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Abstract 

Land use and transportation interactions exist at all time scales – long, medium, and short. In the 
long term, business location (and relocation) decisions, aggregate travel patterns and transportation 
infrastructure development are inter-dependent. In the medium-short term, in any neighborhood, 
the temporal profile of activity opportunities within a day, and destination and departure time 
(DDT) preferences of travelers are simultaneously determined. This paper explored these short-
term interdependencies between the land-use supply and travel demand systems by developing a 
simultaneous model of time-of-day specific zonal employment intensity and non-mandatory tour 
DDT choices. The resulting model takes the form a panel linear regression model with employment 
intensity, as the dependent variable on the supply side and a mixed logit model with combinations 
of Traffic Analysis Zones (TAZs) and time periods as alternatives on the demand side. The 
modeling methodology accounts for possible endogeneity between the two systems and also 
considers importance sampling methods to reduce the computational burden due to explosion of 
choice alternatives in the discrete choice model component. The model was used to explore supply 
demand interactions in the Southern California region. The results not only underscore the 
importance of the proposed integrated modeling framework but also provide several useful insights 
into the factors that influence the temporal profile of zonal employment and its interaction with 
daily travel choices. 

 

Keywords:  mixed logit models; joint discrete-continuous modeling; sampling; endogeneity; 
supply and demand interactions
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Introduction 

Integrated land use and travel demand modeling is considered to be the appropriate modeling 
paradigm for analyzing the bi-directional interactions between the supply (built environment) and 
demand (travel patterns) factors (Pendyala et al. 2012). In these integrated models, conditional 
land use and travel demand models are applied iteratively to replicate the joint distribution of land 
use and travel patterns in the study region. These integrated models are typically used for modeling 
long term feedback effects between the two systems. For instance, how does employment relocate 
in response to new transportation infrastructure in the region or how do travel patterns change in 
response to new development (e.g., big shopping mall) in the future. However, strong interactions 
between land use and transportation exist even at short-medium time scales. For instance, the 
opening and closing hours of businesses (on the supply side) and destination and departure time 
choice preferences of travelers (on the demand side) are more likely to be determined 
simultaneously. However, such interactions are not captured in the current modeling approaches. 

Typically, zonal land use and employment data serve as inputs for travel demand models (TDMs) 
to predict the activity-travel patterns of the residential population in the study region. These models 
implicitly assume that zonal land use and employment serve as indicators of opportunities that 
attract travelers to pursue different types of activities. While the characterization of these decision 
processes in activity based models can vary substantially, in general these frameworks have two 
main components. The first component is the activity generation in which the model predicts the 
activities that each individual plans to undertake during the day. The second component is activity 
scheduling in which the spatial and temporal choices of the planned activities in the activity 
generation step are determined.  Within these two components, land use and employment 
information is predominantly used as follows 1) for zonal accessibility measures that affect daily 
planning choices in the activity generation step, 2) for zonal accessibility measures that affect 
scheduling choices that are modeled prior to destination choices in the activity scheduling step, 
and 3) as zonal attraction size variables (which are usually linear combinations of different zonal 
employment variables) in destination choice models in the activity scheduling step (Pinjari and 
Bhat 2011). 

Given the importance of considering appropriate land use and employment information in ABMs, 
there is growing recognition in the field to develop user and context specific measures. Towards 
this end, space-time accessibility measures that consider variation of activity opportunities both in 
space and time have been proposed. There are primarily two components to these accessibility 
measures - (1) size of opportunities, and (2) ease of reachability measured as generalized travel 
costs and/or mode and time-of-day choice logsums. While gravity-based measures characterize 
accessibility through a generalized cost function, opportunity-based measures represent size of 
opportunities within a pre-selected boundary defined based on a generalized cost function (Chen 
et al. 2011, Paleti et al. 2014). Irrespective of the type of measures, most of the earlier studies 
account for temporal variation in accessibility measures using the second component (i.e. travel 
cost) due to changes in the transportation network conditions. For example, increased congestion 
levels can reduce accessibility during peak time periods. While this is very useful, it is also 
necessary to recognize that accessibility varies temporally due to variation in size of opportunities 
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arising from opening and closing hours of businesses. For example, neighborhood with restaurants 
and night life are likely to experience increase traffic in the evening periods while affecting the 
neighborhood negligibly in the morning peak hours. To be sure, to address this issue, some of the 
recent studies have started to explicitly model the impact of varying business hours on space-time 
accessibility measures (Weber and Kwan 2002, Kim and Kwan 2003, Paleti et al. 2014). 

While these new methods are a significant step forward in capturing linkages between supply and 
demand side factors, there are avenues for considerable improvements. First, there is no literature 
on modeling temporal variation of activity opportunities due to varying business hours. The 
traditional space-time accessibility measures that quantify the impact of this temporal variation 
use business hours information as an external input. Second, typical modeling frameworks 
employed to capture the land-use and travel interactions in the short to medium term time scales 
are sequential in nature and thus do not recognize that these are bi-directional in nature. For 
instance, daily departure time and destination choices are modeled conditional on employment 
information. However, there is no feedback from demand components to the supply side 
components. The primary objective of the current study is to address these two shortcomings of 
existing methods by developing an integrated modeling framework for analyzing both supply 
demand side outcomes jointly.  

As alluded to earlier, one common assumption across most ABMs is that the supply side 
opportunities (i.e., zonal employment) do not vary across different hours of the day, i.e., a constant 
zonal employment profile is assumed. In reality, a more reasonable hypothesis would be a bell-
shaped temporal profile of zonal employment consistent with the expected opening and closing 
hours of most businesses (Paleti et al. 2014). This bell shaped temporal profile of opportunities on 
the supply side has significant implications to the way Destination and Departure Time (DDT) 
choices are modeled. First, DDT choices must be bundled together and viewed as simultaneous 
choices because zonal attractiveness (typically measured using size variables in destination choice 
models) changes significantly depending on the departure time. People are likely to compare and 
evaluate combinations of departure times and destinations instead of making these decisions in 
any pre-determined sequence. Second, the temporal profile of opportunities on supply side is not 
necessarily a collective decision of business establishments in the zone independent of the travel 
preferences of people in that region. For instance, businesses are open late night in Manhattan 
because they see people interested in pursuing activities during late hours. Similarly, people go 
shopping late night in Manhattan because they know shops are open for longer hours. The observed 
temporal profile of activity opportunities and the observed DDT choices are most likely the 
outcomes of equilibrium between the supply and demand factors. So, these two systems (i.e., 
supply and demand) cannot be analyzed as two separate independent outcomes. A simultaneous 
model that captures the dynamic interactions between activity opportunities on supply side and 
DDT choices on demand side is better suited for this choice context. The choices of interest in this 
study, zonal employment by time-of-day (which is an aggregated outcome of opening and closing 
hours of business establishments on a day-to-day basis) on the supply side and daily DDT choices 
on the demand side are typically made in the medium-to-short time horizons. So, in the current 
study, we aim to uncover these supply and demand side interactions that operate over relatively 
shorter time periods compared to the long-term land-use and transportation interactions. Third, 



5 
 

simultaneous modeling of DDT choices will lead to explosion in the number of alternatives 
because all combinations of time periods and zones in the study region constitute the choice set. 
So, it is essential to use appropriate sampling mechanisms that can provide consistent parameter 
estimates for the integrated model. 

From a policy perspective, models that treat destination and departure time choices as sequential 
decisions can provide wrong policy implications. For instance, if a new business development that 
is open late hours comes up in the region, such models do not predict any changes in the departure 
time patterns but they predict many more people choosing the destination with the new business 
development during all hours of the day. So, the predicted origin destination flows by time-of-day 
and the implied vehicle-miles-travelled (VMT) estimates would be wrong. Also, models that do 
not account for simultaneity between the supply and demand side decisions can lead to inflated 
estimates of the zonal employment variables on the DDT choices of travelers.  

In our study, from a methodological perspective, the proposed model takes the form of a 
simultaneous choice model with two components – 1) a continuous component that models the 
intensity of activity opportunities (i.e., percentage of zonal employment that is active) during each 
time period, and 2) a discrete component that analyzes the DDT choices as a combination 
alternative. The simultaneity between these two model components was accommodated using 
time-period and zone specific random error terms that enter both the continuous and discrete choice 
components. For the temporal dimension, five time periods were considered: morning peak (6:00 
am to 9:00 am), midday (9:00 am to 3:00 pm), evening peak (3:00 pm to 7:00 pm), evening (7:00 
pm to 9:00 pm), and night (9:00 pm to 6:00 am). For the location dimension, the analysis was 
undertaken at a spatial resolution of Traffic Analysis Zone (TAZ). Given that considering all TAZs 
can lead to explosion in the number of alternatives in the choice set (because of the combination 
of temporal and location dimensions), zonal sampling mechanisms that ensure consistent 
parameter estimates in mixed logit models were used (Guevara and Ben-Akiva 2013). The 
resulting model was estimated using Maximum Simulated Likelihood inference approach using 
quasi-Monte Carlo Halton sequences. The proposed model was used to analyze destination choice 
behavior of residents in the Southern California region. The next section provides details of the 
methodological framework adopted in the current study. 

 

Data 

The primary data source for demand model component was obtained from the Southern California 
Association of Government (SCAG)’s 2010 Household Travel Survey (HTS) data. In addition to 
travel diary information, the survey collected detailed socio-demographic information of about 
20,000 households. Among these 20,000 households, travel diary information was collected for a 
weekend (i.e., Saturday or Sunday) for 32% households. So, these household records were 
excluded from our analysis to focus on weekday travel patterns bringing down the number of valid 
household samples to about 13,000. The travel diary information for these 13,000 households were 
processed to construct tours- chain of trips that start and end at home. Together these households 
reported about 40,000 tours. For each of these 40,000 tours, a primary tour destination was 
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determined based on combination of rules including distance from home, activity purpose, and 
activity duration at the destination. After this analysis, we observed that out of the total 40,000 
tours half were mandatory tours (to work, school, or university) and the remaining half were non-
mandatory tours. These non-mandatory tours include both tours made by workers (in addition to 
mandatory tours) and non-workers. In this study, we focus exclusively on non-mandatory tours 
made by non-workers (people who are not workers or students) because they are not constrained 
spatially and temporally by mandatory activities. The travel diary recorded activity purpose at a 
very disaggregate level. These disaggregate activity purposes were grouped into five broad 
categories – escorting, shopping, social, maintenance, eating out, and discretionary. The activity 
purpose at the primary destination of a tour was identified as the primary purpose of that tour. The 
destination coordinates in the travel diary were geo-coded to one of the 11,267 TAZs covering the 
six-county region (spanning Imperial, Los Angeles, Orange, Riverside, San Bernardino, and 
Ventura). We excluded cases with missing tour purpose, destination, and departure time 
information from our analysis. So, the subset of valid non-mandatory tours made by non-workers 
with complete information included 16,634 tours. Out of these 16,634 tours, 3,000 tours were 
randomly sampled to be included in our estimation analysis to keep the dataset size manageable. 
Table 1 shows the frequency distribution of tour purpose and departure time period along with the 
type of person undertaking the tour in the estimation sample. Also, Figure 2 depicts the distribution 
of distance to primary destination of the tour in the final sample.  

On the supply side, the business hour information to construct the temporal profile of business 
activity in each TAZ was obtained using Google Place. The Google Place data for the Southern 
California included key information of businesses including name of business, phone number, 
opening and closing hours of business. Based on the phone numbers, the two digit North American 
Industry Classification System (NACIS) code was obtained from the InfoUSA data. A spatial 
smoothing method was used to account for missing data. Also, the factors that indicate the 
percentage of businesses open during different hours of the day were weighted by total zonal 
employment to capture differences between the temporal profiles of businesses and employment. 
The reader is referred to (Paleti et al. 2014) for further details on the smoothing method. Figure 1 
shows the bell-shaped temporal profile of employment intensity for different industrial sectors. 
These smoothened time-of-day specific factors were used to construct (1) the dependent variable 
of the supply side model component- employment intensity in the five time periods, and (2) zonal 
employment during the five time periods that is used as an explanatory variable in the size variable 
specification of the demand side DDT choice model component. 

In addition to these two main data sources, the research team had access to the transportation 
network skims for the study region. These skims were used to compute time-period specific mode 
choice logsums. Also, zonal land use information including population composition, quality of 
transit, bike and pedestrian infrastructure, intersection density, median income of households was 
also obtained from SCAG. In addition to disaggregate socio-demographic and tour information in 
the HTS, all these zonal variables and logsums constitute the set of explanatory variables 
considered in the supply and demand model specifications during model estimation. 
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Methodological Framework 

Supply Side Employment Intensity Model Component 

Let i be the index for the destination alternative (in our case, TAZ) and t be the index for time 
period (1 = ‘Morning Peak’, 2 = ‘Midday’, 3 = ‘Evening Peak’, 4 = ‘Evening’, and 5 = ‘Night’). 
The employment intensity defined as the percentage of employment that is active in zone i during 
time period t, 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 is modeled using a log-linear regression framework as follows: 

𝐿𝐿𝐿𝐿 � 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡
1−𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡

� = 𝑿𝑿𝑖𝑖,𝑡𝑡′ 𝜷𝜷𝑖𝑖 + 𝜐𝜐𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑡𝑡        Equation (1)  

The functional form of the dependent variable in EQ(1) ensures that 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 is bounded between 0 
and 1. In EQ (1) above, 𝑿𝑿𝑖𝑖,𝑡𝑡 is a 𝐾𝐾1 × 1 vector of zonal characteristics during time period t and 𝜷𝜷𝑖𝑖 
is the corresponding zone-specific 𝐾𝐾1 × 1 vector of coefficients that capture the impact of 𝑿𝑿𝑖𝑖,𝑡𝑡 on 
𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 and is assumed to be multivariate normal distributed with mean vector 𝒃𝒃 and covariance 𝛀𝛀1. 
So, 𝜷𝜷𝑖𝑖 can be written as 𝒃𝒃 + 𝜷𝜷�𝒊𝒊, where 𝛽𝛽�𝑖𝑖 is multivariate normal distributed with mean vector of 
𝐾𝐾1 zeros 𝟎𝟎𝐾𝐾1 and covariance 𝛀𝛀1, i.e., 𝛽𝛽�𝑖𝑖~𝐿𝐿�𝟎𝟎𝐾𝐾1 ,𝛀𝛀1�. The 𝜐𝜐𝐷𝐷𝑖𝑖 term captures all district (in which 
zone i lies) specific unobserved factors that impact both 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 on the supply side and DDT 
preferences of travelers on the demand side. The study used a district level common error term (as 
opposed to zonal level) because it is difficult to uncover the presence of common zonal level unobserved 
factors that affect both supply and demand outcomes from a small subset of sampled zonal alternatives. 
Lastly, 𝜀𝜀𝑖𝑖,𝑡𝑡 captures all other zonal and time-period specific unobserved factors that affect 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡. 
With regard to the distributional assumptions of the error terms, 𝜐𝜐𝐷𝐷𝑖𝑖  and 𝜀𝜀𝑖𝑖,𝑡𝑡 are assumed to be 
i.i.d. realizations across zones and time periods from univariate normal distributions -  
𝜐𝜐𝐷𝐷𝑖𝑖~𝐿𝐿(0,𝜋𝜋2) and 𝜀𝜀𝑖𝑖,𝑡𝑡~𝐿𝐿(0,𝜎𝜎𝑡𝑡2), respectively. Using these definitions, EQ (1) may be written as: 

𝐿𝐿𝐿𝐿 � 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡
1−𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡

� = 𝑿𝑿𝑖𝑖,𝑡𝑡′ 𝒃𝒃 + 𝑿𝑿𝑖𝑖,𝑡𝑡′ 𝜷𝜷�𝑖𝑖 + 𝜐𝜐𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑡𝑡       Equation (2)  

Demand Side Destination and Departure Time (DDT) Choice Model Component 

Let q be the index for the decision maker (i.e., the traveler) and 𝑈𝑈𝑖𝑖,𝑡𝑡
𝑞𝑞  denote the utility associated 

with zonal destination i during time period t for individual q. The utility 𝑈𝑈𝑖𝑖,𝑡𝑡
𝑞𝑞  can be written as:   

𝑈𝑈𝑖𝑖,𝑡𝑡
𝑞𝑞 = 𝑉𝑉𝑖𝑖

𝑞𝑞 + 𝑉𝑉𝑡𝑡
𝑞𝑞 + 𝑉𝑉𝑖𝑖,𝑡𝑡

𝑞𝑞 + 𝜐𝜐𝐷𝐷𝑖𝑖 + 𝜉𝜉𝑖𝑖,𝑡𝑡
𝑞𝑞        Equation (3)  

where, 𝑉𝑉𝑖𝑖
𝑞𝑞 and 𝑉𝑉𝑡𝑡

𝑞𝑞 are dimension-specific utility components of zonal alternative i and time period 
t, respectively; 𝑉𝑉𝑖𝑖,𝑡𝑡

𝑞𝑞  is the utility component that captures cross-dimension effects for combinations 
of zonal and time period alternatives; 𝜉𝜉𝑖𝑖,𝑡𝑡

𝑞𝑞  captures all other zonal and time period specific 
unobserved factors that influence DDT choice preferences. The 𝜉𝜉𝑖𝑖,𝑡𝑡

𝑞𝑞  error components are assumed 
to be i.i.d. realizations across both zones and time-periods from a standard Gumbel distribution. 
Please note that 𝜐𝜐𝐷𝐷𝑖𝑖 is the common term in EQ (2) and EQ (3) that captures unobserved factors 
that influence both supply and demand side outcomes.   
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𝑉𝑉𝑖𝑖
𝑞𝑞 composes of several distance decay terms (linear and non-linear) and their interaction with 

traveler. This component captures the spatial proximity effects on destination choice dimension 
where as 𝑉𝑉𝑡𝑡

𝑞𝑞 captures average departure time preferences of different socio-demographic 
segments. 𝑉𝑉𝑖𝑖,𝑡𝑡

𝑞𝑞  includes time-period specific zonal attraction size terms and impedance measures 
(e.g., travel times, travel costs, and mode choice logsums). The specification details of these three 
components are explained below. 

𝑉𝑉𝑖𝑖
𝑞𝑞 = �𝒁𝒁𝑖𝑖

𝑞𝑞�
′
𝜸𝜸𝑞𝑞 = �𝒁𝒁𝑖𝑖

𝑞𝑞�
′
𝜸𝜸� + �𝒁𝒁𝑖𝑖

𝑞𝑞�
′
𝜸𝜸�𝑞𝑞, where 𝒁𝒁𝑖𝑖

𝑞𝑞 is 𝐾𝐾2 × 1 vector of zonal and traveler 
characteristics that do not vary over time (e.g., inter-zonal distances, age, gender, etc.), 𝜸𝜸� is the 
corresponding mean vector of coefficients and  𝜸𝜸�𝑞𝑞~𝐿𝐿�𝟎𝟎𝐾𝐾2 ,𝛀𝛀2� is the random component of 
parameter effects that is normally distributed across travelers with covariance 𝛀𝛀2. 

𝑉𝑉𝑡𝑡
𝑞𝑞 = �𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹𝒕𝒕
𝒒𝒒 = �𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡 + �𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡
𝑞𝑞, where 𝑾𝑾𝑡𝑡

𝑞𝑞 is 𝐾𝐾3 × 1 vector of time-period attributes and 
their interaction with traveler characteristics, 𝜹𝜹�𝑡𝑡 is the corresponding mean vector of coefficients 
and  𝜹𝜹�𝑡𝑡

𝑞𝑞~𝐿𝐿�𝟎𝟎𝐾𝐾3 ,𝛀𝛀3� is the random component of parameter effects that is normally distributed 
across travelers with covariance 𝛀𝛀3. 

𝑉𝑉𝑖𝑖,𝑡𝑡
𝑞𝑞 = 𝐿𝐿𝐿𝐿�𝑆𝑆𝑖𝑖,𝑡𝑡� + 𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡′ 𝞴𝞴� + 𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡′ 𝝀𝝀�𝑞𝑞, where 𝑆𝑆𝑖𝑖,𝑡𝑡 is the zonal and time period specific attraction 

size term; 𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡′  is 𝐾𝐾4 × 1 vector of level-of-service variables characterizing travel to destination 
i during time period t, 𝞴𝞴� is the corresponding mean vector of coefficients and 𝝀𝝀�𝑞𝑞~𝐿𝐿�𝟎𝟎𝐾𝐾4 ,𝛀𝛀4� is 
the random component of parameter effects that is normally distributed across travelers with 
covariance 𝛀𝛀4. Lastly, the size term 𝑆𝑆𝑖𝑖,𝑡𝑡 comprises of several zonal population and employment 
variables and may be written as follows: 

𝑆𝑆𝑖𝑖,𝑡𝑡 = ∑ 𝐸𝐸𝑝𝑝
𝑞𝑞 × 𝜶𝜶𝑝𝑝′ 𝑨𝑨𝑖𝑖,𝑡𝑡𝑝𝑝           Equation (4)  

where p is the index for tour purpose, 𝐸𝐸𝑝𝑝
𝑞𝑞 is the indicator variable for whether the tour purpose is p 

(1= ‘Escorting’, 2 = ‘Shopping’, 3 = ‘Maintenance’, 4 = ‘Eating out’, 5 = ‘Social’, and 6 = 
‘Discretionary’), 𝑨𝑨𝑖𝑖,𝑡𝑡 is 𝐾𝐾5 × 1 vector of zonal attraction variables, and 𝜶𝜶𝑝𝑝 is the corresponding 
vector of coefficients on attraction variables specific to tour purpose p. 𝑨𝑨𝑖𝑖,𝑡𝑡 may include variables 
describing zonal population composition and zonal employment 𝐸𝐸𝑖𝑖,𝑡𝑡𝑠𝑠  in industry sector s. The zonal 
employment variable 𝐸𝐸𝑖𝑖,𝑡𝑡𝑠𝑠  is related to employment intensity 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 in EQ (1) as: 

𝐸𝐸𝑖𝑖,𝑡𝑡𝑠𝑠 = 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 × 𝐸𝐸𝑖𝑖𝑠𝑠          Equation (5) 

where 𝐸𝐸𝑖𝑖𝑠𝑠 is the total employment in zone i in industry sector s. 

For each tour purpose p, one of the 𝜶𝜶𝑝𝑝 parameters must be normalized to one and the effect of 
other attraction variables are estimated relative to this normalized parameter. So, the overall utility 
expression may be re-written as follows: 

𝑈𝑈𝑖𝑖,𝑡𝑡
𝑞𝑞 = �𝒁𝒁𝑖𝑖

𝑞𝑞�
′
𝜸𝜸� + �𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡 + 𝐿𝐿𝐿𝐿�𝑆𝑆𝑖𝑖,𝑡𝑡� + 𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡′ 𝞴𝞴�     Equation (6) 

                                        +�𝒁𝒁𝑖𝑖
𝑞𝑞�

′
𝜸𝜸�𝑞𝑞 + �𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡
𝑞𝑞 + 𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡′ 𝝀𝝀�𝑞𝑞 + 𝜐𝜐𝐷𝐷𝑖𝑖 + 𝜉𝜉𝑖𝑖,𝑡𝑡

𝑞𝑞  
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Maximum Simulated Likelihood Estimation 

The likelihood contribution of zone i during time period t from the supply side model component 
conditional on the random components would be: 

𝐿𝐿𝑖𝑖,𝑡𝑡
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆�𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝜎𝜎𝑡𝑡|𝜷𝜷�𝑖𝑖, 𝜐𝜐𝐷𝐷𝑖𝑖� = 1

𝜎𝜎𝑡𝑡
𝜙𝜙 �

𝐿𝐿𝐿𝐿�𝐸𝐸𝐷𝐷𝑖𝑖,𝑡𝑡�−�𝑿𝑿𝑖𝑖,𝑡𝑡
′ 𝒃𝒃+𝑿𝑿𝑖𝑖,𝑡𝑡

′ 𝜷𝜷�𝑖𝑖+𝜐𝜐𝐷𝐷𝑖𝑖�

𝜎𝜎𝑡𝑡
�   Equation (7) 

where 𝜙𝜙(. ) is the standard univariate normal probability density function.  

The likelihood function of zone i across all time periods is obtaining by taking the product of time 
period specific likelihood functions in EQ (7) as: 

𝐿𝐿𝑖𝑖
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆�𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝝈𝝈|𝜷𝜷�𝑖𝑖, 𝜐𝜐𝐷𝐷𝑖𝑖� = ∏ 𝐿𝐿𝑖𝑖,𝑡𝑡

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆�𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝜎𝜎𝑡𝑡|𝜷𝜷�𝑖𝑖, 𝜐𝜐𝐷𝐷𝑖𝑖�
5
𝑡𝑡=1     Equation (8) 

 

The unconditional likelihood function for zone i can be obtained by integrating out the random 
components as: 

𝐿𝐿𝑖𝑖
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆(𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝝈𝝈) = ∫ 𝐿𝐿𝑖𝑖

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆�𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝝈𝝈|𝜷𝜷�𝑖𝑖, 𝜐𝜐𝐷𝐷𝑖𝑖�
𝜷𝜷�𝑖𝑖,𝜐𝜐𝐷𝐷𝑖𝑖=∞

𝜷𝜷�𝑖𝑖,𝜐𝜐𝐷𝐷𝑖𝑖=−∞
    Equation (9) 

where 𝝈𝝈 is the vertically stacked vector of 𝜎𝜎𝑡𝑡 (𝑡𝑡 = 1,2, …𝑇𝑇) 

So, the overall likelihood conditional contribution from the supply side model component is:  

𝐿𝐿𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆(𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝝈𝝈) = ∏ 𝐿𝐿𝑖𝑖
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆(𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝝈𝝈)𝑖𝑖      Equation (10) 

For the purpose of notational convenience, define two additional vectors 𝜶𝜶 = (𝜶𝜶1′ ,𝜶𝜶2′ , … ,𝜶𝜶5′ )′ and 
𝜹𝜹� = �𝜹𝜹�1′ ,𝜹𝜹�2′ , … , 𝜹𝜹�5′ �

′
. On the demand side, because of the logit kernel, the probability that traveler 

q chooses destination i during time period t conditional on all the random components is given by: 

𝐿𝐿𝑖𝑖,𝑡𝑡
𝑞𝑞,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜸𝜸�,𝜹𝜹�𝑡𝑡,𝜶𝜶,𝞴𝞴,� 𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋|𝜸𝜸�𝑞𝑞 ,𝜹𝜹�𝑡𝑡

𝑞𝑞 ,𝝀𝝀�𝑞𝑞 , 𝜐𝜐𝐷𝐷𝑖𝑖� =     Equation (11) 

                                         𝐷𝐷�𝒁𝒁𝑖𝑖
𝑞𝑞�
′
𝜸𝜸�+�𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡+𝐿𝐿𝐿𝐿�𝑆𝑆𝑖𝑖,𝑡𝑡�+𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡

′ 𝞴𝞴�+�𝒁𝒁𝑖𝑖
𝑞𝑞�
′
𝜸𝜸�𝑞𝑞+�𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡
𝑞𝑞+𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡

′ 𝝀𝝀�𝑞𝑞+𝜐𝜐𝐷𝐷𝑖𝑖

∑ 𝐷𝐷
�𝒁𝒁𝑗𝑗
𝑞𝑞�
′
𝜸𝜸�+�𝑾𝑾𝑡𝑡�

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡�+𝐿𝐿𝐿𝐿�𝑆𝑆𝑗𝑗,𝑡𝑡��+𝑳𝑳𝑳𝑳𝑳𝑳𝑗𝑗,𝑡𝑡�

′ 𝞴𝞴�+�𝒁𝒁𝑗𝑗
𝑞𝑞�
′
𝜸𝜸�𝑞𝑞+�𝑾𝑾𝑡𝑡�

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡�
𝑞𝑞+𝑳𝑳𝑳𝑳𝑳𝑳𝑗𝑗,𝑡𝑡�

′ 𝝀𝝀�𝑞𝑞+𝜐𝜐𝐷𝐷𝑗𝑗
𝑗𝑗,𝑡𝑡�

  

Sampling Strategy 

The denominator in EQ (11) is a summation across all TAZs in the region (i.e., the universal set 
of TAZs) and all time periods. The study region considered in this paper has about 11,267 TAZs. 
Given that it is computationally infeasible to consider all these TAZs in our modeling, we sampled 
a subset of TAZs using an importance sampling mechanism. Specifically, up to 50 TAZs were 
sampled with replacement for each record in our estimation data using a simple multinomial logit 
(MNL) model with TAZ specific size term and a coefficient of -0.1 for “Distance from Home 
TAZ” variable. The conditional likelihood function in Equation (10) was modified to account for 
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the sampling mechanism by adding a correction term 𝐿𝐿𝐿𝐿 � 𝐷𝐷𝑖𝑖
𝐿𝐿×𝑞𝑞(𝑖𝑖)

� to the utility of the ith sampled 

alternative. In this correction term, 𝑛𝑛𝑖𝑖 is the number of times alternative i is sampled into the choice 
set, N is the sample size (in our case, N = 50), and 𝑞𝑞(𝑖𝑖) is the sampling probability of alternative i 
obtained using the simple MNL model used for sampling. Guevara and Ben-Akiva (Guevara and 
Ben-Akiva 2013) proved that a naïve estimator with this added correction term will provide 
consistent estimates for logit mixture models.  

So, the modified conditional likelihood function for individual q is given by: 

𝐿𝐿�𝑖𝑖,𝑡𝑡
𝑞𝑞,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜸𝜸�,𝜹𝜹�𝑡𝑡,𝜶𝜶,𝞴𝞴,� 𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋|𝜸𝜸�𝑞𝑞 ,𝜹𝜹�𝑡𝑡

𝑞𝑞 ,𝝀𝝀�𝑞𝑞 , 𝜐𝜐𝐷𝐷𝑖𝑖� =     Equation (12) 

                            
𝑒𝑒�𝒁𝒁𝑖𝑖

𝑞𝑞�
′
𝜸𝜸�+�𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡+𝐿𝐿𝐿𝐿�𝑆𝑆𝑖𝑖,𝑡𝑡�+𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡

′ 𝞴𝞴�+𝐿𝐿𝐿𝐿� 𝐷𝐷𝑖𝑖
𝐿𝐿×𝑞𝑞(𝑖𝑖)�+�𝒁𝒁𝑖𝑖

𝑞𝑞�
′
𝜸𝜸�𝑞𝑞+�𝑾𝑾𝑡𝑡

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡
𝑞𝑞+𝑳𝑳𝑳𝑳𝑳𝑳𝑖𝑖,𝑡𝑡

′ 𝝀𝝀�𝑞𝑞+𝜐𝜐𝐷𝐷𝑖𝑖

∑ 𝑒𝑒�𝒁𝒁𝑗𝑗
𝑞𝑞�

′
𝜸𝜸�+�𝑾𝑾𝑡𝑡�

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡�+𝐿𝐿𝐿𝐿�𝑆𝑆𝑗𝑗,𝑡𝑡��+𝑳𝑳𝑳𝑳𝑳𝑳𝑗𝑗,𝑡𝑡�

′ 𝞴𝞴�+𝐿𝐿𝐿𝐿�
𝐷𝐷𝑗𝑗

𝐿𝐿×𝑞𝑞(𝑗𝑗)�+�𝒁𝒁𝑗𝑗
𝑞𝑞�

′
𝜸𝜸�𝑞𝑞+�𝑾𝑾𝑡𝑡�

𝑞𝑞�
′
𝜹𝜹�𝑡𝑡�
𝑞𝑞+𝑳𝑳𝑳𝑳𝑳𝑳𝑗𝑗,𝑡𝑡�

′ 𝝀𝝀�𝑞𝑞+𝜐𝜐𝐷𝐷𝑗𝑗
𝑗𝑗∈𝐶𝐶𝑞𝑞,�̃�𝑡

 

where 𝐶𝐶𝑞𝑞 is the set of TAZ alternatives sampled for individual q. 

The unconditional likelihood function for traveler q can be obtained by integrating out the random 
components as follows: 

𝐿𝐿𝑖𝑖,𝑡𝑡
𝑞𝑞,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜸𝜸�,𝜹𝜹�,𝜶𝜶,𝞴𝞴,� 𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋� =       Equation (13) 

                  ∫ 𝐿𝐿�𝑖𝑖,𝑡𝑡
𝑞𝑞,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜸𝜸�,𝜹𝜹�𝑡𝑡,𝜶𝜶,𝞴𝞴,� 𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋|𝜸𝜸�𝑞𝑞 ,𝜹𝜹�𝑡𝑡

𝑞𝑞 ,𝝀𝝀�𝑞𝑞 , 𝜐𝜐𝐷𝐷𝑖𝑖�
𝜸𝜸�𝑞𝑞,𝜹𝜹�𝑡𝑡

𝑞𝑞,𝝀𝝀�𝑞𝑞,𝜐𝜐𝐷𝐷𝑖𝑖=∞

𝜸𝜸�𝑞𝑞,𝜹𝜹�𝑡𝑡
𝑞𝑞,𝝀𝝀�𝑞𝑞,𝜐𝜐𝐷𝐷𝑖𝑖=−∞

    

However, one important point to note here is that, during the integration, the same draws of 𝜐𝜐𝑖𝑖,𝑡𝑡 
that are used in EQ (9) of the supply side model component will be used in EQ (13) of the demand 
side model component.  

The overall unconditional likelihood contribution from the demand side model component is: 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜸𝜸�,𝜹𝜹�,𝜶𝜶,𝞴𝞴,� 𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋� = ∏ 𝐿𝐿𝑖𝑖,𝑡𝑡
𝑞𝑞,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜸𝜸�,𝜹𝜹�,𝜶𝜶,𝞴𝞴,� 𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋�𝑞𝑞  Equation (14) 

The total likelihood function for the joint demand-supply model can be written using EQ (9) and 
EQ (14) as follows: 

𝐿𝐿�𝒃𝒃,𝜸𝜸�,𝜹𝜹�,𝜶𝜶,𝞴𝞴,� 𝛀𝛀1,𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋,𝝈𝝈� =       Equation (15) 

                                           𝐿𝐿𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆(𝒃𝒃,𝛀𝛀1,𝜋𝜋,𝝈𝝈)  ×  𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜸𝜸�,𝜹𝜹�,𝜶𝜶,𝞴𝞴,� 𝛀𝛀2,𝛀𝛀3,𝛀𝛀4,𝜋𝜋� 

The MSL estimation was undertaken using 150 randomized Halton sequences (Bhat 2003) and the 
standard errors of parameters estimates were obtained using the inverse of the Godambe sandwich 
information matrix (Godambe 1960). 
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Empirical Results 

Table 2 presents the estimation results of the supply side employment intensity model estimation 
results for the five time periods and Tables 3 and 4 present the final model parameters of the DDT 
choice component. Only parameters that were significant at 95% confidence level were retained 
in the final model specification. 

Supply Side Employment Intensity Model 

The constants in the model do not have any substantive interpretive meaning because there are 
several other continuous variables in the model. Notwithstanding this, it can be observed based on 
the relative magnitude of constants that employment intensity is highest during the ‘Midday’ and 
‘Evening Peak’ time periods whereas ‘Night’ time period has the least employment intensity. 
Zones with higher household population have higher employment activity during all time periods. 
Also, higher population in older age category (65 years and above) were found to be associated 
with higher employment activity during all time periods. However, higher college enrollment was 
found to decrease the employment intensity during all time periods. Zones with high proportion of 
high income households (>$100,000) were found to have higher employment activity during all 
time period. This result is probably indicative of more perceived demand by business owners in 
zones with more high income households. 

Zones with high intersection density have higher employment intensity during all time periods 
compared to zones with lower intersection density. This result is intuitive given that intersections 
in urban and suburban areas usually serve as activity centers with shopping malls, restaurants, and 
other businesses. It is also likely that this variable is serving as a proxy for degree of local 
transportation network connectivity within the zone. So, higher intersection density is probably 
indicative of better transportation infrastructure in the region. Zones that have bike lane access, 
high bus stop density, and higher percentage of zone in High Quality Transit Area (HQTA) have 
higher employment activity during all time periods. Overall, these variables suggest that better 
transit and non-motorized infrastructure is conducive to more economic activity. Lastly, zones that 
fall in the CBD region have high employment intensity during all the five time periods compared 
to non-CBD zones. The study also found strong evidence for the presence of time invariant zone 
specific random effects that impact employment intensity. 

Demand Side DDT Model Component 

Destination Dimension Utility Component: Spatial Proximity Effects 

Among different non-linear distance effects that we tested, the logarithmic specification of 
distance gave the best data fit. Figure 3 shows the impact of distance on the utility of zonal 
alternatives for different demographic segments and tours of different purposes. The baseline 
effect is always below the x-axis suggesting that, all else being same, zones father away from the 
home zone are less preferred compared to other zonal alternatives with the relation being non-
linear (due to the logarithmic function). Female travelers were found to be more sensitive to 
distance compared to their equivalent male counterparts and tend to travel to closer destinations. 
Also, people tend to travel shorter distances for shopping and escorting tours whereas they were 
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found to be willing to travel longer distances for social and maintenance tours. These results are 
consistent with average durations of activity participation associated with these different activities. 
People are willing to travel farther to undertake longer activities, however, if the duration of 
activity is very short, it probably does not make sense to travel farther. Distance interactions with 
indicator variable for joint tour were also tested during model estimation but did not turn out to be 
statistically significant. This is different from the findings of earlier studies that found that joint 
tours have higher mileage compared to individual tours (Paleti et al. 2011).  

Destination Dimension Utility Component: Other Zonal Factors 

The mean parameter estimate on the CBD indicator variable was negative suggesting that zones 
in CBD region were, on average, less attractive compared to non-CBD zones for undertaking non-
mandatory tours. This result is not necessarily unintuitive because we are focusing on non-
mandatory tours of non-workers and the model already controls for higher employment effects in 
the CBD region through the size variable. So, the CBD indicator variable is serving as a token 
variable for inconvenience and additional costs associated with traveling to CBD regions such as 
high congestion levels and parking costs. However, the standard deviation parameter on CBD 
indicator variable was 1.9859 indicating that nearly 24% of CBD zones are preferred over non-
CBD zones (everything else being the same). Lastly, zones with high intersection density and 
zones that bike lane access were found to be preferred over other zones. This result is probably 
capturing the ease of reaching other nearby areas after reaching the destination. For instance, 
people can park their vehicle and move within the zone to explore different opportunities in close 
proximity. 

Time Period Dimension Utility Component 

The constants in the time period specific utility component do not have substantive behavioral 
meaning because of several other continuous variables in the model. Female travelers were found 
to have higher preference for ‘Morning Peak’, ‘Midday’, and ‘Evening Peak’ time periods 
compared to male travelers. Shopping tours are less likely to be made during ‘Morning Peak’ hours 
whereas they are most likely to be made undertaken during the ‘Midday’ time period. This finding 
is consistent with the typical shopping travel patterns of non-working adults. Maintenance tours, 
on the other hand, are mostly made during ‘Midday’ period. This is intuitive given that activities 
such as visiting a bank or a doctor that constitute the “maintenance” category are typically 
undertaken during afternoon hours. Social tours are most likely to be undertaken during the 
‘Evening Peak’ time period. This is intuitive because social activities are typically undertaken with 
friends/families during later hours of the day because some of them might be working during 
daytime. Eating out tours are mostly undertaken during the ‘Evening Peak’ time period consistent 
with typical dinner hours. Lastly, joint tours with other household members are more likely to be 
scheduled in the ‘Evening Peak’ time period.  

Destination & Time Period Cross Dimensions Utility Component 

Table 4 presents the parameters in the size variable specification of the final model. The 
employment levels for the same zone can be different for different time periods because of business 
opening and closing hours. So, although we sample only 50 zones, the employment for each of 
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these 50 zones varies across the five time periods. Also, one of the coefficients in the size variable 
specification is normalized to one for each tour purpose and the effect of other employment 
variables is estimated relative to the attraction variable with fixed coefficient.  For instance, for 
shopping tours, the coefficient on “Retail & Other Services” employment was fixed to one and the 
effect of employment in the “Art & Entertainment” industry was estimated to be 0.1841. It can be 
seen that the attraction size variable is a function of different sets of employment variables 
depending on the activity purpose of the tour. This is intuitive because opportunities for activity 
participation vary depending on the purpose of the activity. So, it is not correct to have one single 
size variable specification for tours of all purposes. For instance, the most relevant attraction 
variables for escorting tours are “Total Number of Households” and employment in the 
“Educational” industrial sector. Employment in other industry sectors was found to not have any 
significant effect on the attraction size variable for escorting tours. Other coefficients in the Table 
4 may be interpreted similarly for other tour purposes. Lastly, in the final model, the parameter 
estimate on time period specific mode choice logsum was fixed to 1 indicating that there is no 
simultaneity in mode and DDT choices. However, this logsum variable makes the overall model 
sensitive to evaluating the impact of a host of policy scenarios including changes in level-of-
service (LOS) characteristics of auto, transit, and non-motorized modes. 

Endogeneity & Model Fit 

Our models for employment intensity and DDT choices do not include all possible variables that 
can influence these two response variables. For example, zones located in districts that contain 
major tourist attractions (which is not controlled in our models) might be intrinsically attractive to 
customers on the demand side (that is people who pursue out-of-home non-mandatory activities) 
as well as business establishments on the supply side. Such common unobserved variables can 
lead to correlation between the employment intensity and utility equations in the supply and 
demand model components, respectively. Ignoring this correlation between the two model 
components and estimating them independently will lead to bias and inconsistency of model 
parameters (Louviere et al. 2005). To see this, note that employment intensity enters the utility 
equations in the DDT choice as the size variable which will be correlated with the error term in 
the utility equation. This is because employment intensity is influenced by unobserved variables 
that are also common to the error terms in the utility equation. So, this leads to the endogeneity 
problem whereby the explanatory variables in the observed portion of the utility equation are 
correlated with the error term in the utility equation. To account for this endogeneity problem, a 
common error term 𝜐𝜐𝐷𝐷𝑖𝑖 that is assumed to an independent realization (across districts) from 
univariate normal distribution (with zero mean) is added to the employment intensity and utility 
equations that is integrated out during model estimation. If the standard error 𝜋𝜋 of this common 
error term turns out to be zero, it would imply that there is no endogeneity problem. So, the 
parameter estimates from the independent model would be correct. However, in the empirical 
application, the standard error of this common unobserved term was found to be 2.608.  This 
finding underscores the importance of the joint modeling framework developed in this study for 
analyzing DDT choices that are traditionally modeled conditional on total zonal employment 
obtained from supply side models.  
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Also, the log-likelihood (LL) of the final model that accounts for endogeneity and parameter 
heterogeneity both in the supply and demand side model components was -68,923.65 (M1: 94 
parameters). The LL of the model that ignores endogeneity but accounts for random parameter 
heterogeneity in the two model components was -69,818.74 (M2: 93 parameters) and the LL of 
model that ignores endogeneity as well as random parameter heterogeneity was -90,257.9 (M3: 91 
parameters). It can be seen that the log-likelihood ratio (LR) test statistics of comparison of the 
final model M1 against models M2 and M3 are much higher than the critical chi-square values for 
1 and 3 degrees of freedom at any level of significance respectively; thus clearly indicating 
statistically superior data fit in the final model (M1). 

Post Estimation Analysis 

This section presents the results of post model estimation analysis that was undertaken to 
demonstrate the applicability of the joint model developed in this study. As part of this exercise, 
four policy scenarios were considered – (1) increase bus stop density by 100%, (2) increase 
intersection density by 100%, (3) double the percentage of zone in HQTA by 100%, and (4) 
provide bike lane access to a zone.1 These changes were applied only to zones in District 34 that 
corresponds to the Los Angeles downtown area. For each of these four scenarios, the employment 
intensity during the five time periods was predicted using the regression model component 
parameters before and after the change in the variable of interest. Next, the probabilities of all 
DDT alternatives were computed for each time period both before and after the change for each 
scenario. To maintain computational tractability, 50 zonal alternatives were sampled for each tour 
as was done during model estimation. Lastly, the percentage change in the average probability of 
all the DDT alternatives in District 34 was computed due to the policy change. This change in 
average probability can be either because the variable of interest appears directly in the utility 
equation of the DDT choice component (e.g., intersection density) or because of change in 
employment intensity on supply side that translated into changes in zonal employment affecting 
size variables in the utility of DDT choice alternatives. It is important to note that there is some 
time-lag between the changes on the supply side (employment intensity) and the associate changes 
on the demand side (i.e., DDT choices) because of the above changes to transportation 
infrastructure. However, for the purposes of demonstration, these changes are assumed to be 
instantaneous. Also, it is possible that improved transportation infrastructure can induce new trips 
over a longer time-horizon compared to the changes in DDT choices we considered in the policy 
simulation exercise. While accounting for this induced demand is beyond the scope of the current 
study, it can be captured using spatio-temporal accessibility measures in the activity generation 
model components of ABMs.  

Table 5 presents the results of the post-estimation analysis. It can be seen from the table that the 
percentage change in the average probability is different across different time periods. Traditional 
DDT choice models that assume total employment to be available during the entire day cannot 
capture this time varying effect of different policy scenarios because of time varying employment 
intensity on the supply side. The percentage changes are relatively higher during ‘Night’ compared 
to other time periods because the average probabilities in the base case (before the policy change) 
                                                 
1 If the percentage of zone in HQTA exceeded 100% in the policy scenario, it was set to 100%. 
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are lower for this time period mainly due to fewer opportunities on the supply side (i.e., low 
employment intensity) during night hours. Also, the results suggest that providing bike lane access 
and increasing intersection density within a zone (i.e., better local accessibility) are more 
conducive to increasing travel demand to a zone (from the perspective of business owners in that 
zone) than improving the quality of public transit in that zone. 

 

Conclusion 

In most travel demand models, the interactions between land use and transportation are captured 
either by (1) using an integrated land use and travel demand model to capture long term inter-
dependencies between the two systems, or (2) using land use information as an external input to 
the travel choice models.   However, these existing methods cannot account for short term inter-
dependencies between the two systems. For instance, daily travel choices such as destination and 
departure time (DDT) choices depend on spatial and temporal distribution of activity opportunities 
on the supply side. However, it is also true that spatial and temporal profile of activity opportunities 
in a region depend on the estimated level of demand for these opportunities by businesses located 
in that region. So, within each day, we observe an equilibrium between the temporal profile 
intensity of activity opportunities (as determined by the opening and closing hours of businesses) 
on the supply side and DDT choices of travelers on the demand side.  

To explore such inter-dependencies, an integrated modeling framework was developed that (a) 
accounts for potential endogeneity between the outcomes in the two systems because of common 
unobserved factors that influence both employment intensity on supply side and utility of travelers 
on the demand side; (b) treats DDT choices as a single bundle where in travelers evaluate 
combinations of destinations and departure time periods as opposed to any pre-determined 
sequence of these two choices; and (c) can accommodate importance sampling mechanisms to 
reduce the computational burden associated with explosion in size of choice sets because of 
combinations of destination and departure time alternatives. This integrated model was used to 
analyze temporal variation of zonal employment intensity and non-mandatory DDT choices in the 
Southern California region. The results offer new insights into the relationship between temporal 
profile of zonal employment intensity within a day and zonal demographics and transportation 
infrastructure. The DDT choice model component also uncovered several nonlinear spatial 
proximity effects, sensitivity to transportation network conditions of different modes, differences 
in departure time preferences across different tours and demographic segments, and tour purpose 
specific attraction size effects. The study also found evidence for the presence of time invariant 
random effects in the supply side employment intensity model component, random parameter 
heterogeneity in the DDT choice model component, and endogeneity between the supply and 
demand model components. Lastly, the post estimation analysis results demonstrated the ability of 
the joint model developed in the study to capture the time varying effect of different policy 
scenarios on travelers’ DDT choice preferences arising due to differences in employment intensity 
patterns. 
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There are several possible avenues for improving this study in the future. First, one of the 
assumptions in this study was that employment intensity profile is the same across all industrial 
sectors in a zone. So, the same employment intensity proportions were applied to all employment 
variables in the size terms of DDT choice model component. However, this is a restrictive 
assumption that is not necessarily true because the employment intensity profile can be different 
across different industrial sectors. This would imply that the regression model component in the 
supply side must be completely segmented by industrial sector increasing the computational 
burden in the joint model estimation. Second, the departure time choice dimension on the demand 
side was analyzed by defining aggregated time periods as choice alternatives instead of using of 
using a finer temporal resolution (e.g., 15 minutes time bins). This also has implications to the 
supply side model because as the temporal resolution increases, the number of time periods in the 
panel regression model for employment intensity also increase. Third, this study only models the 
destination preferences of the primary destination of a tour. In this study, primary tour destination 
in the survey data was defined based on a combination of rules considering distance from home, 
activity purpose, and activity duration at the destination. In some cases, (particularly among non-
mandatory tours) the definition of primary tour destination is fuzzy because there might be tours 
with multiple stops that are equally important.  So, extending the modeling framework to deal with 
simultaneous destination choices of multiple stops in a tour presents unique challenges both in 
terms of computational complexity as well as identifying smart mechanisms for sampling chains 
of stop locations as opposed to individual locations. Lastly, in some cases, a sequential approach 
where departure time choices are modeled conditional on destination choices is better suited than  
the joint DDT choice model adopted in this study. For instance, a sequential approach is better 
suited for modeling DDT choices of eating out activities with   reservations and special events 
such as sporting events or concerts. In the past, researchers have used latent class modeling 
methods with all possible dependency pathways as alternatives to address this problem (Waddell 
et al. 2007). For example, there are three dependency pathways in DDT choices: (1) destination 
choice followed by departure time, (2) departure time followed by destination choice, and (3) joint 
DDT choice model.  Future studies must explore these alternate dependency pathways in DDT 
choices of non-mandatory activities.  
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Figure 1: Employment Intensity by Industry Sector and Hour of Day 

Table 1: Key Descriptive Statistics in the Estimation Sample 

  Frequency Percent 
Tour Purpose     
Escort 558 18.6 
Shopping 667 22.2 
Maintenance 546 18.2 
Social 129 4.3 
Entertainment 98 3.3 
Visiting Friends/Family 233 7.8 
Active Recreation 346 11.5 
Eating Out 156 5.2 
Other 267 8.9 
Tour Departure Time Period   
AM 706 23.5 
Midday 1430 47.7 
PM 668 22.3 
Evening 121 4.0 
Night 75 2.5 
Person Type   
Full-time Worker 551 18.4 
Part-time Worker 469 15.6 
Student 93 3.1 
Non-worker 1162 38.7 
Retiree 659 22.0 
Driving Age Child 66 2.2 

0

10

20

30

40

50

60

70

80

3 
to

 4
 A

M
4 

to
 5

 A
M

5 
to

 6
 A

M
6 

to
 7

 A
M

7 
to

 8
 A

M
8 

to
 9

 A
M

9 
to

 1
0 

 A
M

10
 to

 1
1 

A
M

11
 to

 1
2 

A
M

12
 to

 1
 p

m
1 

to
 2

  p
m

2 
to

 3
  p

m
3 

to
 4

  p
m

4 
to

 5
  p

m
5 

to
 6

  p
m

6 
to

 7
  p

m
7 

to
 8

  p
m

8 
to

 9
  p

m
9 

to
 1

0 
pm

10
 to

 1
1 

PM
11

 to
 1

2 
PM

12
 to

 1
A

M
1 

to
 2

 A
M

2 
TO

 3
 A

M

E
m

pl
oy

m
en

t I
nt

en
si

ty
Construction, Utility

Manufacturing, Wholesale

Retail, Other Service

Information, Business Service

Education & Health/Social Service

FIRE (Finance, Investment, Real Estate)

Arts, Enterntainment, and Hospitality,
Food Service



19 
 

 

 

Figure 2: Percentage Distribution of Tours by Distance to Primary Destination 

 

Table 2: Supply Side Employment Intensity Model Estimation Results 

Parameter Morning 
Peak Midday Evening 

Peak Evening Night 

Constant -2.5898 -0.8187 -1.0836 -2.6896 -3.8682 
Number of Households in TAZ (×1000) 0.2671 0.2159 0.2343 0.3248 0.1931 
Population Aged 65 and over (×1000) 0.0329 0.1629 0.1659 0.1500 0.1657 
College Enrollment (×1000) -0.0128 -0.0091 -0.0090 -0.0104 -0.0152 
Households with income > $100,000 (×1000) 0.1449 0.9309 0.9448 0.5033 0.1262 
Intersection density (3- and 4- legs) 0.7887 1.2511 1.3498 1.3753 1.1093 
Bike lane access (1= if a TAZ has bike lane) 0.2090 0.3272 0.3189 0.2464 0.1283 
Total Bus Stop Density 0.0478 0.0470 0.0454 0.0542 0.0624 
% of TAZ  in HQTA 0.3038 0.4648 0.4639 0.4640 0.3799 
Central Business District 0.0800 0.2958 0.2676 0.1508 0.1175 
Time Invariant Random Effects 0.3874 
Standard Error of Residual Error Term (𝜎𝜎𝑡𝑡) 0.4240 0.1937 0.1000 0.5313 0.5798 
Number of Observations (TAZs) 11,267 
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Figure 3: Distance Effects on Utility of DDT Alternatives 

 

Table 3 DDT Model Estimation Results: Dimension Specific Utility Components 

Explanatory Variables 

Zonal Dimension 
Utility Component 

Time Period Dimension Utility Component 
(Base: Night) 

Spatial 
Proximity 

Effects 
LN[1+Dis

tance]* 

Other 
Zonal 

Factors 

Morning 
Peak Midday Evening 

Peak Evening 

Constant -1.1353   1.3988 0.6019 0.0000 -0.9354 
Traveler Socio-demographics             

Female -0.3230   0.3953 0.5600 0.5665   
Tour Characteristics             

Escorting tour -0.3686           
Shopping tour -0.5621   -0.5545 0.7927     
Maintenance tour 0.2705     0.4236     
Social tour 0.3376       0.2717   
Meal tour         0.3881   

Joint Tour Party Composition             
Joint tour (all adults)         0.7151   
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Joint tour (adults & children)         0.6145   

Built Environment Effects             
CBD   -1.4120         
    Standard Deviation   1.9859         
Intersection Density   0.9814         
Bike Lane Access   0.2140         

       
 

      
Table 4 DDT Model Estimation Results: Cross Dimensions Utility Component 

Size Variables 
Tour Purpose 

Escorting Shopping Social Maintenance Eat 
out Discretionary 

Total Number of Households 1.0000   1.1063  0.6203 
Employment       
     Agriculture       
     Construction & Transportation       
     Manufacturing & Wholesale       
     Retail & Other Service  1.0000 1.0000 1.0000 0.3513 1.0000 
     Information & Professional       
     Educational 0.0163      
     Financial Institution &  Real Estate       
     Art & Entertainment  0.1841 0.3722  1.0000  
     Public Administration    0.2891   
Time Period Specific Mode Choice 
Logsum 1.0000 

 

Table 5 Post Estimation Analysis Results: % Increase in Average Probability of Visiting a 
Zone in District 34 

Time Period 

100% 
Increase 
in Bus 
Stop 

Density 

100% Increase 
in Intersection 

Density 

100% 
Increase 
in % of 
Zone in 
HQTA 

Provide 
Bike 
Lane 

Access 

Morning Peak (6:00 am to 9:00 am) 6.4% 15.4% 6.8% 16.2% 
Mid-Day (9:00 am to 3:00 pm) 0.4% 11.9% 2.5% 13.9% 
Evening Peak (3:00 pm to 7:00 pm) 0.4% 11.4% 3.3% 13.8% 
Evening (7:00 pm to 9:00 pm) 7.3% 24.1% 13.4% 19.9% 
Night (9:00 pm to 6:00 am) 16.2% 26.7% 16.0% 18.2% 
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