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Eluru and Bhat   

ABSTRACT 

This paper formulates a comprehensive econometric structure that recognizes two important 

issues in crash-related injury severity analysis. First, the impact of a factor on injury severity 

may be moderated by various observed and unobserved variables specific to an individual or to a 

crash. Second, seat belt use is likely to be endogenous to injury severity. That is, it is possible 

that intrinsically unsafe drivers do not wear seat belts and are the ones likely to be involved in 

high injury severity crashes because of their unsafe driving habits.  

The preceding issues are considered in the current research effort through the 

development of a comprehensive model of seat belt use and injury severity that takes the form of 

a joint correlated random-coefficients binary-ordered response system. To our knowledge, this is 

the first instance of such a model formulation and application not only in the safety analysis 

literature, but in the econometrics literature in general. The empirical analysis is based on the 

2003 General Estimates System (GES) data base. Several types of variables are considered to 

explain seat belt use and injury severity levels, including driver characteristics, vehicle 

characteristics, roadway design attributes, environmental factors, and crash characteristics. The 

results, in addition to confirming the effects of various explanatory variables, also highlight the 

importance of (a) considering the moderating effects of unobserved individual/crash-related 

factors on the determinants of injury severity and (b) seat belt use endogeneity. From a policy 

standpoint, the results suggest that seat belt non-users, when apprehended in the act, should 

perhaps be subjected to both a fine (to increase the chances that they wear seat belts) as well as 

mandatory enrollment in a defensive driving course (to attempt to change their aggressive 

driving behaviors).  

 

Keywords: seat belt use, crash injury severity, random coefficients, selective recruitment, 

discrete choice models with endogeneity. 
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1.  INTRODUCTION 

Traffic crashes result in several fatalities everyday on U.S. roadways, and those who manage to 

survive crashes are faced with such potential consequences as mental trauma, pain, expensive 

medical costs, and increased insurance premiums (Cohen and Einav, 2003; Chang and 

Mannering, 1999). The society as a whole is also at a loss, both economically and emotionally, 

because of these incidents.  

The injury severity sustained by individuals in traffic crashes is influenced by a multitude 

of factors, including vehicle characteristics, roadway design characteristics, driver behavior and 

physiological characteristics, angle of collision, driver use of alcohol or drugs, and driver use of 

restraint systems. It is essential to quantify the relative magnitudes of the impact of these factors 

on accident severity, so that measures to prevent or reduce accident severity can be identified and 

implemented. The current study contributes toward this end by formulating, and estimating, a 

comprehensive model of injury severity.  

The methodology in the paper recognizes two important econometric issues in safety 

analysis. First, the impact of a factor on injury severity may be moderated by various observed 

and unobserved variables specific to an individual or to a crash. For instance, the effectiveness of 

seat belt use in reducing injury severity may be higher for teenagers with their relatively 

unconventional driving styles. This is a case of age, an attribute available in crash data bases, 

impacting the influence of seat belt use on injury severity. In a similar vein, the physical frame or 

precise sitting posture of an individual may have an association with seat belt effectiveness. This 

is an instance where unobserved characteristics (physical frame and sitting posture) moderate the 

effectiveness of seat belt use in reducing injury severity. In general, one could argue that there 

are several subtle, unobserved, characteristics that moderate the effect of factors influencing 
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injury severity. Ignoring such unobserved heterogeneity can, and in general will, result in 

inconsistent estimates in nonlinear models (see Chamberlain, 1980; Bhat, 2001). The second 

issue addressed in our econometric framework is the endogeneity of seat belt use to injury 

severity (also referred to as selective recruitment in the safety analysis literature; see Evans, 1996 

and Derrig et al., 2000). That is, seat belt non-users may be intrinsically unsafe drivers. For 

example, Janssen (1994) provides empirical evidence that seat belt non-users drive significantly 

faster than seat belt users, after controlling for gender, age, annual kilometerage, and number of 

years of possession of driver’s license. Petridou and Moustaki (2000) and Shinar (1993) also 

allude to this risk taking behavior of seat belt non-users. Thus, it is quite likely that seat belt non-

users are the ones likely to be involved in high injury severity crashes because of their unsafe 

driving habits. If this sample selection is ignored (as has been done in several previous studies), 

the result is an artificially inflated estimate of the effectiveness of the seat belt use.  

 The methodology used in the paper to address the two econometric issues discussed 

above takes the form of a joint binary logit-ordered logit structure with random coefficients. In 

particular, seat belt use is modeled using a binary logit structure, while injury severity is modeled 

using an ordered response structure. A host of driver characteristics, vehicle characteristics, 

roadway design attributes, environmental characteristics, and crash characteristics, and the 

interactions of these characteristics, are considered in the joint model. The moderating influence 

of unobserved factors associated with the impact of these attributes is accommodated by 

imposing a random coefficients structure in the ordered logit model. The potential self selection 

in seat belt use based on injury severity propensity is considered by tying the binary seat belt use 

component and the ordered response injury severity component of the joint model through a 

common unobserved random term. The joint model is subsequently applied in an empirical 
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analysis that uses data from the 2003 General Estimates System (GES), a nationally 

representative sample of police-reported crashes of all types in the U.S.  

The rest of this paper is structured as follows. The next section provides an overview of 

the crash-related injury severity modeling literature, and positions the current study in the 

context of earlier studies. Section 3 presents the econometric framework. Section 4 discusses the 

data source and sample used in the empirical analysis. Section 5 presents the empirical results. 

Section 6 concludes the paper by summarizing the important findings and identifying policy 

implications. 

 

2.  EARLIER STUDIES 

Crash injury severity has been extensively researched in the safety analysis literature. Section 2.1 

reviews earlier injury severity studies that do not consider seat belt use as an endogenous 

variable, while Section 2.2 discusses earlier research studies that either model, or extensively 

discuss the need to consider, seat belt use as an endogenous variable in analyzing injury severity. 

Section 2.3 provides a summary and positions the current research. 

 

2.1  Seat Belt Use Not Considered Endogenous to the Modeling Framework  

A number of studies have examined crash-related injury severity, while considering seat belt use 

and several other attributes as exogenous variables. Most of these injury severity studies 

undertake the analysis at the level of individual accidents, rather than using an aggregate-level 

dependent variable such as the number of annual accidents in a county or state (but see Lourens 

et al., 1999; Doherty et al., 1998; and Derrig et al., 2000 for examples of aggregate-level 

studies). The reason for using a disaggregate-level analysis (i.e., an analysis at the level of 
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individual accidents) is that it better captures the fundamental relationship between accident 

severity and its determinants, rather than capturing spurious correlations from ignoring the 

heterogeneity of accidents in an aggregate-level analysis (see Kassoff and Deutschman, 1969 for 

an extensive discussion). Within the group of disaggregate-level injury severity studies, the early 

research efforts (those before 2000) applied frameworks such as log-linear analysis (Golob et al., 

1986; Kim et al., 1994; Abdel-Aty et al., 1998), factorial analysis (see McLellan et al., 1996) 

and descriptive analysis (Evans, 1990; Evans and Frick, 1988; Cooper, 1994; Huelke and 

Compton, 1995). In the past several years, however, almost all injury severity studies have used 

a discrete variable framework because accident reports collect injury severity in discrete 

categories. 

The discrete variable studies of crash-related injury severity have used one or more of the 

following five categories of variables: (1) Driver attributes (including demographics and such 

behavioral characteristics as seat belt use and drug/alcohol use), (2) Characteristics of the 

vehicle(s) involved in the crash (vehicle weight and type of vehicle(s)), (3) Roadway design 

attributes (number of lanes, grade, alignment, presence of shoulders, lane widths and speed 

limits), (4) Environmental factors (weather, lighting conditions, time of day, etc.), and (5) Crash 

characteristics (manner of collision, role of vehicle in crash, whether there was a roll-over of one 

or more vehicles, whether driver was ejected, etc.).  A review of the earlier discrete choice 

studies of injury severity, and the categories of variables considered in each study, is presented in 

Table 1.  

Three important observations may be made from Table 1. First, except for the studies by 

Chang and Mannering (1999) and Ulfarsson and Mannering (2004), none of the earlier studies 

has comprehensively considered all the five categories of variables. Second, the two most 
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prevalent structures used to examine injury severity are logistic regression models and ordered-

response models. The logistic regression models are binary logit models that focus on whether or 

not there is a severe injury associated with a crash (severe injury is defined either as a fatality or 

some other severe characterization of injury). The ordered-response models consider the entire 

range of injury severity levels and, therefore, capture and provide more injury severity 

information (relative to the logistic regression models). The ordered-response models used in the 

past for injury severity analysis take the form of either an ordered-response logit or an ordered-

response probit structure. Both these ordinal model forms are essentially equivalent, and differ 

only in whether a logistic or a normal distribution is used for the stochastic component in the 

latent propensity that is assumed to underlie the observed injury severity.1 Third, none of the 

existing studies allow randomness in the effects of injury severity determinants due to the 

moderating influence of unobserved factors. Srinivasan (2002) allows randomness due to 

unobserved factors in the threshold bounds that relate the underlying latent injury severity 

propensity to the observed injury severity categories, but does not address the randomness in the 

effects of injury severity determinants. Of course, none of the studies in Table 1 also consider 

seat belt as being endogenous in their modeling frameworks.  

 

 

 

                                                 
1 While the ordered-response models have been used only within the past 7-8 years in the safety analysis literature, 
they have a long history of use in other transportation contexts; see Kitamura and Bunch (1990), Bhat (1991), and 
Bhat and Koppelman (1993). The reader will also note that the ordered-response model is perhaps more suited than 
the multinomial logit model for injury severity because of the correlation between adjacent injury severity levels. 
However, a limitation of the ordered-response structure is that it imposes a certain kind of monotonic effect of 
exogenous variables on injury severity levels (see Bhat and Pulugurta, 1998 for a detailed exposition of the 
relationship between ordered and unordered response models). Ideally, one would consider an ordered generalized 
extreme value model for injury severity that combines the flexibility offered by the unordered-response structure 
with the proximate covariance characteristic due to the ordinality in the injury severity levels. The authors are 
currently undertaking a research study to compare such an OGEV structure with an ordered-response structure. 
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2.2  Seat Belt Endogenous to the Modeling Framework  

A number of earlier studies have alluded to the “selective recruitment” of seat belt non-users in 

crashes involving severe injuries. One of the early studies that discusses the selective recruitment 

(or sample selection) issue conceptually is Evans (1985). However, the first empirical validation 

of the sample selection hypothesis appears to have been undertaken by Evans (1996), who used a 

probability sample of police-reported crashes in the U.S. between 1982-1991 from the National 

Accident Sampling System (NASS) to examine the relationship between crash severity and seat 

belt use. Evans measured crash severity in terms of the change in velocity due to the crash, 

which itself was inferred using structural equations based on the level of vehicle deformation in 

the crash. Evans’ results indicated an over-representation of unbelted drivers in high crash 

severity accidents. To the extent that crash severity level is correlated with injury severity level, 

Evans’ results provide evidence that unbelted drivers are intrinsically more likely to be involved 

in high injury severity crashes. Evans concludes that seat belt effectiveness is overestimated by a 

large amount if the sample selection is not accounted for. 

Another study that indirectly provides support for the sample selection hypothesis is Dee 

(1997), who examined why seat belt laws that increased seat belt usage sharply in the late 1980s 

and early 1990s had a relatively small impact on crash-related fatalities. One of the hypotheses 

he considered to explain this apparent paradox was that of sample selection. That is, unsafe 

drivers are more likely than the general population to continue not to wear seat belts even after 

passage of seat belt laws. If such unsafe drivers are also more likely to be involved in severe 

crashes, the net result would only be a small impact on crash-related fatalities. To test the 

hypothesis, Dee used the Center for Disease Control and Prevention’s (CDC) annual Behavioral 

Risk Factor Surveillance System (BRFSS) telephone surveys collected between 1985-1993. Dee 
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compared the reported seat belt usage of crash-prone individuals and the general population after 

the passage of seat belt laws. His analysis provides evidence that crash-prone individuals are 

more likely not to wear seat belts than the general population after the enactment of seat belt 

laws, a finding consistent with the sample selection hypothesis.  

Cohen and Einav (2003) examined the impact of seat belt usage on crash-related vehicle 

occupant fatalities using data from the Fatality Analysis Reporting System (FARS) collected 

between 1983 and 1997. The FARS data on traffic fatalities were aggregated to obtain the total 

number of annual fatalities by U.S. state. The authors then used a log-linear regression model to 

relate the logarithm of the number of occupant fatalities per vehicle mile of travel in each state to 

(1) the seat belt usage rate in the state (2) a set of demographic, traffic density, crime and fuel tax 

rate control variables in the state, (3) fixed state effects to control for the potential endogeneity of 

usage rate (for example, states with high crash related fatalities may institute enforcement 

strategies that influence usage rates) and (4) fixed year effects. In addition, to address 

endogeneity of seat belt usage rates, the authors instrumented the usage rate through variables 

related to mandatory seat belt laws. The overall finding from this aggregate level analysis is that 

ignoring seat belt usage rate endogeneity leads to a substantial bias in the effect of seat belt usage 

rate on the logarithm of per-capita vehicle occupant fatalities.  

 It is interesting that the three sample selection studies discussed above have been based 

on a simple univariate descriptive analysis (Evans, 1996), or a simple examination of seat belt 

usage between pre-defined accident prone groups and the general population (Dee, 1997), or an 

aggregate level analysis that can mask heterogeneity in crash outcomes and characteristics 

(Cohen and Einav, 2003).  
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2.3  Summary of Earlier Studies and the Current Research 

The overview of the literature indicates the substantial earlier research on crash-related injury 

severity determinants. Increasingly, the methodology of choice for modeling injury severity is 

the ordered-response framework, which recognizes the ordinal nature of injury severity in police-

reported accidents. However, the ordered-response models need to be enhanced to (1) 

comprehensively consider interactions among groups of potential determinants of injury severity, 

(2) allow randomness in the effects of injury severity determinants due to the moderating 

influence of unobserved factors, (3) recognize the potential, and very likely, endogeneity of seat-

belt use in injury severity modeling, and (4) accommodate the potential randomness in the effect 

of seat belt use on injury severity. It is indeed surprising, in particular, that there have been very 

few studies to date that recognize the potential endogeneity of seat belt use. The handful of 

studies that do so are focused toward testing the selective recruitment hypothesis using 

univariate, descriptive, and aggregate analyses, rather than the multivariate, methodologically 

rigorous, and disaggregate discrete choice framework adopted by the studies that do not consider 

seat belt endogeneity. 

In this paper, we bring the two streams of earlier work (those that do not consider seat 

belt endogeneity and those that do) together by developing a comprehensive, multivariate, 

methodologically rigorous, and disaggregate-level model of seat belt use and injury severity that 

takes the form of a joint correlated random-coefficients binary-ordered response system. This 

joint system is formulated as a mixing model that conveniently, and at once, considers all the 

issues of (1) systematic interaction effects among variables, (2) random unobserved effects in the 

influence of injury severity determinants, (3) potential endogeneity of seat belt use in modeling 

injury severity level, and (4) random variations in seat belt use effectiveness. To our knowledge, 
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this is the first instance of such a model formulation and application not only in the safety 

analysis literature, but in the econometrics literature in general.  In addition to the 

methodological considerations, we consider a comprehensive set of potential determinants of 

injury severity in the empirical analysis. The focus in the analysis is exclusively on driver injury 

severity (as opposed to the injury severity of other vehicle occupants). 

 

3.  ECONOMETRIC FRAMEWORK 

3.1  Model Structure 

Let q (q = 1, 2, …, Q) be an index to represent drivers and let k (k = 1, 2, 3, …, K) be an index to 

represent injury severity. The index k, for example, may take values of “no injury” (k = 1), 

“possible injury” (k = 2), “non-incapacitating injury” (k = 3), “incapacitating injury” (k = 4), and 

“fatal injury” (k = 5), as in the empirical analysis in the current paper. The equation system for 

the joint driver seat belt use and injury severity model is: 

qqqqq xs εηγβ ++′+′= )(* , 1=qs  if 0* >qs ; 0=qs  otherwise                                  

qqqqqqqq swzy ξλµθηδα ++′++±′+′= )()(* , kyq =  if kqk y ψψ <<−
*

1                                    (1) 

The first equation is associated with the latent propensity *
qs  of seat belt use for driver q. 

qs  is the actual observed seat belt use by driver q, and qx  is an (M x 1)-column vector of 

attributes (including a constant) associated with driver q (for example, sex, age, soberness status, 

etc.) and driver q’s trip environment (for example, roadway speed limits, time-of-day, etc.). β  

represents a corresponding (M x 1)-column vector of mean effects of the elements of qx  on seat 

belt use propensity, while qγ  is another (M x 1)- column vector with its mth element representing 
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unobserved factors specific to driver q and her/his trip environment that moderate the influence 

of the corresponding mth element of the vector qx . qη  captures common unobserved factors 

influencing driver q’s seat belt use propensity and the driver’s injury severity propensity (for 

instance, an intrinsically cautious and responsible driver is likely to wear seat belts and drive 

defensively, incurring less severe injuries in crashes). qε  is an idiosyncratic random error term 

assumed to be identically and independently standard logistic distributed across individuals q. 

The second equation is associated with the latent propensity *
qy  associated with the injury 

severity sustained by driver q in the accident. This latent propensity *
qy  is mapped to the actual 

injury severity level qy  by the ψ  thresholds ( −∞=0ψ  and ∞=kψ ) in the usual ordered-

response fashion. qz  is an (L x 1) column vector of attributes (not including a constant and not 

including seat belt use) that influences the propensity associated with injury severity. α  is a 

corresponding (L x 1)-column vector of mean effects, and qδ  is another (L x 1)-column vector of 

unobserved factors moderating the influence of attributes in qz  on the injury severity propensity 

for driver q. θ  is a scalar constant, qw  is a set of driver/crash attributes that moderate the effect 

of seat belt use on injury severity, and µ  is a corresponding vector of coefficients. qλ  is an 

unobserved component influencing the impact of seat belt effectiveness for driver q, and qξ  is an 

idiosyncratic random error term assumed to be identically and independently standard logistic 

distributed across individuals q. 

 The ±  sign in front of qη  in the injury severity equation indicates that the correlation in 

unobserved factors between seat belt use and injury severity may be positive or negative. A 

positive sign implies that drivers who use seat belts are intrinsically more likely to incur severe 
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injuries in crashes, while a negative sign implies that drivers who use seat belts are intrinsically 

less likely to incur severe injuries in accidents. Clearly, we expect, from an intuitive standpoint, 

that the latter case will hold. However, one can empirically test the models with both ‘+’ and ‘−’ 

signs to determine the best empirical result. Of course, if the correlation between the seat belt use 

and injury severity propensities is ignored, when actually present, it results in a “corrupt” 

estimation of the effectiveness of seat belt use in reducing injury severity. More specifically, if 

the unobserved correlation between seat belt use and injury severity propensities is negative, as 

we expect, ignoring this correlation would result in an inflated effectiveness of seat belt use in 

reducing injury severity. 

To complete the model structure of the system in Equation (1), we need to specify the 

structure for the unobserved vectors qγ  and qδ , and the unobserved scalars qλ  and qη . In the 

current paper, we assume that the qγ  and qδ  elements, and qλ  and qη , are independent 

realizations from normal population distributions; ),0(~ 2
mqm N σγ , ),0(~ 2

lql N ωδ , 

),0(~ 2τλ Nq , and ),0(~ 2υη Nq . 

 

3.2  Model Estimation 

The parameters to be estimated in the joint model system of Equation (1) are the β , α  and µ  

vectors, the θ  scalar, the ψ  thresholds, and the following variance terms: 2
mσ , 2

lω , 2τ , and 2υ . 

Let Ω  represent a vector that includes all these parameters to be estimated. Also, let qc  be a 

vector that vertically stacks the qγ  and qδ  vectors, and the qλ  and qη  scalars. Let Σ  be another 

vertically stacked vector of standard errors mσ , lω , τ , and υ , and let Σ−Ω  represent a vector of 
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all parameters except the standard error terms. Finally, let 12 −= qq sg . Then, the likelihood 

function, for a given value of Σ−Ω  and error vector qc , may be written for driver q as: 

{ }[ ]

{ }[ ] { }[ ]{ } ,  )()()()( 

)()|(

1
qkd

qqqqqqkqqqqqqk

qqqqqq

swzGswzG

xgGcL

ηλµθδαψηλµθδαψ

ηγβ

±+++′+′−−±+++′+′−

×+′+′=Ω

−

Σ−  (2) 

where G(.) is the cumulative distribution of the standard logistic distribution and qkd  is a dummy 

variable taking the value 1 if driver q sustains an injury of level k and 0 otherwise. Finally, the 

unconditional likelihood function can be computed for driver q as: 

)|()|)(()( ΣΩ=Ω ∫ Σ− qq

qc
qq cdFcLL ,                                                                                             (3) 

where F is the multidimensional cumulative normal distribution. The log-likelihood function is 

∑ Ω=Ω
q

qLL )()( .                                                                                     (4) 

The likelihood function in Equation (3) involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in qc . This multi-dimensional integration cannot be 

accomplished using general purpose numerical methods such as quadrature, since quadrature 

techniques cannot evaluate the integrals with sufficient precision and speed for estimation via 

maximum likelihood (see Hajivassiliou and Ruud, 1994).  

We apply simulation techniques to approximate the integrals in the likelihood function 

and maximize the logarithm of the resulting simulated likelihood function across individuals 

with respect to Ω . The simulation technique approximates the likelihood function in Equation 

(4) by computing the )|( qq cL Σ−Ω  for each q at different realizations of qc  drawn from a 
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multivariate normal distribution, and computing the individual likelihood function by averaging 

over the different values of the integrand across the different realizations. Notationally, if 

)(Ωh
qSL  is the realization of the likelihood function in the hth draw (h = 1, 2, …, H), then the 

individual likelihood function is approximated as: 

∑
=

Ω=Ω
H

h

h
qq SL

H
SL

1

)(1)( ,                           (5) 

where )(ΩqSL  is the simulated likelihood function for the qth observation, given the parameter 

vector Ω . )(ΩqSL  is an unbiased estimate of the actual likelihood function )(ΩqL . Its variance 

decreases as H increases. It also has the appealing properties of being smooth (i.e., twice 

differentiable) and being strictly positive for any realization of draws. 

The simulated log-likelihood is constructed as: 

∑ Ω=Ω
q

qSLSL )](ln[)( .                           (6) 

The parameter vector Ω  is estimated as the value that maximizes the above simulated 

function. Under rather weak regularity conditions, the maximum (log) simulated likelihood 

(MSL) estimator is consistent, asymptotically efficient, and asymptotically normal (see 

Hajivassiliou and Ruud, 1994; Lee 1992). 

In the current paper, we use a quasi-Monte Carlo (QMC) method proposed by Bhat 

(2001) for discrete choice models to draw realizations for qc  from its population multivariate 

distribution. QMC methods are similar to the familiar Monte Carlo method in that they evaluate 

a multidimensional integral by replacing it with an average of values of the integrand computed 

at discrete points (see Equation 5). However, rather than using pseudo-random sequences for the 

discrete points, the QMC approach uses “cleverly” crafted non-random and more uniformly 
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distributed sequences (labeled as QMC sequences) within the domain of integration. The 

underlying idea of the QMC methods is that it is really inconsequential whether the discrete 

points are truly random; of primary importance is the even distribution (or maximal spread) of 

the points in the integration space. Within the broad framework of QMC sequences, we 

specifically use the Halton sequence in the current analysis.  

 

4.  DATA 

4.1  Data Source 

The data source used in this study is the 2003 General Estimates System (GES) obtained from 

the National Highway Traffic Safety Administration’s National Center for Statistics and 

Analysis. The GES consists of data compiled from a sample of police-reported accidents that 

involve at least one motor vehicle traveling on a traffic way and resulting in property damage, 

injury, or death. The GES data are drawn from accidents in about 60 areas across the U.S. that 

reflect the geography, population, and traffic density of the U.S. (the reader is referred to 

ftp://ftp.nhtsa.dot.gov/GES/GES03/SAS for comprehensive details of how the accident reports 

are collected and compiled). The 2003 GES includes information regarding 60,000 accidents 

involving about 150,000 individuals and 100,000 vehicles.  

A number of accident-related attributes are collected for each accident in the GES, 

including the characteristics of the drivers involved, vehicle characteristics, roadway design 

attributes, environment attributes, and crash characteristics. The injury severity of each 

individual involved in the accident is collected on a five point ordinal scale: (1) No injury, (2) 

possible injury, (3) Non-incapacitating injury, (4) Incapacitating injury, and (5) Fatal injury. 
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4.2  Sample Description 

In the current analysis, we examine seat belt usage and injury severity of drivers of passenger 

vehicles. The focus on drivers is because seat belt usage data is better recorded for drivers than 

for non-drivers. We also confined our attention to non-commercial drivers because of potential 

systematic differences between commercial and non-commercial drivers (commercial drivers are 

professionally trained and have to follow company-related and insurance-related driving 

protocols). Finally, our analysis is confined to crashes (accidents involving collision with a fixed 

object or other vehicles rather than non-collision accidents such as rolling over) and further to 

the vast majority of crashes in which one or two vehicles are involved.  

The final data sample of non-commercial driver crashes consisted of about 50,000 

records. Of these, 11,388 records were sampled so that the distribution of injury severity in this 

smaller sample was about the same as the weighted distribution of injury severity in the full 

sample of about 50,000 records (The weighted full GES dataset is intended to replicate the 

overall national statistics of crashes and injury severity). The seatbelt use in the weighted sample 

is as follows: used seat belts (93.2%) and did not use seat belts (6.8%).2 The distribution of 

injury severity across the observations and by seat belt use is provided in Table 2. Clearly, the 

table shows a negative association between seat belt use and injury severity. One of the issues to 

be addressed in this research is to estimate how much of the association is due to “true” seat belt 

use effectiveness and how much is due to “spurious” effects.  

                                                 
2 The seat belt use rate of 93.2% in the GES sample is on the high side relative to national seat belt use rates, 
perhaps due to potential misreporting/misrecording of seat belt use. As indicated by Schiff and Cummings (2004), 
police officers often classify unbelted survivors as belted when they were actually not. Given that there s a much 
higher proportion of survivors from crashes, the Schiff and Cummins study implies that seat belt use percentage will 
be much higher than it should be, as is the case in the current sample. Thus, the estimated effectiveness of seat belt 
use in reducing injury severity should be viewed with caution in the current study. However, this issue should not 
detract from the analysis in the paper of how much the seat belt effectiveness may be attributed to the “true” value of 
restraint systems and how much may be due to the spurious effect of seat belt non-users intrinsically being more 
risky drivers who get themselves into more severe accidents. 
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5.  EMPIRICAL ANALYSIS 

5.1  Variables Considered 

Several types of variables were considered in the empirical analysis, including driver 

characteristics, vehicle characteristics, roadway design attributes, environmental factors, and 

crash characteristics.  

 Driver characteristics included driver demographics (age and sex) and driver alcohol 

use3. The only vehicle characteristics included in the current study are the vehicle types involved 

in the crash (the vehicle types include passenger cars, sports utility vehicles, pick up trucks, and 

minivans). Other vehicle characteristics, such as vehicle weight, vehicle speed just before 

impact, and seating configuration, are either not available in, or missing for a large fraction of, 

the GES data. The roadway design attributes considered in the analysis are speed limit and 

roadway functional class (whether the accident occurred on an interstate highway, or arterial, or 

other roads). Again, additional roadway design attributes, such as number of lanes, alignment of 

roads, and grade and shoulder widths, could not be included because of the absence of data, or 

the large fraction of missing data, on these variables in the GES. Environmental factors related to 

the crash that were considered included day of the week, time of day4, lighting conditions (dawn, 

daylight, dusk, dark, and dark and lit), and weather conditions (no adverse weather, rain, snow, 

and fog). Finally, the crash characteristics included whether or not the person was ejected from 

the vehicle, if the vehicle rolled over, whether the crash was with a stationary object or another 

vehicle, and the manner of collision in crashes with another vehicle (head-on, rear end, angle, 

sideswipe when traveling in the same direction, and sideswipe when traveling in opposite 
                                                 
3 The GES data included information on drug use and airbag use. However, a large fraction of records had missing 
information on these variables, as well as their imputed counterparts. So we excluded these driver behavior variables 
from consideration. However, data was available for almost all records for an imputed version of driver alcohol use. 
4 Time of day is represented in the following five categories: early morning (12am-6am), AM peak (6am-9am), 
midday (9am-3pm), PM peak (3pm-7pm), and evening (7pm-12pm). 
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directions), and the role of the driver’s vehicle in crashes with another vehicle (i.e., whether the 

driver’s vehicle struck the other vehicle,  or the driver’s vehicle was struck by the other vehicle, 

or both vehicles struck each other). 

 In addition to the five groups of variable discussed above, we also considered several 

interaction effects among the variables in both the seat belt use and injury severity model. The 

final specification was based on a systematic process of removing statistically insignificant 

variable and combining variables when their effects were not significantly different. The 

specification process was also guided by prior research and intuitiveness/parsimony 

considerations. We should also note here that, for the continuous variables in the data (such as 

age and speed limits), we tested alternative functional forms that included a linear form, a spline 

(or piece-wise linear) from, and dummy variables for different ranges. 

 

5.2  Model Specification 

We estimated three different models in the research effort: (1) a simple binary choice logit for 

seat belt use and an independent ordered response logit for injury severity, which we will refer to 

as the independent binary ordered (IBO) model, (2) a random coefficients binary choice logit for 

seat belt use and an independent random coefficients ordered response logit for injury severity, 

which we will refer to as the independent random binary-ordered model (IRBO), and (3) a 

random coefficients binary choice logit for seat belt use and a correlated random coefficients 

ordered response logit for injury severity, which we will label as the correlated random binary-

ordered (CRBO) model. In the context of the model formulation in Section 3.1, the IBO model 

imposes the assumptions that 02 =mσ  for all m, 02 =lω  for all l, and 022 ==υτ . The IRBO 

model imposes the assumption that 02 =υ .  
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 The final specifications of the random-coefficients in the seat belt use and injury severity 

components of the IRBO and the CRBO models were obtained after extensive testing. In the 

following presentation of empirical results, we will discuss only the CRBO models for the sake 

of presentation ease. However, we will use the IBO and IRBO models as yardsticks to evaluate 

the performance of the CRBO model. 

 

5.3  Estimation Results 

5.3.1 Seat Belt Use Component 

Table 3 provides the results of the seat belt use component of the CRBO model (the coefficients 

represent the effects of the variables on the latent propensity to wear seat belts).  

The specific effects of the driver characteristics indicate that men, younger individuals 

(Age < 25 years), and those driving under the influence of alcohol are less likely to use seat-belts 

compared to women, older individuals (Age ≥ 25 years) and those not driving under the 

influence of alcohol, respectively (these results are consistent with earlier seat belt use studies; 

for example, see Reinfurt et al., 1996 and Preusser et al., 1991).5 The effects of the vehicle 

characteristics indicate that individuals driving a pick-up are the least likely ones to wear a seat 

belt, while sports utility vehicle (SUV) drivers are the most likely to wear seat belts. This 

association between vehicle type and seat belt-use is perhaps the manifestation of the link 

between safety consciousness and type of vehicle owned. Finally, the time of day variables 

suggest that drivers are more likely to wear seat belts during the midday (9am-3pm) and PM 

peak periods (3pm-7pm) than the early morning (12am-6am), AM peak (6am-9am) and evening 

                                                 
5 We examined differential effects of teenagers (≤ 19 years of age) and adults between the ages of 20 and 24 years. 
However, we did not find statistically different propensities to wear seat belts between these two age groups, and so 
combined these two age groups into a single “age < 25 years” category. 
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(7pm-12am) periods. The higher non-use of seat belts during the early morning and evening 

periods may be the result of fewer law-enforcement officials on the streets during these times. 

5.3.2 Injury Severity Component 

Table 4 presents the results of the injury severity component of the CRBO model (the parameters 

indicate the effects of variables on the latent propensity associated with injury severity). The 

results are discussed by variable group. 

 

5.3.2.1 Driver Characteristics  The impact of driver characteristics show significant variations 

based on demographics and alcohol influence. In particular, men and young adults (< 25 years of 

age) are less likely to sustain severe injuries relative to women and older adults, respectively, a 

result also observed in earlier studies of injury severity (see, for example, O’Donnell and 

Connor, 1996; Kim et al., 1994; and Srinivasan, 2002).6 The likelihood of being injured severely 

is highest for women over 74 years of age, while the likelihood of not being injured severely is 

highest for men younger than 25 years of age. Consistent with the findings from earlier studies 

and intuition, drivers under the influence of alcohol are likely to be more severely injured than 

those who are sober. 

 

5.3.2.2 Vehicle Characteristics  The type of the driver’s vehicle as well as the vehicle type of the 

other vehicle involved in dual-vehicle crashes were considered in the injury severity component 

of the joint model. In addition to main effects, combinations of the driver vehicle type and the 

other vehicle type, and interactions of vehicle type with all the four other variable groups, were 

                                                 
6 As for the case of seat belt use, we examined differential injury severity effects for teenagers (≤ 19 years of age) 
and adults between the ages of 20 and 24 years. However, due to the lack of statistically different injury severity 
propensities between the two age groups, they were combined into a single “age < 25 years” category. 
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considered. The final specification, however, comprised only three variables related to vehicle 

type (see Table 4). The results show that drivers in sedans are likely to be injured more severely 

in crashes compared to drivers in other vehicle types (SUVs, pick-up trucks, and minivans). This 

is particularly the case in the presence of snow and/or fog, and in crashes where the driver’s 

sedan is struck by a non-sedan.  

 

5.3.2.3 Roadway Attributes  The only roadway design attributes considered in the current 

analysis are speed limit and roadway functional class (and interactions of the two). However, 

once speed limit was controlled for, roadway functional class did not have any additional 

significant effects, because of the strong correlation between speed limits and roadway 

functional class. The results indicate that, on average, driver injury tends to be most severe for 

crashes on medium-to-high speed limit roads (26-64 mph). Also, driver injury from crashes tends 

to be, on average, more severe on high speed limit (≥ 65 mph) roads relative to low speed limit 

(≤ 25 mph) roads. These patterns may be a reflection of two issues. First, vehicle speeds are 

higher on the roads with high speed limits, because of which injury severity is higher on such 

roads. Second, there are several design factors associated with roads with very high speed limits 

(≥ 65 mph) that can temper the seriousness of injuries from a crash. For instance, roads with high 

speed limits have wider lanes, more lanes, and wide shoulders that may present drivers the 

opportunity to take last minute evasive measures to reduce injury severity. It is also interesting, 

however, to note the wide variation in injury severity propensity across crashes on high speed 

roads (note the large standard deviation relative to the mean on the high speed limit coefficient in 

the table). This indicates that, while injury severity on high speed roads may be low for some 
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crashes because of roadway characteristics, it can also be very high for some crashes because of 

the vehicle speed. 

 

5.3.2.4 Environmental Factors  The results associated with environmental factors indicate that 

crashes occurring during the day (6am-7pm) tend to be less severe than those occurring during 

other times of the day. This may be because of higher traffic volumes on the roads during the 

day, resulting in drivers being more alert as well as traveling at slower speeds (note that this 

lower injury severity crashes during the day cannot be attributed to higher seat belt use, since 

seat belt use is included as a variable in the analysis; see Section 5.3.2.7). 

The remaining parameters characterizing the effects of the crash environment in Table 4 

suggest lower injury severity levels in dusk or dark lighting conditions (relative to dawn, 

daylight, and dark but lit lighting conditions) and under adverse weather conditions (relative to 

normal weather conditions). These results, while initially counter intuitive, are presumably 

capturing the vehicle speed effect. That is, drivers are likely to travel slower under poor lighting 

and adverse weather conditions. It is also important to note the large standard deviation on the 

“dark” variable, which indicates a wide dispersion in injury levels sustained under dark lighting 

conditions. 

 

5.3.2.5 Crash Characteristics  Several crash characteristics are strong determinants of injury 

severity. As expected, a driver ejected from her/his vehicle or in a vehicle that rolled over is 

likely to sustain severe injuries. The “crash with a stationary object” group of variables and the 

“manner of collision in two vehicle crashes” group of variables need to be considered together. 

The results indicate that, on average, crashes with a stationary large object (such as a concrete 
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traffic barrier, post, pole, culvert, ditch, trees, etc.) and head-on collisions with another vehicle 

are most dangerous, followed by crashes with a stationary small object (such as a fire hydrant, 

shrubbery, boulder, curb, guard rail, etc.) and angle collisions with another vehicle (see 

O’Donnell and Connor, 1996 for similar results). Rear-end collisions with another vehicle are 

less severe than stationary object and head-on/angle collisions with another vehicle, but more 

severe than swipe collisions with another vehicle. There is also a large standard deviation of the 

“angle” coefficient; the mean and the standard deviation of this coefficient imply that, in a 

majority of cases (88%), angle crashes are less severe than head-on collisions. But, about 12% of 

the time, angle crashes lead to higher injury severity than head-on crashes. Finally, in the set of 

crash characteristics, the “vehicle role in two vehicle crashes” group of variables suggests a 

higher injury severity level if the driver is struck, or is struck and strikes another vehicle, relative 

to striking another vehicle. 

 

5.3.2.6 Seat Belt Use and Sample Selection Effect The empirical results showed no observed or 

unobserved differences in seat belt effectiveness across seat belt wearers in the injury severity 

equation for each of the IBO, IRBO and CRBO models (i.e., the elements of µ  in Equation (1) 

are not significantly different from zero and the variance of qλ is also not significantly different 

from zero). Table 4 shows that the remaining constant impact of seat belt-use is negative, 

indicating a reduced injury severity if the driver uses the seat belt. Also, the standard deviation of 

the common error component between the seat belt use and injury severity propensities is 

statistically significant. This standard deviation corresponds to the standard deviation υ  of qη  in 

Section 3.1. The term qη  was introduced as qη−  in the injury severity component of Equation 

(1) because it provided a substantially better fit than introducing it as qη+ . This result lends very 
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strong support for the selective recruitment (or sample selection) hypothesis: safety conscious 

drivers are more likely to wear seat belts and their defensive habits also lead to less severe 

injuries when they are involved in crashes. The standard deviation estimate of the common error 

component translates to an effective correlation of –0.46 [=  –(0.93)2 / 1 + (0.93)2] between the 

unobserved factors impacting the seat belt use and injury severity propensities. 

 In contrast to the correlated random binary-ordered (CRBO) model presented here, the 

independent random binary-ordered (IRBO) model ignores the selective recruitment issue; that 

is, it ignores the unobserved factors influencing seat belt use propensity and injury severity 

propensity. As a result, the safety-conscious and defensive driving habits of seat-belt users gets 

incorrectly manifested as an inflated effectiveness of seat belt use in reducing injury severity. In 

fact, the coefficient estimate on the seat belt use variable in the IRBO model is –1.39 with a 

corresponding t-statistic of –13.74 (compared to coefficient of –0.75 with a corresponding t-

statistic of –1.88 in the CRBO model). While the coefficients between the IRBO and CRBO 

models are not comparable, the CRBO coefficients should be generally larger in magnitude 

compared to the IRBO coefficient (as is the case with all other coefficients except the seat belt 

use coefficient).7 Thus, there is clear, substantial, and incorrect inflation in seat belt use 

effectiveness when sample selection is ignored. We revisit this important point again in Section 

5.3.4. 

 

5.3.2.7 Threshold Parameters  The threshold parameters map the injury severity latent index to 

the reported injury severity categories. As such, they do not have any substantive interpretation. 

 
                                                 
7 The injury severity component of the CRBO model is normalized with respect to a smaller overall scale relative to 
the injury severity component of the IRBO model (due to the additional presence of the term qη  in the CRBO 
model). This smaller scaling should, in general, lead to larger coefficients in the CRBO model. 
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5.3.3 Overall Likelihood-Based Measures of Fit 

The log-likelihood value at convergence of the CRBO model (with 44 parameters) is –10551.9, 

of the IRBO model (with 43 parameters) is –10557.6, and of the IBO model (with 40 parameters) 

is –10570.6. The corresponding value for the “constants only” model with only the constant in 

the seat belt use binary choice model and only the four thresholds in the injury severity ordered 

logit model is –15054.5. Likelihood ratio tests may be undertaken to compare the four models 

above. In particular, the test for no sample selection (CRBO vs. IRBO models) yields a 

likelihood ratio test value of 11.4 [= –2 x (10557.6–10551.9)], which is larger than the chi-

squared table value with one degree of freedom at any reasonable level of significance (of 

course, this is also reflected in the statistically significant t-statistic on the standard deviation of 

the common error component between the seat belt use and injury severity equations). The test 

for the absence of unobserved heterogeneity in the effects of exogenous variables (IRBO vs. 

IBO) yields a likelihood ratio test value of 26, which is again larger than the critical chi-squared 

value with 3 degrees of freedom at even the 0.0001 level of significance. 

Clearly the results indicate the importance of considering randomness in the effects of 

injury severity determinants due to the moderating influence of unobserved factors as well as 

accommodating the endogeneity of seat belt use on injury severity. Failure to accommodate these 

issues, as done by almost all earlier injury severity studies, will, in general, lead to poor model 

fits as well as biased parameter estimates. 

 

5.3.4  Elasticity Effects 

The parameters on the exogenous variables in Table 4 do not directly provide the magnitude of 

the effects of variables on the probability of each level of injury severity. To do so, we compute 
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the aggregate level “elasticity effects” of variables. This is achieved by first computing the 

probability of seat belt non-usage ( 0=qs ) and injury severity level k ( kyq = ) for individual q 

as: 
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The corresponding probability of seat belt usage ( 0=qs ) and injury severity level k ( kyq = ) is 

computed as: 
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Next, the unconditional probability that individual q sustains an injury of severity level k is 

obtained as  

),1(),0()( kysPkysPkyP qqqqq ==+====                                                                         (9) 

The expected aggregate numbers of drivers sustaining an injury of severity level k is then 

computed by summing the above individual-level probability across all individuals Q.  

 With the preliminaries above, one can compute the aggregate-level “elasticity” of any 

dummy exogenous variable (all exogenous variables in the model are dummy variables) by 

changing the value of the variable to one for the subsample of observations for which the 

variable takes a value of zero and to zero for the subsample of observations for which the 

variable takes a value of one. We then sum the shifts in expected aggregate shares in the two 

subsamples after reversing the sign of the shifts in the second subsample, and compute an 
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effective percentage change in expected aggregate shares in the entire sample due to change in 

the dummy variable from 0 to 1. 

 The elasticity effects are presented in Table 5 by variable category and for each of the 

IBO, IRBO, and CRBO models (note that the expressions in Equations (7) and (8) simplify in the 

case of the IBO and IRBO models). For ease in presentation, we provide the elasticities only for 

the fatal injury category. The table also presents only the effects of the non-interaction variables 

from Table 4 because the effect of an interaction variable is accommodated by increasing the 

variable whenever a component variable is increased. The numbers in the table may be 

interpreted as the percentage change in the probability of a fatal injury due to a change in the 

variable from 0 to 1. For instance, the CRBO model in the table indicates that the probability of a 

man being fatally injured in a crash is about 40% less than the probability of a woman being 

fatally injured, other characteristics being equal.  

Several important observations may be made from Table 5. First, the major factors that 

are likely to lead to a fatal injury in a crash are driver ejection from vehicle, vehicle rollover, and 

crash into a stationary object or a head-on collision with another vehicle. On the other hand, seat 

belt use and a swipe collision with another vehicle traveling in the same direction are the two 

most important factors associated with survival in a crash. Second, ignoring the moderating 

effect of unobserved variables on the impact of factors on injury severity can lead to severely 

biased elasticity effects. For instance, ignoring unobserved heterogeneity leads to an 

overestimation of the impact of crashes on high speed limit roads by 200% (see the difference 

between the IBO model and the IRBO/CRBO models). Similar substantial inaccurate projection 

of dark lighting and angle collision are observed. Third, the elasticity effects of many variables 

are quite different among the CRBO model (that considers seat belt endogeneity and the other 
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two models (the IBO and IRBO models). For example, the likelihood of being in a fatal injury if 

under the influence of alcohol is underestimated in the IBO and IRBO models by 50%. 

Similarly, the positive effects of ejection from the vehicle, vehicle rollover, and stationary 

object/head-on collision with another vehicle on fatal injury are underestimated in the IBO and 

IRBO models by 20%, 13%, and 25%, respectively. Fourth, the elasticity effect of seat belt use 

from the CRBO model is about half that of the estimated effects from the IBO and IRBO models. 

This is, of course, because the IBO and IRBO model do not consider the endogenous nature of 

seat belt use. In fact, the seat belt use elasticities from the different models suggest that seat belt 

usage and the safety-conscious driving attitudes of those who wear seat belts are about equally 

important in reducing the likelihood of a fatal injury. This result is important from a policy 

standpoint and suggests that seat belt non-users, when apprehended in the act, should perhaps be 

subjected to both a fine (to increase the chances that they wear seat belts) as well as mandatory 

enrollment in a defensive driving course (to attempt to change their aggressive driving 

behaviors). Thus, the results in our research provide support for changing the current “Click it or 

Ticket” campaign in several states in the US to the “Click it or Defensive Driving and Ticket” 

campaign. 

 Overall, the results indicate clear biases in the effects of variables on injury severity level 

when unobserved factors moderating the impact of variables is ignored and/or seat belt 

endogeneity is not considered. 

 

6.  CONCLUSIONS 

This paper formulates a comprehensive econometric structure that recognizes two important 

issues in safety analysis. First, the impact of a factor on injury severity may be moderated by 
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various observed and unobserved variables specific to an individual or to a crash. Second, seat 

belt use is likely to be endogenous to injury severity. That is, it is possible that intrinsically 

unsafe drivers do not wear seat belts and are the ones likely to be involved in high injury severity 

crashes because of their unsafe driving habits. The structure of the model developed in the paper 

takes the form of a mixed joint binary logit-ordered response logit formulation that conveniently, 

and at once, considers all the issues of (1) systematic interaction effects among variables, (2) 

random unobserved effects in the influence of injury severity determinants, (3) potential 

endogeneity of seat belt use in modeling injury severity levels, and (4) random variations in seat 

belt use effectiveness. To our knowledge, this is the first instance of such a model formulation 

and application not only in the safety analysis literature, but in the econometrics literature in 

general. 

 The empirical analysis is based on the 2003 General Estimates System (GES) data base. 

The focus in the analysis is exclusively on non-commercial driver seat belt use and crash-related 

injury. The analysis is also confined to the vast majority of crashes in which one or two vehicles 

are involved. Several types of variables are considered in the empirical analysis, including driver 

characteristics, vehicle characteristics, roadway design attributes, environmental factors, and 

crash characteristics. 

The empirical results indicate the important effects of all of the above types of variables 

on driver seat belt use and injury severity. In addition, the results reveal a substantial and 

significant negative error correlation between seat belt use propensity and injury severity 

propensity, which lends strong support for the selective recruitment (or sample selection) 

hypothesis. That is, safety conscious drivers are more likely to wear seat belts, and their 

defensive habits also lead to less severe injuries when they are involved in crashes.  
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To summarize, ignoring the moderating impact of unobserved factors on the influence of 

injury severity determinants and/or the endogeneity of seat belt use in injury severity modeling 

leads to biased parameter estimates and elasticity effects. With respect to seat belt use 

specifically, our results suggest that seat belt usage and the safety-conscious driving attitudes of 

those who wear seat belts are about equally important in reducing the likelihood of a fatal injury 

(earlier research efforts do not disentangle these two different aspects of seat belt usage). Thus, 

from a policy standpoint, seat belt non-users should perhaps be subjected to both a fine (to 

increase the chances that they wear seat belts) as well as mandatory enrollment in a defensive 

driving course (to attempt to change their aggressive driving behaviors).  
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TABLE 1 Summary of Existing Discrete Choice Studies of Crash Injury Severity 
 

Accident Characteristics Considered in the Empirical Framework 
Paper Research 

Methodology Driver 
attributes 

Vehicular 
characteristics 

Roadway design 
attributes 

Environmental 
factors 

Crash 
characteristics 

Shibata and Fukuda 
(1993) Logistic Regression Yes --- --- --- Yes 

Farmer et al. (1996)  Logistic Regression Yes Yes --- --- Yes 

Khattak et al. (1998) Ordered and Binary 
Probit Models --- --- --- Yes --- 

Renski et al. (1999) Ordered Probit Model --- --- Yes --- --- 

O’Donnell and Connor 
(1996) 

Ordered Logit and 
Probit Models Yes Yes --- --- Yes 

Chang and Mannering 
(1999) Nested Logit Model Yes Yes Yes Yes Yes 

Krull et al. (2000) Logistic Regression Yes Yes Yes --- Yes 

Al-Ghamdi (2002) Logistic Regression --- Yes Yes Yes Yes 

Kockelman and Kweon 
(2001) Ordered Probit Model Yes Yes Yes --- Yes 

Bedard et al. (2002) Multivariate Logistic 
Regression Yes Yes --- --- Yes 

Dissanayake and Lu 
(2002) Logistic Regression Yes --- Yes Yes --- 

Ulfarsson and 
Mannering (2004) Multinomial Logit Yes Yes Yes Yes Yes 
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TABLE 1 (cont.) 

 
Kweon and Kockelman 

(2002) 
Ordered Probit & 

Poison models Yes Yes --- --- --- 

Khattak et al.*(2002) Ordered Probit Model --- Yes Yes Yes Yes 

Srinivasan (2002) Random Thresholds 
Ordered Logit Model Yes Yes --- Yes Yes 

Toy and Hammitt 
(2003) Logistic Regression Yes Yes --- --- Yes 

Khattak and 
Rocha$(2003) Ordered Logit Model --- --- --- --- Yes 

Abdel-Aty and 
Abdelwahab (2004) Nested Logit Model Yes Yes --- Yes Yes 

Wang and Kockelman 
(2005) 

Heteroscedastic 
Ordered Logit Model Yes Yes Yes Yes --- 

 

* The analysis is restricted to driver aged 65 and above. 
$ The analysis is confined to sports utility vehicles 
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TABLE 2 Cross Tabulation of Injury Severity and Seat Belt Use 
 

Seatbelt 
Injury Severity 

Not Used Used 

All 
Drivers 

No injury  27.6** 67.3 64.6 

Possible Injury          8.7 12.5 12.3 

Minor Injury   17.5 10.0 10.5 

Serious Injury 39.2  9.6 11.6 

Fatality  6.9  0.6   1.0 

 

** The numbers in the cell represent column percentages (the sum of the figures in each column is 100%) 
 

 

 

 

 
 



Eluru and Bhat  38 

 

 
 
 
 
 

TABLE 3 Estimates of the Seat Belt use Component of Joint Model 
 

Variables Coefficient t-stats 

Constant 3.351 12.77 

Driver Characteristics   

Male -0.574 -6.17 

Age Variables (age < 25 years is base)   

25-29 years 0.327 2.25 

30-64 years 0.222 2.56 

65-74 years 1.226 2.92 

Under the influence of alcohol -2.255 -12.88 

Vehicle Characteristics (pick-up is base)   

Sedan 0.331 3.45 

SUV 1.155 6.58 

Minivan 0.606 3.24 

Environmental Factors   

9am-7pm 0.601 5.96 
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TABLE 4 Injury Severity Component of Joint Model 
 

Variables Coefficient t-stats 
Driver Characteristics   
Male -0.454 -7.59 
Age Variables (age < 25 years is base)   

25-74 years 0.207 2.81 
> 74 years 0.371 2.46 

Male Age < 25 years -0.173 -1.63 
Under the influence of alcohol 0.465 2.48 
Vehicle Characteristics   
Sedan 0.288 4.98 
Sedan x snow / fog 0.714 3.17 
Sedan x struck by a non-sedan 0.131 1.62 
Roadway Design Attributes   
Medium-to-high speed limit (26-64mph) 0.906 9.28 
High speed limit (≥64 mph) 0.358 1.11 

Standard Deviation 1.554 2.94 
Environmental Factors   
6am – 7pm -0.308 -4.09 
Lighting Conditions   

Dusk -0.237 -1.44 
Dark -0.398 -2.74 
Standard Deviation 1.500 5.53 

Adverse Weather Conditions   
Rain -0.144 -2.00 
Snow and/or fog -0.659 -3.80 

Crash Characteristics   
Driver ejected out of the vehicle 3.468 7.04 
Vehicle rolled over 1.855 10.05 
Crash with a Stationary Object (base is crash with another vehicle)   

Large object 1.509 11.34 
Small object 1.201 8.76 

Manner of Collision in Two Vehicle Crashes (base is rear-end collision)   
Head on 1.397 8.71 
Angle 0.151 1.56 
Standard Deviation 1.066 5.41 
Swipe collision when vehicles are traveling in opposite directions -0.666 -1.96 
Swipe collision when vehicles are traveling in same direction -1.302 -9.31 

Vehicle Role in Two Vehicle Crashes (base is driver strikes other vehicle)   
Driver struck by a vehicle 0.446 6.88 
Driver involved in strike and struck 0.323 1.60 

Seat belt -0.752 -1.88 
Standard deviation of common error component between seat belt use and 
injury severity propensities 

0.926 3.10 

Threshold Parameters   
Threshold 1 2.366 3.89 
Threshold 2 3.730 5.47 
Threshold 3 5.218 6.99 
Threshold 4 8.151 9.41 
Log-likelihood at convergence -10551.9 
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TABLE 5 Elasticity Effects for the Fatal Injury Category 
 

Variables IBO IRBO CRBO 

Driver Characteristics    
Male -36.55 -36.23 -39.33 
Age Variables    

25-74 years 13.13 14.03 15.05 
>74 years 26.57 27.39 31.17 

Under the influence of Alcohol 18.55 19.67 38.86 
Vehicle Characteristics    
Sedan 19.83 20.47 23.27 
Non-sedan (other vehicle type) 0.95 1.11 1.36 
Roadway Design Attributes    
Medium-to-high speed limit (26-64mph) 49.52 49.29 53.73 
High speed limit (≥64 mph) 74.50 21.93 29.78 
Environmental Factors    
6am-7pm -19.75 -19.60 -23.40 
Lighting Conditions    

Dusk -16.15 -14.94 -16.22 
Dark -1.43 -25.98 -27.76 

Adverse Weather Conditions    
Rain -8.76 -9.11 -10.29 
Snow and/or fog -11.38 -12.17 -13.38 

Crash Attributes    
Driver ejected out of the vehicle 808.90 871.37 1054.25 
Vehicle rolled over 186.00 189.02 226.74 
Crash with a Stationary Object (base is crash with another vehicle)    

Large object 120.29 119.62 147.09 
Small object 107.71 101.98 127.19 

Manner of Collision in Two Vehicle Crashes  
(base is rear-end collision)    

Head on 133.97 132.49 167.92 
Angle 29.63 6.31 11.41 
Swipe collision when vehicles are traveling in opposite directions -40.12 -37.55 -39.57 
Swipe collision when vehicle are traveling in same direction -62.75 -60.50 -63.95 

Vehicle Role in Two Vehicle Crashes  
(base is driver strikes other vehicle)    

Driver struck by a vehicle 32.05 33.13 37.20 
Driver involved in strike and struck 15.00 25.94 27.28 

Seat belt use -129.45 -132.06 -64.50 

 
 


