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ABSTRACT 1 

The study contributes to safety literature on active mode transportation safety by employing a 2 

copula based model for count frequency analysis at a macro-level. Most studies in the 3 

transportation safety area identify a single count variable (such as vehicular, pedestrian or bicycle 4 

crash counts) for a spatial unit and study the impact of exogenous variables. While the traditional 5 

count models perform adequately in the presence of a single count variable, it is necessary to 6 

modify these approaches to examine multiple dependent variables for each study unit. To that 7 

extent, the current research effort contributes to literature by developing a multivariate model by 8 

adopting a copula based bivariate negative binomial model for pedestrian and bicyclist crash 9 

frequency analysis. The proposed approach also accommodates for potential heterogeneity (across 10 

zones) in the dependency structure. The formulated models are estimated using pedestrian and 11 

bicycle crash count data at the Statewide Traffic Analysis Zone (STAZ) level for the state of 12 

Florida for the years 2010 through 2012. The STAZ level variables considered in our analysis 13 

include exposure measures, socio-economic characteristics, road network characteristics and land 14 

use attributes. A policy analysis is also conducted along with a representation of hotspot 15 

identification to illustrate the applicability of the proposed model for planning purposes. The 16 

development of such spatial profiles will allow planners to identify high risk zones for screening 17 

and treatment purposes.  18 
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INTRODUCTION  1 
 2 

Urban regions in North America are encouraging the adoption of active modes of transportation 3 

by proactively developing infrastructure for these modes. According to data from the 2009 4 

National Household Travel Survey (NHTS), about 37.6% of the trips by private vehicles in the 5 

United States (US) are less than 2 miles long. Even if a small proportion of the shorter private 6 

vehicle trips (around dense urban cores) are substituted with public transportation and active 7 

transportation trips, it offers substantial benefits to individuals, cities and the environment. 8 

However, a strong impediment to the increasing adoption of active modes of transportation is the 9 

risk associated with these modes. In fact, in the US between 2004 and 2013, bicycle and pedestrian 10 

fatalities as a percentage of total traffic crash related fatalities have increased from 1.7% to 2.3% 11 

and 11% to 14%, respectively (1). For increasing the adoption of active transportation, there is a 12 

need to reduce the risk to pedestrians and bicyclists on roadways. The safety risk posed to active 13 

transportation users in Florida is exacerbated compared to active transportation users in the US. 14 

While the national average for pedestrian (bicyclist) fatalities per 100,000 population is 1.50 15 

(2.35), the corresponding number for the state of Florida is 2.56 (6.80), which clearly present a 16 

clear picture of the challenge faced in Florida. An important tool to determine the critical factors 17 

affecting occurrence of pedestrian and bicycle crashes; and identifying vulnerable locations is the 18 

application of planning level crash prediction models. 19 

Traffic crashes aggregated at a certain spatial scale are non-negative integer valued random 20 

events. Naturally, these integer counts are examined employing count regression approaches that 21 

quantify the influence of exogenous factors on crash counts. Most studies in the transportation 22 

safety area identify a single count variable (such as vehicular, pedestrian or bicycle crash counts) 23 

for a spatial unit and study the impact of exogenous variables. In this context, the crash prediction 24 

model structures considered include Poisson (2-3), Poisson-Lognormal, Poisson-Gamma 25 

regression (also known as negative binomial (NB)), Poisson-Weibull, and Generalized Waring 26 

models (4-10). Among these model structures, the NB model, which offers a closed form 27 

expression while relaxing the equal mean variance equality constraint of Poisson regression, serves 28 

as the workhorse for crash count modeling.  29 

 30 

MULTIPLE DEPENDENT VARIABLES 31 
 32 

While the above models perform adequately in the presence of a single count variable, it is 33 

necessary to modify these approaches to examine multiple dependent variables for each study unit. 34 

To elaborate, for a study unit, if multiple dependent variables are available it is plausible to imagine 35 

that common observed and unobserved factors that affect one dependent variable might also affect 36 

the other dependent variables. Accommodating for the impact of observed factors is relatively 37 

straightforward within count regression models by estimating distinct count models for every 38 

dependent variable. The process of incorporating the impact of unobserved factors poses 39 

methodological challenges. Essentially, accommodating the impact of unobserved factors 40 

recognizes that the multiple dimensions of interest have common error terms that affect the 41 

dependent variables. In traditional discrete choice models, there are three ways that such joint 42 

processes are examined can be accommodated. The first approach considers the dependent 43 

variables being investigated as marginal distributions within a bivariate (or multivariate) 44 

distribution by developing a joint error distribution. The distribution parameters estimated will 45 

allow us to evaluate the correlation between the dependent variables. If permissible, the approach 46 
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usually results in closed form parametric formulations. These formulations thus allow for 1 

analytical computation of log-likelihood and offer more stable inference conclusions. Examples of 2 

such approaches include bivariate normal or logistic distributions, bivariate NB distributions or 3 

the flexible bivariate copula based approaches (for example see (11-13)). Of course, the flexibility 4 

of the approach is restricted by the potential parametric alternatives available. In the transportation 5 

safety area, to our best knowledge, no count models have been developed employing this approach. 6 

The second approach to addressing multiple dependent variables involves the development 7 

of multivariate function as described in the first approach. However, as the estimation of the 8 

multivariate approach is computationally intractable, an approximation approach to evaluating the 9 

multivariate function is considered. The approach – referred to as the composite marginal 10 

likelihood approach (CML) – has received considerable attention in transportation literature in 11 

recent years (14-16). In terms of crash count modeling, the approach has been employed by 12 

Narayanamoorthy et al. (17) for bicycle and pedestrian crash counts by severity type. 13 

The third approach to accommodate for the dependency between the dependent variables 14 

allows for stitching by considering unobserved error components that jointly affect the dependent 15 

variables. The approach, usually, partitions the error components of the dependent variables to 16 

accommodate for a common term and an independent term across dependent variables. The 17 

common error term across the dependent variables allows for the possible unobserved effects. Of 18 

course, the common term is considered with a distribution that has a zero mean. Thus, any 19 

computation of probability requires an integral across the error term distribution. The probability 20 

computation is dependent on the distributional assumption and no longer has a closed form 21 

expression. Thus, the estimation procedure requires the adoption of maximum simulated likelihood 22 

(MSL) approach or Markov Chain Monte Carlo (MCMC) approach in the Bayesian realm. MSL 23 

and MCMC methods provide substantial flexibility in accommodating for unobserved 24 

heterogeneity. However, in MSL and MCMC methods, the probability computation is sensitive to 25 

number of draws as well as random number generation procedures. Further, these approaches are 26 

more prone to efficiency loss due to inaccuracy in retrieving the variance covariance parameters 27 

that is critical for inference (see (18) for more detailed discussion on issue with MSL approaches). 28 

A majority of the count modeling approaches employed in the safety area have adopted the third 29 

approach. Specifically, the model structures employed in literature include multivariate-Poisson 30 

model (19), Poisson-lognormal models (7, 20-22) and simultaneous equation models (23-24).  31 

 32 

CURRENT STUDY IN CONTEXT 33 
 34 

From the above literature review it is evident that transportation safety literature of count modeling 35 

realm has predominantly focused on the third approach to examining multivariate count variables. 36 

The current research effort contributes to literature on the first approach – developing a 37 

multivariate model by adopting a copula based bivariate NB model for pedestrian and bicyclist 38 

crash frequency analysis. The proposed approach has three major advantages relative to existing 39 

methods. First, in the earlier research attempts (from second and third groups described above), a 40 

particular distributional assumption on the nature of the correlation across the multiple dependent 41 

variables is considered. However, it is possible that the distributional assumption might influence 42 

the results. In a copula based approach, we can empirically compare the different dependency 43 

structures thus enhancing the flexibility of the multivariate approach. Thus the copula approach 44 

subsumes any bivariate modeling approach. Second, the copula based approach for count modeling 45 

results in an analytical formulation as opposed to an approximation (as in CML methods) or 46 



5 

 

simulation (in MSL or MCMC approaches). Thus, the parameter estimates are likely to be more 1 

accurate. Finally, it is possible that several exogenous factors might affect the dependency profile 2 

between the multiple variables. We accommodate for these impacts by parameterizing the 3 

dependency profile to allow for such potential heterogeneity (across zones).  4 

A simpler version of the approach proposed here has been employed in econometrics (25). 5 

In their study, the copula dependency is considered to be the same across the entire dataset. To the 6 

best of the authors’ knowledge, this is the first attempt to employ such copula based bivariate count 7 

models for examining crash count events. To be sure, copula models for ordered and unordered 8 

discrete outcome variables have been adopted in safety literature (see (26-29)). In this paper, we 9 

employ the copula based models for count events analysis. Empirically, the study examines the 10 

influence of several exogenous variables (exposure measures, socioeconomic characteristics, road 11 

network characteristics and land use attributes) on pedestrian and bicycle crash count events at the 12 

Statewide Traffic Analysis Zone (STAZ) level for the state of Florida.  13 

 14 

MODEL FRAMEWORK  15 
 16 

The focus of our study is to jointly model pedestrian crash frequency and bicycle crash frequency 17 

at zonal level by employing a copula based bivariate NB modeling framework. The econometric 18 

framework for the joint model is presented in this section. 19 

Let 𝑖 be the index for STAZ (𝑖 = 1,2,3, … , 𝑁) and 𝑦𝑞𝑖 be the index for crashes occurring 20 

over a period of time in a STAZ 𝑖; where 𝑞 takes the value of 1 for pedestrian crashes and 2 for 21 

bicycle crashes. The NB probability expression for random variable 𝑦𝑞𝑖 can be written as (25): 22 

𝑃𝑞𝑖(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞) =  
Γ(𝑦𝑞𝑖+𝛼𝑞

−1)

Γ(𝑦𝑞𝑖 + 1)Γ(𝛼𝑞
−1)

(
1

1 + 𝛼𝑞𝜇𝑞𝑖
)

1
𝛼𝑞

(1 −
1

1 + 𝛼𝑞𝜇𝑞𝑖
)

𝑦𝑞𝑖

 (1)  

where, Γ(∙) is the Gamma function, 𝛼𝑞 is the NB dispersion parameter specific to road user group 23 

𝑞 and 𝜇𝑞𝑖 is the expected number of crashes occurring in STAZ 𝑖 over a given period of time for 24 

vulnerable road user group 𝑞. We can express 𝜇𝑞𝑖 as a function of explanatory variable (𝒙𝑞𝑖) by 25 

using a log-link function as: 𝜇𝑞𝑖𝑠 = 𝐸(𝑦𝑞𝑖|𝒙𝑞𝑖) = 𝑒𝑥𝑝(𝜷𝑞𝒙𝑞𝑖), where 𝜷𝑞 is a vector of parameters 26 

to be estimated specific to road user group 𝑞.   27 

The correlation or joint behaviour of random variables 𝑦1𝑖 and 𝑦2𝑖 are explored in the 28 

current study by using a copula based approach. A copula is a mathematical device that identifies 29 

dependency among random variables with pre-specified marginal distribution ((30-31) provide a 30 

detailed description of the copula approach). In constructing the copula dependency, let us assume 31 

that 𝛬1(𝑦1𝑖) and 𝛬2(𝑦2𝑖) are the marginal distribution functions of the random variables 𝑦1𝑖 and 32 

𝑦2𝑖, respectively; and 𝛬12(𝑦1𝑖, 𝑦2𝑖) is the joint distribution for the bivariate case with 33 

corresponding marginal distribution. Subsequently, the bivariate distribution 𝛬12(𝑦1𝑖, 𝑦2𝑖) can be 34 

generated as a joint cumulative probability distribution of uniform [0, 1] marginal variables 𝑈1 and 35 

𝑈2 as below (11):  36 

𝛬12(𝑦1𝑖, 𝑦2𝑖) = 𝑃𝑟( 𝑈1 ≤ 𝑦1𝑖,  𝑈2 ≤ 𝑦2𝑖) (2)  
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= 𝑃𝑟[𝛬1
−1(𝑈1) ≤ 𝑦1𝑖,  𝛬2

−1(𝑈2) ≤ 𝑦2𝑖 ]  

= 𝑃𝑟[𝑈1 < 𝛬1(𝑦1𝑖),  𝑈2 < 𝛬2(𝑦2𝑖) ] 

The joint distribution (of uniform marginal variable) in equation 2 can be generated by a 1 

function 𝐶𝜃𝑖(. , . ) (32), such that: 2 

𝛬12(𝑦1𝑖, 𝑦2𝑖) = 𝐶𝜃𝑖(𝑈1 = 𝛬1(𝑦1𝑖), 𝑈2 = 𝛬2(𝑦2𝑖)) (3)  

where, 𝐶𝜃𝑖(. , . ) is a copula function and 𝜃𝑖 is the dependence parameter defining the link between 3 

𝑦1𝑖 and 𝑦2𝑖. In the case of two continuous random variables, the bivariate density (or joint density) 4 

can be derived from partial derivatives for the continuous case. However, in our study, 𝑦1𝑖 and 𝑦2𝑖 5 

are nonnegative integer valued events. For such count data, following Cameron et al. (25), the 6 

probability mass function (𝜁𝜃𝑖) is presented (instead of continuous derivatives) by using finite 7 

differences of the copula representation as follows: 8 

𝜁𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖)) = 𝐶𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖); 𝜃𝑖) 

 −𝐶𝜃𝑖(𝛬1(𝑦1𝑖 − 1), 𝛬2(𝑦2𝑖); 𝜃𝑖) 

 −𝐶𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖 − 1); 𝜃𝑖) 

+𝐶𝜃𝑖(𝛬1(𝑦1𝑖 − 1), 𝛬2(𝑦2𝑖 − 1); 𝜃𝑖) 

(4)  

Given the above setup, we specify 𝛬1(𝑦1𝑖) and 𝛬2(𝑦2𝑖) as the cumulative distribution 9 

function (cdf) of the NB distribution. The cdf of NB probability expression (as presented in 10 

equation 1) for 𝑦𝑞𝑖 can be written as: 11 

𝛬𝑞(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞) = ∑ 𝑃𝑞𝑖(𝑦𝑞𝑖|𝜇𝑞𝑖 , 𝛼𝑞)

𝑦𝑞𝑖

𝑘=0

 (5)  

Thus, the log-likelihood function (𝐿𝐿) with the joint probability expression in equation 4 12 

can be written as: 13 

𝐿𝐿 = ∑ 𝜁𝜃𝑖(𝛬1(𝑦1𝑖), 𝛬2(𝑦2𝑖))

𝑁

𝑖=1

 (6)  

In our empirical analysis we select six different copula structures: 1) Gaussian, 2) Farlie-14 

Gumbel-Morgenstern (FGM), 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe (a detailed discussion 15 

of these copulas is available in (30)). Among these copulas; Gaussian, FGM and Frank copulas 16 

represent symmetric dependency structures that ensure higher dependency for unobserved 17 

variables around the mean of the distribution. Clayton copula allows for stronger dependency 18 
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between the unobserved variables for the lower tails of the distribution. Gumbel and Joe 1 

distributions offer the mirror image to Clayton copula by allowing for stronger dependency toward 2 

the positive tails of the distribution. Between Joe and Gumbel copula, Joe copula allows for a 3 

stronger positive tail dependency (for more details see Figure 1 in (30)).  4 

It is important to note here that, the level of dependence between the random variables can 5 

vary across STAZs. Therefore, in the current study, the dependence parameter 𝜃𝑖 is parameterized 6 

as a function of observed attributes as follows: 7 

𝜃𝑖 = 𝑓𝑛(𝜸𝑞𝒔𝑞𝑖) (7)  

where, 𝒔𝑞𝑖 is a column vector of exogenous variable, 𝜸𝑞 is a row vector of unknown parameters 8 

(including a constant) specific to road user group 𝑞 and 𝑓𝑛 represents the functional form of 9 

parameterization. Based on the dependency parameter permissible ranges, alternate 10 

parameterization forms for the six copulas are considered in our analysis. For Normal, FGM and 11 

Frank Copulas we use 𝜃𝑖 = 𝜸𝑞𝒔𝑞𝑖, for the Clayton copula we employ 𝜃𝑖 = 𝑒𝑥𝑝(𝜸𝑞𝒔𝑞𝑖), and for 12 

Joe and Gumbel copulas we employ 𝜃𝑖 = 1 + 𝑒𝑥𝑝(𝜸𝑞𝒔𝑞𝑖). The parameters to be estimated in the 13 

model of Equation 6 are: 𝜷𝑞, 𝛼𝑞 and 𝜸𝑞. The parameters are estimated using maximum likelihood 14 

approaches. The model estimation is achieved through the log-likelihood functions programmed 15 

in Gauss (33). 16 

 17 

DATA DESCRIPTION 18 
 19 

This study is focused on pedestrian and bicycle crashes at the STAZ level. There are 8,518 STAZs 20 

in the State of Florida (Figure 1). Data for the empirical study is obtained from Florida for the year 21 

2010 through 2012. The pedestrian and bicycle crash records are collected and compiled from 22 

Florida Department of Transportation CAR (Crash Analysis Reporting) and Signal Four Analytics 23 

(S4A) databases. Florida Department of Transportation CAR and S4A are long and short forms of 24 

crash reports in the State of Florida, respectively. The long form crash report includes higher injury 25 

severity level or crash related to criminal activities (such as hit-and-run or Driving Under 26 

Influence). Crash data records from short and long form databases are compiled in order to have 27 

more complete information on road crashes and hence is used for the purpose of analysis in the 28 

current study context.  29 

In addition to the crash database, the explanatory attributes considered in the empirical 30 

study are also aggregated at the STAZ level accordingly. For the empirical analysis, the selected 31 

explanatory variables can be grouped into four broad categories: exposure measures, 32 

socioeconomic characteristics, road network characteristics and land use attributes. The exposure 33 

measures, socioeconomic characteristics, and land use attributes are obtained from the US Census 34 

Bureau and FDOT District Offices/MPOs (or FDOT Central Office). Moreover, the road network 35 

characteristics and traffic related attributes are collected from FDOT Transportation Statistics 36 

Office (TRANSTAT). STAZ data are collected from Florida Department of Transportation 37 

District Offices/MPOs (or Florida Department of Transportation Central Office), the U.S. Census 38 

Bureau, and Florida Geographic Data Library (FGDL). Table 1 offers a summary of the sample 39 

characteristics of the count and exogenous variables and the definition of variables considered for 40 

final model estimation along with the zonal minimum, maximum, average and standard deviation 41 

values for Florida. From Table 1, we can see that for the three years, Florida has a record of 16,240 42 
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pedestrian crashes with an average of 1.90 crashes (ranging from 0 to 39 crashes) per STAZ. On 1 

the other hand, the state has an average of 1.79 crashes (ranging from 0 to 88) per TAZ with a total 2 

record of 15,307 bicycle crashes for the three years period.   3 

 4 

FIGURE 1 State Traffic Analysis Zones (STAZs) for the state of Florida 5 
 6 

7 



TABLE 1 Sample Statistics for the State of Florida 1 

 2 

Variable Names Variables Descriptions 

Zonal Percentiles 

Minimum Maximum Average 
Std. 

Deviation 
20th  80th  

Dependent variable             

Pedestrian crashes per 

STAZ 
Total number of pedestrian crashes per STAZ 0.000 39.000 1.907 3.315 0.000 3.000 

Bicycle crashes per STAZ Total number of bicycle crashes per STAZ 0.000 88.000 1.797 3.309 0.000 3.000 

Exposure measures               

VMT 
Natural Log of vehicle miles travel (VMT) in 

STAZ  
0.000 13.437 9.039 2.659 7.978 10.870 

Proportion of heavy 

vehicles 

Total heavy vehicle VMT in STAZ /Total 

vehicles VMT in STAZ 
0.000 0.519 0.067 0.052 0.031 0.095 

Total population Natural log of total population in STAZ 0.000 10.571 6.437 2.144 4.990 8.233 

Population density Natural log of population density (per sqmi) 0.000 11.052 6.481 2.257 4.542 8.267 

Proportion of families 

with no vehicle 

Total number of families with no vehicle in 

STAZ/Total number of families in STAZ 
0.000 1.000 0.095 0.123 0.020 0.133 

Socio-economic characteristics             

Public transit commuters No of commuters using public transportation 0.000 934.000 18.812 54.273 0.000 18.000 

Bicycle commuters No of commuters using bicycle 0.000 775.000 5.844 19.263 0.000 6.000 

Walk commuters No of commuters by walking 0.000 1288.000 14.352 34.681 0.000 20.000 

Total employment Natural log of total employment in STAZ 0.000 10.371 5.857 2.017 4.382 7.523 

Proportion of service 

employment 
Proportion of service employment 0.000 1.000 0.525 0.257 

0.294 0.760 

Proportion of industrial 

employment 
Proportion of industrial employment 0.000 1.000 0.176 0.232 

0.000 0.333 

Proportion of commercial 

employment 
Proportion of commercial employment 0.000 1.000 0.299 0.235 

0.072 0.498 

School enrollment density 
Natural Log of total school enrollment per 

square miles in STAZ 
0.000 12.450 2.715 3.143 0.000 6.278 

Road network characteristics             

Proportion of urban area Total urban area in STAZ/Total area in STAZ 0.000 1.000 0.722 0.430 0.007 1.000 
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Proportion of local roads 
Total length of local roads in STAZ/Total 

length of all roads in STAZ 
0.000 1.000 0.572 0.329 0.177 0.858 

Proportion of collector 

roads 
Proportion of collectors 0.000 1.000 0.191 0.246 

0.000 0.323 

Proportion of arterial 

roads 

Total length of arterial roads in STAZ/Total 

length of all roads in STAZ 
0.000 1.000 0.221 0.275 0.006 0.369 

Traffic signal density 
Natural log of total number of traffic signals per 

miles of road in STAZ 
0.000 8.756 0.227 0.578 0.000 0.269 

Bike lane length Bike lane length 0.000 28.637 0.303 1.096 0.000 0.030 

Sidewalk length Sidewalk length 0.000 25.683 0.993 1.750 0.000 1.735 

Land use attributes              

Density of hotel/ 

motel/timeshare room 

Natural log of total number of hotel, motel, 

timeshare room per square mile in STAZ 
0.000 10.392 1.549 2.365 0.000 3.924 

Distance to nearest urban 

area 

Distance of the STAZ to the nearest urban area 

in miles  
0.000 44.101 2.140 5.441 0.000 1.606 

1 



EMPIRICAL ANALYSIS 1 
 2 

Model Specification and Overall Measures of Fit 3 

 4 
The empirical analysis involves the estimation of models by using six different copula structures: 5 

1) Gaussian, 2) FGM, 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe. The empirical analysis involved 6 

a series of model estimations. First, an independent copula model (separate NB models for 7 

pedestrian and bicycle crash counts) were estimated to establish a benchmark for comparison. 8 

Second, six different models were estimated by considering the dependency parameter in the 9 

copula model to be the same across all STAZs. Third, different copula models were also estimated 10 

by considering the parameterization for copula dependency profile. Finally, to determine the most 11 

suitable copula model (including the independent copula model), a comparison exercise was 12 

undertaken. The alternative copula models estimated are non-nested and hence, cannot be tested 13 

using traditional log-likelihood ratio test. We employ the Bayesian Information Criterion (BIC) to 14 

determine the best model among all copula models (26, 31-32, 34). The BIC for a given empirical 15 

model is equal to: 16 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (8)  

where LL is the log-likelihood value at convergence, K is the number of parameters, and Q is the 17 

number of observations. The model with the lower BIC is the preferred copula model. The BIC 18 

value for independent copula model was 48747.45. The following copula models (BIC) without 19 

parameterization offered improved data fit: Clayton (48343.15), FGM (48388.16) and Frank 20 

(48340.05). Gaussian, Gumbel and Joe copulas collapsed to independent copula model. For copula 21 

dependency profile parameterization, the variables effects were significant only for Clayton 22 

copula. Overall, Clayton copula with dependency profile parameterization (48271.85) 23 

outperformed all other copula models as well the independent model. The copula model BIC 24 

comparisons confirm the importance of accommodating dependence between pedestrian and 25 

bicycle crash count events in the macro-level analysis. 26 

 27 

Estimation Results 28 
 29 

In presenting the effects of exogenous variables in the joint model specification, we will restrict 30 

ourselves to the discussion of the Clayton Copula specification. Table 2 presents the estimation 31 

results of the joint model. For the ease of presentation, the pedestrian crash count component (3rd 32 

and 4th columns of Table 2) and bicycle crash count component (5rd and 6th columns of Table 2) 33 

results are discussed together in the following section by variable groups. The copula parameters 34 

are presented in the last row panel of Table 2. 35 

 36 

Exposure measures 37 

 38 

In terms of exposure measures, the estimates indicate that both pedestrian and bicycle crashes are 39 

positively associated with higher vehicle-miles traveled (VMT) at the zonal level. The result 40 

related to VMT represents the higher crash risk faced by non-motorized (pedestrian and bicyclist) 41 

road user groups with increasing VMT (35). Further, the results in Table 2 indicate reduced crash 42 

propensity for both pedestrian and bicyclists with higher proportion of heavy vehicle VMT at the 43 
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zonal level. With respect to total population, the joint model estimation results reveal that both 1 

pedestrian and bicycle crashes are positively associated with higher zonal population (36-38). 2 

As expected, both pedestrian and bicycle crash risk are found to be higher for the STAZs 3 

with higher proportion of households without access to private vehicles (see 39-40), but the 4 

magnitude of the impact is more pronounced for pedestrian crashes relative to bicycle crashes. The 5 

results can be explained by the fact that members of the households with access to no private 6 

vehicles would use alternate mode of transportation for daily activities resulting in higher 7 

pedestrian and bicycling exposure in these STAZs. The variable is also surrogate indicator for low-8 

income level of zone, where people are less likely to receive safety education and hence are 9 

exposed to higher potential crash risk (41). 10 

 11 

Socioeconomic characteristics 12 

 13 

The results for the number of commuters based on different commute modes are also found to 14 

significantly influence pedestrian and bicycle crash risk in the current study context. An increase 15 

in the number of transit commuters increases the likelihood of pedestrian and bicycle crashes at 16 

the STAZ level. The result in pedestrian crash model intuitively suggests higher demand and 17 

supply of public transit in zones with higher number of transit commuters which are determinants 18 

of pedestrian activities (42). The variable indicating transit commuters in bicycle crash model is 19 

possibly representing greater bicycle exposure from higher cycle-transit integrated mode share 20 

(popularly known as “bike-and-ride”) for access and egress at transit stations (43). In terms of walk 21 

and bicycle commuters, the results reveal that STAZs with higher number of walk and bike 22 

commuters increase the likelihoods of both pedestrian and bicycle crashes. These variables can be 23 

considered as proxy measures for pedestrian and bicycle exposure in the zones. It is interesting to 24 

note that both non-motorized commute variables have larger impact in bicycle crash count events 25 

relative to pedestrian crash count events. As found in previous studies (39, 41), our study also 26 

found that more employment within a TAZ leads to higher probability of bicycle crashes. 27 

However, increasing proportion of industrial employment has negative association with pedestrian 28 

and bicycle crashes at the STAZ level. Also, an increase in school enrollment density in a STAZ 29 

increases the likelihoods of crash risk in count model components for both non-motorized road 30 

user group. 31 

 32 

Road network characteristics 33 

 34 

Proportion of urban area, a proxy for non-motorized activity, reflects that an increase in the 35 

proportion of urban area in a zone increases the likelihood of both pedestrian and bicycle crash 36 

risk. The results associated with functional class of roadways show that pedestrian and bicycle 37 

crash risk are positively correlated with higher proportion of arterial and local roads. Consistent 38 

with several previous studies (44-45), our study results also show that higher density of signalized 39 

intersections are positively associated with more pedestrian- and bicycle-motor vehicle crashes. 40 

With respect to sidewalk length, the model estimation results indicate higher likelihood of 41 

pedestrian and bicycle crashes with increasing length of sidewalk in a zone.  42 
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TABLE 2 Pedestrian-Bicycle Joint Model Estimation Results – Clayton Copula 1 

 2 

Variable Names 
Pedestrian Bicycle 

Estimate t-stat Estimate t-stat 

Constants -4.238 -38.738 -4.272 -41.469 

Exposure measures     

VMT 0.118 20.646 0.128 20.775 

Proportion of heavy vehicles -0.902 -2.444 -3.145 -8.786 

Total population 0.137 17.447 0.138 15.339 

Proportion of families with no vehicle 1.323 12.040 0.244 1.976 

Socio-economic characteristics     

Bicycle commuters 0.036 3.841 0.144 16.754 

Public transit commuters 0.171 21.750 0.097 11.480 

Walk commuters 0.070 7.286 0.081 8.129 

Total employment 0.172 16.812 0.136 14.087 

Proportion of industrial employment -0.242 -3.632 -0.191 -2.794 

School enrollment density 0.012 3.022 0.011 2.638 

Road network characteristics     

Proportion of urban area 0.272 5.146 0.658 11.170 

Proportion of local roads 0.564 8.752 0.565 8.157 

Proportion of arterial roads 0.306 3.949 0.422 5.040 

Traffic signal density 0.289 12.716 0.184 7.281 

Sidewalk length 0.272 12.963 0.309 14.754 

Land use attributes     

Density of hotel/motel/timeshare room 0.029 5.943 0.018 3.429 

Distance to nearest urban area -0.039 -7.031 -0.084 -9.363 

Copula Parameters 

Variable Names Estimate t-stat 

Constant -0.973 -- 

Public transit commuters 0.141 4.373 

School enrollment density 0.049 2.728 

   

 3 

Land use attributes 4 

 5 
The result associated with hotel/motel/timeshare room density in STAZ reflects that an increase in 6 

hotel/motel/timeshare room density increases the likelihood of both pedestrian and bicycle crash 7 

risk, presumably indicating higher level of non-motorized road user activity in the proximity of 8 

these facilities in a zone (46-47). Moreover, tourists/visitors might be unfamiliar/less familiar with 9 

local driver behavior and road regulations (48), which might further exacerbate crash risk for these 10 

non-motorized road user groups. The possibilities of pedestrian and bicycle crash risk increase 11 
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with increasing distance to the nearest urban area from the STAZ. STAZs close to urban area are 1 

associated with shorter, more walkable and/or cyclable travel distances which in turn increase the 2 

exposure of non-motorized road user groups resulting in increased likelihood of crash risks. 3 

 4 

Dependence Effects 5 

 6 

As indicated earlier, the estimated Clayton copula based bivariate NB model provides the best fit 7 

in incorporating the correlation between the pedestrian and bicycle crash count events. An 8 

examination of the copula parameters presented in the last row panel of Table 2 highlights the 9 

presence of common unobserved factors affecting pedestrian and bicycle crash frequency. The 10 

various exogenous variables that contribute to the dependency include school enrollment density 11 

and public transit commuters. This provides support to our hypothesis that the dependency 12 

structures are not constant across all STAZs. For the Clayton copula, the dependency is entirely 13 

positive and the coefficient sign and magnitude reflects whether a variable increases or reduces 14 

the dependency and by how much. The proposed framework by allowing for such 15 

parameterizations allows us to improve data fit. 16 

 17 

POLICY ANALYSIS  18 
 19 

Elasticity Effects and Implications 20 
 21 

The parameter effects of exogenous variables in Table 2 do not provide the magnitude of the effects 22 

on zonal level crash counts. For this purpose, we compute aggregate level “elasticity effects” of 23 

exogenous variables for both pedestrian and bicycle crash events. We compute the percentage 24 

change in the expected total zonal crash counts due to the change in exogenous variable for 25 

pedestrian and bicycle separately to identify the policy measures based on most critical 26 

contributory factors. The computed elasticities are presented in Table 3 (see (49) for a discussion 27 

on the methodology for computing elasticities). The results in Table 3 represent the percentage 28 

change in the number of crashes for 100% change in the independent variable, other characteristics 29 

being equal. For example, the elasticity estimate for VMT variable indicates that a 100% increase 30 

in VMT will result in a 25.1% increase in pedestrian crashes and a 26.3% increase in bicyclist 31 

crashes.  32 

The following observations can be made based on the elasticity effects presented in Table 33 

3. First, the results in Table 3 indicate that there are differences in the elasticity effects across the 34 

expected number of pedestrian and bicycle crash counts. Second, the most significant variable in 35 

terms of increase in the expected number of both pedestrian and bicycle crash counts include: 36 

VMT, total population and total employment. Third, pedestrian crashes have higher elasticities 37 

relative to bicycle crashes for total population, total employment, public transit commuters, 38 

proportion of families with no vehicle, traffic signal density and density of hotel/motel/timeshare 39 

room. Finally, based on the elasticity estimates it is evident that the influence of exposure and 40 

socio-economic characteristics is substantially larger than the influence of roadway and land-use 41 

characteristics.  42 

These results have important implications in improving the safety situation for non-43 

motorized road users and promoting active mode of transportation. For instance, results indicating 44 

auto-oriented (VMT) and public transit-oriented (public transit commuters) neighborhoods have 45 

important implications in terms of engineering measures. Traffic calming measures should be 46 



15 

 

provided in these zones to reduce road crashes involving pedestrians and bicyclists. Engineering 1 

infrastructure (such as overpasses, shaded walkways for pedestrian traffic and bike box at 2 

intersections, bike paths for bicycle traffic) that separate non-motorized traffic flow from 3 

motorized traffic flow in the road network system should be installed and regulated in the zones 4 

with more population and more employment. Public awareness efforts and traffic education for 5 

safe walking and cycling are needed for both non-motorists and motorists of zones with more 6 

transit, bike and walk commuters. Moreover, education campaigns in the communities with less 7 

access to private vehicles are needed to improve non-motorists’ safety situation. Further, targeted 8 

enforcement strategies should be regulated in the zones with more local roads and sidewalks to 9 

make the neighborhoods more walkable and bikeable. Overall, the elasticity analysis conducted 10 

provides an illustration on how the proposed model can be applied to determine the critical factors 11 

contributing to increase in pedestrian and bicycle crash counts. 12 

 13 

TABLE 3 Elasticity Effects 14 
 15 

Variable Names Pedestrian Bicycle 

Exposure measures     

VMT 25.076 26.318 

Proportion of heavy vehicles -0.938 -2.887 

Total population 22.014 21.407 

Proportion of families with no vehicle 2.973 0.442 

Socioeconomic characteristics     

Bicycle commuters 1.147 5.097 

Public transit commuters 9.831 5.018 

Walk commuters 3.760 4.257 

Total employment 25.730 19.239 

Proportion of industrial employment -0.582 -0.421 

School enrollment density 1.034 0.916 

Road network characteristics     

Proportion of urban area 0.208 0.505 

Proportion of local roads 7.198 7.016 

Proportion of arterial roads 0.944 1.214 

Traffic signal density 1.809 0.922 

Sidewalk length 4.840 5.538 

Land use attributes     

Density of hotel/motel/timeshare room 1.207 0.691 

Distance to nearest urban area -0.224 -0.210 

  16 
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Spatial Distribution of Hotspots 1 
 2 

The model findings have also important implications in terms of identifying hotspot at the zonal 3 

level for non-motorized road user safety planning. To identify the hotspots, the Highway Safety 4 

Manual approach that computes the Excess Predicted Average Crash Frequency defined as 5 

observed frequency minus predicted crash frequency. Based on the measure the 10% of the zones 6 

are labelled as hot zones and others are labelled Normal.  7 

We present the identified hotspots in Figure 2. From the spatial hotspot distribution we can 8 

see that hotspots for both pedestrian and bicycle crashes are dispersed throughout Florida. Also 9 

we can see that risk of getting involved in pedestrian-motor vehicle or bicycle-motor vehicle 10 

crashes is higher in most urban zones. This spatial illustration can be used to prioritize STAZs for 11 

enhancing non-motorized road users’ safety in high crash risk zones. 12 

 13 

CONCLUSIONS 14 
 15 

This paper formulated and estimated a multivariate count model by adopting a copula based 16 

bivariate negative binomial model for pedestrian and bicyclist crash frequency analysis. To the 17 

best of the authors’ knowledge, this is the first attempt to employ such copula based bivariate count 18 

models for safety literature. Moreover, the study contributes to safety literature by examining the 19 

influence of several exogenous variables (exposure measures, socioeconomic characteristics, road 20 

network characteristics and land use attributes) on pedestrian and bicycle crash count events at the 21 

Statewide Traffic Analysis Zone (STAZ) level for the state of Florida. The empirical analysis 22 

involves estimation of models by using six different copula structures: 1) Gaussian, 2) FGM, 3) 23 

Clayton, 4) Gumbel, 5) Frank and 6) Joe. The comparison between copula and the independent 24 

models, based on information criterion metrics, confirmed the importance of accommodating 25 

dependence between pedestrian and bicycle crash count events in the macro-level analysis. The 26 

most suitable copula model is obtained for Clayton copula with parametrization for dependence 27 

profile. The model estimates were also augmented by conducting policy analysis including 28 

elasticity analysis and a spatial representation of hotspots for pedestrian and bicycle separately. 29 

Elasticity effects indicated that exogenous variables exhibit differences for the expected number 30 

of pedestrian and bicycle crash counts. Moreover, the most significant variable in terms of increase 31 

in the expected number of both pedestrian and bicycle crash counts included: VMT, total 32 

population and total employment. The spatial distribution of hotspots indicated that higher 33 

pedestrian and bicycle crash prone zones are dispersed throughout Florida with evidence of 34 

clustering along the urban zones. Overall, the policy analysis conducted provided an illustration 35 

on how the proposed model can be applied to determine the critical factors contributing to increase 36 

in pedestrian and bicycle crash counts. 37 

The paper is not without limitations. In modeling pedestrian and bicyclist crashes we did 38 

not have access to pedestrian and non-motorized exposure. To accommodate for this, in our effort, 39 

we employed surrogate measures such as population density, VMT and proportion of heavy 40 

vehicles. It would be useful to compile pedestrian and bicyclist exposure data to enhance the model 41 

frameworks developed in our work.  42 



FIGURE 2 Spatial distribution of Hotspots for Pedestrian and Bicycle Crash Risk of Florid 1 
2 
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