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Abstract 

This study attempts to explore the viability of dual-state models (i.e., zero-inflated and hurdle 

models) for traffic analysis zones (TAZs) based pedestrian and bicycle crash frequency analysis. 

Additionally, spatial spillover effects are explored in the models by employing exogenous 

variables from neighboring zones. The dual-state models such as zero-inflated negative binomial 

and hurdle negative binomial models (with and without spatial effects) are compared with the 

conventional single-state model (i.e., negative binomial). The model comparison for pedestrian 

and bicycle crashes revealed that the models that considered observed spatial effects perform 

better than the models that did not consider the observed spatial effects. Across the models with 

spatial spillover effects, the dual-state models especially zero-inflated negative binomial model 

offered better performance compared to single-state models. Moreover, the model results clearly 

highlighted the importance of various traffic, roadway, and sociodemographic characteristics of 

the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency.  

 

Keywords:  macro-level crash analysis, pedestrian and bicycle crashes, dual-state models, 

spatial independent variables

Introduction 

Active forms of transportation such as walking and bicycling have the lowest impact on the 

environment and improve the physical health of pedestrians and bicyclists. With growing 

concern of worsening global climate change and increasing obesity among adults in developed 

countries, it is hardly surprising that transportation decision makers are proactively encouraging 

the adoption of active forms of transportation for short distance trips. However, transportation 
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safety concerns related to active transportation users form one of the biggest impediments to 

their adoption as a preferred alternative to private vehicle use for shorter trips. According to the 

National Highway Traffic Safety Administration (NHTSA), from 2004 to 2013, the proportion of 

pedestrian fatalities has steadily increased from 11% to 14% (NHTSA(a), 2013) while the 

proportion of bicyclist fatalities has increased from 1.7% to 2.3% (NHTSA(b), 2013). Thus, 

traffic crashes and the consequent injury and fatality remain a deterrent for active modes of 

transportation, specifically in North American communities (Wei and Lovegrove, 2013). Any 

effort to reduce the social burden of these crashes would necessitate the implementation of 

policies that enhance safety for active transportation users. An important tool to identify the 

critical factors affecting occurrence of bicycle crashes is the application of planning level crash 

prediction models. 

Traditionally, transportation crash prediction models are developed for two levels: micro and 

macro-level. At the micro-level, crashes on a segment or intersection are analyzed to identify the 

influence of geometric design, lighting and traffic flow characteristics with the objective of 

offering engineering solutions (such as installing sidewalk and bike lane, adding lighting). On 

the other hand, the macro-level crashes from a spatial aggregation (such as traffic analysis zone 

(TAZ) or county) are considered to quantify the impact of socioeconomic and demographic 

characteristics, transportation demand and network attributes so as to provide countermeasures 

from a planning perspective. The current research effort contributes to burgeoning literature on 

active transportation user safety by examining pedestrian and bicycle crashes in the state of 

Florida at a macro-level. Specifically, in this study, a comprehensive analysis of pedestrian and 

bicycle crashes is conducted at the macro-level by employing several crash frequency models.  A 

host of exogenous variables including socio-economic and demographic characteristics, 
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transportation network characteristics, and traffic flow characteristics are considered in the 

model development. In addition, exogenous variables from neighboring zones are also 

considered in the analysis to account for spatial proximity effects on crash frequency. The 

overall model development exercise will allow us to identify important determinants of 

pedestrian and bicycle crashes in Florida while also providing valuable insight on appropriate 

model frameworks for macro-level crash analysis. 

Literature Review 

A number of research efforts have examined transportation (vehicle, pedestrian and bicycle) 

related crash frequency (see (Lord and Mannering, 2010) for a detailed review). These studies 

have been conducted for different modes  vehicle (automobiles and motorbikes), pedestrian and 

bicycle and for different scales - micro (such as intersection and segment) and macro-level (such 

as census tract, traffic analysis zone, county). The model structures considered in earlier 

literature include Poisson, Poisson-Lognormal, Poisson-Gamma regression (also known as 

negative binomial (NB)), Poisson-Weibull, and Generalized Waring models (Abdel-Aty and 

Radwan, 2000; Miaou et al., 2003; Aguero-Valverde and Jovanis, 2008; Lord and Miranda-

Moreno, 2008; Maher and Mountain, 2009; Cheng et al., 2013; Peng et al., 2014). Among these 

model structures, the NB model offers a closed form expression while relaxing the equal mean 

variance equality constraint and serves as the workhorse for crash count modeling.  

Handling Excess Zeros 

One methodological challenge often faced in analyzing count variables is the presence of a large 

number of zeros. The classical count models (such as Poisson and NB) allocate a probability to 

observe zero counts, which is often insufficient to account for the preponderance of zeros in a 
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count data distribution. In crash count variable models, the presence of excess zeros may result 

from two underlying processes or states of crash frequency likelihoods: crash-free state (or zero 

crash state) and crash state (see (Shankar et al., 1997) for more explanation). The zero crash state 

can be a mixture of true zeros (where the zones are inherently safe (Shankar et al., 1997) ) and 

sampling zeros (where excess zeros are results of potential underreporting of crash data (Miaou, 

1994)). In presence of such dual-state, application of single-state model (Poisson and NB) may 

result in biased and inconsistent parameter estimates. 

In econometric literature, two potential relaxations of the single-state count models are proposed 

for addressing the issue of excess zeros. The first approach – the zero inflated (ZI) model - is 

typically used for accommodating the effect of both true and sampling zeros, and has been 

employed in several transportation safety studies (Shankar et al., 1997; Chin and Quddus, 2003). 

The second approach - the Hurdle model - is typically used in the presence of sampling zeros and 

has seldom been used in transportation safety literature. The two approaches differ in the 

approach employed to address the excess zeros. The appropriate framework for analysis might 

depend on the actual empirical dataset under consideration. Table 1 presents a summary of 

previous studies that have considered zero-inflated and hurdle models to analyze crashes. The 

table provides information on type and severity of crash analyzed, spatial and temporal unit of 

analysis and the data collection duration. From the table, it is evident that all the existing zero-

inflated and hurdle studies are conducted at a micro-level such as segment and intersection 

except for Brijs et al.  (2006), which conducted crash analysis at macro-level by assigning 

crashes to the closest weather station. Second, with the exception of study (Hu et al., 2011; 

Hosseinpour et al., 2013; Hosseinpour et al., 2014), the range of observation of the study period 
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is one year or less; that may explain the preponderance of zeros in the data (Lord et al., 2005). 

Third, the zero-inflated model always offers better statistical fit to crash data.  

Issues with Dual-state Models 

To be sure, several research studies have criticized the application of zero-inflated model for 

traffic safety analysis (Lord et al., 2005; Lord et al., 2007; Kweon, 2011). The authors question 

the basic dual-state assumption for crash occurrence and have conducted extensive analysis at 

the micro-level and indicated that the development of models with dual-state process is 

inconsistent with crash data at the micro-level. While the reasoning behind the “non-

applicability” is plausible for micro-level the reasoning does not necessarily carry over to the 

macro-level crash counts. At the macro-level it is possible to visualize dual-state data generation 

with some macro-level units having zero pedestrian and bicyclist crashes – possibly because 

these spatial units have no pedestrian and bicycle demand (because of lack of walking and 

cycling infrastructure). In such cases the dual-state representation will allow us to identify spatial 

units that are likely to have zero cases as a function of exogenous variables (for example very 

low walking and cycling infrastructure might result in the higher probability of a zero state). 

Hence, we have considered the possible existence of dual-state models for pedestrian and bicycle 

crashes at the macro level in our research. If the data generation does support the dual-state 

models, ignoring the excess zeros and estimating traditional NB models will result in biased 

estimates.  
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Table 1 Summary of Previous Traffic Safety Studies Using Zero-Inflated Models 

Methodology Study Crash types Spatial Unit Temporal Unit Number of Study Years 

Zero-inflated 

Shankar et al.  (1997) Total crashes Road segment 2 years 2 years 

Miaou  (1994) Truck crashes Road segment 1 year 5 years 

Chin and Quddus  (2003) Total/pedestrian/motorcycle crashes Signalized intersection 1 year 1 year 

Brijs et al.  (2006) Total crashes Weather station 1 hour 1 year 

Hu et al.  (2011) Total crashes Railroad-grade crossing 3 years 3 years 

Carson and Mannering  

(2001) 
Crashes in ice condition Road segment 1 year 3 years 

Lee and Mannering  (2002) Run-off-roadway crashes Road segment 1 month 3 years 

Mitra et al.  (2002) Head-to-side/head-to-rear crashes Signalized intersection 1 year 8 years 

Kumara and Chin  (2003) Total crashes Signalized intersection 1 year 9 years 

Shankar et al.  (2004) Pedestrian crashes Road segment 1 year 1 year 

Qin et al.  (2004) Single-vehicle/multi-vehicle crashes Road  segment 1 year 4 years 

Huang and Chin  (2010) Total crashes Signalized intersection 1 year 8 years 

Jang et al.  (2010) Total crashes Road  segment 1 year 1 year 

Dong et al.  (2014a) Truck/Car crashes Intersection 1 year 5 years 

Dong et al.  (2014b) Crashes by severity Intersection 1 year 5 years 

Hurdle 

Hosseinpour et al.  (2013) Pedestrian crashes Road  segment 4 years 4 years 

Hosseinpour et al.  (2014) Head-on crashes Road Segment 4 years 4 years 

Kweon  (2011) Total crashes Road  segment < 1 hour 6 years 
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Spatial Spillover Effects 

In macro-level analysis, crashes occurring in a spatial unit are aggregated to obtain the crash 

frequency. The aggregation process might introduce errors in identifying the exogenous variables 

for the spatial unit. For example, a crash occurring closer to the boundary of the unit might be 

strongly related to the neighboring zone than the actual zone where the crash occurred. This is a 

result of arbitrarily demarcating space. To accommodate for such spatial unit induced bias, two 

approaches to incorporate spatial dependency are considered: (1) spatial error correlation effects 

(unobserved exogenous variables at one location affect dependent variable at the targeted and 

neighboring locations) and (2) spatial spillover effects (observed exogenous variables at one 

location having impacts on the dependent variable at both the targeted and neighboring 

locations) (Narayanamoorthy et al., 2013). Several research efforts have accommodated for 

spatial random error in safety literature (for example see (Huang et al., 2010; Siddiqui et al., 

2012; Lee et al., 2015)). On the other hand, researchers have considered a spatially lagged 

dependent variable at neighboring units for the spatial spillover effects (LaScala et al., 2000; 

Quddus, 2008; Ha and Thill, 2011). However, the utility of such spatially lagged dependent 

variable models, particularly for prediction, is limited since developing prediction frameworks 

for spatially lagged models is involved. In our analysis, to accommodate for spatial effects, we 

propose the consideration of exogenous variables from neighboring zones for accounting for 

spatial dependency. The approach, referred to as spatial spillover model, is easy to implement 

and allows practitioners to understand and quantify the influence of neighboring units on crash 

frequency. 

In summary, the current study contributes to non-motorized macro-level crash analysis along two 

directions: (1) evaluate the viability of dual-state models for non-motorized crash analysis at 
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macro-level; and (2) introduction of spatial independent variables accounting for spatial spillover 

effects on crash frequency. Towards this end, conventional single-state model (i.e., NB) and two 

dual-state models (i.e., zero-inflated NB (ZINB) and hurdle NB (HNB)) with and without spatial 

independent variables are developed for both pedestrian and bicycle crashes at a TAZ level in 

Florida. Overall, both pedestrian and bicycle crashes have 6 model structures estimated - NB 

model without/with spatial effects (aspatial/spatial NB), ZINB model without/with spatial effects 

(aspatial/spatial ZINB), and HNB model without/with spatial effects (aspatial/spatial HNB). The 

model development process considers a sample for model calibration and a hold-out sample for 

validation. A comparison exercise is undertaken to identify the superior model in model 

estimation and validation. Finally, average marginal effects are computed for the best model to 

assess the effect of different factors, including the spatial variables on crash occurrence. 

Methodology 

Single-state models  

The Poisson model is the traditional starting model for crash frequency analysis (Lord and 

Mannering, 2010). The Poisson model assumes that the mean and variance of the distribution are 

the same. Thus, the Poisson model cannot deal with the over-dispersion (i.e. variance exceeds the 

mean). The NB model relaxes the equal mean variance assumption of Poisson model and allows 

for over-dispersion parameter by adding an error term,εi, to the mean of the Poisson model as: 

𝜆𝑖 = exp(𝛽𝑖𝑥𝑖 + 𝜀𝑖) (1) 

where λi is the expected number of Poisson distribution for entity i, xi is a set of explanatory 

variables, and βi  is the corresponding parameter. Usually, exp(εi) is assumed to be gamma-

distributed with mean 1 and variance α so that the variance of the crash frequency distribution 
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becomes λi(1 + αλi) and different from the mean λi. The NB model for the crash count yi of 

entity i is given by 

𝑃(𝑦𝑖)=
Г(𝑦𝑖+

1

𝛼
)

Г(𝑦𝑖+1)Г(
1

𝛼
)
(
𝛼𝜆𝑖

1+𝛼𝜆𝑖
)
𝑦𝑖
(

1

1+𝛼𝜆𝑖
)
1

𝛼 (2) 

where yi is the number of crashes yi of entity i and Г(∙) refers to the gamma function. The NB 

model can generally account over-dispersion resulting from unobserved heterogeneity and 

temporal dependency, but may be improper for accounting for the over-dispersion caused by 

excess zero counts (Rose et al., 2006).  

 

Dual-state models  

Zero-inflated model 

The zero-inflated models assume that the data have a mixture with a degenerate distribution 

whose mass is concentrated at zero (Lambert, 1992). The first part of the mixture is the extra 

zero counts and the second part is for the usual single state model conditional on the excess 

zeros. The zero-inflated NB model can be regarded as an extension of the traditional NB 

specification as: 

𝑦𝑖~ {
0, 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑖
𝑁𝐵,𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 − 𝑝𝑖

 (3) 

The logistic regression model is employed to estimate pi, 

𝑝𝑖 =
exp(𝛽𝑖

′𝑥𝑖)

1 + exp(𝛽𝑖
′𝑥𝑖)

 (4) 

where βi
′ is the corresponding parameter.  

Substituting Eq. (2) into Eq. (3) we can define ZINB model for crash counts yi of entity i as  
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𝑃(𝑦𝑖) =

{
 
 

 
 𝑝𝑖 + (1 − 𝑝𝑖)(

1

1 + 𝛼𝜆𝑖
)
1
𝛼,  𝑦𝑖 = 0

(1 − 𝑝𝑖)
Г (𝑦𝑖 +

1
𝛼)

Г(𝑦𝑖 + 1)Г (
1
𝛼)

(𝛼𝜆𝑖)
𝑦𝑖

(1 + 𝛼𝜆𝑖)
(𝑦𝑖+

1
𝛼
)
,𝑦𝑖 > 0

 (5) 

 

Hurdle models 

The Hurdle models, proposed by Mullahy  (1986), can be regarded as two-part models. The first 

part is a binary model dealing with whether the response crosses the “hurdle”, and the second 

part is a truncated-at-zero count model. Assume that the first hurdle part of process is governed 

by function f1  and the second count process follows a truncated-at-hurdle function f2 . The 

Hurdle models are defined as follows: 

𝑃(𝑦𝑖) = {

𝑓1(0) = 𝑝𝑖,  𝑦𝑖 = 0

(1 − 𝑓1(0))
𝑓2(𝑗)

1 − 𝑓2(0)
, 𝑦𝑖 > 0

 (6) 

Hurdle NB model is obtained by specifying 𝑓2(∙) as the NB distribution. Substitution Eq. (2) into 

Eq. (6) will result in ZINB model as follows: 

𝑃(𝑦𝑖) =

{
 
 

 
 𝑝𝑖,  𝑦𝑖 = 0

(1 − 𝑝𝑖)(1 −
1

(1 + 𝛼𝜆𝑖)
1
𝛼

)
Г (𝑦𝑖 +

1
𝛼)

Г(𝑦𝑖 + 1)Г (
1
𝛼)

(𝛼𝜆𝑖)
𝑦𝑖

(1 + 𝛼𝜆𝑖)
(𝑦𝑖+

1
𝛼
)
, 𝑦𝑖 > 0

 (7) 

 As in the zero-inflated model, logistic regression will be applied for modeling pi. 

 

Data Preparation 

About 16,240 pedestrian and 15,307 bicycle involved crashes that occurred in Florida in the 

period of 2010-2012 were compiled for the analysis. The State of Florida has 8,518 TAZs, with 

an average area of 6.472 square miles. This TAZ system used in this paper is developed and used by 
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the Florida Department of Transportation Central Office for statewide level transportation planning. 

Among the TAZs, as shown in Figure 1, 46.18% of them have zero pedestrian crashes while 

49.86% of them didn’t have any bicycle crashes. The explanatory variables considered for the 

analysis can be grouped into three categories: traffic (such as VMT (Vehicle-Miles-Traveled), 

proportion of heavy vehicle in VMT), roadway (such as signalized intersection density, length of 

bike lanes and sidewalks, etc.), and socio-demographic characteristics (such as population 

density, proportion of families without vehicle, etc.).  

As highlighted earlier, the current analysis focuses on accommodating the impact of neighboring 

TAZs on the crash frequency models. Towards this end, for every TAZ, the TAZs that are 

adjacent are identified. Based on the identified neighbors, a new variable based on the value of 

the each exogenous variable from surrounding TAZs is computed. The variables thus created 

capture the spatial spillover effects of the neighboring TAZs on crash frequency. The descriptive 

statistics of the crash counts and independent variables are summarized in Table 2.  Specifically, 

the table provides the values at a TAZ level as well as for the neighboring TAZ variables.   
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Table 2 Descriptive statistics of collected data  

Variables name 
Targeted TAZs Neighboring TAZs 

Mean S.D. Maxa Mean S.D. Maxa 

Crash variables 

Pedestrian crash 1.907 3.315 39.000 - - - 

Bicycle crash 1.797 3.309 88.000 - - - 

Traffic & roadway variables 

VMT 31381.0 41852.3 684742.8 195519.7 169120.3 2103376.3 

Proportion of heavy vehicle in VMT 0.067 0.052 0.519 0.070 0.045 0.350 

Proportion of length of arterial roads 0.221 0.275 1.000 0.144 0.125 1.000 

Proportion of length of collectors 0.191 0.246 1.000 0.156 0.136 1.000 

Proportion of length local roads 0.572 0.329 1.000 0.680 0.200 1.000 

Signalized intersection density (number of  

signalized intersections per mile) 
0.227 0.578 8.756 0.378 5.552 495.032 

Length of bike lanes 0.303 1.096 28.637 1.909 3.847 38.901 

Length of sidewalks 0.993 1.750 25.683 6.304 6.745 77.720 

Socio-demographic  variables 

Population density 2520.3 4043.3 63069.0 2330.2 3489.7 57181.9 

Proportion of families without vehicle 0.095 0.123 1.000 0.095 0.108 1.000 

School enrollments density 775.02 5983.05 255147.24 684.22 2900.54 102285.73 

Proportion of urban area 0.722 0.430 1.000 0.650 0.434 1.000 

Distance to the nearest urban area 2.140 5.441 44.101 - - - 

Hotels, motels, and timeshare rooms density 172.49 941.71 32609.84 121.678 528.078 11397.148 

No of total employment 1140.10 1722.45 31932.15 6917.245 6725.135 76533.000 

Proportion of industry employment 0.176 0.232 1.000 0.183 0.177 1.000 

Proportion of commercial employment 0.299 0.235 1.000 0.305 0.177 1.000 

Proportion of service employment 0.525 0.257 1.000 0.495 0.186 1.000 

No of commuters by public transportation 18.813 54.273 934.000 119.582 246.299 3559.985 

No of commuters by cycling 5.894 19.804 775.000 90.869 128.399 1902.135 

No of commuters by walking 14.354 34.680 1288.000 37.566 74.484 1634.530 

a The minimum values for all variables are zero. 
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Figure 1 Pedestrian and bicycle crashes based on TAZs 

 

Modeling Results and Discussion 

Goodness of fit 

In this study, from the 8518 TAZs, 80% of the zones were randomly selected for models 

calibration and 20% were used for validation of the estimated models. The overall model 

estimation process involved estimating six models - 3 model types (NB, ZINB, and HNB models) 

with and without spatial independent variables of neighboring TAZs for pedestrian and bicycle 

crashes. Prior to discussing the model results, we present the goodness of fit measures of the 

estimated models in Table 3. The table presents the Log-likelihood, Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) - for the 6 models for estimation and 

validation samples. Several observations can be made from the results presented in Table 3. First, 

across pedestrian and bicycle crash models, the models with spatial independent variables offer 

substantially better fit compared to models without spatial independent variables. The results 

validate our hypothesis that characteristics of adjacent TAZs improve our understanding of crash 
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frequency in the target TAZ. Second, the exact ordering alters between ZINB and HNB in some 

cases based on log-likelihood and AIC. However, the ZINB model offers the best fit across all 

model structures based on the BIC. Among aspatial and spatial models, the ZINB model always 

has the lowest BIC value indicating strong difference between ZINB and other models. The 

ZINB improves data fit with only a small increase in number of parameters. Hence, in terms of 

our results, we can conclude that the ZINB offers the best statistical fit for pedestrian and bicycle 

crashes. Third, in validation exercise, it is further reinforced that ZINB offers the best data fit.  

Table 3 Comparison of goodness-of-fits between different models 

Pedestrian Crash 

 
NB ZINB HNB 

Calibration (N=6815) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 15 17 20 22 24 28 

Log-likelihood   -9972.4 -9926.6 -9944.3 -9890 -9964.4 -9912.5 

AIC 19974.7 19887.3 19928.5 19824 19976.8 19881 

BIC 20077.1 20003.3 20065.1 19974.2 20140.7 20072.2 

Validation (N=1703) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 15 17 20 22 24 28 

Log-likelihood   -2680.5 -2662.4 -2449.9 -2437.8 -2464.3 -2459.4 

AIC 5391 5358.8 4939.7 4919.5 4976.5 4974.8 

BIC 5472.6 5451.2 5048.5 5039.2 5107.1 5127.1 

Bicycle Crash 

 
NB ZINB HNB 

Calibration (N=6815) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 14 19 18 22 25 33 

Log-likelihood   -9412.4 -9326.0 -9385.6 -9309.0 -9387.2 -9286.3 

AIC 18852.9 18689.9 18807.2 18662.1 18824.3 18638.6 

BIC 18948.5 18819.6 18930.1 18812.3 18995 18863.9 

Validation (N=1703) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 14 19 18 22 25 33 

Log-likelihood   -2771.6 -2785.9 -2393.4 -2355.6 -2396.4 -2364.8 

AIC 5571.2 5609.8 4822.8 4755.2 4842.8 4795.7 

BIC 5647.4 5713.2 4920.7 4874.9 4978.8 4975.2 
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Results 

The results of six models (3 model types with and without spatial independent variables of 

neighboring TAZs) for pedestrian and bicycle crashes each are displayed in Table 4 and Table 5 

separately. The results for NB models only have the count frequency component. For zero-

inflated and hurdle models, the modeling results consist of two components: (1) logistic model 

component for zero state and (2) the count frequency component. Across the 6 models for either 

pedestrian or bicycle crashes, the significant variables are different. Some of the explanatory 

variables such as VMT, population density are transformed into the natural logarithmic scale. 

Generally, a log link between dependent and independent variables is specified in the modeling 

regression. Thus, with the transformation of the independent variables, the relationship of power 

function between explanatory variables and crash counts can be obtained which was widely 

adopted in previous research (Greibe, 2003; Abbas, 2004). Also, this transformation reduces 

variance and minimize the heteroscedasticity among the variables (Quddus, 2008; Gujarati, 

2012). Meanwhile, with a log transformation the parameter of the explanatory variable results in 

a linear elasticity which is easy to interpret. While the results for all models for pedestrians and 

bicycle crashes are presented, the discussion focuses on the ZINB model with spatial 

independent variables that offers the best fit.  

 

Pedestrian crash models for TAZs 

For ZINB model with spatial independent variables, twelve independent variables of targeted 

TAZs and four spatial independent variables are significant in the count component.  
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The VMT variable is a measure of vehicle exposure and as expected increases the propensity for 

pedestrian crashes. However, with increase in heavy vehicle VMT, TAZs are likely to have 

lower pedestrian exposure resulting in lower probability of vehicle-pedestrian interactions. 

Population density and total employment variables are surrogate measures of pedestrian 

exposure (Siddiqui et al., 2012). Hence, it is expected that these variables have positive impacts 

on crash frequency. The variables proportion of local roads by length, signalized intersection 

density, and length of sidewalks are reflections of pedestrian access. Increased local roads, 

signalized intersections, and sidewalks may attract more pedestrians and are likely to increase 

crash frequency. The positive estimate of the number of hotels, motels and timeshare rooms’ 

variable reflects land use characteristics that are likely to encourage walking in the vicinity 

increasing pedestrian exposure. It is observed that in TAZs with higher number of commuters by 

walking and public transportation, the propensity for pedestrian crashes is higher. The 

commuters by walking and public transportation reflect zones with higher pedestrian activity 

resulting in increased crash risk (Abdel-Aty et al., 2013). As the distance from a TAZ geometric 

centroid to the nearest urban region increases, pedestrian crash risk in the TAZ reduces – a sign 

of low pedestrian activity in the suburban regions.  

Among the significant spatial spillover variables, the proportion of service employment 

corresponds to surrounding land use characteristics that attract pedestrians and therefore 

increases the propensity of pedestrian crashes. Interestingly, the impact of signalized intersection 

density of neighboring TAZs is found to be negatively associated with pedestrian crash 

frequency. This result is in contrast to the impact of the same variable for the targeted TAZ. The 

number of signalized intersections reflects the increase in exposure for pedestrians thus resulting 

in an increase in crashes. However, the influence of signalized intersections in neighboring TAZs 
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has an ameliorating impact on crash frequency i.e., TAZs surrounded by zones with higher 

signalized intersection density have a lower propensity for crash occurrence because the higher 

density of signalized intersections is likely to increase driver awareness of pedestrians offsetting 

the exposure effect marginally (Zajac and Ivan, 2003; Eluru et al., 2008). The proportion of families 

without vehicles in the vicinity of TAZ represents captive individuals that are forced to use 

public transit and pedestrian/bicycle modes. Thus increased presence of such families is likely to 

increase pedestrian exposure, leading to more pedestrian crashes. Higher number of commuters 

by public transportation in the neighboring TAZs also results in increased pedestrian crash 

frequency.  

In the probabilistic component, only the length of sidewalks, number of total employment, and 

number of commuters by public transportation of the targeted TAZs are significant. As expected, 

these three variables are negatively associated with the propensity of zero pedestrian crashes. As 

these variables serve as surrogates for pedestrian activity, it is expected that TAZs with higher 

levels of these variables are unlikely to be assigned to the zero crash state. Interestingly, no 

spatial spillover effects are found to be significant in the probabilistic part. 
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Table 4 Models results for pedestrian crash of TAZs 

 
NB ZINB HNB 

Count Model Aspatial Spatial Aspatial Spatial Aspatial Spatial 

Parameter Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. 

Intercept -4.513 0.139 -4.632 0.142 -4.202 0.159 -4.323 0.162 -3.504 0.187 -3.745 0.198 

TAZ independent variables 

Log (VMT) 0.145 0.009 0.142 0.009 0.155 0.009 0.154 0.009 0.112 0.011 0.103 0.011 

Proportion of heavy vehicle mileage in VMT -1.108 0.416 -1.123 0.413 -1.424 0.422 -1.522 0.416 -1.890 0.556 -1.656 0.547 

Log (population density) 0.124 0.011 0.105 0.011 0.102 0.011 0.093 0.011 0.115 0.014 0.097 0.014 

Log (number of total employment) 0.235 0.013 0.225 0.013 0.205 0.015 0.195 0.015 0.186 0.017 0.186 0.017 

Proportion of length of local roads 0.467 0.059 0.471 0.058 0.504 0.060 0.508 0.059 0.480 0.080 0.454 0.080 

Log (signalized intersection density)  0.291 0.028 0.267 0.028 0.256 0.030 0.267 0.031 0.274 0.038 0.286 0.040 

Log (length of sidewalks) 0.272 0.025 0.277 0.024 0.244 0.025 0.255 0.025 0.271 0.028 0.273 0.028 

Log (hotels, motels, and timeshare rooms density) 0.022 0.006 0.026 0.006 0.021 0.006 0.030 0.006 0.030 0.007 0.037 0.007 

Log (number of commuters by public transportation) 0.194 0.009 0.129 0.012 0.189 0.009 0.125 0.012 0.205 0.011 0.134 0.014 

Log (number of commuters by walking) 0.067 0.011 0.065 0.011 0.052 0.012 0.056 0.012 0.057 0.013 0.060 0.013 

Log (number of commuters by cycling) 0.027 0.011 0.031 0.011 0.027 0.011 0.030 0.011 - - - - 

Log (distance to nearest urban area) -0.027 0.006 -0.024 0.006 -0.028 0.006 -0.025 0.006 - - - - 

Proportion of families without vehicle - - - - 0.717 0.136 - - - - - - 

Proportion of service employment 0.314 0.062 0.221 0.068 0.296 0.062 - - - - - - 

Spatial Independent Variables 

Proportion of service employment of neighboring TAZs - - 0.253 0.091 - - 0.301 0.083 - - 0.376 0.103 

Log (signalized intersection density of neighboring TAZs) - - - - - - -0.291 0.063 - - -0.211 0.073 

Proportion of families without vehicle of neighboring TAZs - - - - - - 1.29 0.172 - - - - 

Log (number of commuters by public transportation of neighboring TAZs) - - 0.099 0.011 - - 0.091 0.011 - - 0.108 0.014 

Dispersion 0.445 0.020 0.423 0.020 0.393 0.022 0.367 0.021 0.419 0.028 0.386 0.026 

Probabilistic Model Aspatial Spatial Aspatial Spatial Aspatial Spatial 

Intercept - - - - 0.070 0.413 -0.047 0.431 5.733 0.237 5.791 0.238 

TAZ independent variables 

Log (VMT) - - - - - - - - -0.188 0.015 -0.184 0.015 

Log (length of sidewalks) - - - - -2.143 0.729 -1.995 0.715 -0.500 0.064 -0.502 0.064 

Log (number of total employment) - - - - -0.240 0.070 -0.232 0.072 -0.299 0.023 -0.295 0.023 

Log (number of commuters by walking) - - - - -0.527 0.153 -0.501 0.148 -0.138 0.027 -0.136 0.027 

Proportion of length of local roads - - - - - - - - -0.510 0.104 -0.516 0.104 

Log (signalized intersection density) - - - - - - - - -0.331 0.054 -0.319 0.054 

Log (population density) - - - - - - - - -0.164 0.019 -0.155 0.019 

Proportion of service employment - - - - - - - - -0.405 0.126 -0.413 0.127 

Log (number of commuters by public transportation) - - - -     -0.247 0.025 -0.192 0.030 

Log (number of commuters by cycling) - - - - - - - - -0.074 0.032 -0.074 0.032 

Log (distance to nearest urban area) - - - - - - - - 0.030 0.008 0.027 0.008 

Spatial Independent Variables 

Log (number of commuters by public transportation of neighboring TAZs) - - - - - - - - - - -0.075 0.022 

All explanatory variables are significant at 95% confidence level
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Bicycle crash models for TAZs 

In the ZINB model with spatial variables presented in Table 5 eleven variables for the TAZs and 

five variables of neighboring TAZs affect bicycle crash frequency. The impacts of exogenous 

variables in the bicycle crash frequency model are very similar to the impact of these variables in 

the pedestrian crash frequency model. This is not surprising because, TAZs that are likely to 

experience high pedestrian activity are also likely to experience high bicyclist activity. 

For the count component, the exogenous variables for the TAZ that increase the crash propensity 

are VMT, population density, total employment, proportion of local roads by length, signalized 

intersection density, length of sidewalks, proportion of commuters by walking as well as cycling, 

and proportion of service employment. The exogenous variables for the TAZ that reduce crash 

propensity are proportion of heavy vehicle mileage and the distance of the TAZ centroid from 

the nearest urban region. There are three main difference in the TAZ variable impacts between 

pedestrian and bicyclist crash frequency. First, the number of commuters by public transportation 

does not have significant impacts on crash frequency as it is possible that public transportation 

and bicycling are not as strongly correlated as is the case with public transportation and 

pedestrians. Second, the density of hotel, motel and time share rooms does not impact bicycle 

crash frequency as tourists are less likely to be bicyclists. Third, the service employment count in 

the TAZ affects bicycle crash frequency while affecting pedestrian crash frequency as a spillover 

effect. While, the exact reason for the result is unclear, it could be a manifestation of differences 

of how land-use affects pedestrians and bicyclists. 

In terms of spatial spillover effects, the significant variables vary between pedestrian and 

bicyclists. Specifically, the high proportion of industry employment in neighboring TAZs has a 

negative association with crash propensity indicating that surrounding regions especially the 
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targeted TAZs are unlikely to have significant bicyclist exposure. The signalized intersection 

density exhibits the same relationship as described for pedestrian crashes. On the other hand, 

from the neighboring TAZs, population density, number of commuters by public transit and 

cycling are surrogates for bicyclist exposure and are found positively associated with bicycle 

crashes. 

In the probabilistic component, only three explanatory variables of targeted TAZs variables are 

significant. The length of sidewalks, population density and total employment variables, as 

expected, have negative influence on assigning a TAZ to a zero crash state. The bicycle crash 

probabilistic component also does not have any statistically significant spatial variables. 
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Table 5 Models results for bicycle crash of TAZs 

 
NB ZINB HNB 

Count Model Aspatial  Spatial Aspatial Spatial Aspatial Spatial 

Parameter Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. 

Intercept -4.650 0.154 -4.672 0.167 -4.090 0.181 -4.673 0.190 -3.620 0.220 -4.031 0.237 

TAZ independent variables 

Log (VMT) 0.190 0.009 0.162 0.010 0.186 0.010 0.164 0.010 0.168 0.013 0.148 0.013 

Proportion of heavy vehicle mileage in VMT -4.260 0.485 -3.306 0.490 -4.244 0.487 -2.787 0.496 -4.115 0.665 -2.949 0.660 

Log (population density) 0.152 0.013 0.130 0.013 0.133 0.014 0.087 0.015 0.131 0.018 0.084 0.020 

Log (number of total employment) 0.193 0.014 0.194 0.014 0.157 0.016 0.161 0.016 0.142 0.018 0.134 0.018 

Proportion of length of local roads 0.535 0.062 0.441 0.064 0.517 0.063 0.525 0.063 0.422 0.086 0.401 0.085 

Log (signalized intersection density) 0.196 0.030 0.234 0.032 0.172 0.031 0.203 0.033 0.125 0.041 0.184 0.044 

Log (length of sidewalks) 0.284 0.026 0.271 0.025 0.214 0.027 0.228 0.026 0.219 0.030 0.217 0.029 

Log (number of commuters by public transportation) 0.106 0.010 0.086 0.012 0.107 0.010 - - 0.096 0.012 0.084 0.012 

Log (number of commuters by walking) 0.087 0.012 0.085 0.012 0.090 0.012 0.104 0.012 0.101 0.014 0.099 0.014 

Log (number of commuters by cycling) 0.109 0.011 0.070 0.012 0.110 0.011 0.088 0.012 0.108 0.012 0.071 0.013 

Log (distance to nearest urban area) -0.103 0.011 -0.098 0.011 -0.097 0.011 -0.074 0.011 -0.092 0.024 -0.065 0.023 

Proportion of service employment 0.205 0.066 0.153 0.067 0.192 0.066 0.173 0.067 - - -    - 

Spatial Independent Variables 

Proportion of  industry employment of neighboring TAZs - - -0.361 0.106 - - -0.242 0.106 - - - - 

Log (signalized intersection density of neighboring TAZs) - - -0.319 0.075 - - -0.473 0.069 - - -0.545 0.095 

Log (population density of neighboring TAZs) - - - - - - 0.113 0.018 - - 0.109 0.023 

Log (number of commuters by public transportation of neighboring TAZs) - - 0.035 0.012 - - 0.068 0.010 - - - - 

Log (number of commuters by cycling of neighboring TAZs) - - 0.093 0.012 - - 0.073 0.012 - - 0.098 0.014 

Proportion of length of local roads of neighboring TAZs - - 0.354 0.125 - - - - - - - - 

Dispersion 0.481 0.022 0.443 0.021 0.425 0.022 0.397 0.021 0.454 0.031 0.406 0.028 

Probabilistic Model Aspatial Spatial Aspatial Spatial Aspatial  Spatial 

Intercept - - - - 1.565 0.489 1.296 0.509 5.452 0.241 5.700 0.279 

TAZ independent variables 

Log (VMT) - - - - - - - - -0.222 0.016 -0.217 0.017 

Log (length of sidewalks) - - - - -4.455 1.272 -4.819 1.563 -0.676 0.066 -0.681 0.066 

Log (population density) - - - - -0.149 0.05 -0.135 0.053 -0.177 0.021 -0.102 0.024 

Log (number of total employment) - - - - -0.328 0.058 -0.313 0.060 -0.236 0.023 -0.216 0.024 

Proportion of heavy vehicle mileage in VMT - - - - - - - - 5.347 0.836 4.258 0.861 

Proportion of length of local roads - - - - - - - - -0.709 0.109 -0.696 0.112 

Log (signalized intersection density) - - - - - - - - -0.286 0.054 -0.243 0.056 

Log (number of commuters by public transportation) - - - - - - - - -0.210 0.025 -0.147 0.031 

Log (number of commuters by walking) - - - - - - - - -0.081 0.028 -0.079 0.028 

Log (number of commuters by cycling) - - - - - - - - -0.158 0.032 -0.099 0.035 

Log (distance to nearest urban area) - - - - - - - - 0.098 0.013 0.082 0.013 

Spatial Independent Variables 

Proportion of length of arterial of neighboring TAZs - - - - - - - - - - 1.337 0.290 

Log (population density of neighboring TAZs) - - - - - - - - - - -0.096 0.033 

Log (hotels, motels, and timeshare rooms density of neighboring TAZs) - - - - - - - - - - -0.041 0.018 

Log (number of commuters by public transportation of neighboring TAZs) - - - - - - - - - - -0.069 0.026 

Log (number of commuters by cycling of neighboring TAZs) - - - - - - - - - - -0.082 0.025 

All explanatory variables are significant at 95% confidence level 
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Marginal effects 

The ZINB has two components, the probabilistic and the count component with exogenous 

variables possibly affecting both components. Thus, it is not straight-forward to identify the 

exact magnitude of the variable impact. Hence, to facilitate a quantitative comparison of variable 

impacts, marginal effects for the ZINB for pedestrians and bicyclists are computed. The marginal 

effects capture the change in the dependent variable in response to a small change in the 

independent variables. The results of the marginal effect calculation are presented in Table 6. As 

is expected, the sign of the marginal effects closely follows the sign from model results described 

in Table 4 and 5.  The marginal effects represent the percentage change in the crash frequency 

variable for a 1% change in the exogenous variable. For example, for the first row in Table 6, a 

1% change in Log(VMT) is likely to result in a 0.292% change in pedestrian crash frequency and 

0.291% change in bicyclist crash frequency. The other parameters can also be interpreted in a 

similar fashion.   

The following observations can be made based on the results presented. First, the impact of 

spatial spillover effects on the crash models is significant and is comparable to the influence of 

other exogenous variables. Hence, it is important that analysts consider such observed spatial 

spillover effects in crash frequency modeling. Second, the exogenous variable impacts on 

pedestrian and bicycle crash models are similar for a large number of variables including VMT, 

population density, total employment, number of commuters by walking, proportion of local 

road in length, and number of public transportation commuters in neighboring TAZs. All of these 

variables have marginal effects with positive values, indicating number of crashes (for both 

pedestrian and bicycle crashes) increase as these variables increase. Third, the exogenous 

variables such as proportion of heavy vehicle VMT, proportion of service employment, number 
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of commuters by public transportation and cycling, proportion of families without vehicles in the 

neighboring TAZs, service employment and industry employment in neighboring TAZs have 

significantly different marginal impacts across the two models. Their negative marginal effect 

values show that crash counts will decrease if these variables increase. Finally, as indicated by 

the marginal effects of the signalized intersection density the exogenous variable for TAZ and 

neighboring TAZs could exhibit distinct effects both in sign and magnitude. The allowance of 

such non-linear impacts accommodates for heterogeneity in the data. 

Table 6 Average marginal effect for ZINB model with spatial independent variables 

   Pedestrian Bicycle 

 Variables dy/dx S.E dy/dx S.E 

TAZ independent variables 

Log (VMT) 0.292 0.018 0.291 0.018 

Proportion of heavy vehicle mileage in VMT -2.888 0.791 -4.937 0.885 

Log (population density) 0.176 0.021 0.162 0.027 

Log (number of total employment) 0.382 0.027 0.302 0.027 

Proportion of length of local roads 0.965 0.114 0.930 0.113 

Log (signalized intersection density) 0.506 0.06 0.359 0.059 

Log (length of sidewalks) 0.587 0.05 0.671 0.077 

Log (hotels, motels, and timeshare rooms density) 0.056 0.011 - - 

Log (number of commuters by public transportation) 0.238 0.022 - - 

Log (number of commuters by walking) 0.131 0.021 0.184 0.021 

Log (number of commuters by cycling) 0.057 0.02 0.156 0.021 

Log (distance to nearest urban area) -0.047 0.011 -0.132 0.019 

Proportion of service employment - - 0.307 0.118 

Spatial Independent Variables 

Proportion of service employment of neighboring TAZs 0.572 0.158 - - 

Proportion of  industry employment of neighboring TAZs - - -0.428 0.189 

Log (signalized intersection density of neighboring TAZs) -0.552 0.119 -0.838 0.124 

Proportion of families without vehicle of neighboring T AZs 2.447 0.329 - - 

Log (population density of neighboring TAZs) - - 0.200 0.033 

Log (number of commuters by public transportation of neighboring TAZs) 0.173 0.021 0.120 0.019 

Log (number of commuters by cycling of neighboring TAZs) - - 0.130 0.021 
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Conclusion 

With growing concern of global warming and obesity concerns, active forms of transportation 

offer an environmentally friendly and physically active alternative for short distance trips. A 

strong impediment to universal adoption of active forms of transportation, particularly in North 

America, is the inherent safety risk for active modes of transportation. Towards developing 

counter measures to reduce safety risks, it is essential to study the influence of exogenous factors 

on pedestrian and bicycle crashes. This study contributes to safety literature by conducting a 

macro-level planning analysis for pedestrian and bicycle crashes at a Traffic Analysis Zone 

(TAZ) level in Florida. The study considers dual-state count models (zero-inflated negative 

binomial (ZINB) and hurdle negative binomial (HNB)) for analysis by comparing with classical 

single state (negative binomial (NB)) and. In addition to the dual-state models, the research 

proposes the consideration of spatial spillover effects of exogenous variables from neighboring 

TAZs. The model development exercise involved estimating 6 model structures each for 

pedestrians and bicyclists. These include NB model with and without spatial effects, ZINB 

model with and without spatial effects and HNB with and without spatial effects. The estimated 

model performance was evaluated for the calibration sample and the validation sample using the 

following measures: Log-likelihood, Akaike Information Criterion and Bayesian Information 

Criterion.  

The model comparison exercise for pedestrians and bicyclists highlighted that models with 

spatial spillover effects consistently outperformed the models that did not consider the spatial 

effects. Across the three models with spatial spillover effects, the ZINB model offered the best 

fit for pedestrian and bicyclists. The model results clearly highlighted the importance of several 

variables including traffic (such as VMT and heavy vehicle mileage), roadway (such as 



 

25 

 

signalized intersection density, length of sidewalks and bike lanes, and etc.) and socio-

demographic characteristics (such as population density, commuters by public transportation, 

walking and cycling) of the targeted and neighboring TAZs. To facilitate a quantitative 

comparison of variable impacts, marginal effects for the ZINB for pedestrians and bicyclists are 

computed. The results revealed the importance in sign and magnitude of the spatial spillover 

effect relative to other exogenous variables. Further, the marginal effects computation allowed us 

to identify factors that substantially increase crash risk for pedestrians and bicyclists. In terms of 

actionable information, it is important to identify zones with high public transit, pedestrian and 

bicyclist commuters and undertake infrastructure improvements to improve safety. 

To be sure, the study is not without limitations. While the influence of spatial spillover effects is 

considered, we do not consider the impact of spatial unobserved effects. Extending the current 

approach to accommodate for unobserved spatial terms will be useful. In this study, we 

considered the distance from urban centers to the TAZ centroids determined purely based on the 

physical characteristics. It would be useful to consider TAZ centroids based on activity facilities. 

Also, it is possible to hypothesize that there might be common unobserved factors that affect 

pedestrian and bicyclists. Future research extensions might consider such unobserved effects in 

the model structure. 

 

Acknowledgments 

The authors would like to thank the Florida Department of Transportation (FDOT) for funding 

this study.  



 

26 

 

Reference 

Abbas, K.A., 2004. Traffic safety assessment and development of predictive models for 

accidents on rural roads in egypt. Accident Analysis & Prevention 36 (2), 149-163. 

Abdel-Aty, M., Lee, J., Siddiqui, C., Choi, K., 2013. Geographical unit based analysis in the 

context of transportation safety planning. Transportation Research Part A: Policy and 

Practice 49, 62-75. 

Abdel-Aty, M.A., Radwan, A.E., 2000. Modeling traffic accident occurrence and involvement. 

Accident Analysis & Prevention 32 (5), 633-642. 

Aguero-Valverde, J., Jovanis, P.P., 2008. Analysis of road crash frequency with spatial models. 

Transportation Research Record: Journal of the Transportation Research Board 2061 (1), 

55-63. 

Brijs, T., Offermans, C., Hermans, E., Stiers, T., Year. Impact of weather conditions on road 

safety investigated on hourly basis. In: Proceedings of the Transportation Research Board 

85th Annual Meeting. 

Carson, J., Mannering, F., 2001. The effect of ice warning signs on ice-accident frequencies and 

severities. Accident Analysis & Prevention 33 (1), 99-109. 

Cheng, L., Geedipally, S.R., Lord, D., 2013. The poisson–weibull generalized linear model for 

analyzing motor vehicle crash data. Safety science 54, 38-42. 

Chin, H.C., Quddus, M.A., 2003. Modeling count data with excess zeroes an empirical 

application to traffic accidents. Sociological methods & research 32 (1), 90-116. 

Dong, C., Clarke, D.B., Yan, X., Khattak, A., Huang, B., 2014a. Multivariate random-parameters 

zero-inflated negative binomial regression model: An application to estimate crash 

frequencies at intersections. Accid Anal Prev 70, 320-9. 

Dong, C., Richards, S.H., Clarke, D.B., Zhou, X., Ma, Z., 2014b. Examining signalized 

intersection crash frequency using multivariate zero-inflated poisson regression. Safety 

Science 70, 63-69. 

Eluru, N., Bhat, C.R., Hensher, D.A., 2008. A mixed generalized ordered response model for 

examining pedestrian and bicyclist injury severity level in traffic crashes. Accident 

Analysis & Prevention 40 (3), 1033-1054. 

Greibe, P., 2003. Accident prediction models for urban roads. Accident Analysis & Prevention 

35 (2), 273-285. 

Gujarati, D.N., 2012. Basic econometrics Tata McGraw-Hill Education. 

Ha, H.-H., Thill, J.-C., 2011. Analysis of traffic hazard intensity: A spatial epidemiology case 

study of urban pedestrians. Computers, Environment and Urban Systems 35 (3), 230-240. 



 

27 

 

Hosseinpour, M., Prasetijo, J., Yahaya, A.S., Ghadiri, S.M.R., 2013. A comparative study of 

count models: Application to pedestrian-vehicle crashes along malaysia federal roads. 

Traffic injury prevention 14 (6), 630-638. 

Hosseinpour, M., Yahaya, A.S., Sadullah, A.F., 2014. Exploring the effects of roadway 

characteristics on the frequency and severity of head-on crashes: Case studies from 

malaysian federal roads. Accident Analysis & Prevention 62, 209-222. 

Hu, S.-R., Li, C.-S., Lee, C.-K., 2011. Assessing casualty risk of railroad-grade crossing crashes 

using zero-inflated poisson models. Journal of Transportation Engineering 137 (8), 527-

536. 

Huang, H., Abdel-Aty, M., Darwiche, A., 2010. County-level crash risk analysis in florida: 

Bayesian spatial modeling. Transportation Research Record: Journal of the 

Transportation Research Board (2148), 27-37. 

Huang, H., Chin, H.C., 2010. Modeling road traffic crashes with zero-inflation and site-specific 

random effects. Statistical Methods & Applications 19 (3), 445-462. 

Jang, H., Lee, S., Kim, S.W., 2010. Bayesian analysis for zero-inflated regression models with 

the power prior: Applications to road safety countermeasures. Accid Anal Prev 42 (2), 

540-7. 

Kumara, S.S., Chin, H.C., 2003. Modeling accident occurrence at signalized tee intersections 

with special emphasis on excess zeros. Traffic Inj Prev 4 (1), 53-7. 

Kweon, Y.-J., 2011. Development of crash prediction models with individual vehicular data. 

Transportation research part C: emerging technologies 19 (6), 1353-1363. 

Lambert, D., 1992. Zero-inflated poisson regression, with an application to defects in 

manufacturing. Technometrics 34 (1), 1-14. 

Lascala, E.A., Gerber, D., Gruenewald, P.J., 2000. Demographic and environmental correlates of 

pedestrian injury collisions: A spatial analysis. Accident Analysis & Prevention 32 (5), 

651-658. 

Lee, J., Abdel-Aty, M., Choi, K., Huang, H., 2015. Multi-level hot zone identification for 

pedestrian safety. Accident Analysis & Prevention 76, 64-73. 

Lee, J., Mannering, F., 2002. Impact of roadside features on the frequency and severity of run-

off-roadway accidents: An empirical analysis. Accident Analysis & Prevention 34 (2), 

149-161. 

Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: A review and 

assessment of methodological alternatives. Transportation Research Part A: Policy and 

Practice 44 (5), 291-305. 



 

28 

 

Lord, D., Miranda-Moreno, L.F., 2008. Effects of low sample mean values and small sample size 

on the estimation of the fixed dispersion parameter of poisson-gamma models for 

modeling motor vehicle crashes: A bayesian perspective. Safety Science 46 (5), 751-770. 

Lord, D., Washington, S., Ivan, J.N., 2005. Poisson, poisson-gamma and zero-inflated regression 

models of motor vehicle crashes: Balancing statistical fit and theory. Accid Anal Prev 37 

(1), 35-46. 

Lord, D., Washington, S., Ivan, J.N., 2007. Further notes on the application of zero-inflated 

models in highway safety. Accident Analysis & Prevention 39 (1), 53-57. 

Maher, M., Mountain, L., 2009. The sensitivity of estimates of regression to the mean. Accident 

Analysis & Prevention 41 (4), 861-868. 

Miaou, S.-P., 1994. The relationship between truck accidents and geometric design of road 

sections: Poisson versus negative binomial regressions. Accident Analysis & Prevention 

26 (4), 471-482. 

Miaou, S.-P., Song, J.J., Mallick, B.K., 2003. Roadway traffic crash mapping: A space-time 

modeling approach. Journal of Transportation and Statistics 6, 33-58. 

Mitra, S., Chin, H.C., Quddus, M.A., 2002. Study of intersection accidents by maneuver type. 

Transportation Research Record: Journal of the Transportation Research Board 1784 (1), 

43-50. 

Mullahy, J., 1986. Specification and testing of some modified count data models. Journal of 

econometrics 33 (3), 341-365. 

National Highway Traffic Safety Administration (NHTSA). Traffic Safety Facts. 2013 Data. 

Pedestrian. http://www-nrd.nhtsa.dot.gov/Pubs/812124.pdf. Accessed 18.06.15.  

National Highway Traffic Safety Administration (NHSTA). Traffic Safety Facts. 2013 Data. 

Bicycle and other Cyclists Safety Facts. http://www-nrd.nhtsa.dot.gov/Pubs/812151.pdf. 

Accessed 18.06.15. 

Narayanamoorthy, S., Paleti, R., Bhat, C.R., 2013. On accommodating spatial dependence in 

bicycle and pedestrian injury counts by severity level. Transportation research part B: 

methodological 55, 245-264. 

Peng, Y., Lord, D., Zou, Y., 2014. Applying the generalized waring model for investigating 

sources of variance in motor vehicle crash analysis. Accident Analysis & Prevention 73, 

20-26. 

Qin, X., Ivan, J.N., Ravishanker, N., 2004. Selecting exposure measures in crash rate prediction 

for two-lane highway segments. Accident Analysis & Prevention 36 (2), 183-191. 



 

29 

 

Quddus, M.A., 2008. Modelling area-wide count outcomes with spatial correlation and 

heterogeneity: An analysis of london crash data. Accident Analysis & Prevention 40 (4), 

1486-1497. 

Rose, C.E., Martin, S.W., Wannemuehler, K.A., Plikaytis, B.D., 2006. On the use of zero-

inflated and hurdle models for modeling vaccine adverse event count data. J Biopharm 

Stat 16 (4), 463-81. 

Shankar, V., Milton, J., Mannering, F., 1997. Modeling accident frequencies as zero-altered 

probability processes: An empirical inquiry. Accident Analysis & Prevention 29 (6), 829-

837. 

Shankar, V.N., Chayanan, S., Sittikariya, S., Shyu, M.-B., Juvva, N.K., Milton, J.C., 2004. 

Marginal impacts of design, traffic, weather, and related interactions on roadside crashes. 

Transportation Research Record: Journal of the Transportation Research Board 1897 (1), 

156-163. 

Siddiqui, C., Abdel-Aty, M., Choi, K., 2012. Macroscopic spatial analysis of pedestrian and 

bicycle crashes. Accident Analysis & Prevention 45, 382-391. 

Wei, F., Lovegrove, G., 2013. An empirical tool to evaluate the safety of cyclists: Community 

based, macro-level collision prediction models using negative binomial regression. 

Accident Analysis & Prevention 61, 129-137. 

Zajac, S.S., Ivan, J.N., 2003. Factors influencing injury severity of motor vehicle–crossing 

pedestrian crashes in rural connecticut. Accident Analysis & Prevention 35 (3), 369-379. 

 


