 km/h)  — — — — — 0.343(0.117) 0.419(0.096) — 



High speed (≥100 km/h) 0.844(0.102) — 0.844(0.102) 0.844(0.102) 0.844(0.102) 1.187(0.132) 1.187(0.132) 0.844(0.102) 

Type of intersection 
        

T intersection 0.248(0.137) — — -1.231(0.423) — — — — 

Five or more legged intersection -1.007(0.510) — — — — — — — 

Non-intersection — -0.254(0.079) — — — — -0.254(0.079) — 

Environmental factors 
        

Time of day (Base: Morning peak, Off peak and Late evening) 

Morning peak — — — — — — — 0.694(0.211) 

Late night 1.202(0.231) — — — — — 0.504(0.184) 1.202(0.231) 

Weather condition (Base: Clear) 
        

Rainy/Snowy/Foggy — — 0.727(0.139) — — 0.727(0.139) — — 

High wind -0.807(0.339) -0.807(0.339) — — — — — — 

Lighting condition (Base: Daylight) 
       

Dusk/dawn — — — — — — 0.281(0.141) 0.621(0.359) 

Dark-lighted — — — — — — 0.307(0.094) — 

Dark-unlighted — — — — — -1.005(0.518) — — 

Days of Week 
        

Weekend — — — — — — — -0.442(0.172) 

Crash Characteristics 
        

Presence of passenger (Base: No passenger) 

One passenger — 0.876(0.137) — — — 0.300(0.091) — — 

Two passenger -0.342(0.122) 0.421(0.144) — — — — — — 

More than two passengers -0.342(0.122) — — — — — -0.265(0.086) — 

Trajectory of vehicle’s motions (Base: Other movement) 

Going Straight — — — 0.505(0.063) 0.312(0.089) 0.505(0.063) 0.505(0.063) — 

 

ǂStandard errors are presented in parenthesis 

 

 

  



TABLE 5 Elasticity Effects for Collision Type Component 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular Short-side angular Head-on 

Driver characteristics 
        

Driver age (Base: Age 25 to 64) 

        Age less than 25 40.052 -36.538 0.811 0.888 0.653 0.667 0.731 0.124 

Age above 65+ -2.373 -36.715 -0.452 -53.674 25.389 26.211 -7.004 2.607 

Driver gender (Base: Male) 
        

Female -9.030 36.468 -8.155 -7.794 13.883 -9.601 -9.606 -29.141 

Restraint system use  (Base: seat belt used) 
       

Seat belt not used 36.388 -5.688 -6.026 -6.029 -4.373 -4.443 -4.466 -6.411 

Vehicle characteristics 
        

Vehicle Type (Base: Sedan) 
        

Utility  25.514 -6.913 -8.598 -8.698 -4.668 -4.571 -4.588 18.495 

Panel van 63.287 -9.834 -10.378 -10.395 -7.638 -7.763 -7.805 -11.037 

Vehicle age (Base: Vehicle age less than 6) 
       

Vehicle age 6-10 11.740 -6.122 -21.807 11.030 -19.612 -5.395 12.873 9.223 

Vehicle age 11 and above 9.808 -6.815 -28.154 -35.500 -4.457 -4.685 9.346 9.712 

Roadway design attributes 
        

Type of road surface (Base: Paved) 
        

Gravel -15.978 -14.490 -21.988 -22.344 -7.502 -6.705 -6.714 137.276 

Traffic Control Device (Base: None traffic control and other control device) 
     

Signal 17.724 15.759 -43.360 -43.319 8.339 7.798 7.796 -98.954 

Pedestrian control 114.393 111.707 -46.430 -46.886 -37.835 -38.792 -39.048 -46.820 

Roundabout -13.374 17.187 -13.015 -12.459 37.679 -14.206 -14.138 -10.784 

Stop sign -54.852 -70.433 24.128 -92.304 157.516 -7.493 -7.133 -90.032 

Yield sign 0.846 -28.630 -95.608 -95.711 110.263 -11.532 -11.315 -78.830 

Speed zone (Base: Low speed ≤50 km/h) 
       

Medium speed (60-90 km/h)  39.964 39.521 -18.763 -18.811 -12.982 -13.048 -13.139 -19.165 

High speed (≥100 km/h) 27.923 28.489 22.347 33.058 -19.898 -19.922 -20.066 47.918 



Type of intersection (Base: Cross intersection) 
        

T intersection -6.852 14.867 5.415 24.146 -2.274 -27.260 -14.652 96.935 

Five and more legged intersection 18.932 51.882 -25.865 136.337 -17.955 -18.533 -18.744 -27.104 

Non-intersection 76.774 74.714 103.364 96.499 -24.854 -83.150 -82.944 220.728 

Environmental factors 
        

Time of day (Base: Morning peak, Off peak and Late evening) 
      

Late night 4.898 4.921 4.290 4.265 6.109 -27.427 6.525 2.695 

Surface condition (Base: Dry) 
        

Wet -9.591 -8.540 -13.453 -13.741 -4.305 -3.780 -3.765 80.177 

Lighting condition (Base: Daylight) 
        

Dusk/dawn 1.660 1.652 2.153 -42.425 0.984 1.043 1.067 2.577 

Dark-lighted -28.355 -14.310 9.538 9.565 6.756 6.863 6.928 9.638 

Dark-unlighted -10.604 -9.515 -14.745 -15.028 -4.866 -4.309 -4.304 89.813 

Days of Week (Base: Weekdays) 
        

Weekend -2.347 -26.895 -4.597 39.239 0.062 0.337 0.357 41.697 

 

 

 

 

 

 

 

  



TABLE 6 Elasticity Effects for Serious/Fatal Injury Severity Category 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular Short-side angular Head-on 

Driver characteristics 
        

Driver age (Base: Age 25 to 64) 
        

Age less than 25 — -35.757 — — — — -16.532 — 

Age above 65+ 48.599 — 128.737 — 54.896 48.825 59.236 — 

Driver gender (Base: Male) 
        

Female 72.080 65.571 64.029 71.814 63.669 72.314 68.000 58.566 

Restraint system use  (Base: seat belt used) 
        

Seat belt not used — — — — 63.399 — — — 

Non-local driver — 27.496 — 81.777 24.752 — — — 

Vehicle characteristics 
        

Vehicle Type (Base: Sedan) 
        

Station wagon -38.650 -20.505 — -71.215 -36.310 -20.673 -37.388 -16.409 

Utility  — — — — — — -47.841 — 

Panel van — — — — — — — -48.777 

Vehicle age (Base: Vehicle age less than 6) 
        

Vehicle age 6-10 20.437 — 18.066 — — 20.804 19.551 — 

Vehicle age 11 and above 27.753 28.177 24.822 28.376 25.345 — 26.529 — 

Roadway design attributes 
        

Type of road surface (Base: Paved) 
        

Gravel — — — — — — — -35.466 

Traffic Control Device (Base: None traffic control and other control device) 
     

Signal -32.734 — — — 20.103 59.027 — — 

Pedestrian control — -60.601 — — — — -59.060 — 

Roundabout — — — — -68.876 — -69.494 — 

Stop sign — — — — — — -31.320 — 

Yield sign -61.729 — — — — — -25.443 — 

Speed zone (Base: Low speed ≤50 km/h) 
        



Medium speed (60-90 km/h)  — — — — — 30.204 34.311 — 

High speed (≥100 km/h) — — 80.545 89.029 89.666 174.732 153.362 64.888 

Type of intersection (Base: Cross intersection) 
        

T intersection 23.907 — — -79.906 — — — — 

Five and more legged intersection -62.106 — — — — — — — 

Non-intersection — -22.965 — — — — -20.703 — 

Environmental factors 
        

Time of day (Base: Morning peak, Off peak and Late evening) 
      

Morning peak — — — — — — — 55.937 

Late night 177.750 — — — — — 53.022 106.305 

Weather condition (Base: Clear) 
        

Rain/snow/FOG/Smoke/Dust — — 70.554 — — 87.743 — — 

High wind -53.838 -53.830 — — — — — — 

Lighting condition (Base: Daylight) 
        

Dusk/dawn — — — — — — 27.162 50.379 

Dark-lighted — — — — — — 28.979 — 

Dark-unlighted — — — — — -62.290 — — 

Crash Characteristics  
        

Presence of passenger (Base: No passenger) 
       

One passenger — 75.635 — — — 28.133 — — 

Two passenger — 43.947 — — — — — — 

More than two passengers — — — — — — -22.103 
 

Days of Week (Base: Weekdays) 
        

Weekend — — — — — — — -30.567 

Trajectory of vehicle’s motions (Base: Other movement) 
       

Going Straight — — — 46.105 26.585 47.230 40.339 — 

 


