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Abstract 25 

One major source of uncertainty in accurately estimating human exposure to air pollution is that human 26 

subjects move spatiotemporally, and such mobility is usually not considered in exposure estimation. How 27 

such mobility impacts exposure estimates at the population and individual level, particularly for subjects 28 

with different levels of mobility, remains under-investigated. In addition, a wide range of methods have 29 

been used in the past to develop air pollutant concentration fields for related health studies. How the 30 

choices of methods impact results of exposure estimation, especially when detailed mobility information 31 

is considered, is still largely unknown. In this study, by using a publicly available large cell phone location 32 

dataset containing over 35 million location records collected from 310,989 subjects, we investigated the 33 

impact of individual subjects’ mobility on their estimated exposures for five chosen ambient pollutants 34 

(CO, NO2, SO2, O3 and PM2.5). We also estimated exposures separately for 10 groups of subjects with 35 

different levels of mobility to explore how increased mobility impacted their exposure estimates. Further, 36 

we applied and compared two methods to develop concentration fields for exposure estimation, including 37 

one based on CMAQ model outputs, and the other based on the interpolated observed pollutant 38 

concentrations using the inverse distance weighting (IDW) method. Our results suggest that detailed 39 

mobility information does not have a significant influence on mean population exposure estimate in our 40 

sample population, although impacts can be substantial at the individual level. Additionally, exposure 41 

classification error due to the use of home-location data only increased for subjects that exhibited higher 42 



levels of mobility. Omitting mobility could result in underestimation of exposures to traffic-related 43 

pollutants particularly during afternoon rush-hour, and overestimate exposures to ozone especially during 44 

mid-afternoon. Between CMAQ and IDW, we found that the IDW method generates smooth 45 

concentration fields that were not suitable for exposure estimation with detailed mobility data. Therefore, 46 

the method for developing air pollution concentration fields when detailed mobility data were to be 47 

applied should be chosen carefully. Our findings have important implications for future air pollution health 48 

studies. 49 
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1. Introduction 53 

Exposure to air pollution is the second leading cause of non-communicable disease worldwide [1]. It is 54 

also associated with more than 4 million premature deaths annually [2, 3] and numerous other negative 55 

health consequences [4-10]. An accurate estimation of human exposure to air pollution is critical for 56 

assessing the potential connections between air pollution exposure and certain health outcomes, and for 57 

quantifying the health impacts of air pollution [11-14]. In many prior air pollution health studies, human 58 

exposure to air pollution was estimated using concentration data collected or simulated at the location of 59 

subjects’ home addresses [15, 16], or even at further aggregated zones such as census tract [17] or ZIP 60 

code level [18]. Detailed spatiotemporal movements of subjects, i.e. human mobility, were usually 61 

omitted due to lack of data. This home-based exposure (herein referred to as HBE), could introduce 62 

considerable amount of exposure classification errors [19-24], which could potentially bias subsequent 63 

statistical analyses [25, 26].  64 

To address this issue, a variety of methods have been adopted, including utilizing travel surveys and diaries 65 

[19, 27], personal measurements [28, 29], accounting for multiple addresses (e.g., residential or work 66 

address) or full-day travel data [19, 24] during the temporal window of exposure [15, 25, 30, 31], tracking 67 

subjects using GPS-enabled surveys [22, 32], and employing a variety of modeling tools and techniques to 68 

account for mobility [21, 33]. Though prior results suggest exposure estimation errors due to the omission 69 

of mobility could differ among individuals with different mobility patterns [19, 24], the direction and 70 

magnitude of such errors remains under-investigated. Further, numerous methods have been used in the 71 

past to develop pollutant concentration fields for air pollution health studies, and the developed fields 72 

vary substantially spatially and temporally [34-36]. How the choices of method impact exposure estimates 73 

when human mobility is considered is still largely unknown. 74 

In our exploratory study [23], we demonstrated the feasibility of using cell phone location dataset in air 75 

pollution exposure estimation using a relatively small sample population (n = 9,886). Here, build upon our 76 

previous work, we: 1) applied two methods to develop pollution concentration fields, and investigated 77 

the impact of different methods on exposure estimates when detailed mobility information were 78 

considered; 2) included a substantially larger sample population (n = 310,989), divided the entire 79 

population into 10 groups with varying mobility levels, and investigated how different mobility impact 80 

exposure estimates; 3) investigated the temporal variability of exposure estimates among groups with 81 

different mobility levels; 4) investigated how exposure classification errors change due to mobility; 5) 82 

quantified the impact of exposure classification errors on subsequent health effect estimations. Details 83 



on the methods used in this study are presented in the next section, followed by the results of the study 84 

and a discussion of the potential of the methods and data, as well as associated limitations. 85 

2. Material and Methods 86 

2.1. Data description and study area 87 

The cell phone location data applied here are Call Detail Record (CDR) data collected by mobile network 88 

operators. CDR data are collected from cellphones when the phone communicates with a nearby cell 89 

towers, specifically, when a network subscriber’s cell phone communicates with a nearby cell tower (such 90 

as phone call, text messaging, or mobile data request), a suite of information is generated and archived 91 

for billing purposes [37-39]. The archived information contains the identities of cell towers that handle 92 

the communication, and the tower locations are already known. CDR data contains tremendous amount 93 

of digital footprints for virtually all subscribers of the network, and it has been extensively used in criminal 94 

investigation [40, 41], the study of human mobility [39, 42, 43], and urban and transportation planning 95 

[44-46]. It’s worth noting that location information contained in CDR data are not the locations of 96 

cellphone users, rather they are the locations of nearby cellphone tower that handled the user’s wireless 97 

communication.  98 

In this study, we obtained a publicly available CDR dataset for Shenzhen, China [38, 47]. Shenzhen is a 99 

major city located in the Guangdong Province (Figure 1). It has an area of 1,991 km2 and over 12 million 100 

residents, making it one of the most populated cities worldwide. The original CDR dataset contains over 101 

38 million location records collected from 414,271 anonymized Subscriber Identification Module (SIM) 102 

cards on one typical weekday in October 2013. We excluded SIM cards with no location data available at 103 

night (here defined as after 8 pm and before 7 am), which is required to infer potential home addresses. 104 

The filtered CDR dataset applied here has 35.6 million location records for 310,989 unique SIM cards 105 

(herein referred to as subjects), with an average of approximately 115 records per subject per day. All 106 

identifiers contained in the original CDR data were removed from this database, leaving only a randomized 107 

SIM card ID, a time stamp, and latitude and longitude. This information was used to construct daily 108 

mobility patterns for each subject. 109 

 110 



Figure 1. The study area of Shenzhen, China 111 

2.2. Exposure estimation 112 

Five pollutants were selected for this study, including carbon monoxide (CO), nitrogen dioxide (NO2), 113 

sulfur dioxide (SO2), ground-level ozone (O3), and particulate matter with the aerodynamic diameter less 114 

than 2.5 µm (PM2.5). All of these pollutants are important air pollutants regulated in both the United States 115 

(National Ambient Air Quality Standards) and China (GB3095-2012), and they are considered to pose 116 

harmful effects to human health and the environment, not only for the US and China, but also worldwide. 117 

Similar to our previous study [23], we estimated all subjects’ exposures to the five chosen pollutants using 118 

two methods: a static, home-based exposure (HBE) calculated by assuming all subjects stay at their 119 

corresponding home locations throughout the entire day; and a dynamic, CDR-based exposure (CDRE) 120 

calculated by matching detailed CDR location data with modeled pollutant concentrations at the 121 

corresponding locations. Specifically, HBE and CDRE are estimated as: 122 

𝐻𝐵𝐸 =
∑ 𝐶ℎ,𝑔
𝑛
ℎ=1

𝑛
 123 
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𝑛
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𝑛
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Where Ch,g is pollutant concentration in hour h at the grid cell g where the corresponding subject’ home 125 

is located; n is the total amount of hours in the study period (n = 24); Ch,m is pollutant concentration in 126 

hour h at grid cell m where the subject is located within the corresponding hour. The subject may be 127 

located in k (k >= 1) grid cells in hour h. In the static method, each subject’s home location was assumed 128 

to be their most frequent location at night (between 8 pm and 7 am), and we used modeled pollutant 129 

concentration data at their corresponding home location to estimate their exposures. In the dynamic 130 

method, the CDRE was estimated by arithmetically weighting concentrations at different locations where 131 

the subject visited based on the time (in hours) the subject spent at each location. If no location data was 132 

available for one specific hour, we assumed the subject stayed at the same location as in the previous 133 

hour. If location data was missing for the first hour (12 am – 1 am), the subject was assumed to be at their 134 

estimated home locations. For hours with multiple location records available, we used averaged 135 

concentration from all locations in the corresponding hour. We estimated HBE and CDRE for each subject 136 

separately. 137 

Different from our previous study [23], we applied two approaches to develop spatiotemporal 138 

concentration fields of the five chosen pollutants: one based on outputs from the Community Multiscale 139 

Air Quality (CMAQ) model [48] for the corresponding day, and the other using the inverse distance 140 

weighting (IDW) method. Detailed information on CMAQ model configurations is available elsewhere [49]. 141 

To correct for potential model biases and errors, we fused hourly measurement data collected from 12 142 

monitoring stations inside the CMAQ modeling domain (Figure 1) into CMAQ output by multiplying 143 

gridded hourly CMAQ fields with adjustment factors. The factors were calculated as the ratio between 144 

measured and modeled concentrations at the locations of each monitoring station, and then spatially 145 

interpolated to the center points of all CMAQ grid cells using kriging [34]. For the IDW method, we spatially 146 

interpolated hourly measurements from all monitoring stations inside the study area using inversed and 147 

squared distance as the weight. The spatial and temporal resolution of the concentration fields for both 148 

methods are 3 km and 1-hour, respectively. We acknowledge that an individual’s exposure to air pollution 149 



occur at finer scales, we nonetheless still applied the aforementioned CMAQ and IDW fields mainly for 150 

two reasons: 1) Developing higher resolution pollution fields are not feasible in this study due to the 151 

limited availability of measurement data in the study area (Figure 1), and computational burden involved 152 

in running higher resolution CMAQ simulations; and 2) the location information in CDR contains the 153 

locations of cellphone towers close to the corresponding cellphone user. In addition, it’s important to 154 

note that the aforementioned CMAQ and IDW methods are fundamentally different, and the results of 155 

exposure assessment are expected to be impacted substantially by the choice of methods.  156 

To understand how different degrees of mobility impact exposure estimation, we further subdivided all 157 

subjects into 10 groups based on the number of unique CMAQ grid cells each individual subject visited 158 

during the day. The number of grid cells each subject visited in group 1 through 9 correspond to their 159 

respective group number, while all subjects that visited 10 or more unique grid cells were collectively 160 

assigned into group 10. Subjects in groups with larger group numbers are expected to have a high degree 161 

of mobility. We estimated HBE and CDRE separately for all 10 groups. While metrics, such as distance 162 

between home and work location [25], have been used in past studies. However, such information is not 163 

available in this study. 164 

In epidemiological studies related to air pollution, subjects are frequently assigned to different groups 165 

based on their exposure levels (such as quartiles) [31, 50-53]. Statistical comparisons are then performed 166 

among these groups to investigate whether high exposure levels are associated with a higher incidence 167 

of certain health outcomes. The statistical analysis could be biased or confounded if subjects were 168 

misclassified into the wrong exposure group. To explore the impact of including detailed mobility data on 169 

exposure misclassification, we compared how subjects were assigned to four quartiles based on their 170 

CDRE and HBE. We define “misclassification” as the assignment of one subject, based on HBE, into a 171 

quartile that is different from CDRE-based quartile. 172 

We performed the Wilcoxon rank sum test to examine whether the medians of CDRE and HBE exposure 173 

estimates are statistically different. We chose this test because the samples in this study are not normally 174 

distributed. Furthermore, we also calculated the expected bias factors to quantify potential biases in 175 

relative risk estimates when HBE was used [25, 54]. According to the classical error theory, exposure 176 

estimated using the home-based method may be expressed as: 177 

𝑍 = 𝑋 + 𝐸     (1) 178 

In equation 1, Z is exposure estimated using HBE; X is the true exposure value; and E is the error 179 

associated with the corresponding HBE. In this study, we use CDRE to represent X, and, based on our 180 

previous results, E is correlated with X [23]. Therefore, the following equation can be applied to 181 

calculate a bias factor [25, 54, 55]: 182 

𝐵 =
𝜎2+𝜑

𝜎2+2𝜑+𝜔2      (2) 183 

In equation 2, B is the calculated bias factor; σ2 is the variance of CDRE of all subjects; φ is the covariance 184 

between CDRE and errors in exposure estimation (calculated based on HBE-CDRE); and ω2 is the variance 185 

of the errors in exposure estimation. The factor B represents the expected bias in relative risk estimates 186 

when the home-based method is applied. For example, a B factor of 0.75 suggests that applying the home-187 

based method would lead to the relative risk being underestimated by 25%. It’s also worth noting that 188 

the Wilcoxon rank sum test is a different statistical measure compared to the coefficient of determination 189 



(R2). The former intends to test equality, while the latter quantifies the proportion of variance contained 190 

in the dependent variable that can be predicted by the independent variable. 191 

3. Results 192 

3.1. Concentration fields 193 

The spatial concentration fields of the five chosen pollutants simulated by the CMAQ and IDW methods 194 

differ considerably (Figure 2), especially for O3, NO2, and PM2.5, where the latter two pollutants are known 195 

to have substantial primary contributions from transportation sectors. Due to the sparseness of monitor 196 

network, the IDW method generally results in smoother fields that lack spatial variabilities compared with 197 

the CMAQ method. The locations of monitoring stations can also be observed on the concentration fields 198 

as simulated by the IDW method (Figure S1). 199 

 200 
Figure 2. Spatial fields of concentrations of the five chosen pollutants as simulated by the CMAQ (a-e) and 201 

IDW (f-j) methods 202 



3.2. Overall correlations between HBE and CDRE 203 

Mean CMAQ-based HBE and CDRE estimates for all subjects were highly correlated with each other (Figure 204 

3). The coefficient of determination (R2) ranged from 0.95 (NO2) to 0.98 (SO2), with the slopes of linear 205 

regression close to 1, and intercepts were close to 0 for all pollutants. The estimated regression 206 

parameters are considerably different comparing with our previous study [23]  (e.g: R2 ranged between 207 

0.65 to 0.76 in the previous study). We also observed many vertically aligned data points, suggesting many 208 

subjects had identical HBE but their CDRE was considerably different when individual mobility was 209 

considered. Additionally, a large number of data points were clustered near the 1:1 line, suggesting that 210 

a substantial portion of the subjects had similar HBE and CDRE. 211 

Similar findings were also observed for IDW-based exposures (Figure 3), including the clustered data 212 

points along the 1:1 line, the high overall correlations between HBE and CDRE, and the varying CDRE 213 

estimates for many subjects with identical HBE estimates. However, the range of estimates for both HBE 214 

and CDRE were much smaller for the IDW exposures, particularly for NO2, O3 and PM2.5, where the vast 215 

majority of data points were clustered within small concentration ranges. It’s also worth noting that 216 

results of Wilcoxon rank sum tests show HBE and CDRE are overall statistically different for all pollutants. 217 
 218 

 219 



Figure 3. Linear correlations between HBE and CDRE estimates of the five chosen pollutants for all subjects 220 

based on CMAQ (a,c,e,g,i) and IDW (b,d,f,h,j) concentration fields. Pixels are color coded by sample size. 221 

The solid black line shown is the 1:1 line. 222 

3.3. The impact of mobility on exposure estimates 223 

We found that the correlations between HBE and CDRE estimates shrink with an increased degree of 224 

mobility (NO2 presented in Table 2, other pollutants in Tables S2 through S5). Compared with CMAQ, the 225 

decreasing correlations between CDRE and HBE were smaller when IDW fields were used, with 226 

considerably smaller RMSE, MNB and MNE. For PM2.5, as shown by the numbers presented in Table S5, 227 

the RMSE, MNB and MNE for the group with the highest degree of mobility (group 10) was only 5.4%, 228 

6.7%, and 4.6%, respectively, of those when CMAQ fields were used. For example, the MNE for group 10 229 

is 3.23% when CMAQ fields were used, but only 0.15% when IDW fields were used. The only exception is 230 

SO2 (Table S3), for which the RMSE and MNE changed similarly between the CMAQ and IDW methods, 231 

though MNB is only 0.9% when the IDW method was applied. 232 

Table 2. Comparison between HBE and CDRE estimate of NO2 for all ten groups with different mobility 233 

  Group number 

  
1 2 3 4 5 6 7 8 9 10 

C
M

A
Q

 

CDRE mean (ppbv)  16.1 16.6 16.7 16.8 16.7 16.3 15.9 15.9 15.6 15.6 

HBE mean (ppbv) 16.1 16.5 16.3 16.2 15.8 15.5 15.2 15.2 15.0 15.1 

aRMSE (ppbv) 0.00 1.16 1.79 2.16 2.50 2.60 2.62 2.74 2.78 3.02 

bMNB (%) 0.0% -0.8% -2.3% -3.8% -5.0% -4.9% -4.3% -4.1% -3.5% -2.8% 

cMNE (%) 0.0% 3.6% 6.2% 8.1% 9.8% 10.5% 10.6% 10.8% 11.2% 11.9% 

dR2 1.00 0.95 0.88 0.83 0.76 0.72 0.70 0.67 0.66 0.64 

ID
W

 

CDRE mean (ppbv) 19.4 19.2 19.3 19.3 19.3 19.2 19.1 19.1 19.0 19.0 

HBE mean (ppbv) 19.4 19.2 19.3 19.3 19.3 19.2 19.1 19.1 19.0 19.0 

aRMSE 0.00 0.23 0.35 0.43 0.49 0.56 0.62 0.62 0.67 0.72 

bMNB (%) 0.0% 0.0% -0.1% -0.1% -0.2% -0.1% 0.0% 0.0% 0.2% 0.4% 

cMNE (%) 0.0% 0.4% 0.8% 1.1% 1.4% 1.7% 1.9% 2.0% 2.3% 2.4% 

dR2 1.00 0.98 0.94 0.92 0.88 0.85 0.81 0.81 0.78 0.75 

Sample size 167570 75313 32177 16350 8354 4617 2700 1562 916 1430 

aRMSE: root mean squared error. Calculated as [
1

𝑁
∑ (𝐻𝐵𝐸𝑖 − 𝐶𝐷𝑅𝐸𝑖)

2𝑁
𝑖=1 ]1/2, where CDRE and HBE is 234 

the estimated exposures based on CDR and home-based method for the ith subject 235 

bMNB: mean normalized bias. Calculated as 
1

𝑁
∑ (

𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖

𝐶𝐷𝑅𝐸𝑖
)𝑁

𝑖=1  236 

cMNE: mean normalized error. Calculated as 
1

𝑁
∑ |

𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖

𝐶𝐷𝑅𝐸𝑖
|𝑁

𝑖=1  237 

dR2: coefficient of determination between HBE and CDRE estimates in the corresponding group. 238 

 239 

In this dataset, over half (54%) of all subjects stayed in the same 3 km grid cell throughout the entire day, 240 

and the majority (94%) of all subjects visited 4 or fewer grid cells (Table 2). Although subjects that were 241 

highly mobile (especially those who visited 6 and more grid cells) accounted for a relatively small fraction 242 



of the entire population, the sample sizes of all groups were still considerable due to the large overall 243 

sample population (sample size = 916 for the smallest group, group 9). 244 

The impacts of mobility on exposure estimates differ by pollutant and by concentration fields used. 245 

Between CMAQ and IDW methods, the range of variability was considerably smaller when the IDW 246 

method was applied, particularly for NO2, O3 and PM2.5. SO2 again was the exception where exposure 247 

variability was similar between the two methods. Mobility had the greatest impact for NO2 and O3. When 248 

CMAQ concentration fields were applied, the observed differences were more negative (higher CDRE than 249 

HBE) for CO, NO2 and PM2.5, but were more positive (lower CDRE than HBE) for O3. Such observations are 250 

not clearly visible when the IDW concentration fields were applied.  251 

The impacts of mobility on exposures also differed by time of the day (Figure 4), with larger differences 252 

found during daytime for all groups, though the biggest difference occurred at different hours for different 253 

pollutants. When CMAQ concentration fields were applied, CO, NO2 and PM2.5 exhibited the largest 254 

differences near the afternoon rush hour, though these differences dissipates quickly thereafter. For O3, 255 

the largest differences occurred around mid-afternoon at 4 pm around when the highest ambient O3 256 

concentrations are expected. For SO2, we observed a slight peak in differences between HBE and CDRE at 257 

around 10 am. Additionally, the observed differences were mostly negative during daytime for CO, NO2 258 

and PM2.5, suggesting the home-based method resulted in lower exposure estimates, although the 259 

differences changed to slightly positive toward mid-night. However, the exposure differences are mostly 260 

positive for O3, indicating higher exposure estimates when the home-based method is used. When CMAQ 261 

concentration fields were applied, the biggest exposure differences were not observed for the group with 262 

the highest mobility (group 10), rather it was observed for subjects with moderate to high degree of 263 

mobility (group 7 for SO2, and group 5 and 6 for other pollutants).  264 

 265 



Figure 4. Temporal variations of exposure differences for all 10 mobility groups between HBE and CDRE 266 

when CMAQ and IDW concentration field were applied. Exposure differences were calculated as HBE-267 

CDRE. 268 

The temporal variations of exposure differences, however, were mostly not observed when IDW 269 

concentration fields were applied (Figure 4). We still observed generally larger differences during daytime 270 

(though smaller magnitude), but the consistent patterns of fluctuations as seen among CO, NO2 and PM2.5 271 

in Figure 4 were not observed when IDW fields were applied. The biggest differences were observed at 272 

different hours for different pollutants and with no consistent directions. Exposure differences generally 273 

showed a consistent increasing trend with increased mobility.  274 

We performed Wilcoxon rank sum tests to evaluate the differences between HBE and CDRE estimates for 275 

each mobility group. When CMAQ concentration fields were applied, most differences in HBE and CDRE 276 

estimates were statistically significant (p < 0.05) during normal business hours (9 am to 5 pm). The only 277 

exception is SO2, for which HBE and CDRE estimates are statistically different between 1 pm to 10 pm. 278 

When IDW concentration fields were applied, HBE and CDRE estimates are still generally statistically 279 

different between 10 am to 5 pm, although with considerably greater variability. 280 

3.4. The impact of mobility on exposure classifications and effect estimates 281 

To investigate potential exposure misclassifications associated with omitting subject mobility, we 282 

investigated how subjects were assigned to different quartiles based on their HBE and CDRE estimates. 283 

Results for PM2.5 are presented in Figures 5 and 6, and results for other pollutants are presented in Figures 284 

S2-S9. 285 

We observed that a high percentage of the sample population was potentially misclassified into other 286 

quartiles, especially for groups with higher degrees of mobility. When CMAQ concentration fields were 287 

applied for PM2.5 (Figure 5), more than half of the sample population in the middle quartiles (Q2 and Q3) 288 

were classified into different quartiles for groups 4 through 10 when individual mobility was omitted. The 289 

misclassification is especially prominent for the 2nd quartile of group 6 (Figure 5), for which 71% of subjects 290 

were misclassified into other quartiles when the home-based method was used. This finding was also 291 

observed when IDW fields were used, although the potential misclassifications were less severe, but still 292 

substantial (Figure 6). Similar findings can be observed for both CMAQ and IDW concentration fields for 293 

all other pollutants (Figures S2-S9). For subjects with moderate exposure levels (Q2 and Q3), generally 294 

more subjects were assigned to quartiles with higher exposures when the home-based method was used 295 

for CO (Figure S2, S6) and NO2 (Figures S3, S7). This result was less consistent for SO2 (Figures S4, S8) and 296 

somewhat reversed for O3 (Figure S5, S9).  297 



 298 

Figure 5. The directions of potential PM2.5 exposure misclassifications when the home-based exposure 299 

estimation method was used and when CMAQ fields were used. For simplification purposes only results 300 

for groups 2, 6 and 10 are presented. Subjects in quartile 1 has the lowest exposures, and subjects in 301 

quartile 4 has the highest exposures. 302 

 303 

Figure 6. The directions of potential PM2.5 exposure misclassifications when the home-based exposure 304 

estimation method was used and when IDW fields were used. For simplification purposes only results for 305 

groups 2, 6 and 10 are presented. Subjects in quartile 1 has the lowest exposures, and subjects in quartile 306 

4 has the highest exposures. 307 

The estimated bias factors for groups with different mobility levels are presented in Figure 7. With 308 

increased mobility, the estimated bias factors generally decrease regardless of concentration fields used. 309 

The smaller bias factor, a value of 0.67, is observed for NO2 and for group 10.  This value suggests that the 310 

estimated relative risk for NO2 will be underestimated by 33% when mobility was ignored during exposure 311 

estimation. Between CMAQ and IDW, the estimated bias factors are relatively similar for NO2, but are 312 



considerably different for other pollutants, especially for PM2.5. For group 10, the bias for PM2.5 is 0.70 313 

when CMAQ fields are used, and 0.94 when IDW fields are used.  314 

 315 

 316 

Figure 7. The impact of mobility on bias factors when CMAQ and IDW concentration fields were applied 317 

4. Discussion 318 

4.1. The impact of method choices on exposure estimation 319 

An appropriate characterization of spatial concentration distributions of air pollutants is fundamental for 320 

air pollution exposure estimation. In this study, we applied two methods to develop air pollutant 321 

concentration fields: one based on outputs from the CMAQ model, and the other based on the IDW 322 

interpolation method. Spatial concentration fields developed using the two methods were considerably 323 

different from each other (Figure 2). This is expected because, as described previously, the two methods 324 

are fundamentally different, and both methods have their own strengths and weaknesses [34]. 325 

Consequently, the estimated population average exposures (Table 1), the distributions of individual 326 

exposure estimates (Figure 3), particularly among groups with different degrees of mobility (Figure 4), and 327 

the impact of neglecting mobility on exposure estimates (Figures 5-6), was different between the two 328 

methods. Such results were expected due to the different nature of the two methods. CMAQ is a 329 

mechanistic model that calculates ambient concentrations of air pollutants based on input emissions and 330 

meteorological data. IDW is an empirical spatial interpolation method that relies solely on available 331 

pollutant concentrations measured at discrete locations [34]. Pollution hotspots that are not captured by 332 

monitoring networks cannot be captured by the IDW method but may possibly be captured by the CMAQ 333 

model if appropriate emissions data are supplied. In this study, the monitoring network is sparse, and only 334 

1 out of 12 monitor is located inside Shenzhen area (Figure 1). As a result, pollutant concentration fields 335 

developed using the IDW method were smooth and lacked the spatial concentration variabilities as 336 

observed in the CMAQ fields. Therefore, it’s important to carefully select an appropriate method for 337 

developing pollutant concentration fields, particularly when the monitoring network is sparse. 338 



When detailed mobility data were included, naturally, the appropriate characterization of spatial 339 

pollutant variability became even more important. In such applications, purely spatial interpolation 340 

methods, e.g., IDW, tessellation, or kriging, are also not ideal choices for developing pollutant 341 

concentration fields for study regions without an extensive monitoring network available [34]. These 342 

results highlighted the importance of choosing an appropriate method for developing pollutant 343 

concentration fields for exposure estimation purposes, particularly when detailed mobility data were 344 

included. Without an appropriate characterization of spatial pollutant concentration variations, exposure 345 

assessment may not significantly benefit from the inclusion of detailed mobility data at urban scale. 346 

Subsequently, we will focus our discussion on results as obtained using the CMAQ concentration fields.  347 

4.2. The impact of mobility on exposure estimation 348 

In this study, the estimated regression parameters are considerably different from our previous study [23]. 349 

For example, the estimated R2 ranged between 0.95 to 0.98 vs 0.65 to 0.76 in the previous study; and the 350 

slope ranged between 0.97 to 1.02 vs 0.60 to 0.72 previously. The seemingly contradictory findings can 351 

be explained by the difference in sample population. In our previous study, 9,886 subjects with the most 352 

amount of CDR data available were selected to explore the potential benefits of using CDR data in 353 

exposure estimation. The subjects were not randomly sampled, and with an average of approximately 463 354 

records per subject per day (vs 115 records per subject per day in this study). The sample population in 355 

our previous study are relatively more mobile, and the subjects visited on average 2.3 grid cells over the 356 

study period (vs 1.9 grid cells in this study).  357 

At the population level, we did not find substantial differences between HBE and CDRE exposures, 358 

consistent with our previous study [23] and other studies [54, 56-59]. The finding maybe partially 359 

explained by the fact that most subjects spent most of their time within the same grid, as indicated by the 360 

large number of data points clustered near the 1:1 line (Figure 3). Our results suggested that the home-361 

based method for exposure estimation is still informative in the study region when only average exposure 362 

estimates for a sufficiently large population are of interest [60]. However, it’s worth noting that several 363 

studies conducted in other cities [61, 62] have found that the population level exposure estimates are 364 

lower when individual mobility data were included in exposure estimation. The differences in findings may 365 

be partially due to the potentially different population mobility patterns among cities. Further studies are 366 

needed to investigate how our findings may vary among cities.  367 

One of the main focus of this manuscript is on how different levels of mobility impact air pollution 368 

exposures. We found that the impact of mobility on exposure estimates differed by time of day and by 369 

pollutants (such analyses were not performed in our previous study [23]). Generally, the differences 370 

between HBE and CDRE were the smallest during early morning and midnight, a time when many subjects 371 

are expected to be at home. For traffic-related pollutants including CO, NO2, and PM2.5, we found that the 372 

home-based method likely underestimated subject exposures during daytime, especially near afternoon 373 

rush hour, when CMAQ concentration fields were used (Figure 4). Meanwhile, subject exposures to ozone 374 

may be over-estimated during daytime using HBE, with the highest error observed at around 4 pm, near 375 

the time when the highest ambient ozone concentrations are expected (Figure 4). The temporal 376 

differences in impacts of mobility on exposure have also been noted previously [57]. Interestingly, during 377 

peak hours, the most significant differences between HBE and CDRE were not observed for the group with 378 

the highest degree of mobility, rather the largest differences were observed on subjects with moderate 379 

to high degree of mobility (groups 5-7). 380 



Our results showed that the impact of mobility on exposure could be substantial at the individual level, 381 

particularly for subjects that are highly mobile. Applying the home-based method yielded similar 382 

estimates for those who live close to where they travel throughout the day, although their actual exposure 383 

could be drastically different when individual mobility is considered. With an increased degree of mobility, 384 

we found that the correlations between HBE and CDRE decreased monotonically (Table 2), suggesting that 385 

the home-based method captured less exposure variability among individuals with increased mobility [31]. 386 

Therefore, we expect larger exposure classification errors for subjects that are highly mobile, which is 387 

supported by our analysis on the potential exposure misclassifications based on HBE and CDRE (Figures 5-388 

6). It is also worth mentioning again that 71% of subjects (Figure 5) in the second quartile of group 6 were 389 

misclassified into different quartiles using HBE. These results suggest that the impact of traffic-related 390 

pollutants on human health may be larger than previously documented, and these findings may have 391 

significant implications for studies that rely on air pollution exposure estimation. 392 

We found that ignoring mobility in exposure assessment could lead to up to 33% in underestimation of 393 

relative risk, though the magnitude of underestimation differs among pollutants (Figure 7). Between 394 

CMAQ and IDW, the results are also different, especially for PM2.5, for which the largest estimated bias 395 

factor is only 0.94 when the IDW fields were applied (vs 0.70 for CMAQ field). These finding again 396 

demonstrated that the benefit of including detailed mobility data in exposure assessment may be reduced 397 

when the spatial variability of pollutant concentrations were not captured, and the method for developing 398 

pollution field need to be selected carefully when mobility data were to be included. The finding also have 399 

implications for future air pollution health studies. 400 

4.3. Limitations 401 

There are inherent limitations associated with this study. First, as with many CDR databases, the location 402 

data used in this study are not the exact location of the corresponding cell phone user, rather, they are 403 

the locations of the cell phone tower that handled the wireless communication, which are most likely the 404 

nearest tower to the cell phone user. However, we do not expect this limitation to substantially impact 405 

the findings for two reasons. 1) The study area is one of the most populated cities in the world with a well-406 

known, densely distributed cell tower network. The CDR dataset contains over 1,000 locations of cell 407 

phone towers spread out across the study area. 2) We applied 3-km resolution concentration fields in 408 

exposure estimation. The retrieved concentration values are identical within one 3-km grid cell, and one 409 

cell phone user in Shenzhen is highly likely to have at least one cell tower within 3 km (see 410 

https://www.opencellid.org for more information on cell tower coverage in Shenzhen, China). Therefore, 411 

we do not expect the findings to change considerably even when the exact locations of all cell phone users 412 

are applied.  413 

Second, CDR data comprise an “event-triggered” database. Location data are only collected when a cell 414 

phone communicates with nearby towers. Hence, CDR are temporally sparse in nature [37], and may not 415 

accurately capture the full spectrum of individual movements, especially for individuals who only use cell 416 

phones occasionally. Hence, exposures estimated using CDR may deviate from those estimated using a 417 

more complete location dataset such as those collected using dedicated applications (e.g. Dynamica [63]), 418 

or other momentarily collected data such as Google Maps Location History data [64]. However, in this 419 

study, our purpose is to compare the differences between exposure estimates with and without detailed 420 

mobility data applied. Given the large sample population in all 10 groups with different degrees of mobility, 421 

we do not expect the results to change even with an ideally complete mobility database.  422 

https://www.opencellid.org/


Third, despite the relatively large population (N = 310,989) and number of location records (35.6 million), 423 

the CDR data used here are a randomly sampled subset from all cell phone users within the entire city of 424 

Shenzhen for one typical work day within a typical week. Therefore, the spatiotemporal mobility patterns 425 

as represented in this CDR database represent the unique characteristics of the study region. We do 426 

expect the patterns of population mobility, the spatiotemporally variability of air pollution concentrations, 427 

pollutant emissions, and meteorology conditions will vary across different cities. Further studies are 428 

needed to better understand how the findings from this study may change in another city.  429 

Fourth, as described previously, due to the nature of CDR data, the availability of observations, and 430 

resources constrains, we applied air pollution concentration fields with 3 km spatial resolution and 1 h 431 

temporal resolution for estimating pollution exposures. We recognize that such coarse resolution may 432 

introduce uncertainties into related analyses and may also partially impact the findings, such as the impact 433 

of mobility on population-level exposure estimates (Figure 3) [61, 62]. Here, we performed an additional 434 

analysis to explore the impact of grid resolution on the classification of mobility levels. We split all 3 km 435 

CMAQ grid cells into 1.5 km grid cells and counted the number of unique grid cells each subject visited 436 

(Table 3). With increased grid resolution, a considerably higher fraction of population were assigned to 437 

higher mobility groups, especially for groups with the highest mobility levels (Groups 6 through 10). Such 438 

result exemplifies the need for fine-scale modeling, and further studies are needed to investigate how 439 

grid resolution impacts the results of exposure estimation with detailed mobility data. In addition, both 440 

CDR data and pollution fields are expected to contain uncertainties. What dataset contain greater amount 441 

of uncertainty remain unclear. Further studies are also needed to determine the impact of uncertainties 442 

on exposure outcomes. 443 

Table 3. Subject population in each mobility group at 3 km and 1.5 km grid resolutions 444 

 3 km grids 1.5 km grids Change (%) 

Group 1 167570 132847 -20.7% 

Group 2 75313 72821 -3.3% 

Group 3 32177 39341 22.3% 

Group 4 16350 22689 38.8% 

Group 5 8354 13918 66.6% 

Group 6 4617 8845 91.6% 

Group 7 2700 5886 118% 

Group 8 1562 4105 163% 

Group 9 916 2755 201% 

Group 10 1430 7782 444% 

 445 

Finally, it’s also worth noting that, the exposure estimates presented in this study are calculated using 446 

ambient pollutant concentrations. A subject’s exposure to indoor pollution was not considered here. The 447 

required data for estimating indoor pollution exposure (e.g.: type of micro-environment, pollution 448 

infiltration to indoor) are not available. In addition, due to the nature of CDR data, it’s difficult to precisely 449 

determine the location of micro-environment for each subject. For example, if one subject’s CDR data is 450 

located in close proximity to a major roadway, the investigator may not be able to determine whether the 451 



subject is driving on the roadway, or walking along the roadway, or even sitting inside a building next to 452 

the roadway.  453 

5. Conclusion 454 

In this study, we applied a large cell phone location database consisting of over 35 million location records 455 

from 310,989 subjects to investigate the impact of individual mobility on estimated ambient exposures 456 

for five chosen pollutants (CO, NO2, SO2, O3, and PM2.5). We further divided our sample population into 457 

ten groups with different degrees of mobility and compared exposures estimates for each group. We also 458 

applied and compared two methods to develop concentration fields for exposure estimation, including 459 

one based on output from the CMAQ model that was fused with observational data, and the other based 460 

on the spatial interpolation of observations using the inverse distance weighting method.   461 

We found no substantial differences between population-averaged exposures as estimated with and 462 

without detailed mobility data (e.g.: exposure estimates differ by up to 5.4% for NO2, Table 2). Thus, the 463 

traditional home-based exposure estimation method is still informative when only averaged exposures 464 

on a large population are needed. We observed generally increased variabilities in exposure estimates at 465 

the individual level with increased mobility. Exposure classification errors are also likely to increase with 466 

higher degrees of mobility, and could be substantial for groups of individuals that are highly mobile. We 467 

also examined the temporal variability of the differences between exposures as estimated with and 468 

without mobility data. We found the home-based method will likely under-estimate exposure to traffic-469 

related pollutants (CO, NO2 and PM2.5) during day-time particularly during afternoon rush-hour, but also 470 

will likely over-estimate exposures to ground level ozone during mid-afternoon near the time when 471 

ambient ozone concentrations are expected to be the highest. These results suggest that mobility could 472 

be important for air pollution health studies for which obtaining accurate exposure estimates at individual 473 

level are critical, such as case-control studies or studies with a small sample size. 474 

We found that the concentration fields developed using the IDW method failed to capture pollution 475 

hotspot as can be seen from the CMAQ fields, due primarily to the sparse monitoring network, and 476 

consequently limited measurement data available in the study domain. Therefore, the IDW method may 477 

not suitable for air pollution exposure estimations when detailed mobility data are considered, if a dense 478 

measurement network is not available. When detailed mobility data were to be applied in exposure 479 

estimation, the method for developing air pollution concentration fields should be selected carefully.  480 

We also acknowledge that the CDR data applied in this study represent the unique characteristics of the 481 

study region, and further studies are needed to investigate how our findings could change among regions 482 

with different spatiotemporal patterns of population and pollution concentrations. Despite the limitation, 483 

overall, our results have significant implications for future air pollution health studies in which subject 484 

mobility is important. 485 
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