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Eluru, Bhat, and Hensher 

ABSTRACT 

This paper proposes an econometric structure for injury severity analysis at the level of 

individual accidents that recognizes the ordinal nature of the categories in which injury severity 

are recorded, while also allowing flexibility in capturing the effects of explanatory variables on 

each ordinal category and allowing heterogeneity in the effects of contributing factors due to the 

moderating influence of unobserved factors. The model developed here, referred to as the mixed 

generalized ordered-response logit (MGORL) model, generalizes the standard ordered-response 

models used in the extant literature for injury severity analysis. To our knowledge, this is the first 

such formulation to be proposed and applied in the econometric literature in general, and in the 

safety analysis literature in particular. 

 The MGORL model is applied to examine non-motorist injury severity in accidents in the 

USA, using the 2004 General Estimates System (GES) database. The empirical findings 

emphasize the inconsistent results obtained from the standard ordered response model. An 

important policy result from our analysis is that the general pattern and relative magnitude of 

elasticity effects of injury severity determinants are similar for pedestrians and bicyclists. The 

analysis also suggests that the most important variables influencing non-motorist injury severity 

are the age of the individual (the elderly are more injury-prone), the speed limit on the roadway 

(higher speed limits lead to higher injury severity levels), location of crashes (those at signalized 

intersections are less severe than those elsewhere), and time-of-day (darker periods lead to higher 

injury severity). 

 

Keywords:  injury severity, ordered-response model, pedestrian safety, bicyclist safety, non-

motorized travel. 
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1. INTRODUCTION 

Traffic congestion levels in metropolitan areas of the United States have risen substantially over 

the past decade (see Schrank and Lomax, 2005). This has been, in large part, because of the 

increasing dependency on the personal automobile for pursuing out-of-home work and non-work 

activities. For instance, the 2001 NHTS data shows that about 92% of US households owned at 

least one motor vehicle in 2001 (compared to about 80% in the early 1970s; see Pucher and 

Renne, 2003). Household vehicle miles of travel also increased 300% between 1977 and 2001 

(relative to a population increase of 30% during the same period; see Polzin et al., 2004).  

In response to the rising personal vehicle-based travel trends, and the concomitant traffic 

congestion and associated air quality problems, several metropolitan planning organizations are 

considering, among other things, transportation demand management strategies to encourage 

non-motorized mode use, including walking and bicycling for short distance utilitarian trips. In 

addition to serving as a potential traffic congestion alleviation strategy, promoting non-motorist 

travel (or active transportation) also provides health and fitness benefits, net of exposure to air 

pollutants emitted by cars, an issue that is receiving increasing attention at the interface of 

transportation and public health (see, for example, Transportation Research Board and Institute 

of Medicine, 2005, Sallis et al., 2004, and Copperman and Bhat, 2007).  

To be sure, a significant fraction of trips in US urban areas are short-distance trips that 

can be undertaken by walking or bicycling. According to evidence from the 2001 National 

Household Travel Survey (NHTS), 41% of all trips in 2001 were shorter than 2 miles and 28% 

were shorter than 1 mile (Pucher and Renne, 2003). However, Americans used their personal 

vehicles for about 90% of trips between 1 and 2 miles, and about 66% of trips shorter than 1 

mile. While there are several reasons for this dominance of the automobile even for short 

distance trips, safety (or the lack thereof) associated with non-motorized mode use in the US is 

an important consideration. The US has a notoriously poor safety record relative to other 

developed countries. According to a study by Pucher and Dijkstra (2003), after controlling for 

travel exposure in terms of mileage, US pedestrians (cyclists) are roughly 3 times (2 times) more 

likely to get killed in traffic accidents than German pedestrians (cyclists) and over 6 times (3 

times) more likely than Dutch pedestrians (cyclists). Pucher and Dijkstra also compared fatality 

rates per mile of travel by different modes in the US, and concluded that pedestrians were 23 

times more likely to get killed than car occupants, and bicyclists were 12 times more likely. In 
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terms of absolute numbers, traffic crashes led to 4,881 pedestrian fatalities and 784 bicyclist 

fatalities in 2005 (Traffic Safety Facts, NHTSA 2005). In addition, 110,000 pedestrians and 

bicyclists were injured in traffic crashes in the same year. Overall, these statistics indicate that, 

on average, a non-motorist is killed every 93 minutes and one is injured every 5 minutes in 

traffic accidents in the US.  

The high risk of pedestrian and bicyclist injuries/fatalities in the US has led to increased 

attention in the past decade on traffic accidents involving non-motorists (earlier safety research 

focused primarily on vehicle occupants). Researchers have examined a host of different risk 

factors associated with non-motorized mode-related accident rates and injury severity to improve 

motorized vehicle and roadway design, enhance control strategies at conflict locations, design 

good bicycle and pedestrian facilities, and formulate driver and non-motorized user education 

programs. The risk factors considered in earlier studies have included one or more of the 

following categories of variables: (1) pedestrian/bicyclist characteristics (such as age, gender, 

helmet use, alcohol consumption), (2) motorized vehicle driver characteristics (such as state of 

soberness and age), (3) motorized vehicle attributes (such as vehicle type and speed), (4) 

roadway characteristics (such as speed limit and whether the highway is divided or not) (5) 

environmental factors (such as time of day, day of week, and weather conditions), and (6) crash 

characteristics (such as the direction of impact and motorist/non-motorist maneuver type at 

impact).  

In this paper, the objective is to contribute to the literature on the risk factors identified 

above that are associated with injury severity of non-motorists in traffic accidents. In doing so, 

our emphasis is on undertaking the analysis at the level of individual accidents, and 

simultaneously examining the effects of the multidimensional set of potentially contributing 

factors. The analysis is conditioned on a crash between a motorized vehicle and a non-motorist; 

that is, the focus is on the characteristics that impact non-motorized user injury severity given 

that a crash occurred (in the rest of this paper, we will use the term “crash” and ‘accidents” 

interchangeably to refer to an incident involving a non-motorist and a motorized vehicle). We 

adopt the “conditioned-on-crash” approach so that we can rigorously model the effects of 

contributing factors at the disaggregate level of each crash, while also obviating the need to have 

a measure of exposure.  
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 The rest of this paper is structured as follows. Section 2 discusses relevant earlier 

research studies and positions the current study. Section 3 provides details of the methodology 

used in the current study to examine non-motorist user injury severity. Section 4 describes the 

data source employed and the sample formation procedures. Section 5 presents the empirical 

estimation results and their implications for reducing non-motorized user injury severity in 

crashes. Finally, Section 6 summarizes the major results and identifies the study limitations. 

 

2. THE CURRENT STUDY CONTEXT 

2.1 Earlier Research 

There is a vast body of safety literature examining the factors affecting crash occurrence of non-

motorized road users (pedestrians and bicyclists) and the frequency of different types of non-

motorized crashes with motorized vehicles. For example, Garder (2004) examines pedestrian 

crash data from Maine, and finds that pedestrian crashes are more prevalent on Saturdays, in the 

afternoons between 4 and 7 pm, at times of clear weather, on level, straight, roads, and at 

locations without any traffic control devices or signage (this study did not control for exposure). 

Some other studies have examined the characteristics of fatal crashes involving pedestrians and 

bicyclists. For instance, Harruff et al., (1998) undertook a descriptive analysis of pedestrian 

traffic fatalities in Seattle and found a lower proportion of individuals aged 22-34 years, females, 

and Caucasians (relative to the representation of these groups in the overall population) in the 

“fatal” sample. Harruff also examined the time of day, the day of week, the season of year, the 

characteristics of the crash location, effect of alcohol, type of vehicles involved, and body place 

of injury in the “fatal” sample (see also Garder, 2004 for a similar analysis). In the rest of this 

section, we do not discuss studies such as those identified above that focus on crash 

occurrence/frequency or that focus on an aggregate level analysis of the characteristics of solely 

fatal crashes. We also do not examine studies attempting to measure pedestrian and bicyclist 

exposure data (see Jonah and Engel, 1983, Malek et al., 1990, Keall, 1995, Carlin et al., 1995, or 

Aultman-Hall and Kaltnecker, 1999 for exposure studies). Rather, we limit ourselves strictly to 

crash-level studies that examine non-motorist injury severity in accidents involving a non-

motorist and a motorized vehicle. 

The studies examining injury severity in traffic crashes involving non-motorized road 

users with motorized vehicles may be broadly classified into two categories, depending on the 
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level at which the analysis is undertaken. One group of studies aggregates crashes by non-

motorized road user injury severity level, and compares the non-motorized user, driver, vehicle, 

roadway, environmental, and crash characteristics across the various categories of injury severity 

level. We characterize these as descriptive analyses, since they are based on univariate or 

bivariate associations at an aggregate level. A second group of studies pursues a multivariate 

analysis of the factors affecting injury severity at the level of individual accidents. We 

characterize these as multivariate models.  

Table 1 provides a summary of previous descriptive analysis studies, while Table 2 

provides a summary of multivariate model studies (within each table, the studies are organized 

chronologically). These tables provide information on the non-motorist user type considered 

(pedestrians, bicyclists, or both), the injury severity representation (i.e., the dependent variable in 

the analysis), the data source used, the analysis framework employed, the independent variable 

categories considered in the analysis (from the six categories of non-motorist characteristics 

identified earlier), and the summary findings (by independent variable category). Three general 

observations may be made from these tables. First, the field is seeing a movement toward 

multivariate analysis and away from the descriptive analysis used in the studies undertaken in the 

more distant past. Among the multivariate modeling approaches (see Table 2), the logistic 

regression has been widely used when the injury severity representation is in a binary form (such 

as fatal versus non-fatal injury), while the ordered-response model has been commonly used 

when the injury severity representation is recorded in multiple categories (such as property 

damage only, no visible injury but pain, non-incapacitating injury, incapacitating injury, and fatal 

injury). The use of the ordered-response model when injury severity levels are collected in 

multiple categories is not surprising, since the resulting dependent variable is intrinsically 

discrete and ordinal. Second, all earlier studies in Tables 1 and 2 have examined either pedestrian 

or bicyclist injury severity, but not both. This precludes a comparison of the similarities and 

differences in the factors, and the magnitude of the impact of factors, affecting injury severity 

between the two non-motorist user groups. Third, earlier studies have in the main considered 

non-motorist characteristics as a determinant variable category for non-motorist injury severity 

(see the column labeled “Categories of Independent Variables Considered” in the tables). As 

suggested by Al-Ghamdi (2002), the inclusion of non-motorist characteristics appears to be 

based on the traditional view that non-motorists decide their own “safety destiny” based on their 
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personal factors. In contrast, few studies have considered the attributes of the driver of the 

motorized vehicle, even though there is a clear acknowledgement that, more often than not, it is 

the driver of the motorized vehicle who is at fault (see Insurance Institute for Highway Safety, 

1999 and Ballesteros et al., 2003). Overall, only two studies (Pitt et al., 1990; Kim et al., 2007) 

appear to have considered variables relating to all the six variable categories identified earlier.  

Tables 1 and 2 also provide summary findings from earlier studies regarding the factors 

that have been found to impact injury severity (see the last column). Overall, studies analyzing 

pedestrian injury severity indicate that pedestrians who are male, intoxicated, and very young or 

elderly are more prone to severe injuries, as are pedestrians struck by an alcohol-intoxicated 

driver, by non-sedan vehicles (SUVs, pick-up vans), and by high speed vehicles. Pedestrian 

injuries in crashes at school zone locations, on higher speed-limit roads, on two-way roads with 

median, and in residential and rural areas increase injury severity. Pedestrian-motor vehicle 

crashes occurring during the night time and in adverse weather conditions increase the likelihood 

of being fatally injured, as also do frontal collisions. Studies examining factors that influence 

bicyclist injury severity are much fewer, but indicate that bicyclists who are intoxicated and 

elderly (> 50-55 years), hit by an alcohol-intoxicated motorist, struck by a speeding or heavy 

vehicle, and involved in accidents at high speed limit, low traffic volume and curved/non-flat 

roadway locations tend to be more severely injured. Also, bicyclist-related crashes occurring in 

conditions of darkness with no lighting, in inclement weather (fog, rain and snow) and in the 

morning peak period lead to more severe bicyclist injuries.  

  

2.2 The Current Research 

The overview of the literature in the previous section indicates that, increasingly, the studies of 

non-motorized user injury severity have used a multivariate modeling approach. Within the 

multivariate modeling approach, the method of choice for modeling non-motorized injury 

severity when it is recorded in multiple categories is the ordered-response framework, which 

recognizes the ordinal and discrete nature of injury severity (e.g., none, possible, non-

incapacitating, incapacitating injury and fatality). Recent studies have also begun to recognize a 

range of explanatory variables to explain injury severity. The current research adds to this 

literature on non-motorized injury severity in several ways. First, we use a multivariate modeling 

approach that generalizes the ordered response model structure used in earlier studies. The 
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generalization, which we refer to as the generalized ordered logit model, adds flexibility in 

capturing the effects of explanatory variables on the ordinal categories of injury severity, 

especially in the treatment of the utility thresholds, thus removing strong restrictions imposed by 

the ordered response logit models used in the extant literature. Second, our study examines the 

effects of factors on injury severity levels for pedestrians and bicyclists, allowing us to compare 

the magnitude of the effects of contributing factors between the two non-motorized road user 

groups. Third, we include a comprehensive set of contributing factors in our study to explain 

injury severity, including non-motorist, driver, vehicle, roadway, environmental, and crash 

characteristics. Finally, we allow heterogeneity in the effects of injury severity determinants due 

to the moderating influence of unobserved factors. For instance, the slower reaction time of 

being intoxicated may be exacerbated by the use of a walkman. But accident reports may not 

record or may miss information on walkman use and so walkman use may be unobserved. 

Ignoring the moderating effect of such unobserved variables can, and in general will, result in 

inconsistent estimates in nonlinear models (see Chamberlain, 1980 and Bhat, 2001). 

 

3. ECONOMETRIC FRAMEWORK 

The previous section indicated the increasing use of the ordered-response structure to model 

injury severity when it is recorded in multiple ordinal categories. The ordered-response structure 

is based on the notion of a latent underlying injury risk propensity occurring from a crash that 

determines the observed ordinal injury severity level. The threshold values on the propensity 

scale that demarcate the observed injury severity categories are parameters that are estimated in 

the analysis. The latent propensity is specified as the sum of a linear-in-parameters deterministic 

component (which is a function of relevant injury severity determinants) and a random 

component (that represents the effects of unobserved attributes of each crash). The econometric 

specification of the ordered-response structure is completed by assuming a particular continuous 

probability density function for the random component. The two most common assumptions for 

the density function correspond to the normal distribution (leading to the ordered-response probit 

model) and the logistic distribution (leading to the ordered-response logit model).  

In the rest of this section, we present the notational formulation for the standard ordered-

response logit form (ORL) as described above and used in earlier studies of non-motorized injury 

severity. We also identify the limitations of this standard formulation (Section 3.1). 
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Subsequently, we present the mixed generalized ordered response logit model (MGORL) 

structure used in the current study, and the technique to estimate this model (Section 3.2). 

 

3.1 The Standard Ordered Response Model and its Limitations 

Let q (q = 1, 2, …, Q) be an index to represent non-motorists and let k (k = 1, 2, 3, …, K) be an 

index to represent injury severity. The index k, for example, may take values of “No injury” (k = 

1), “Possible injury” (k = 2), “Non-incapacitating injury” (k = 3), “Incapacitating injury” (k = 4), 

and “Fatal injury” (k = 5). The equation system for the standard ordered response logit (ORL) 

model is (see McElvey and Zavoina, 1975, who first proposed the ORL model): 
* 'q q qy xβ ε= + , kyq =  if *

1k q kyψ ψ− < <                                                                 (1) 

where *
qy  corresponds to the latent injury risk propensity for non-motorist q in the crash she or 

he was involved in. qx is an (L x 1)-column vector of attributes (excluding a constant) associated 

with the non-motorist, driver, vehicle, roadway, environment, and crash characteristics of the 

crash involving individual q. β  is a corresponding (L x 1)-column vector of variable effects. The 

latent propensity *
qy  is mapped to the observed injury severity level qy  by the ψ  thresholds 

( 0ψ = −∞  and Kψ = ∞ ) in the usual ordered-response fashion. It is important to note that the 

model structure requires the ψ  thresholds to be strictly ordered for the partitioning of the latent 

risk propensity measure into the observed ordinal injury severity categories (i.e., −∞ < 1ψ  < 2ψ  < 

….< 1Kψ − <∞ ). qε is an idiosyncratic random error term that impacts injury risk propensity and 

may include, for example, the overall fitness level or alertness level of the non-motorist. qε is 

assumed to be identically and independently standard logistic distributed across individuals q.1  

 The ORL model allows non-linear effects of any variable on the probabilities of 

sustaining different levels of injury severity. This is achieved by the use of the non-linear 

mapping of the risk propensity function to the observed injury severity levels, through the 

threshold values and the assumed distribution of the random error term qε . However, a 

                                                 

1 The exclusion of a constant in the vector xq of Equation (1) is an innocuous normalization as long as all the 
intermediate thresholds (ψ1 through ψK–1) are left free for estimation. Similarly, the use of the standard logistic 
distribution rather than a non-standard logistic distribution for the error term is also an innocuous normalization (see 
Bhat, 1994 and Bhat and Koppelman, 1993). 
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limitation of the ORL model is that it holds the threshold values to be fixed across crashes. This 

can lead to inconsistent (i.e., incorrect) estimates of the effects of variables. To illustrate this, 

consider two groups of crashes. The first group of crashes involves intoxicated motorists who hit 

bicyclists sideways. The second group involves sober motorists who hit bicyclists head-on. 

Assume, solely for ease in presentation, that being hit by an intoxicated versus sober driver and 

being hit head-on versus sideways are the only variables included in the bicyclist injury severity 

model. Let the coefficients on these variables in the latent injury risk propensity equation be 

+0.25 (for the motorist being under the influence of alcohol relative to being sober) and +0.25 

(for being hit head-on rather than sideways). Since there are unobserved factors across crashes 

within each group, the injury risk propensity within each group takes a mean value of +0.25 and 

is distributed standard logistic. This is shown in Figure 1. Let the thresholds values be fixed 

across crashes at 1ψ = -1.5, 2ψ = -0.25, 3ψ = 0.5, and 4ψ = 1.25. Then, for each of the two crash 

groups, the predicted probabilities of each injury severity level are (observed as areas of the 

logistic curve between appropriate thresholds): No injury (0.15), possible injury (0.23), non-

incapacitating injury (0.18), incapacitating injury (0.17) and fatal injury (0.27). However, the 

reality may be that the crashes in the first group involving an intoxicated motorist load much 

more on the incapacitating injury and fatal injury categories for the bicyclist, while there is no 

difference between the two crash groups for the “no injury” and “possible injury” categories. 

This cannot be reflected by the ORL model because the thresholds are fixed across individuals. 

However, if the thresholds are allowed to vary across crashes, so that 3ψ = 0.5 – 0.5 * 

(intoxicated bicyclist involved) and 4ψ = 1.25 – 0.25 * (intoxicated bicyclist involved), the 

loading toward the higher injury severity categories for the crashes with an intoxicated motorist 

can be reflected. This situation is depicted in Figure 2. The thresholds now are 1ψ = -1.5, 2ψ = -

0.25, 3ψ = 0, and 4ψ = 1.00. The probabilities for the intoxicated crashes are: No injury (0.15), 

possible injury (0.23), non-incapacitating injury (0.06), incapacitating injury (0.24) and fatal 

injury (0.32). 

 The example above is a simple illustration of the restriction imposed by the ORL model. 

In reality, there will be several variables impacting injury risk propensity, and several variables 

potentially influencing the thresholds. The important point to note is that imposing the restriction 

of fixed thresholds across crashes will, in general, lead to inconsistent injury risk propensity and 
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threshold values, and inconsistent effects of variables on the likelihood of different categories of 

injury severity. 

 

3.2 The Mixed Generalized Ordered Response Logit (MGORL) Model  

The MGORL model allows the thresholds in the ORL model to vary based on both observed as 

well as unobserved characteristics. The model proposed here builds on the earlier work of Terza 

(1985) and Srinivasan (2002), but is different from these earlier studies in that it adopts a 

functional specification that immediately guarantees the ordering of the thresholds (i.e., −∞ < 1ψ  

< 2ψ  < ….< 1Kψ − <∞ ) for each and every individual q. It also accommodates unobserved 

heterogeneity in the effect of exogenous variables on injury propensity and the threshold values. 

The next section presents the MGORL model structure, while Section 3.2.2 discusses the 

estimation procedure. 

 

3.2.1 The MGORL Model Structure 

The starting point for the MGORL model is Equation (1), except that theβ  vector and theψ  

thresholds are now subscripted by the index q to reflect that these parameters can vary across 

crashes of different individuals due to observed and unobserved factors.  
* '
q q q qy xβ ε= + , kyq =  if *

, 1 ,q k q q kyψ ψ− < <                       (2) 

Next, we adopt a specific parametric form for the thresholds to guarantee the ordering conditions 

(−∞ < ,1qψ  < ,2qψ  < ….< , 1q Kψ − <∞ ) for each crash q. To do so, we write: 

,q kψ  = , 1q kψ −  + exp( ' )qk qk qkzα γ+ ,                                   (3) 

where qkz is a set of exogenous variables associated with the kth threshold (excluding a constant), 

qkγ  is a corresponding crash-specific vector of coefficients, and qkα is a parameter associated 

with injury severity level 1, 2,... 1k K= − . For identification reasons, we adopt the normalization 

that ,1qψ = 1exp( )α  for all q (this is innocuous as long as the vector qx is included in the risk 

propensity equation). Finally, to allow heterogeneity in the effects of relevant exogenous 

variables on the latent injury risk propensity (as discussed in Section 2.2), and to allow 

unobserved heterogeneity effects of variables on the threshold values, we consider the qβ  and qθ  
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vectors (the qθ  vector is formed by vertically stacking all the qkγ  vectors and the qkα  scalars 

across all k) as realizations from multivariate normal distributions ( )φ β and ( )φ θ , respectively2. 

 The MGORL model is a generalized version of the ORL model. Specifically, the ORL 

model imposes the restrictions that (a) qβ = β  for all q (b) qkγ  =0 for all q and k, and (c) 

qkα collapses to a fixed point for all q and for each k = 1,2,...,K-1. Thus, one can test the validity 

of the restrictions imposed by the restrictive ORL model using nested likelihood tests after 

estimating the MGORL model. 

 

3.2.2 The MGORL Model Estimation 

Let G(.) be the cumulative distribution of the standard logistic distribution and let qkd be a 

dummy variable taking the value 1 if the non-motorist q sustains an injury of level k and 0 

otherwise. Then, the likelihood function for the qth individual may be written as: 

}{ ( | ) ' ( | ) ' ( ) ( )
qkd

q qk q qk qL G x G x d d
β θ

ψ θ β ψ θ β φ β φ θ β θ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦∫ ∫           (4) 

The corresponding log-likelihood function is: 

ln q
q

L L=∑                              (5) 

 The parameters to be estimated in the MGORL model are the moment parameters (mean 

and covariance matrix) of the multivariate distributions of β  and θ . These can be obtained by 

maximizing the log-likelihood function of Equation (5) with respect to the moment parameters. 

The log-likelihood involves a multidimensional integral whose dimensionality is determined by 

the number of random components in the β  and θ  vectors. In the current paper, we used Halton 

draws to evaluate the multidimensional integrals (see Bhat 2001, 2003). 

 

4. DATA 

The data is sourced from the 2004 General Estimates System (GES) obtained from the National 

Highway Traffic Safety Administration’s National Center for Statistics and Analysis. The GES 

consists of data compiled from a sample of police-reported accidents that involve at least one 

                                                 

2 Note, however, that the αq1 scalar in θq is held fixed across all q for identification reasons (αq1 = α1 for all q).  
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motor vehicle traveling on a traffic way and resulting in property damage, injury, or death. The 

GES data are drawn from accidents in about 60 areas across the U.S. that reflect the geography, 

population, and traffic density of the U.S. (see http://www-nrd.nhtsa.dot.gov/departments/nrd-

30/ncsa/ges.html for comprehensive details of how the accident reports are collected and 

compiled). The 2004 GES includes information on 60,000 accidents involving about 150,000 

individuals and 100,000 vehicles. Of these about 3,200 accidents involved non-motorists.  

A number of accident-related attributes are collected for each accident in the GES, 

including the characteristics of the individuals involved, vehicle characteristics, roadway design 

attributes, environment factors, and crash characteristics. The injury severity of each individual 

involved in the accident is collected on a five point ordinal scale: (1) No injury, (2) Possible 

injury, (3) Non-incapacitating injury, (4) Incapacitating injury, and (5) Fatal injury. 

 

4.1 Sample Formation and Description 

The focus of this analysis is on accidents that involve pedestrians or bicyclists. Further, we 

confined our attention to accidents involving a single motorized vehicle and a single non-

motorist. Such accidents constitute 92% of all accidents involving pedestrians or bicyclists in the 

GES data. 

 The final sample of accidents in the current analysis consisted of 2,944 records. The 

distribution of non-motorist injury severity by type of non-motorist (pedestrians or bicyclists) is 

presented in Table 3. In this table, the injury severity categories of no injury and possible injury 

are combined into a single category because of the extremely low number of crashes in which the 

non-motorist was not injured (we will refer to this combined category as “no injury” in the rest 

of this paper). The descriptive statistics in Table 3 indicate a substantially higher percentage of 

pedestrians than bicyclists who are likely to be seriously or fatally injured. Overall, about 30% of 

motorized vehicle crashes with a non-motorist result in serious injury or death to non-motorist. 

 Table 4 presents the distribution of injury severity by whether or not the non-motorist 

was alcohol-intoxicated. The results clearly show a positive correlation between alcohol 

intoxication and injury severity level.  
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5. EMPIRICAL ANALYSIS 

5.1 Variables Considered  

Several types of variables were considered in the empirical analysis, including non-motorist 

characteristics, motorized vehicle driver characteristics, motorized vehicle attributes, roadway 

characteristics, environmental factors, and crash characteristics. The non-motorist and motorized 

vehicle driver characteristics included demographics (age and sex) and alcohol consumption. The 

only motorized vehicle attribute included in the current study is the vehicle type involved in the 

crash. The vehicle types considered include passenger cars, sports utility vehicles, pick up trucks, 

and vans (the final category groups minivans, full vans, and other van types in a single category). 

Other vehicle attributes, such as vehicle weight and vehicle speed just before impact, are either 

not available in, or missing for a large fraction of, the GES data. The roadway characteristics 

considered in the analysis are speed limit and the type of regulatory signs/ control at the accident 

location (i.e. whether the accident occurred at a location with stop signs, warning signs, 

regulatory signs, traffic signals, or no signs). Again, additional roadway characteristics, such as 

number of lanes, alignment of roads, and grade and shoulder widths, could not be included 

because of the absence of data, or the large fraction of missing data, on these variables in the 

GES. Environmental factors related to the crash included day of the week, time of day 

represented in three categories (day time - 6am to 6 pm, evening - 6pm to midnight, and late 

night - midnight to 6am), lighting conditions (dawn, daylight, dusk, dark, and dark and lit), and 

weather conditions (no adverse weather, rain, snow, and fog). Finally, the crash characteristics 

included the direction of impact of the vehicle and the non-motorist (front, sideways, or other).  

In addition to the variables identified above, we also considered several interaction 

effects among the variables from the six variable categories. Further, we tested for the 

differential impact of all these variables on pedestrian and bicycle injury severity levels. The 

final specification was based on a systematic process of removing statistically insignificant 

variables and combining variables when their effects were not significantly different. The 

specification process was also guided by prior research and intuitiveness/parsimony 

considerations. For the continuous variables in the data (such as age and speed limits), we tested 

alternative functional forms that included a linear form, a spline (or piece-wise linear) form, and 

dummy variables for different ranges. 
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5.2 Estimation Results 

We estimated two different models in the research effort: (1) a standard ordered response logit 

(ORL) model that has been extensively used in the non-motorized injury severity analysis 

literature, and (2) the mixed generalized ordered response logit (MGORL) model that generalizes 

the ORL model. In both models, the dependent variable included four ordinal levels of injury 

severity: (1) no injury or possible injury, which we will simply refer to as “no injury” for brevity 

(2) non-incapacitating injury, (3) incapacitating injury and (4) fatal injury.   

 In the following presentation of the empirical results, we first discuss the model 

parameter estimates of the best specification of the MGORL model, which was obtained after 

extensive specification testing (Section 5.2.1). Next, we present and compare the implied 

elasticity effects of variables on the observed injury severity categories between the ORL model 

and the MGORL model (Section 5.2.2). Finally, various fit measures are defined and used to 

assess the relative predictive performance of the ORL and the MGORL models (Section 5.2.3). 

 

5.2.1 MGORL Estimation Results 

The structure of the MGORL model, as developed in Section 3, does not include a constant in 

the latent injury risk propensity equation. However, there is a threshold identified between the 

first and second ordinal categories of no injury and non-incapacitating injury (i.e., 1qψ = 

1exp( )α ). For reasons of identification, this threshold is considered fixed. Another way to set 

this identification constraint for ease in the presentation of the empirical results is to absorb this 

threshold as a constant into the injury risk propensity equation for *
qy  and then set 1 0ψ =  for all 

q. Both these alternative ways are exactly identical. The first approach is convenient in 

presenting the motivation of the MGORL model, as in Figures 1 and 2, while the second is 

convenient for presentation of results. Thus, in Table 5 that presents the model results, there are 

three main columns. The first column corresponds to the estimates of the moment parameters of 

β  that characterize injury risk propensity (including a constant now). The second column 

corresponds to 2qψ , and the estimates presented are the moment parameters of θ  corresponding 

to the second threshold demarcating the non-incapacitating and incapacitating injury categories 

The final column corresponds to 3qψ , and the estimates presented are the moment parameters of 

θ  corresponding to the third threshold demarcating the incapacitating and fatal injury categories. 
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 The effect of each category of variables on the latent injury risk propensity and the two 

thresholds are discussed in the next sections. We should note here that we extensively tested for 

unobserved heterogeneity effects on the latent injury risk propensity and the thresholds. But, in 

our final specification, we did not find any statistically significant unobserved effects. Thus, the 

mixed generalized ordered response logit (MGORL) model collapsed to a generalized ordered 

response logit (GORL) model in the final specification. However, we will continue to use the 

label MGORL for the final model specification. In the model specifications, we also extensively 

tested for the differential impact of variables between bicycle and pedestrian crashes. But, 

surprisingly the parameter estimates, for the most part, did not show significant variation 

between the two non-motorist groups. 

 

5.2.1.1 Non-motorist characteristics 

The results regarding the effects of non-motorist characteristics indicate that men and older 

individuals (> 60 years of age) are prone to high injury risk relative to women and younger 

individuals (≤60 years of age), respectively. The gender effect is only marginally significant, 

while the age effect is highly significant. As indicated in earlier studies (see, for example, Stone 

and Broughton, 2003, Miles-Doan, 1996, and Kim et al., 2007), older individuals tend to have 

higher perception and reaction times, are more physically fragile, and may suffer from various 

medical conditions, all of which contribute to their higher injury risk propensity. As expected, 

non-motorists under the influence of alcohol are likely to have a higher injury risk in accidents, 

possibly due to generally more reckless behavior and inability to take quick evasive actions.

 The effects of non-motorist characteristics on the thresholds provide a sense of how the 

probability of injury in specific injury categories is affected (relative to the case of fixed 

thresholds). The results indicate that pedestrians are generally more likely to be severely or 

fatally injured relative to bicyclists (note that the negative sign of the pedestrian variable on the 

threshold between non-incapacitating and incapacitating injury categories has the effect of 

increasing the area of the latent injury risk propensity profile under the severely and fatally 

injured categories). The higher injury severity risk to pedestrians may be a result of pedestrians 

more likely to be unaware of a crash-developing situation just before the actual impact (and 

hence may not be able to react in ways to reduce the consequences of the impact). The results 
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also highlight the fact that when an older non-motorist (age > 60) is involved in a crash, the 

injury severity level is heavily loaded toward the fatal injury category.3 

 

5.2.1.2 Motorized vehicle driver characteristics  

The results associated with the motorized driver characteristics reflect the anticipated higher 

injury risk propensity to pedestrians and bicyclists struck by alcohol-intoxicated drivers. Further, 

the effects of the “driver under the influence” variable on the thresholds are thought-provoking. 

The overall effect of the variable on the probability of each injury severity category depends on 

the effects on latent propensity and on the two thresholds. Assuming base values for all other 

variables (note that all variables in the table are dummy variables with a base category), the 

mean injury risk propensity value is 1.846 (see the parameter on the constant value under the 

latent propensity column). The threshold values are 1 0ψ = , 2 exp(1.305)ψ = , and 

3 exp(1.305) exp(1.645)ψ = + . The probability values for each injury severity category for this 

base case are: No injury (0.136), non-incapacitating injury (0.720), incapacitating injury (0.143) 

and fatal injury (0.001). For individuals exactly similar to the base case, but now who are struck 

by an alcohol-intoxicated driver, the injury risk propensity is 1.846 + 0.837 = 2.683, 

1 0ψ = , 2 exp(1.305 0.271)ψ = + , and 3 exp(1.305 0.271) exp(1.645 0.25)ψ = + + − . The resulting 

probability values are: No injury (0.054), non-incapacitating injury (0.824), incapacitating injury 

(0.119) and fatal injury (0.003). Overall, for crashes corresponding to the base values of the 

variables, being hit by a driver under the influence of alcohol leads to a decrease in the 

probability of no injury, an increase in the probability of non-incapacitating injury, a decrease in 

the probability of incapacitating injury, and an increase in the fatal injury probability. While the 

actual effects will vary for individuals/crashes not in the base category, the mostly positive 

impact of the non-base dummy variables on the latent propensity in Table 5 suggest that, in 

general, the likely result of being struck by an alcohol-intoxicated driver is a non-incapacitating 

injury or a fatal injury, and not an incapacitating injury This will also become obvious when 

calculating the elasticity effects. The implication is a bi-modal effect of driver’s intoxication 

                                                 

3 We also tried a “helmet use” variable for bicyclists under the non-motorist variable category, but this variable 
turned out to be statistically insignificant. This is, in part, because only about 7% of bicyclists involved in crashes 
wore helmets. 
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level – either the non-motorist is not severely injured or fatally injured. This is a result that needs 

more scrutiny in further studies. 

 

5.2.1.3 Motorized vehicle attributes 

The vehicle type involved in the crash with a non-motorist has an influence on the non-

motorist’s injury risk. Specifically, a non-motorist struck by an SUV has a higher injury risk. The 

impacts of the vehicle type on the thresholds indicate that crashes involving pick-up trucks 

increase the likelihood of fatal injuries (because of a reduction in both thresholds). Also, non-

motorist crashes with vans increase the likelihood of fatal injuries. Overall, non-motorists 

involved in vehicular crashes with vehicles other than passenger cars are likely to suffer more 

serious injuries. The reasons may be attributed to higher speeds, heavier vehicle masses, “above-

the-knee” injuries due to higher bumper heights, and larger impact areas on pedestrians and 

bicyclists (see also Ballesteros et al., 2003 and Lee and Abdel-Aty, 2005). 

 

5.2.1.4 Roadway characteristics 

Two roadway attributes were considered– speed limit on the road the accident occurred, and 

regulatory signs/control at the accident location. After extensive testing, the speed limit was 

introduced as a set of dummy variables – “25-50 mph” and “>50 mph”, with the speed limit of 

“<25 mph” as the base category. The regulatory signs/control at the accident location were 

introduced in a binary form – whether or not the accident occurred at a signalized intersection. 

 The results in Table 5 indicate that the latent injury propensity is higher for crashes 

occurring on roads with higher speed limits and at locations other than signalized intersections. 

These are intuitive. Speed limits serve as a surrogate measure of actual vehicle speed at the point 

of impact, while the presence of a signalized intersection reduces vehicle speeds, decreases 

vehicle-pedestrian and vehicle-bicyclist movement conflicts, and increases drivers’ awareness of 

pedestrian and bicycle activity (Zajac and Ivan, 2003). 

 The effects of the speed limit variables on the thresholds indicate the increased likelihood 

of incapacitating and (particularly) fatal injuries at higher speed limits (over and above what 

would be predicted by a fixed threshold model). This is particularly so for pedestrians. Stone and 

Broughton (2003) also point to this sharp rise in fatal injuries at speed limits above 50-60mph. 
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The influence of the “signalized intersection” variable on the final threshold highlights the 

substantial reduction in fatal injuries at signalized intersections relative to other locations. 

 

5.2.1.5 Environmental factors 

A number of different time-of-day representation schemes were assessed in the MGORL model. 

The best specification was based on the partitioning of the day into three time periods – day time 

(6am-6pm), evening (6pm-midnight) and late night (midnight-6am). Earlier attempts to further 

partition the day time period into the morning peak, evening peak and an off-peak period did not 

show statistically significant differences in injury severity (this is contrary to Kim et al., 2007, 

who found an increase in fatal injury during the morning peak). Lighting conditions at the time 

of the crash were also considered, but turned out not to be statistically significant because of 

strong correlation effects with the time-of-day variables. The influence of weather conditions 

simplified to a simple binary representation of presence/absence of snow conditions. 

 The results in Table 5 underscore the increased latent injury risk propensity in the 

evening period (6pm-12am) relative to other periods (see Klop and Khattak, 1999, Lee and 

Abdel-Aty, 2005, and Al-Ghamdi, 2002 for a similar result). In addition, the effects of the 

evening and late night periods on the thresholds indicate a high likelihood of fatal injuries during 

these periods. This is likely a consequence of reduced visibility, which, in turn, can lead to 

slower reaction times and higher impacts at the time of the crash. Further, as suggested by Klop 

and Khattak (1999), dark conditions may also lead to longer response times by emergency crews. 

The effect of the “snow” variable on the threshold demarcating the incapacitating and fatal 

categories shows a lower likelihood of fatal injuries during crashes in snowy conditions. This is 

perhaps a consequence of low speeds and more careful driving in snow. 

 

5.2.1.6 Crash characteristics 

The direction of impact in a crash affects the injury sustained in the crash. In particular, frontal 

impacts result in more severe crashes compared to all other kinds of impacts. Frontal impact 

increases the likelihood of a fatality substantially, as evidenced in the negative effect of this 

variable on the third threshold. This finding is consistent with Kim et al., 2007, but different 

from Stone and Broughton (2003) who found a higher fatality rate for back impacts compared to 

front impacts in their study of cycling crashes in Great Britain. The effect of the “other direction 
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of impact” variable indicates a reduction in the risk propensity, but also a reduction in the third 

threshold. The net effect is a higher likelihood of fatal injury relative to that predicted by a model 

with fixed thresholds. 

 

5.2.2 Elasticity Effects 

The parameters on the exogenous variables in Table 5 do not directly provide the magnitude of 

the effects of variables on the probability of each level of non-motorist injury severity. Also, it is 

not always straightforward to understand the impacts of the coefficients within the MGORL 

framework. To understand the impact of factors more clearly, we compute the aggregate level 

“elasticity effects” of variables (for more details see Eluru and Bhat 2007).  

The elasticity effects (and their standard deviations) are presented in Table 6 for 

pedestrians and Table 7 for bicyclists.  The effects are provided for both the MGORL model as 

well as the standard ordered response logit (ORL) model used in earlier pedestrian/bicyclist 

injury severity studies The numbers in the table may be interpreted as the percentage change in 

the probability of an injury severity category due to a change in the variable from 0 to 1. For 

instance, the first number in Table 6 indicates that, according to the ORL model, the probability 

of a man escaping uninjured in a crash is 15.64% (with a standard deviation of 3.26%) less than 

the probability of a woman escaping uninjured, other characteristics being equal. 

In the rest of this section, we first discuss the elasticity effects from the ORL and 

MGORL models (Section 5.2.2.1), then compare and contrast the effects between pedestrians 

and bicyclists (Section 5.2.2.2), and finally make some general remarks on the strength of the 

variable effects (Section 5.2.2.3). 

 

5.2.2.1 Elasticity effects from the ORL and the MGORL models  

The MGORL model is a generalized version of the ORL model, and thus substantial differences 

in the elasticity effects imply inconsistent estimates from the ORL model. The results in Tables 6 

and 7 indeed confirm the severely biased nature of the ORL model elasticity effects. Specifically, 

while the implied elasticity effects are not statistically different for the “male”, “under the 

influence of alcohol” for the non-motorist, and “sports utility vehicle” variables, the elasticity 

effects for all the other variables are drastically and significantly different for several injury 

categories. Just examining the elasticity effects for fatal injury, the MGORL model predicts a 
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much higher fatal injury probability if the non-motorist is elderly (>60 years) (224.44% in the 

MGORL versus 102.5% in the ORL), the driver of the vehicle is under the influence of alcohol 

(40.62% versus 2.87%), the vehicle involved in the crash is a pick-up truck (as opposed to other 

vehicle types) (60.02% versus 11.04%), the speed limit on the road of the crash is above or equal 

to 25 mph (80.27% versus 38.04% for speed limit between 25-50 mph and 355.21% versus 

143.65% for speed limit over 50 mph), and the crash is a frontal impact (57.11% versus 24.78%). 

These differences, when compared with the standard deviation of these differences, indicate that 

they are all statistically significant at any reasonable level of significance (except for the 

difference related to “driver of the vehicle is under the influence of alcohol”) At the same time, 

the MGORL model predicts statistically significantly lower fatal injury probabilities for a non-

motorist involved in a crash at a signalized intersection (-78.25% in the MGORL versus -30.23% 

in the ORL), and during snow conditions (-68.56% versus -8.36%). Further, the ORL model 

predicts no influence on injury severity due to the non-motorist being hit by a van, while the 

MGORL model predicts a fatal injury elasticity in the same range as a pick-up. Finally, in the 

context of the fatal injury category, non-frontal and non-sideways directions of impact (i.e., 

“other directions of impact” in the tables) have a higher probability of fatal injury relative to 

sideways impact according to the MGORL model, while such directions of impact have a lower 

probability of fatal injury relative to sideways impact according to the ORL model. The effects 

of variables in other injury categories also show differences across the two models, as can be 

noticed in Tables 6 and 7. 

 Overall, there are substantial and statistically significant differences in the estimated 

elasticity effects from the ORL and MGORL models. The MGORL model, because it allows 

variables to impact both the latent injury propensity and the thresholds, enables a flexible pattern 

of elasticity effects. This is reflected, for instance, in the effect of the driver (of the vehicle 

involved in crash) being intoxicated. As is evident from Tables 6 and 7, the MGORL model 

indicates that crashes involving intoxicated drivers are more likely to lead to non-incapacitating 

injuries or fatal injuries, but a decrease in incapacitating injuries. This may be a result of some 

non-motorists becoming alert of the wayward driving of an intoxicated driver and taking quick 

evasive action to reduce impact severity, resulting in a decreased likelihood of incapacitating 

injuries. However, several non-motorists may not become aware, and so are fatally injured. This 

kind of trend reversal of the effect of variables on the successive injury severity categories 
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cannot be reflected by the ORL model, which constrains the elasticity effects to have a more 

rigid (and monotonic) trend in elasticity effects from the lowest category of injury severity to the 

highest (see Bhat and Pulugurta (1998) for a detailed theoretical discussion of this property of 

the ORL model). 

 

5.2.2.2 Elasticity effect comparison between pedestrians and bicyclists 

In this section, we confine our attention to the estimates from the MGORL model. An important 

finding from Tables 6 and 7 is that the general pattern and magnitude of elasticity effects of 

variables on injury severity is similar across pedestrians and bicyclists. This is an encouraging 

result from the standpoint of designing strategies to alleviate non-motorist injury severity levels 

in crashes, since a single uniform set of strategies may be identified and implemented. 

Nonetheless, there are some marginally significant differences in the elasticity effects for 

pedestrians and bicyclists. In particular, bicyclists over the age of 60 years, under the influence 

of alcohol, and hit by pick-up trucks/vans are more likely to be incapacitatingly or fatally injured 

in crashes than pedestrians over 60 years, under the influence of alcohol, and hit by a pick-up 

truck/van, respectively. Crashes on roadways with a speed limit of 25-50 mph are likely to lead 

to more incapacitating or fatal injuries in pedestrians than bicyclists, while the reverse is true for 

crashes on roadways with a speed limit of over 50 mph. The environmental and crash factor 

elasticity effects show the higher injury severity levels for bicyclists compared to pedestrians for 

crashes occurring during the evening/night periods and for frontal impacts. In general, with some 

exceptions, the effect of the variables in Tables 6 and 7 is to increase the probability of 

incapacitating and fatal injuries for bicyclists relative to pedestrians. 

 

5.2.2.3 Strength of variable effects and implications 

Tables 6 and 7 suggest that the most important variables affecting injury severity level sustained 

by non-motorists are: (1) whether or not the non-motorist is over 60 years of age, (2) speed limit 

on roadway, (3) location of crash (crashes at signalized intersection lead to reduced injury 

severity compared to crashes at other roadway locations) and (4) time-of-day of crash (dark 

periods of the day lead to higher injury severity). The intoxication level of non-motorist and 

drivers, vehicle type involved in the crash, and crash characteristics also have important effects, 

but not as much as the factors identified earlier. 
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 The variable effects have important implications for education and training, traffic 

regulation and control, as well as planning and design of pedestrian/bicycle facilities. In terms of 

education and training, the results reinforce the need to educate both non-motorists and vehicle 

drivers about the risks of driving under the influence (DUI) of alcohol. Unfortunately, darkness 

also plays an important role in injury severity and, therefore, the combination of DUI and driving 

late night after parties (especially, between 12 am-6 am) is particularly deadly (and much more 

so than predicted by the ORL model used in earlier studies). This issue needs to be emphasized 

in the education and training of motorized vehicle drivers, and not just the individual and 

separate effects of alcohol use and the dangers of driving at night time. Similarly, non-motorists 

should also be made aware of the risks of alcohol use and night time travel, particularly the 

combination of the two. Further, older adults are particularly prone to fatal injuries due to greater 

fragility (the ORL model used in earlier studies underestimates this effect), and thus 

recommendations to decrease injury risk due to other factors are warranted (for example, older 

drivers may be advised, in particular, to avoid walking/bicycling during the night time in places 

with medium-to-heavy vehicular traffic). Encouraging non-motorists to wear “reflector” gear to 

improve visibility is another element of education and training countermeasures. 

 Traffic regulation and control countermeasures can include precluding non-motorists and 

motorists from sharing the same pavement on high speed roads, roads with a substantial mix of 

different types of vehicles, and/or on roads with a significant fraction of heavy vehicles. Signs 

need to be posted to communicate this to non-motorists. In areas with heavy pedestrian and 

bicycle traffic, such as in residential areas, the results suggest the need to restrict the speed limit 

to 25 mph. Good street lighting and illumination, and additional traffic signal installation, also 

can constitute effective countermeasures in areas with heavy non-motorist traffic. On roadways 

with a substantial mix of vehicle types, posting appropriate safety advisory/warning signs may 

make both the motorists and non-motorists more alert. It would also be beneficial to increase 

police surveillance during the late night periods, especially on Fridays and Saturdays, given our 

results indicate that the combination of DUI and driving during the late night is particularly 

deadly. 

 Finally, the results also inform the planning and design of pedestrian/bicyclist facilities. 

On high speed limit roads (particularly those over 50 mph), bicycle facilities should be designed 

to be an off-roadway bicycle lane (a bikeway physically separated from motorized vehicle traffic 
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by an open space or barrier) or at least a clearly demarcated bicycle lane (a designated portion of 

the roadway striped for bicycle use). Also, in selecting bicycle highways, decision-makers 

should review adjoining roadway speed limits, vehicle mix of traffic, and the presence of good 

illumination. Interestingly, our results also suggest that there may be value to selecting bicycle 

paths along roadway corridors with several signalized intersections, even if this may not be 

desirable from a bicyclist travel standpoint. 

 

5.2.3 Measures of Fit 

It is clear from Section 5.2.2.1 that the substantive implications for policy analysis from the ORL 

and MGORL model are quite different in the current empirical context. These differences 

suggest the need to apply formal statistical tests to determine the structure that is most consistent 

with the data. 

 Given that the MGORL model is a generalized version of the ORL model, the two 

models can be compared using a likelihood ratio test in the estimation sample. The log-

likelihood value at convergence of the final MGORL model is -2667.6, while the corresponding 

value for the ORL model is -2732.9 (the log-likelihood value of the market share model is -

2867.9). The likelihood ratio test value for comparing the MGORL model with the ORL model 

is 130.6, which is larger than the critical chi-square value with 18 degrees of freedom at any 

reasonable level of significance (note that the ORL model restricts all the non-constant 

parameters in the threshold columns of Table 5 to 0; there are 18 such parameters). 

 We also evaluated the performance of the ORL and MGORL models on various market 

segments of the estimation sample (Ben-Akiva and Lerman, 1985 refer to such predictive tests as 

market segment prediction tests). We use both aggregate and disaggregate measures of fit. At the 

aggregate level, we compare the predicted and actual (observed) shares of injuries in each 

severity level and compute the root mean square error (RMSE) and the mean absolute percentage 

error. At the disaggregate level, we compute the predictive log-likelihood and compare the two 

models using a chi-squared test. The results are provided in Table 8. The predicted shares from 

the MGORL model are clearly much closer to the true shares by both aggregate measures of fit. 

The predictive performance from the MGORL model is also superior to that of the ORL model 

based on the predictive log-likelihood value. The differences are statistically significant when 

compared to the chi-squared critical value of 28.87 (at the 0.05 level of significance) for each 
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market segment. Overall, all the fit statistics indicate the superior performance of the MGORL 

model over the ORL model from a data fit standpoint. 

 

6. CONCLUSIONS  

This paper proposes an econometric structure for injury severity analysis that recognizes the 

ordinal nature of the categories in which injury severity are recorded, while also allowing 

flexibility in capturing the effects of explanatory variables on each ordinal category and allowing 

heterogeneity in the effects of contributing factors due to the moderating influence of unobserved 

factors. The model developed here, referred to as the mixed generalized ordered-response logit 

(MGORL) model, generalizes the standard ordered-response models used in the extant literature 

for injury severity analysis. The MGORL model is very flexible, and allows trend reversals in 

the elasticity effect of variables on the probabilities of successive injury severity categories. On 

the other hand, the standard ordered-response model constrains the elasticity effects to be more 

rigid and monotonic from the lowest category of injury severity to the highest. The MGORL 

formulation developed here also immediately satisfies the required ordering conditions of the 

thresholds for each crash. To our knowledge, this is the first such formulation to be proposed and 

applied in the econometric literature in general, and in the safety analysis literature in particular. 

The MGORL model is estimated using a maximum simulated likelihood method using quasi-

Monte Carlo draws. 

 The MGORL model is applied to examine non-motorist injury severity in accidents, 

using the 2004 General Estimates System (GES) database. The study considers a comprehensive 

set of potential determinants of non-motorized injury severity, including non-motorist and 

motorized vehicle driver characteristics, motorized vehicle attributes, roadway characteristics, 

environmental factors and crash characteristics. The study appears to be the first to compare and 

contrast the effects of variables on injury severity between pedestrians and motorists. 

 There are several important empirical findings. First, the ORL model used in extant 

studies produces inconsistent estimates of the effects of several variables in the current empirical 

context. For instance, the ORL model substantially underestimates the fatal injury probability for 

the elderly (> 60 years), non-motorists hit by an alcohol-intoxicated driver and/or a driver with a 

pick-up truck, and crashes occurring on roads with a speed limit over 25 mph. The incorrect 

evaluation of the effects of determining factors can lead to misinformed policy actions. Second, 
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an important result is that the general pattern and relative magnitude of elasticity effects of injury 

severity determinants are similar for pedestrians and bicyclists. This is an encouraging result 

from the standpoint of designing countermeasures. To the extent that earlier research on non-

motorized injury severity has focused solely on pedestrians or on bicyclists, they have been 

unable to make such an important conclusion. Third, even though the pattern and relative 

magnitude of elasticity effects are the same across pedestrians and bicyclists, the absolute 

magnitudes indicate that bicyclists over 60 years, under the influence of alcohol, hit by pick-up 

trucks, and involved in accidents on high speed roads (> 50 mph) are likely to be more severely 

injured than pedestrians over 60 years, under the influence of alcohol, hit by pick-up trucks, and 

involved in accidents on high speed roads, respectively. However, pedestrians are the ones more 

likely to be severely injured relative to bicyclists for crashes on roads with a speed limit between 

25-50 mph. Fourth, the most important variables influencing non-motorist injury severity are the 

age of the individual (the elderly are more injury-prone), the speed limit on the roadway (higher 

speed limits lead to higher injury severity levels), location of crashes (those at signalized 

intersections are less severe than those elsewhere), and time-of-day (darker periods lead to higher 

injury severity). Fifth, the results have important implications for education and training, traffic 

regulation and control, and planning of pedestrian/bicycle facilities, as discussed in Section 

5.2.2.3. Sixth, the MGORL model clearly provides a much better data fit than the ORL model on 

the estimation sample as well as for specific segments, reinforcing the inconsistent results that 

are obtained from the ORL model. Overall, the current research contributes to the literature from 

both methodological and empirical standpoints. 

 The paper, however, is not without its limitations. The current paper focuses on the 

impact of various factors on non-motorist injury severity conditional on the occurrence of a 

crash. It is important to note here that factors that reduce overall injury severity may increase risk 

of a crash and vice-versa. Also, as with several earlier studies, the use of police-reported crashes 

can skew injury severity levels toward more severe crashes (since crashes with no injury or 

minor injury may not be reported and so may be under-represented in the accident database). 

Further, the scope of the current research is limited to non-motorized injury severity in crashes 

with a single motorized vehicle. While these are the most common type of crashes, the analysis 

can be extended to other types of crashes. Also, there is room for improving the model 

specification by including additional variables, such as grades, road curvature, detailed roadway 
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geometrics, and average speeds at the location of crash (rather than speed limits). The 

specification adopted in the current paper, while quite comprehensive, is limited by the variables 

available in the GES data. Finally, it should also be pointed out that, while age of the motorized 

vehicle driver did not turn out to be a statistically significant determinant of non-motorized 

individual injury severity in the current study, this may be attributed to the lack of adequate 

crashes involving old drivers (specifically, those over the age of 70 years) in the sample. As the 

age of motorist drivers increases in the US and other developed countries, it is important that a 

comprehensive evaluation of accidents involving older drivers be undertaken. This, along with 

the travel pattern needs of the elderly (see Golob and Hensher, 2007 and Hensher, 2007), may 

help inform the design of policies that balance travel needs of this growing population group 

with any road safety-related concerns associated with their driving.  
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Figure 1: Probability values for injury severity with fixed thresholds for the two crash groups of  

(a) intoxicated motorists who hit bicyclists and (b) non-intoxicated motorists who hit bicyclists head-on 
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Figure 2: Probability values for injury severity with varying thresholds across individuals:  
Thresholds for intoxicated motorists who hit bicyclists sideways. 
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Table 1: Descriptive Analysis Studies of Non-Motorist Injury Severity 

 

Study 

Non-motorized 
User Type Injury Severity 

Representation Data Source 
Analysis 

framework 
employed 

Categories of 
independent 

Variables considered 
Summary Findings 

Pedestr
ian 

Bicycli
st 

Atkins et al., 
(1988) Yes No 

Abbreviated injury 
score (AIS) – 5 
category ordinal 
variable  

Road traffic accidents 
in Oxford, (1983-1984) 

Frequency 
Analysis 

Non-motorist 
characteristics 

• The study observed a peak in injuries to pedestrians aged 16-65 years 11 
pm and 12 am 

• Pedestrian alcohol use did not influence injury severity. 
Motorized Vehicle 

attributes 
• An increase in injury severity with an increase in vehicle weight are 

observed 
Jehle and 

Cottington 
(1988) 

Yes No 
Injury severity score – 
continuous variable 
(ISS) 

Pedestrian accident 
victims Pittsburgh, PA 
(1982-1983) 

Chi-squared 
test 

Non-motorist  
characteristics 

• The study concludes that pedestrians intoxicated are subject to higher ISS 
• The proportion of alcohol related accidents were higher in the 25-34 age 

group. 

Holubowycz 
(1995) Yes No Fatal vs. serious injury 

– binary variable 

Office of road safety of 
department of road 
transport and police 
traffic intelligence 
center and royal 
Adelaide hospital 
(1981-1992) 

Chi-squared 
test and 
student’s t-test

Non-motorist  
characteristics 

• The highest fatality rates were seen in elders aged 75 or more.  
• A large proportion of the pedestrian injured seriously or fatally were 

males 
• Among the fatally injured young and middle-aged males alcohol 

consumption was high 

Jensen (1999) Yes No 4 category ordinal 
variable 

Denmark police 
reported cases for 47 
Danish cities (1995) 

Frequency 
analysis 

Roadway  
characteristics 

• Increased speed limit leads to higher proportion of fatalities in traffic 
crashes. 

Al-Ghamdi 
(2002) Yes No 

1) Fatal vs. nonfatal – 
binary variable 

 
2) Three category 

ordinal variable 

Pedestrian vehicle 
crashes in Riyadh 
(1997-1999) 

Chi-squared 
test and odds 
ratio 

Motorized Vehicle 
attributes 

• The relationship between injury severity and vehicle type was statistically 
insignificant   

Roadway  
characteristics 

• The odds of sustaining a severe injury are higher for crashes occurring on 
two-way roadways with a median. 

Environmental factors • The odds of being killed at night are 1.81 times higher than for being 
killed during the day 

Stone and 
Broughton 

(2003) 
No Yes Fatal vs. nonfatal – 

binary variable 

Police reported crashes 
in England, Wales and 
Scotland (1990-1999) 

Frequency 
analysis 

Non-motorist  
characteristics 

• A higher incidence of fatalities were observed in adults older than 50 
years. 

• Fatality rates were not significantly different for males and females 
Roadway  

characteristics • Fatality rates increase markedly with increase in speed limits 

Environmental  factors 
• The study studied the influence of lighting on fatalities and found that 

darkness with street lighting has the lowest fatality rate. 
• Higher percentage of fatalities occur between 9 pm - 6 am. 

Crash  characteristics 

• The fatality rates for back impacts are higher than the corresponding 
numbers for frontal impacts 

• A significant number of serious (resulting in serious injury/fatality) 
bicycle accidents (94%) occur without a collision with another vehicle 

Lefler and 
Gabler (2004) Yes No 

Abbreviated injury 
scale – 6 category 
ordinal variable (AIS) 

Pedestrian Crash Data 
Study (PCDS) (1994-
1998) 
 

Frequency and 
Cross-
tabulation 
analysis 

Motorized Vehicle 
attributes 

• The likelihood of pedestrians sustaining a fatal injury is higher in 
collisions with light truck vans 

Roadway  
characteristics • Higher speed limits are associated with severe injuries on the AIS scale. 
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Table 2: Modeling Studies of Non-Motorist Injury Severity 

Study 

Non-motorist 
User Type Injury severity 

representation Data Source 
Analysis 

framework 
employed 

Categories of 
independent 

Variables 
considered 

Summary Findings 
Pedestr

ian 
Bicycli

st 

Pitt  et al., 
(1990) Yes No 

1) Injury severity score- 
continuous score (ISS) 

 
2) Serious vs. Non serious 

injury – binary variable 

Pedestrian injury 
causation study 
from National 
highway traffic 
safety 
administration 

Analysis of 
Variance for 
ISS 
 
Logistic 
regression for 
serious vs. 
non-serious 
injury 

Non-motorist  
characteristics 

• Children aged less than five years sustained more severe injuries and 
children older than 9 years sustained less severe injuries compared to the 
5 – 9 age group  

• Gender based differences in injury severity were insignificant 
Motorized 

Vehicle Driver 
characteristics   

• Driver sex, gender and alcohol use were statistically insignificant 

Motorized 
Vehicle 

attributes 

• Vehicle speed > 30 mph resulted in increasing the likelihood of a severe 
injury 

• Vehicle characteristics (such as bumper height, hood height and lead 
angle) did not influence injury severity 

Roadway  
characteristics   

• Roadway classification, travel lane, and presence of traffic control also 
did not influence injury severity 

• Injury severity was highest in residential zones 
• The study suggests use of automated traffic devices to enhance safety 

Environmental  
factors   

• The most severe injuries occurred between 6 am – 9 am  and the least 
severe injuries occurred between 12 pm- 3 pm 

Crash  
characteristics   

• Manner of impact did not affect injury severity. 
• Pedestrians moving within the road were more severely injured 

Miles-Doan 
(1996) Yes No 

1) Fatal vs.  nonfatal –
binary variable 

 
2) Serious/fatal vs. 

minor/no injury- binary 
variable 

 
3)Fatal vs. seriously 

injured 

Florida department 
of highway safety 
(1988-1990) 

Logistic 
regression 

Non-motorist  
characteristics 

• An increase in age led to an increase in the severity odds 
• Pedestrian alcohol consumption increased the odds of serious injury or a 

fatality 

Roadway  
characteristics   

• Speed limits > 40mph affects injury severity significantly 
• Accidents occurring in rural locations are found to result in more severe 

injuries 
Environmental  

factors   
• The injuries occurring during the “dark “ periods of the day were more 

severe 
Crash  

characteristics   
• Crashes where a vehicle collides straight ahead with the pedestrian result 

in severe injuries 

Klop and 
Khattak 
(1999) 

No Yes 5 category ordinal variable

North Carolina 
Highway Safety 
Information 
System (1990-
1993) 

Ordered 
response 
model 

Roadway 
characteristics   

• Grades (both straight and curved) result in increasing the injury severity 
of bicyclist 

• Higher average traffic results in less severe injuries 
• Influence of speed limit on injury propensity was insignificant 
• The crash location and presence of shoulder on the roadway did not affect 

injury severity 
Environmental  

factors 
• Crashes occurring in dark lighting result in severe injuries. 
• Presence of fog on roadways increases the likelihood of severe injury 
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Study 

Non-motorist 
User Type Injury severity 

representation Data Source 
Analysis 

framework 
employed 

Categories of 
independent 

Variables 
considered 

Summary Findings 
Pedestr

ian 
Bicycli

st 

Ballesteros 
et al., 
(2003) 

Yes No 

1) Fatal vs. nonfatal – 
binary variable 

 
2) Injury severity score 

(ISS) ≥ 16 vs.  ISS < 16 
–binary variable 

Maryland 
Automated 
Accident 
Reporting System 
(1995-1999) 

Logistic 
regression 
analysis 

Motorized 
Vehicle 

attributes 

• Pedestrians hit by SUVs and pick-ups were more likely to suffer fatal 
injuries compared to conventional passenger cars and vans.  

• Controlling for vehicle weight and speed limit increased the odds of a 
injury when a van is involved. 

Roadway 
characteristics   

• With increasing speed limits, pedestrian mortality and ISS values 
increased. 

Zajac and 
Ivan (2003) Yes No 5 category ordinal variable

Connecticut 
department of 
transportation 
(1989-1998) 

Ordered 
response 
model 

Non-motorist  
characteristics   

• Pedestrians older than 65 years are prone to severe injuries 
• Pedestrian and driver alcohol consumption resulted in severe injuries 

Motorized 
Vehicle Driver 
characteristics   

• Motorized vehicle driver alcohol intoxication results in increased 
pedestrian injury severity 

Roadway 
characteristics   

• Increase in roadway width increased injury severity propensity 
• Crashes occurring in downtown and compact residential areas were found 

to result in lower injury severity compared to the crashes in low-density 
residential areas. Also, crashes occurring in low and medium density 
commercial areas result in less severe injuries compared to the crashes 
occurring in village and downtown fringe areas 

Environmental 
factors   • Lighting and weather were statistically insignificant in the analysis 

Roudsari et 
al., (2004) Yes No 

1) Injury severity score 
(ISS)  ≥ 15 vs. ISS <15 
– binary variable 

 
2) ISS ≥ 9 vs. ISS <9 – 

binary variable 
 
3) Abbreviated injury 

scale (AIS) ≥4 vs. AIS 
< 4 – binary variable 

Pedestrian 
accidents from 
Buffalo, Chicago, 
Dallas, Fort 
Lauderdale, San 
Antonio, and 
Seattle (1994-
1998) 

Logistic 
regression 
analysis 

Non-motorist  
characteristics • Adult mortality is higher than children mortality in crashes. 

Motorized 
Vehicle 

attributes  

• After controlling for pedestrian age and speed at impact, light truck vans 
are associated with higher odds of severe injuries 

• Higher speeds resulted in severe injuries 

Lee and 
Abdel-Aty 

(2005) 
Yes No 5 category ordinal variable

Florida traffic 
crash records 
database (1999-
2002) 

Ordered 
response 
model 

Non-motorist  
characteristics   

• Pedestrians older than 65 are prone to severe injuries 
• Females are slightly more likely to be severely injured 
• Pedestrian alcohol use increases severity propensity  

Motorized 
Vehicle 

attributes 

• Non-sedan (van, truck and bus) crashes result in more severe injuries 
• Increase in speed also increase the injury severity sustained 

Roadway 
characteristics   

• Rural areas are more likely to result in severe crashes 
• If the crash occurs at a crossing with a a traffic control device the 

propensity to be injured is lower. 
Environmental  

factors • Dark lighting and adverse weather increase the injury severity propensity 
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Study 

Non-motorist 
User Type Injury severity 

representation Data Source 
Analysis 

framework 
employed 

Categories of 
independent 

Variables 
considered 

Summary Findings 
Pedestr

ian 
Bicycli

st 

Kim et al., 
(2007) No Yes 4 category ordinal variable

North Carolina 
accident data 
(1997-2002) 

Multinomial 
logit model 

Non-motorist  
characteristics   

• Bicyclists older than 55 are more susceptible to fatalities 
• Bicyclist alcohol consumption increases likelihood of fatal and 

incapacitating injuries 
Motorized 

Vehicle Driver 
characteristics   

• Motorized vehicle driver alcohol intoxication results in increased 
propensity of incapacitating and fatal injuries 

Motorized 
Vehicle 

attributes 

• Heavy trucks and pickups increase the likelihood of fatal and 
incapacitating injuries. 

• Increase in speed increases the likelihood of non-incapacitating, 
incapacitating and fatal injuries 

Roadway  
characteristics   • Crashes occurring on curved roads result in more fatalities 

Environmental  
factors   

• Inclement weather and darkness increases the likelihood of fatalities 
• Crashes occurring during the AM peak (6 am – 10 am) and weekends 

increase the likelihood of fatality 

Crash  
characteristics • Frontal impacts increase the odds of a fatality 

Sze and 
Wong 
(2007) 

 

Yes No Fatal vs. serious injury – 
binary variable 

Traffic crashes 
collected by the 
Hong Kong 
transportation 
department (1991-
2004) 

Logistic 
regression 

Non-motorist 
characteristics 

• Males aged less than 15 years were subject to lower risk of a fatality.  
Pedestrians older than 65 are more likely to suffer death 

Roadway  
characteristics   

• Crashes occurring on roadways with speed limit > 50 km/h increased the 
likelihood of fatalities 

• Crashes occurring on intersections with traffic signals are severe than 
intersections with other traffic signs. 

• Multi –dual carriageway roads are more riskier compared to one-way 
roadways 

Environmental 
factors   

• The odds of a fatality are higher for crashes occurring between 7 pm – 7 
am 

Crash  
characteristics   

• Pedestrian crossing the roads are subject to more severe injuries 
• Pedestrian being inattentive increases the odds of sustaining a fatality 
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Table 3: Distribution of Non-Motorist Injury Severity by Non-Motorist Type 
 

Injury severity category Pedestrian Bicyclist All 
Non-motorists 

No injury    135    (7.8%)†     89     (7.3%)    224     (7.6%) 

Non-incapacitating injury    951  (55.3%)   863   (70.6%)  1814   (61.6%) 

Incapacitating injury    541  (31.4%)   250   (20.4%)    791   (26.9%) 

Fatal injury     94    (5.5%)     21     (1.7%)    115     (3.9%) 

Total 1223 (100.0%) 1721 (100.0%)  2944 (100.0%) 

       †The percentage values sum to 100 across rows for each column. 

 

 

Table 4: Distribution of Non-Motorist Injury Severity by Non-Motorist Alcohol Intoxication 
 

Injury severity category 
Non-motorist was alcohol 

intoxicated? All 
Non-motorists No Yes 

No injury     217    (8.0%)†       7     (2.8%)    224     (7.6%) 

Non-incapacitating injury  1688   (62.6%)   126   (51.2%)  1814   (61.6%) 

Incapacitating injury    699   (25.9%)     92   (37.4%)    791   (26.9%) 

Fatal injury      94     (3.5%)     21     (8.5%)    115     (3.9%) 

Total  2698 (100.0%)   246 (100.0%)  2944 (100.0%) 

       †The percentage values sum to 100 across rows for each column. 
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Table 5: Mixed Generalized Ordered Response Logit Results 

Variables Latent Propensity 

Threshold between 
Non-incapacitating 
and Incapacitating 

injury 

Threshold between 
Incapacitating and 

Fatal injury 

Latent Propensity Component    
Constant     1.846 (12.94)        1.305 (36.26)     1.645 (11.49) 
Non-motorist Characteristics     
Pedestrian (Bicyclist is the base) ---       -0.103 (-2.67) --- 
Male     0.159 (1.85) ---                --- 
Age Variables (age ≤ 60 years is base)    

> 60 years     0.667 (5.26) ---  -0.536 (-4.61) 
  Under the influence of alcohol     0.455 (3.47) --- --- 
Motorized Vehicle Driver Characteristics    
Under the influence of alcohol     0.837 (2.14)      0.271 (2.87)  -0.250 (-1.53) 
Motorized Vehicle Attributes    
Sports utility vehicle     0.364 (3.15) --- --- 
Pick-up truck ---    -0.070 (-2.18)  -0.197 (-1.98) 
Van --- ---  -0.237 (-1.70) 
Roadway Design Characteristics    
Speed Limit    
       25-50mph     0.218 (1.97) ---  -0.225  (-2.01) 
       >50 mph     0.605 (3.06) ---       -0.679  (-3.93) 
      Speed limit > 25mph * pedestrian ---    -0.117 (-2.61) --- 
Accident Location (stop signs, warning signs, regulatory signs, and no 
signs are base)    

       Signalized Intersection    -0.300 (-3.32) --- 0.387 (3.43) 
Environmental Factors    
6pm - 12am     0.297 (3.43) --- -0.352 (-3.82) 
12am - 6am ---    -0.304 (-4.66) -0.365 (-2.59) 
Snow --- --- 0.538 (1.60) 
Crash Characteristics    
Direction of Impact (sideways impact is the base)    
       Frontal Impact    0.447 (3.20)     0.072 (1.64) -0.226 (-2.38) 
       Other directions of impact   -0.734 (-2.91) --- -0.603 (-2.23) 

Log-likelihood at convergence -2667.6 
Number of observations  2944 
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Table 6: Elasticity Effects for Pedestrians 
 

Variables 

ORL MGORL 

No injury 
Non-

incapacitating 
injury 

Incapacitating 
injury Fatality No injury 

Non-
incapacitating 

injury 

Incapacitating 
injury Fatality 

Mean 
Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev 

Non-motorist Characteristics                          
Male -15.64  3.26  -4.64 1.09   8.84  1.79  15.14  3.03 -14.92  4.68  -4.24 1.39   8.89  2.82  13.27  4.00 
Age Variables                             
       > 60 years -59.35  4.49 -27.12 3.53  43.66  4.87 102.50 12.75 -48.84  4.11 -20.14  3.37   9.52  6.78 224.44  29.12 

  Under the influence of alcohol -37.46  5.24 -15.04 2.91  25.83  4.47  52.17  9.97 -35.50  3.99 -13.59 2.32  25.63  4.05  42.80  6.23 
Motorized Vehicle Driver 
Characteristics                            

Under the influence of alcohol -2.46  6.65  -0.81 2.02   1.58  3.87   2.87  6.80 -53.16 10.11  12.81 10.32 -17.81 15.26  40.62  38.18 
Motorized Vehicle Attributes                            
Sports utility vehicle -26.82  4.57  -9.66 1.90  17.25  3.81  33.55  7.38 -28.96  4.13 -10.32  1.87  19.93  3.91  33.33   6.13 
Pick-up truck -10.38  3.40  -3.33 1.22   6.08  1.97  11.04  3.73   0.00  0.00  -8.07  2.19   4.17  4.18  60.02  11.47 
Van   0.00  0.00   0.00 0.00   0.00  0.00   0.00  0.00   0.00  0.00   0.00  0.00  -8.25  2.83  47.59  14.63 
Roadway Design Characteristics                                 
Speed Limit                                 
       25-50mph -41.17  4.05 -11.58 1.74  22.42  1.82  38.04  3.21 -19.70  5.78 -20.08  3.94  26.46  4.55  80.27  10.02 
       >50 mph -65.78  4.37 -34.95 4.89  52.21  4.68 143.65 19.62 -41.58  6.62 -32.17  5.56   7.47  8.75 355.21  72.37 
Accident Location                                 
       Signalized Intersection  34.90  4.79   9.34 1.39 -18.57  2.58 -30.23  3.70  29.51  4.26   7.63  1.28  -7.48  3.18 -78.25   9.01 
Environmental Factors                                 
6pm – 12am -29.09  3.30  -9.62 1.73  78.53  1.57  32.03  3.67 -26.87  3.56  -8.58  1.73   4.53  3.95 100.22   9.49 
12am – 6am -64.58  3.73 -34.04 3.41  52.04  6.37 135.94 16.42   0.00  0.00 -35.14  4.08  25.53  9.07 220.62  37.00 
Snow 13.07 23.39   2.59 5.79  -5.84 11.78  -8.36 19.20   0.00  0.00   0.00  0.00  11.86  3.14 -68.56  14.93 
Crash Characteristics                                
Direction of Impact (sideways 
impact is base)                                

       Frontal Impact -26.81  4.79  -7.65 1.62  14.76  2.35  24.78  3.99 -43.19  6.45  -3.39  3.80   5.94  5.51  57.11  11.10 
       Other direction of impact 103.44 24.11  16.05 2.45 -39.97  7.06 -54.22  7.33  79.99 18.67  13.15  3.23 -48.73  5.51  39.23  35.11 
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Table 7: Elasticity Effects for Bicyclists 
 

Variables 

ORL MGORL 

No injury 
Non-

incapacitating 
injury 

Incapacitating 
injury Fatality No injury 

Non-
incapacitating 

injury 

Incapacitating 
injury Fatality 

Mean 
Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev Mean 

Std. 
Dev 

Non-motorist Characteristics                 
Male -15.46  3.33  -2.16 0.65  11.25  2.21  15.30  2.99 -15.39  4.98  -1.96 0.79  11.71  3.49  14.40   4.22 
Age Variables                 
       > 60 years -55.56  4.11 -18.33 3.24  64.73  7.32 115.04 15.29 -47.16  3.82 -12.46 2.75  33.57  8.36 339.64  50.62 
Under the influence of alcohol -35.95  5.04  -9.11 2.17  35.88  6.53  57.33 11.55 -34.95  3.87  -7.87 1.85  37.42  5.42  51.14   7.71 
Motorized Vehicle Driver 
Characteristics                 

Under the influence of alcohol  -2.37  6.37  -0.42 1.01   2.09  5.08   3.03  7.12 -52.47  9.86  13.20 6.07 -28.27 20.36  29.86  46.33 

Motorized Vehicle Attributes                 
Sports utility vehicle -26.16  4.52  -5.39 1.27  23.37  5.05  35.04  7.61 -29.16  4.20  -5.62 1.35  28.45  5.25  38.10   6.95 
Pick-up truck  -9.94  3.26  -1.77 0.74   8.06  2.66  11.61  3.94   0.00  0.00  -6.06 1.75  14.08  5.86  83.53  15.24 
Van   0.00  0.00   0.00 0.00   0.00  0.00   0.00  0.00   0.00  0.00   0.00 0.00  -5.61  2.08  63.44  19.86 

Roadway Design Characteristics                 
Speed Limit                 
       25-50mph -39.22  3.85  -5.60 1.33  28.86  2.40  39.75  3.41 -19.65  5.77  -2.76 1.23  11.31  4.43  67.10  12.33 
       >50 mph -63.75  4.30 -24.58 4.65  80.81  7.61 161.88 23.69 -41.14  6.51 -10.39 3.24  18.14  9.12 470.81  95.52 
Accident Location                 
       Signalized Intersection  33.49  4.58   4.22 0.96 -23.41  3.05 -31.28  3.77  29.58  4.26   3.45 0.80 -16.59  3.35 -88.54   9.61 

Environmental Factors                 
6pm – 12am -27.53  3.08  -5.31 1.28  23.46  2.43  34.41  4.15 -26.40  3.42  -4.57 1.17  14.85  4.40 135.88  13.21 
12am – 6am -61.82  3.57 -23.87 3.15  79.18  9.47 156.92 20.48   0.00  0.00 -29.36 3.97  69.76 14.80 398.75  79.86 
Snow  12.39 22.28   0.88 2.55 - 6.95 14.87  -8.47 19.87   0.00  0.00   0.00 0.00   6.63  1.86 -75.22  13.89 

Crash Characteristics                 
Direction of Impact (sideways 
impact is base)                 

       Frontal Impact -25.27  4.51  -3.85 1.15  19.08  2.96  26.39  4.35 -41.83  6.04   0.27 2.46   9.43 8.20  67.16  14.69 
       Other direction of impact  97.84 22.51   2.23 2.40 -46.13  7.16 -54.67  7.13  81.38 19.49   3.82 1.99 -51.23  5.58  65.18  52.09 
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Table 8: Aggregate Measures of Fit in Estimation Sample 
 

Injury Categories/ 
Measures of fit 

Pedestrians Bicyclists Older Non-motorists Frontal impacts 

Actual 
shares 

ORL 
predictions 

MGORL 
predictions 

Actual 
shares 

ORL 
predictions

MGORL 
predictions 

Actual 
shares 

ORL 
predictions 

MGORL 
predictions 

Actual 
shares 

ORL 
predictions 

MGORL 
predictions 

No injury  7.84  6.04 7.44  7.28  9.89  7.93 3.91  3.91  4.98 6.51  6.62  6.29 

Non-incapacitating 
injury 55.26 57.70 55.55 70.56 65.90 70.07 53.02 49.82 51.25 60.50 59.58 60.88 

Incapacitating injury 31.44 31.38 31.73 20.44 21.59 20.28 30.96 39.15 32.38 28.21 29.41 28.32 

Fatal injury  5.46  4.94 5.29  1.72  2.62  1.72 12.10  7.12 11.39 4.77  4.40  4.50 

Number of 
observations 1721 1721 1721 1223 1223 1223 281 281 281 1843 1843 1843 

Root mean square error 
(RMSE) ---  1.54  0.30 ---  2.77  0.42 ---  5.05  1.31 ---  0.78  0.26 

Mean absolute 
percentage error 
(MAPE) 

---  9.28  2.46 --- 25.14  2.62 --- 18.41 10.28 ---  3.84  2.51 

Predictive likelihood 
ratio test 96.1 >  2

18,0.05 28.87χ =  42.1 >  2
18,0.05 28.87χ =  33.5 >  2

18,0.05 28.87χ =  88.3 >  2
18,0.05 28.87χ =  

 
 


