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ABSTRACT 

This paper proposes a multivariate ordered response system framework to model the interactions 

in non-work activity episode decisions across household and non-household members at the level 

of activity generation. Such interactions in activity decisions across household and non-

household members are important to consider for accurate activity-travel pattern modeling and 

policy evaluation. The econometric challenge in estimating a multivariate ordered-response 

system with a large number of categories is that traditional classical and Bayesian simulation 

techniques become saddled with convergence problems and imprecision in estimates, and they 

are also extremely cumbersome if not impractical to implement. We address this estimation 

problem by resorting to the technique of composite marginal likelihood (CML), an emerging 

inference approach in the statistics field that is based on the classical frequentist approach, is 

very simple to estimate, is easy to implement regardless of the number of count outcomes to be 

modeled jointly, and requires no simulation machinery whatsoever.  

The empirical analysis in the paper uses data drawn from the 2007 American Time Use 

Survey (ATUS) and provides important insights into the determinants of adults’ weekday 

activity episode generation behavior. The results underscore the substantial linkages in the 

activity episode generation of adults based on activity purpose and accompaniment type. The 

extent of this linkage varies by individual demographics, household demographics, day of the 

week, and season of the year. The results also highlight the flexibility of the CML approach to 

specify and estimate behaviorally rich structures to analyze inter-individual interactions in 

activity episode generation.  

 

Keywords: Composite Marginal Likelihood (CML) approach, social interactions, activity-based 

modeling, multivariate ordered probit model, American Time Use Survey (ATUS).  

 

 



1 

1. INTRODUCTION 

1.1 Motivation 

The emphasis of the activity-based approach to travel modeling is on understanding the activity 

participation characteristics of individuals within the context of their demographic attributes, 

activity-travel environment, and social interactions. In the activity-based approach, activity 

episodes rather than trip episodes take the center stage, with the focus being on activity episode 

generation and scheduling over a specified time period (Jones et al., 1990, Bhat and Koppelman, 

1999, Pendyala and Goulias, 2002, Arentze and Timmermans, 2004, and Pinjari and Bhat, 2010 

provide extensive reviews of the activity-based approach). Several operational analytic 

frameworks for this activity analysis approach have also been formulated, and many 

metropolitan areas in the U.S. have implemented these frameworks (see Pinjari et al., 2008 for a 

recent review). These frameworks have focused on a “typical” weekday frame of analysis, and 

follow a general structure where out-of-home work-related decisions (employed or not, duration 

of work, location of work, and timing of work) are modeled first followed by the generation and 

scheduling of out-of-home non-work episodes (in the rest of this paper, we will use the term 

“non-work episodes” to refer to out-of-home non-work episodes).  

The generation and scheduling of non-work episodes entails the determination of the 

number of non-work episodes by purpose, along with various attributes of each episode and the 

sequencing of these non-work episodes relative to work and in-home episodes. In the context of 

episode attributes, one dimension that has been receiving substantial attention recently is the “with 

whom” dimension (or the social context). This is motivated by the recognition that individuals 

usually do not make their activity engagement decisions in isolation. For instance, within a 

household, an individual’s activity participation decisions are likely to be dependent on other 

members of the household because of the possible sharing of household maintenance 

responsibilities, joint activity participation in discretionary activities, and pick-up/drop-off of 

household members with restricted mobility (Gleibe and Koppelman, 2002, Kapur and Bhat, 

2007). In a similar vein, outside the confines of the household, an individual’s activity 

participation might be influenced by non-household members because of car-pooling 

arrangements, social engagements, and joint recreational pursuits. In fact, Srinivasan and Bhat 

(2008), in their descriptive study of activity patterns, found that about 30% of individuals 

undertake one or more out-of-home (OH) activity episodes with household members on 
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weekdays, and about 50% pursue OH activity episodes with non-household companions on 

weekdays. These interactions in activity decisions across household and non-household members 

are important to consider to accurately predict activity-travel patterns. For instance, the spatial 

and temporal joint participation in dinner at a restaurant of a husband and a wife are necessarily 

linked. Thus, considering the husband’s and wife’s activity-travel patterns independently without 

maintaining the linkage in time and space in their patterns will necessarily result in less accurate 

activity travel pattern predictions for each one of them. Further, there is a certain level of rigidity 

in such joint activity participations (since such participations necessitate the synchronization of 

the schedules of multiple individuals in time and space), because of which the responsiveness to 

transportation control measures such as pricing schemes may be less than what would be 

predicted if each individual were considered in isolation (see Vovsha and Bradley, 2006 and 

Timmermans and Zhang, 2009 for extensive discussions of the importance of considering inter-

individual interactions for accurately evaluating land-use and transportation policy actions).  

To be sure, several recent studies have focused on explicitly accommodating inter-

individual interactions in activity-travel modeling. The reader is referred to a special issue of 

Transportation edited by Bhat and Pendyala (2005), as well as a special issue of Transportation 

Research Part B edited by Timmermans and Zhang (2009), for recent papers on this topic.  

While these and other earlier studies have contributed in very important ways, they focus on 

intra-household interactions, and mostly on the interactions between the household heads (see, 

for example, Wen and Koppelman, 1999, Scott and Kanaroglou, 2002, Meka et al., 2002, 

Srinivasan and Bhat, 2005, and Kato and Matsumoto, 2009). On the other hand, as discussed 

earlier in this paper, there is a significant amount of activity episode participations in the wider 

social network beyond the household (see also Goulias and Kim, 2005, Axhausen, 2005, Arentze 

and Timmermans, 2008, and Carrasco and Miller, 2009). Many earlier intra-household 

interaction studies in the literature also confine their attention to the single activity category of 

maintenance-oriented activities (see Srinivasan and Athuru, 2005 and Wang and Li, 2009). But, 

as indicated by PBQD (2000), over 75% of non-work episodes on a typical weekday are for 

discretionary purposes and, as pointed out by Srinivasan and Bhat (2008), a high percentage of 

these discretionary episodes involve one or more companions. This suggests the important need 

to consider inter-individual interactions in discretionary activity too (and not just in maintenance-

oriented activity). Further, a significant fraction of existing studies on inter-individual 
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interactions focus on daily time allocations or joint time-use in activities over a certain time 

period (an extensive review of these time allocation/time-use studies is provided in Vovsha et al., 

2003 and Kato and Matsumoto, 2009). This is also true of the recent studies by Bhat and 

colleagues (Kapur and Bhat, 2007, Sener and Bhat, 2007) that use the multiple discrete-

continuous extreme value (MDCEV) model to examine household and non-household 

companionship arrangement for each of several types of activities. While providing important 

insights, these studies of daily time-use do not directly translate to information regarding out-of-

home episodes. On the other hand, it is the scheduling and sequencing of out-of-home episodes 

that get manifested in the form of travel patterns (Doherty and Axhausen, 1999, Scott and 

Kanaroglou, 2002, Vovsha et al., 2003). Finally, even among those studies that consider inter-

individual interactions at an episode level, almost all of them have adopted a framework that first 

generates activity episodes by activity purpose, and subsequently “assigns” each of these 

purpose-specific episodes to a certain accompaniment type (for example, alone versus joint), 

typically using a discrete choice model (see, for example, Wen and Koppelman, 1999, Gliebe 

and Koppelman, 2002, and Bradley and Vovsha, 2005). Unfortunately, such a sequential 

framework cannot accommodate general patterns of observed and unobserved variable effects 

that are specific to each activity purpose-accompaniment type combination (see also Scott and 

Kanaroglou, 2002). 

 

1.2 The Current Paper 

The objective of the current paper, motivated by the discussion above, is to propose and estimate 

a joint modeling system for adult individuals’ (aged 15 years or over) non-work activity episodes 

(or simply “episodes” from hereon) by purpose that also explicitly incorporates companionship 

arrangement information. The six activity purpose categories considered in the paper are: (1) 

family care (including child care), (2) maintenance shopping (grocery shopping, purchasing 

gas/food, and banking), (3) non-maintenance shopping (window shopping, cloth shopping, 

electronics shopping, etc.), (4) meals, (5) physically active recreation (sports, exercise, walking, 

bicycling, etc.), and (6) physically inactive recreation (social, relaxing, movies, and attending 
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religious/cultural/sports events).1 The companionship arrangement for episodes is considered in 

five categories: (1) alone, (2) only family (including children, spouse, and unmarried partner), 

(3) only relatives (parents, siblings, grandchild, etc.), (4) only friends (including friends, 

colleagues, neighbors, co-workers, peers, and other acquaintances), and (5) mixed company (a 

combination of family, extended family, and friends).2 The total number of activity purpose-

companionship type categories is 30, and the model system developed here jointly considers the 

number of episodes in each of these 30 categories. The data used in the empirical analysis is 

drawn from the American Time Use Survey (ATUS), which collects detailed individual-level 

activity information for one day from a randomly selected adult (15 years or older) in each of a 

subset of households responding to the Current Population Survey (CPS).   

The paper uses a multivariate ordered-response model system for analyzing the number 

of episodes of each activity purpose-companionship type. In this system, we allow dependence 

between the number of episodes of different purpose-companionship types due to both observed 

exogenous variables as well as unobserved factors. The inclusion of dependence generated by 

unobserved factors allows complementarity and substitution effects in activity participation 

decisions (even after controlling for observed effects). For instance, individuals who are “go-

getters” and “dynamic” in their lifestyle may have a higher participation propensity in sports-

type activities (“physically active recreation”) and also in cultural/social activities (“physically 

inactive recreation”). This would constitute a complementary relationship between these two 

activity purpose categories. Similarly, individuals who are “sociable” may be more likely to 

participate in activity episodes with friends, but not alone. This represents a substitution 

relationship in the company types of ‘friends” and “alone”. Besides, the presence of common 

unobserved factors among combination categories that share the same activity purpose or that 

share the same companionship type can also generate complementary effects. Thus, an individual 

who is “sociable” by personality may have a higher propensity to participate in dining out-with 

                                                            
1 There is obviously some subjectivity in the classification adopted here, though the overall consideration was to 
accommodate differences between the disaggregate activity purposes along such contextual dimensions as location 
of participation, physical intensity level, duration of participation, amount of structure in activity planning, and 
company type of participation (see Srinivasan and Bhat, 2005). 
2 While we consider the companionship arrangement for episodes, the reader will note that we still consider the 
generation of episodes at the individual level. Future efforts should consider the generation of episodes at a higher 
level, such as a household level or a neighborhood level, so that there is consistency in activity episode generation 
across individuals. Thus, for example, if a husband has a joint out-of-home (OH) activity episode with his wife, it 
must also be true that the wife has a joint OH activity episode with her husband.  
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friends as well as a higher propensity to participate in physically-inactive recreation with friends. 

Overall, the extent of complementary and substitution relationships may be specific to the 

combinations of activity purpose category and company type, which is the general case modeled 

in the current paper.  

The econometric challenge in estimating a joint multivariate ordered-response system 

with a large number of categories is that traditional classical and Bayesian simulation techniques 

become saddled with convergence problems, and are extremely cumbersome if not impractical to 

implement. An approach to deal with the estimation complication is the technique of composite 

marginal likelihood (CML), an emerging inference approach in the statistics field, though there 

has been little to no coverage of this method in econometrics and other fields (see Varin, 2008 

and Bhat et al., 2009). The CML is based on the classical approach, is very simple to estimate, is 

easy to implement regardless of the number of count outcomes to be modeled jointly, requires no 

simulation technique whatsoever, and usually provides accurate inferential conclusions. To the 

authors’ knowledge, this is the first study to adopt a CML approach in the field of activity-travel 

modeling, though Bhat et al. (2009) use the CML approach in the context of a spatially 

dependent discrete choice model formulation. Very simply stated, the CML approach is based on 

developing the marginal log-likelihood of the joint distribution of a lower dimensional number of 

categories at one time (such as two categories at one time), while ignoring all other categories. 

Maximizing this marginal log-likelihood function provides a consistent estimator of the 

parameters identified by the lower dimensional marginal distribution. Then, by developing and 

maximizing a surrogate log-likelihood function that is the sum of the log-likelihood of each 

possible combination of the lower dimensional number of categories, one obtains a consistent 

estimator of all the relevant parameters characterizing the original high dimensional distribution. 

The rest of the paper is organized as follows. Section 2 presents the model structure and 

highlights the important aspects of the CML approach, Section 3 undertakes a simulation 

exercise to demonstrate the ability of the CML technique to recover “true” parameters. Section 4 

summarizes the data source and sample preparation procedure. Section 5 discusses the estimated 

results and demonstrates an application of the model, and the final section concludes the paper 

by summarizing the salient features and findings of the study and identifying potential future 

research directions. 
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2. THE MODEL STRUCTURE 

2.1 Background 

The multivariate model system used in the paper assumes an underlying set of multivariate 

continuous latent variables whose horizontal partitioning maps into the observed set of count 

outcomes (number of episodes across purpose types and companionship types in the current 

context). Such an ordered-response system allows the use of a general covariance matrix for the 

underlying latent variables, which translates to a flexible correlation pattern among the observed 

count outcomes. On the other hand, the traditional approach in the econometric literature to 

address correlated counts is to start with a Poisson or negative binomial distribution for each 

univariate count and add a random component to the conditional mean specification. If these 

random components are allowed to be correlated across equations, the net result is a mixed count 

model that allows correlation across outcomes. Such a model can be estimated using classical or 

Bayesian simulation techniques (Egan and Herriges, 2006, Chib and Winkelmann, 2001). An 

important problem with this approach, however, is that the use of the Poisson or negative 

binomial distribution as the underlying kernel for mixing restricts “the amount of probability 

mass that can be accommodated at any one point” (see Herriges et al., 2008). Thus, in cases with 

a high fraction of ‘0’ values, as in the current empirical context of the number of episodes in 

each activity purpose-companionship type combination, the count mixing models are not able to 

provide good predictions. The alternative of adding zero-inflated approaches to accommodate the 

high number of ‘0’ values, while easy to undertake in a univariate count model, becomes 

difficult in the multivariate count case.  

Of course, the use of an ordered-response system for count outcomes is certainly not new 

in the transportation literature. In fact, it has a long history of use for modeling such travel count 

dimensions as household car ownership levels (Kitamura, 1987, 1988, Golob and van Wissen, 

1989, Golob, 1990, Bhat and Guo, 2007) and trip generation/stop-making (see Meurs, 1989, 

Agyemang-Duah et al., 1995, Agyemang-Duah and Hall, 1997, Bhat, 1999, Bricka and Bhat, 

2006, and Carrasco and Miller, 2009 to list just a few). While the traditional ordered-response 

model was initially developed for the case of ordinal responses, and while count outcomes are 

cardinal, this distinction is really irrelevant for the use of the ordered-response system for count 

outcomes. This is particularly the case when the count outcome takes few discrete values, as in 

the current empirical case, but is also not much of an issue when the count outcome takes a large 
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number of possible values. A perceived problem in the latter case may be that the ordered-

response model entails the estimation of K-1 threshold values that horizontally partition the 

underlying continuous variable to map into the observed count values, where K is the largest 

possible count value. But, as has been demonstrated by Meyer (1990), there is little loss of 

efficiency due to the estimation of a large number of thresholds in the ordered-response model 

structure. As long as there are even a few observations in each of the K categories under 

consideration, it is straightforward to estimate the ordered-response structure.  

The ordered-response applications in the transportation literature discussed above all 

focus on a univariate count outcome. Three earlier multivariate count studies using a multivariate 

ordered-response structure that are directly relevant to the current paper are Scott and 

Kanaroglou (2002), Bhat and Srinivasan (2005), and Herriges et al. (2008). These are discussed 

in turn below. 

Scott and Kanaroglou use a trivariate normal distribution for the underlying latent 

continuous variables for three count outcomes, which correspond to the daily number of non-

work episodes in couple households made by the male head, the female head, and jointly by both 

the heads. This leads to a trivariate integral for the probability expression for each household, 

which can be computed in a straightforward way using trivariate cumulative normal distribution 

functions. The restriction to three outcomes obviates the need for simulation, but also constrains 

the authors to consider all non-work episodes together without differentiating between activity 

types. Besides, the interaction in activity participation is confined to the household heads.  

Bhat and Srinivasan appear to be the first to have proposed a modeling system and 

estimation approach that can conceptually accommodate any number of count outcomes. The 

authors use a logistic error term in each univariate ordered-response specification, and then also 

add a normally distributed mixing error term in the latent continuous equation. By allowing the 

mixing terms to be distributed multivariate normal, they effectively generate a flexible 

correlation structure across the outcome categories. They use a maximum simulated likelihood 

approach for evaluating the multi-dimensional integral in the resulting probability expression, 

using quasi-Monte Carlo simulation methods proposed by Bhat (2001; 2003). In addition, they 

develop a method to parameterize the likelihood function in terms of the elements of the 

Cholesky decomposed-matrix of the correlation matrix of the mixing normally distributed 

elements to ensure the positive definiteness of the matrix, and further parameterize the diagonal 
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elements of the Cholesky matrix to guarantee unit values along the diagonal. Bhat and Srinivasan 

apply their model system to analyze the number of episodes of participation of individuals in 

seven different activity purposes, but they do not focus on accompaniment type. While their 

simulation approach can be extended in principle to any number of count outcomes, numerical 

stability, convergence, and precision problems start surfacing as the number of dimensions 

increase.  

Herriges et al. (2008) recently have proposed an alternate estimation approach for the 

multivariate ordered response system based on the posterior mode in an objective Bayesian 

approach as in Jeliazkov et al. (2008).3 The approach of Herriges et al. (2008) is based on 

assuming prior distributions on the non-threshold parameters, reparameterizing the threshold 

parameters, imposing a standard conjugate prior on the reparameterized version of the error 

covariance matrix and a flat prior on the transformed threshold, obtaining an augmented 

posterior density using Baye’s Theorem for the reparameterized model, and fitting the model 

using a Markov Chain Monte Carlo (MCMC) method. Unfortunately, the method remains very 

cumbersome, requires extensive simulation, and is time-consuming. Further, convergence 

assessment becomes very difficult as the number of dimensions increase. In this regard, both the 

MSL and the Bayesian approach are “brute force” simulation techniques that are not 

straightforward to implement and can create convergence assessment problems. Herriges et al. 

apply their Bayesian estimation approach to examine the annual number of trips made by Iowa 

households to each of 29 lakes in the state.  

In the current paper, we consider and use a third inference approach – the Composite 

Marginal Likelihood (CML) approach – that is very simple and requires no simulation 

machinery whatsoever. It entails the development of a surrogate likelihood function that involves 

easy-to-compute, low-dimensional, marginal likelihoods. Thus, in the multivariate ordered 

response system with K count outcomes (or categories), the individual likelihood contribution in 

the classic maximum likelihood approach involves the K-variate rectangular integral for the 

probability of the observed number of episodes of that individual across the K categories. 

However, the individual contribution in the composite marginal likelihood approach would 

                                                            
3 It is interesting that Herriges et al. appear to be “discovering” the use of an ordered response structure for count 
outcomes, while such a structure has in fact been used extensively in the past for count outcomes in the 
transportation literature. Further, Herriges et al. do not seem to have been aware of the work of Bhat and Srinivasan 
(2005), which develops a frequentist inference approach for correlated counts.   
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involve the product of all lower dimensional combinations of probabilities of the observed 

number of episodes in each subset of categories (see de Leon, 2005, Varin and Czado, 2008, 

Bhat et al., 2009). The CML approach can be applied using simple optimization software for 

likelihood estimation, is based on a classical frequentist approach, and is easy to apply and fast 

even for a large number of ordinal response variable categories and/or a large sample size. Under 

usual regularity conditions, the CML estimator is consistent, unbiased, and asymptotically 

normally distributed. The CML estimator (theoretically speaking) loses some efficiency relative 

to traditional maximum likelihood estimation, though this efficiency loss has been showed to be 

negligible in practice (see Varin and Vidoni, 2008).  

 

2.2 Mathematical Formulation  

Let q be an index for individuals (q = 1, 2, …, Q), and let i be the index for episode category (i = 

1, 2, …, I, where I denotes the total number of episode categories for each individual; in the 

current study, I = 30). Let the number of episode count values for category i be Ki + 1 (i.e., the 

discrete levels, indexed by k, belong in {0, 1, 2, …, Ki} for category i). In the usual ordered 

response framework notation, we write the latent propensity ( *
qiy ) for each episode category as a 

function of relevant covariates and relate this latent propensity to the observed count outcome 

( qiy ) through threshold bounds (see McKelvey and Zavoina, 1975): 

  kyxy qiqiqiiqi =+= ,'* εβ  if  1* +<< k
iqi

k
i y θθ , (1) 

where qix  is a (L×1) vector of exogenous variables (not including a constant), iβ  is a 

corresponding (L×1) vector of coefficients to be estimated, qiε  is a standard normal error term,  

and k
iθ  is the lower bound threshold for count level k of episode category i 

( +∞=−∞=<<< ++ 101210   ,  ;... ii K
ii

K
iiii θθθθθθ  for each category i). The qiε  terms are assumed 

independent and identical across individuals (for each and all i). For identification reasons, the 

variance of each qiε  term is normalized to 1. However, we allow correlation in the qiε  terms 

across episode categories i for each individual q. Specifically, define )'.,,,,( 321 qIqqqq εεεεε …=  

Then, qε  is multivariate normal distributed with a mean vector of zeros and a correlation matrix 

as follows: 
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qε ~ [ ],N 0 Σ  

 The off-diagonal terms of Σ capture the error covariance across the underlying latent 

continuous variables of the different episode categories; that is, they capture the effect of 

common unobserved factors influencing the propensity of choice of count level for each episode 

category. Thus, if 12ρ  is positive, it implies that individuals with a higher than average 

propensity in their peer group to participate in the first episode category are also likely to have a 

higher than average propensity to participate in the second episode category. Of course, if all the 

correlation parameters (i.e., off-diagonal elements of Σ), which we will stack into a vertical 

vector Ω, are identically zero, the model system in Equation (1) collapses to independent ordered 

response probit models for each episode category.  

 

2.3 The Pairwise Marginal Likelihood Inference Approach 
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where ) ,... , ,( 21 ′= iK
iiii θθθθ  for Ii ..., ,2 ,1= . Let the actual observed count level for individual q 

and episode category i be mqi. Then, the likelihood function for individual q may be written as 

follows: 
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 The likelihood function above requires the computation of an I-dimensional rectangular 

integral. While there are maximum simulated likelihood (MSL) approaches that can evaluate 

such multidimensional normal integrals using the Geweke-Hajivassiliou-Keane simulator 

(Hajivassiliou et al., 1996), they can become problematic even for moderate I in terms of 

computational effort. Further, as noted in the previous section, such simulation methods do get 
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imprecise as the number of dimensions increase, leading to convergence problems during 

estimation. 

 In this paper, we employ a pairwise marginal likelihood estimation approach, which 

corresponds to a composite marginal approach based on bivariate margins (see Varin and Czado, 

2008; Apanasovich et al., 2008; Varin and Vidoni, 2008; and Bhat et al., 2009 for the use of the 

pairwise likelihood approach in the past). The pairwise marginal likelihood function for 

individual q may be written as follows: 
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and )()( , δδ qCML

q
CML LL ∏=  

 The pairwise likelihood function above is easily maximized, and the effort involved is no 

more difficult than in a usual bivariate ordered probit model. Besides, note that a full likelihood 

estimator is not robust to misspecification of the assumed parametric high dimensional 

multivariate distribution, in addition to the computational and convergence problems noted 

earlier. On the other hand, the pairwise likelihood approach is typically more robust (as pointed 

out by Varin and Vidoni, 2008 and Varin, 2008), as well as is very simple computationally with 

literally no convergence-related issues. It can also be very easily coded in software packages that 

allow the computation of a bivariate normal cumulative distribution function and have an 

optimization procedure for maximizing a function with respect to embedded parameters.    

 The pairwise estimator ĈMLδ  obtained by maximizing the logarithm of the function in 

Equation (4) with respect to the vector δ  is consistent and asymptotically normal distributed 

with asymptotic mean δ  and covariance matrix given by Godambe’s (1960) sandwich 

information matrix (see Zhao and Joe, 2005): 
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2.4 Positive-Definiteness of the Implied Multivariate Correlation Matrix 

A point that we have not discussed thus far is how to ensure the positive-definiteness of the 

symmetric correlation matrix Σ  (that is, all the eigenvalues of the matrix should be positive, or, 

equivalently, the determinant of the entire matrix and every principal submatrix of Σ  should be 

positive). In particular, because the pairwise marginal approach does not estimate the entire 

correlation matrix as one single entity, it is not possible to impose positive-definiteness upfront 

with unconstrained optimization routines using, for example, Bhat and Srinivasan’s (2005) 

technique.4 But one of two alternative techniques may be used to ensure positive definiteness 

with the pairwise marginal approach. The first is to undertake the estimation with a constrained 

optimization routine by requiring that the implied multivariate correlation matrix for any set of 

pairwise correlation estimates be positive definite. However, such a constrained routine can be 

extremely cumbersome. The second is to use an unconstrained optimization routine, but check 

for positive-definiteness of the implied multivariate correlation matrix. The easiest method 
                                                            
4 As indicated earlier, Bhat and Srinivasan (2005) parameterize the likelihood function in terms of the elements of 
the Cholesky decomposed-matrix of the entire correlation matrix and estimate these Cholesky-decomposed 
elements.  
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within this second technique is to allow the estimation to proceed without checking for positive-

definiteness at intermediate iterations, but check that the implied multivariate correlation matrix 

at the final converged pairwise marginal likelihood estimates is positive-definite. This will 

typically work for the case of a multivariate ordered-response model if one specifies exclusion 

restrictions (i.e., zero correlations between some error terms) or correlation patterns that involve 

a lower dimension of effective parameters.  In fact, employing such exclusion restrictions or 

using a factor-analytic structure is sound econometric practice anyway (regardless of estimation 

approach used). Also, the number of correlation parameters in the full multivariate matrix 

explodes quickly as the dimensionality of the matrix increases, and estimating all these 

parameters becomes almost impossible (with any estimation technique) with the usual sample 

sizes available in practice. There is also one other reason for expecting that the pairwise 

estimation approach will automatically provide a positive-definite matrix for Σ . That is that Σ  is 

pre-specified to be a correlation matrix (i.e., its diagonals are normalized to the value of 1 for 

identification), and we expect the magnitude of many off-diagonal terms to be small relative to 

the unity diagonal (in part, due to exclusion restrictions, but also because a reasonably good 

specification of exogenous variables will ensure that the correlation in unobserved factors does 

not get too high in magnitude). In general, if the diagonal elements of a matrix are sufficiently 

high relative to the off-diagonal elements, the matrix will be positive-definite (as we allude to 

later, this is actually a general technique used to bring non-positive definite matrices to the 

positive-definite realm). However, if the above simple method of allowing the pairwise marginal 

estimation approach to proceed without checking for positive definiteness at intermediate 

iterations does not work, then one can check the implied multivariate correlation matrix for 

positive definiteness at each and every iteration. If the matrix is not positive-definite during a 

direction search at a given iteration, one can construct a “nearest” valid correlation matrix (for 

example, by replacing the negative eigenvalue components in the matrix with a small positive 

value, or by adding a sufficiently high positive value to the diagonals of a matrix and 

normalizing to obtain a correlation matrix; see Rebonato and Jaeckel, 1999, Higham, 2002, and 

Schoettle and Werner, 2004 for detailed discussions of these and other adjusting schemes; a 

review of these techniques is beyond the scope of this paper). The values of this “nearest” valid 

correlation matrix can be translated to the pairwise correlation estimates, and the analyst can 
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allow the iterations to proceed and hope that the final implied convergent correlation matrix is 

positive-definite.  

In the empirical analysis of the current paper, we imposed a few exclusion restrictions, 

used an unconstrained optimization routine, and ensured that the implied multivariate correlation 

matrix at convergence is positive-definite. 

 

3. SIMULATION STUDY 

To evaluate the performance of the CML estimation technique, we undertake a simulation 

exercise for a trivariate case and a five-variate case. For each case, a sample of 1000 

observations is generated using prespecified values for the δ  vector.  

 

3.1 Trivariate Case 

For this case, we use three independent variables in the first episode category, four variables in 

the second category, and three variables again in the third category. The values for each of the 

independent variables are drawn from a standard univariate normal distribution. A fixed 

coefficient vector iβ  )3 ,2 ,1( =i  is assumed on the variables, and the linear combination qii xβ ′  

)3 ,2 ,1  ; ..,. ,2 ,1( == iQq   is computed for each individual q and episode category i. Next, we 

generate Q trivariate realizations of the error term vector ),,( 321 qqq εεε with a predefined 

positive-definite error correlation structure. To examine the potential impact of different 

correlation structures on the performance of the CML approach, we consider one correlation 

structure with low correlations and another with high correlations as follows: 

 

1

1 0.30 0.20
0.30 1 0.25
0.20 0.25 1

⎛ ⎞
⎜ ⎟Σ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

, and 2

1 0.90 0.80
0.90 1 0.75
0.80 0.75 1

⎛ ⎞
⎜ ⎟Σ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

                  (7) 

The error term realization for each observation and each episode category, qiε , is then 

added to the systematic component )( qii xβ ′  as in Equation (1) and then translated to “observed” 

values of qiy  (0, 1, 2,...) based on pre-specified threshold values. We assume four outcome levels 

for the first category, three for the second category, and five for the third episode category. 
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Correspondingly, we pre-specify a vector of three threshold values [ 1 2 3
1 1 1 1( , , )θ θ θ θ= ] for the first 

category, two for the second category [ 1 2
2 2 2( , )θ θ θ= ], and four for the third category 

[ 1 2 3 4
3 3 3 3 3( , , , )θ θ θ θ θ= ].  

The above data generation process is undertaken 50 times with different realizations of 

the random error term to generate 50 different data sets. The CML estimation procedure is then 

applied to each dataset to estimate data-specific values.  

 

3.2 The Five-variate Case 

For the five-variate case, we adopt a procedure very similar to the above with two additional 

episode categories (for a total of five episode categories). We use 4 independent variables for the 

fourth category and 3 independent variables for the fifth category (maintaining the same number 

of independent variables as earlier for the first three episode categories). The positive-definite 

correlation structures considered are as follows: 

 

  1

1 0.30 0.20 0.22 0.15
0.30 1 0.25 0.30 0.12
0.20 0.25 1 0.27 0.20
0.22 0.30 0.27 1 0.25
0.15 0.12 0.20 0.25 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Σ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, and 2

1 0.90 0.80 0.82 0.75
0.90 1 0.85 0.90 0.72
0.80 0.85 1 0.87 0.80
0.82 0.90 0.87 1 0.85
0.75 0.72 0.80 0.85 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Σ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

              (8) 

We assume three outcome levels for the fourth category and four outcome levels for the fifth 

category.   

 

3.3 Evaluation 

The performance evaluation of the CML approach is undertaken based on the ability to recover 

the parameter vector δ  in the trivariate case and its corresponding counterpart in the five-variate 

case. The proximity of estimated and true values for each parameter is based on computing the 

following three metrics: (a) absolute bias (or the absolute difference between the mean of the 

relevant values across the 50 runs and the true values), (b) the absolute percentage bias (i.e., the 

absolute bias as a percentage of the true value), and (c) the total error computed as the root 
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mean-squared error (RMSE) between the estimated and true values across all 50 runs 

( 2

1

ˆ100 ( ) /
R

r
r

RMSE Rδ δ
=

⎛ ⎞= × −⎜ ⎟
⎝ ⎠
∑ , where R=50). 

 Table 1 presents the results for the trivariate case and Table 2 presents the results for the 

five-variate case. The results indicate that the CML approach recovers the parameters extremely 

well in terms of bias and relative bias for both low and high correlation cases and for the 

trivariate and five-variate cases. In fact, for both the low and high correlation case, the overall 

mean absolute percentage bias across all parameters (see last row) is less than 1% for the 

trivariate case and less than 1.5% for the five-variate case. These are incredibly good measures 

for the ability to recover parameter estimates. Further, the ability to recover parameters does not 

seem to be affected much by whether there is low correlation or high correlation. The RMSE 

values are also generally very small, though it is interesting to note that the RMSE values for the 

thresholds are consistently higher than for other parameters in both the low and high correlation 

case. The mean of the RMSE values across parameters shows little change between the trivariate 

case and the five-variate case. Overall, the simulation results clearly demonstrate the ability of 

the Composite Marginal Likelihood (CML) to recover the parameters in a multivariate ordered-

response choice model context, independent of the correlation structure or the number of episode 

categories (i.e., count outcome categories). Combined with its conceptual and implementation 

simplicity, the CML approach is an effective method in accounting for correlation in high-

dimensional multivariate ordered response contexts.  

 

4. DATA  

4.1 Data Source 

The data used for the empirical analysis in the paper is drawn from the 2007 American Time Use 

Survey (ATUS). The ATUS is a national level survey conducted and processed by the U.S. 

Census Bureau for the Bureau of Labor Statistics (ATUS, 2008). The household sample for the 

ATUS is drawn from the set of households that completed the Current Population Survey (CPS). 

Next, from each sampled CPS household, the ATUS randomly selects one individual of age 15 

or over, and collects information on all episodes the individual participates in over the course of 

a single day.  The episode-level information collected in the ATUS includes activity episode 

purpose, start and end time, location of participation (for example, grocery store, library, etc.), 
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and ‘with whom’ participated in. In addition, data on individual and household socio-

demographics, individual labor force participation and employment-related characteristics, and 

regional location and characteristics of the survey day are also collected.  

 

4.2 Sample Formation and Description 

The 2007 ATUS micro data were processed in several steps to obtain the sample for the current 

analysis. First, only individuals who were surveyed on a weekday that was not a holiday were 

selected, because the focus of the current paper is to study individuals’ activity participation 

patterns on a typical weekday. Second, all work, work-related, education, education-related, 

travel, sleep, and in-home activity episodes (such as phone call, grooming, etc.) were removed 

from the list of activity episodes undertaken by the respondents on the survey day. Third, all out-

of-home activity episodes, originally documented in over four hundred fine activity purpose 

types, were aggregated into six broad activity purpose type categories: (1) personal/family care 

(including personal care, caring for children in the household, pick-up/drop-off of 

children/adults, and caring for extended family members; for the sake of brevity, we will refer to 

personal/family care activities simply as “family care” activities from hereon), (2) maintenance 

shopping (such as grocery shopping, purchasing gas/food, and banking), (3) non-maintenance 

shopping, (4) meals, (5) physically active recreation (including sports, exercise, recreational and 

volunteer activities), and (6) physically inactive recreation (including social, relaxing, movies, 

and attending religious/sporting/recreational events). Subsequently, the companion types for 

each episode were classified into five mutually exclusive and collectively exhaustive categories: 

(1) alone, (2) only family (includes children, spouse or unmarried partner), (3) only relatives 

(parents, sibling, grandchild, etc.), (4) only friends (friends, co-workers, neighbors, etc.), and (5) 

mixed company (a combination of family, relatives, and friends). The activity type and 

companion type classification resulted in thirty episode categories. Fourth, the number of 

episodes undertaken during the survey day by an individual in each of the episode categories is 

obtained by aggregating all episodes of that category for the person. Fifth, data on household and 

individual socio-demographics, residential location, and zonal characteristics were appended to 

the person-level file. Finally, several screening and consistency checks were performed and 

records with missing or inconsistent data were eliminated.  
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The final sample for analysis includes out-of-home non-mandatory episode participation 

information for 4143 individuals (workers and non-workers, aged 15 years or older) on a typical 

weekday. Table 3 presents the percentage distribution of individuals’ participation in episodes by 

activity type and companionship type. For example, the first entry in Table 3 indicates that 

91.3% of individuals do not undertake family care activities alone. Across all the categories, we 

find that meals with friends is the most frequently undertaken episode category on weekdays, 

with over 27% of individuals in the sample participating in one or more episodes of this 

category. Other categories with relatively frequent participation (across individuals) include 

maintenance shopping alone, family care with family, meals alone, and physically inactive 

recreation with friends. The last of these is also the activity purpose that individuals are most 

likely (relative to other activity purposes) to undertake with relatives (8.9%) or with mixed 

company (7.2%).  

 

5. EMPIRICAL ANALYSIS 

5.1 Variable Specification 

Several types of variables were considered in the model specification. These included (1) 

individual socio-demographics (gender, age, race, education level, employment status, student 

status, and indication of any disability), (2) household socio-demographics (household structure, 

presence of children, family income, and employment status of spouse/partner) 5, and (3) day of 

the week and seasonal effect variables.  

In addition to the three groups of variable discussed above, we also considered several 

interaction effects among the variables. The final specification was based on a systematic process 

of removing statistically insignificant variables and combining variables when their effects were 

not significantly different. The specification process was also guided by prior research and 

intuitiveness/parsimony considerations. We should also note here that, for the continuous 

variables in the data (such as age and income limits), we tested alternative functional forms that 

included a linear form, a spline (or piece-wise linear) form, and dummy variables for different 

ranges.       

 

                                                            
5 The ATUS survey does not collect information on household vehicle ownership. As a result, this variable is not 
available for use in the empirical analysis. 
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5.2 Model Estimation Results 

Table 4 presents the model estimation results. The columns in the table correspond to the 

explanatory variables, while the rows correspond to the episode categories. An empty cell 

indicates that the corresponding column exogenous variable does not have a statistically 

significant effect on the corresponding row episode category participation propensity. The t-

statistic for each coefficient is provided beneath the coefficient in parentheses. The base category 

is listed in the heading of the column corresponding to that variable. The coefficients in the table 

indicate the effects of variables on the latent propensity of participation in each episode category 

(that is, they represent elements of the iβ  vector in Equation (1)). Since all the variables in the 

model are dummy variables, the relative magnitudes of the coefficients also provide an estimate 

of the importance of the variables in influencing participation propensities and participation 

probabilities. The marginal impact of variables on the participation probabilities for each 

combination of number of episodes for the different episode categories varies across individuals 

because of the non-linear structure of the ordered probit formulation.  Aggregate level marginal 

effects may be computed for each dummy variable by changing the value of the variable to one 

for the subsample of observations for which the variable takes a value of zero and to zero for the 

subsample of observations for which the variable takes the value of one.  We can then sum the 

shifts in expected aggregate shares in the two subsamples after reversing the sign of the shifts in 

the second subsample and compute an effective marginal change in expected aggregate shares in 

the entire sample due to a change in the dummy variable from 0 to 1.  We are not showing these 

marginal effects here because there are as many as 80 trillion aggregate marginal effects (one for 

each combination of episode levels across all the 30 episode categories) for each variable.  But in 

Section 5.3, we demonstrate the application of the model due to changes in two variables.  In the 

following sections, we discuss the effect of variables on the latent participation propensities by 

variable category. 

 

5.2.1 Effect of Individual Socio-Demographic Variables 

The results indicate the presence of distinct gender effects in activity type participation and 

accompaniment. Specifically, men are less likely than women to participate, across all 

companion types, in family care activities (except with “only friends”), maintenance activities 

(except “alone” and with “only friends”) and non-maintenance shopping activities (except with 
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“only friends”). These results reinforce the gender stereotype of women being more responsible 

for, and/or more vested and interested in, family care and shopping activities, a recurring finding 

in the literature (for example, see Yamamoto and Kitamura, 1999 and Frusti et al., 2003). 

However, men have a higher propensity than women to (a) participate alone in discretionary 

activities (i.e., meals out, physically active recreation, and physically inactive recreation), and (b) 

participate with “only friends” in meals out and physically inactive recreation. This is again 

consistent with the results found by Srinivasan and Bhat (2006) and Carrasco and Miller (2009), 

and suggests that men are more likely to undertake active and inactive leisure activities either 

alone or with friends on a weekday. Finally, men pursue physically inactive recreation with 

“mixed company” less than do women, potentially a reflection of the combination of family-

centric responsibilities and social network level interactions of women relative to men (see 

Kapur and Bhat, 2007 for a similar result). 

The effect of individual age on activity purpose and accompaniment type is 

accommodated in a non-linear fashion by introducing age in three categories: age less than 40 

years, age 40 years or above but less than 60 years, and age 60 years or above (the base age 

category). The results suggest that, in general, individuals younger than 60 years are more 

disposed toward pursuing activities with “only family”, and are less likely to participate in 

physically active recreation with “only friends”. Further, individuals below the age of 40 years 

are the least likely (relative to other age groups) to participate in activity episodes alone and most 

likely to participate in episodes with mixed company. Overall, these patterns suggest a 

combination of the family orientation and larger social networks of younger individuals, perhaps 

due to household life cycle characteristics. For instance, compared to older individuals, younger 

individuals are likely to have more family responsibilities, have more social interactions with 

friends and co-workers, and also have a larger pool of individuals to interact as part of their 

extended family (parents, siblings, grandparents, etc.). Finally, individuals who are older than 60 

years are most likely to participate in family care activities with “only relatives”, as evidenced by 

the negative coefficients corresponding to the age 40<  and 60age40 <≤  columns for the 

“Family care-Only relatives” row of Table 4. This result may be attributable to such activities as 

care received by senior parents from their children, or child care provided by grandparents to 

grandchildren.  
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 The race-related coefficients reveal that Caucasians are more likely than non-Caucasians 

to (1) participate in non-maintenance shopping and physically active recreation with “only 

family”, and (2) undertake meal episodes with only friends or with friends and family (we did 

not find statistically significant race differences in the group of non-Caucasians, and hence 

represent race differences by a simple binary representation between Caucasians and non-

Caucasians). The above results are consistent with earlier studies that suggest that Caucasians 

have higher levels of participation in meals/recreational pursuits (see Bhat and Gossen, 2004 and 

Mallett and McGuckin, 2000), though our current study also introduces the “with whom” 

element that earlier studies do not. In this regard, our results also indicate that Caucasians tend to 

participate less than non-Caucasians in physically inactive recreation “alone”. 

Education level also has an impact on the type of episodes pursued and accompaniment 

type. Specifically, individuals with an education level beyond high school have a higher 

propensity (than individuals with only a high school degree which is the base category) to 

participate alone in shopping activities (maintenance and non-maintenance) and physically active 

recreation. These results may be indicative of the tighter time constraints among individuals with 

high education, because of which it is easier to schedule shopping and physically active 

recreational activities (such as going to the gym) alone. Further, the results suggest that 

individuals with a bachelor’s degree or higher are more likely to pursue physically active 

recreation with relatives, and with friends.  Overall, the results suggest an increased awareness 

among highly educated adults of the benefits of investing in health and fitness-enhancing 

pursuits, highlighting the importance of a good education for a healthy society.  

Employment status, in the current study, is characterized as employed full-time, 

employed part-time and unemployed. The several negative coefficients in the “family care” and 

“maintenance shopping” panels of the table corresponding to the full-time employed variable 

reflect the lower propensity of full-time employees to pursue these activities (relative to other 

individuals). The same is true for non-maintenance shopping, though this is confined to the 

“alone” accompaniment type. Overall, full-time employed individuals have tight time 

constraints, which may explain their reduced participation in family care and shopping pursuits 

(see Goulias and Kim, 2001 for a similar result). However, full-time employed individuals have 

a high propensity to have meals out and physically inactive recreation episodes alone or with 

friends. The result regarding meals out alone or with friends is perhaps a manifestation of lunch 
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activity participation alone or with co-workers. Finally, full-time employees are less likely to 

participate in physically inactive recreation with “only family”, “only relatives”, and “mixed 

company”, potentially another reflection of tight time constraints (see also Yamamoto et al.,   

2004). The results for part-time workers provide similar results as for full time workers, except 

for participation in maintenance shopping and physically inactive recreation.  

The next variable in the table corresponds to student status. In this analysis, we defined 

an individual who is enrolled in high school, college, or university as a student. As expected, 

students have a high propensity to participate in discretionary activities (meals, physically active 

recreation, and physically inactive recreation) with friends, potentially a reflection of the 

combination of social opportunities to interact with friends as well as the social pressures to “fit 

in” within their peer group. 

As one would expect, physical disability significantly affects activity episode 

participation. Individuals with a physical disability are likely to need assistance from their 

relatives or immediate family for activity participation, as indicated by the positive coefficients 

in the “only relatives” or “only family” rows of Table 4.  

 

5.2.2 Effects of Household Socio-Demographic Variables 

Household structure effects were considered by including several types of households, including 

nuclear family households (two adults of opposite/same sex with one or more children), couple 

families (two adults of opposite/same sex), single individual households, and “other” households 

(roommate households, returning young adult households, other related individual households, 

and all other types of households). The results show that adults in nuclear and couple family 

households are much more likely than adults in other households to pursue non-family care 

activities with their immediate family (as reflected in the positive coefficients for nuclear and 

couple families in the “only family” row for all non-family care activity purposes). Further, 

nuclear households are less likely than other households to participate in non-family care 

activities with friends or relatives. These results indicate the high levels of intra-household 

interactions within nuclear family households and, to a somewhat lesser degree, in couple family 

households. On the other hand, the results for “single individual” households shows that there is 

a relatively higher propensity of inter-household interactions with friends in the meal and 

physically inactive recreation activities of individuals who live alone (these individuals also 
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participate more in meals and recreation alone). Overall, the results reinforce the need to 

explicitly consider intra-household and inter-household interactions in activity-travel pattern 

modeling, as discussed in the first section of this paper. Clearly, the nature of the interactions 

varies by household structure, which also needs to be considered in the modeling. Besides, 

earlier studies, such as Bhat and Srinivasan (2005), indicate that nuclear and couple family 

households have a higher participation propensity in shopping and physically active and inactive 

recreation activities as a whole, but our current study reveals that this is the case only for 

episodes with the immediate family. In fact, as just indicated above, nuclear family households 

have a lower propensity than other households to participate in shopping and discretionary 

(meals/recreation) activities with friends and relatives. This underscores the need to consider 

accompaniment type at the level of generation of episodes (as done in this paper), and not further 

downstream in the modeling process where episodes are first generated purely by activity 

purpose and then assigned to one of many accompaniment types.  

 The effect of age of children is introduced in the model in three categories: presence of 

children 4 years old or younger (the base category), presence of children aged between 5 to 10 

years, and presence of children aged between 11 to 15 years. As expected, adults in households 

with older children (aged 5 years or more) are more likely than adults in households with young 

children (less than 5 years of age) to have family care episodes with “only family”, a clear 

reflection of the chauffeuring of children to/from school and other non-school activities as 

children grow older (sometimes labeled in the popular press as the “soccer mom” and “tennis 

dad” responsibilities). Adults in households with children in the 5-10 age group partake more in 

maintenance shopping episodes with “only family”, which may be attributed to one or both 

parents pursuing maintenance shopping with the child “in tow”. This effect is not statistically 

significant for the oldest child group since these children have acquired a certain level of 

independence and do not need child care at all times. Besides, there is evidence from the social 

psychology literature that pre-teenagers and teenagers would rather not be seen with parents, 

since this is considered “uncool” (Thornton et al., 1995, Williams, 2003).6 Of course, the 

independence levels of children in the pre-teens and teens also enables the participation of 

parents in meals and physically inactive recreation activities with friends, as reflected by the 
                                                            
6 This finding is also supported by message boards and parent blogs posted on a number of websites such as 
life.familyeducation.com, www.ParentsConnect.com, www.theparentreport.com, family.go.com, all dedicated to 
address and deal with pre-teen and teenage issues. 
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positive coefficients in the “meals-only friends” and “physically inactive recreation-only friends” 

rows of Table 4. 

The effect of income is captured using dummy variables for different income categories, 

which enables the accommodation of nonlinear impacts on the propensity to participate in 

episodes (the dummy variable representation was found to be superior to a continuous linear 

income effect in our specifications). The results in Table 4 show that household income 

influences participation in meals, physically active recreation, and physically inactive recreation. 

As expected, individuals in high-income households have a higher propensity to participate in 

these activity episodes because of their higher expenditure potential for discretionary pursuits. 

However, this is only true for episodes participated with “only family”. In fact, individuals in 

highest income group are less likely than individuals in other income groups to pursue physically 

inactive recreation alone (perhaps attributable to time constraints due to the level and intensity of 

work activity). Also, middle income individuals have a lower propensity to participate in non-

maintenance shopping with “only friends”, a result that is not immediately intuitive and needs 

exploration in future studies. But, overall, such differential episode generation rates by 

accompaniment type can only be accommodated if accompaniment type is considered at the 

generation level, rather than later on in the modeling hierarchy.   

Finally, in the category of household demographics, individuals in a household with a 

working spouse contribute more (less) than individuals without a working spouse to family care 

episodes alone or with immediate family (with friends). 

 

5.2.3 Day of Week and Season Variables 

The variables considered in this category include day of week variables and season variables 

(categorized as summer, fall, spring and winter). Clearly, there is a higher propensity of 

participation on Fridays in almost all non-physically active combinations of activity purpose and 

accompaniment. Further, it is unlikely that individuals pursue meals out activities alone on 

Fridays. For other activity purposes except maintenance shopping, there is no difference between 

Fridays and other days for solo-participation in episodes. Overall, individuals pursue more non-

physical activity episodes on Fridays relative to other days of the week, and generally participate 

with family and friends. 



25 

The seasonal effects reflect a higher propensity to participate in physically active 

recreation with family and friends over the summer compared to other seasons. This may be 

attributable to better weather conditions for outdoor activities, more daylight time, and more 

schedule opportunities to pursue activities with family and friends. 

 

 5.2.4 Threshold Parameters 

The threshold parameters are not shown in the table, but are available on request from the 

authors. These parameters represent the cut-off points that map the latent propensity of 

individuals to participate in each activity purpose-accompaniment type category to the reported 

number of episodes for each category. As such, they do not have any substantive behavioral 

interpretations. 

 

5.2.5 Correlation Estimates 

As indicated earlier in Section 2.4, it is not practical to estimate the parameters of the full 

correlation matrix (in the current case, the number of parameters in the full correlation matrix is 

435). In our analysis, we specified several initial exclusion restrictions based on (1) intuitive 

considerations (for example, there is no reason why unobserved factors influencing participation 

in maintenance shopping with family should be correlated with unobserved factors influencing 

participation in physically active recreation with friends), and (2) the estimation of bivariate 

models for pairs of episode categories to determine if the corresponding correlations were 

statistically significant. These initial exclusion restrictions were used to estimate several 

alternative model specifications using the pairwise procedure proposed, and the final correlation 

matrix specification was obtained based on statistical fit and parsimony considerations.  

The estimated covariances and their t-statistics (in parentheses) are shown in Table 5. 

Only the upper diagonal terms in the variance-covariance matrix are shown since the matrix is 

symmetric. As mentioned before, the variance of the error terms are set to one to normalize the 

scale (see Section 2.2). The covariance (correlation) matrix indicates several statistically 

significant correlations among the stop-making propensities of different activity type-

accompaniment categories, highlighting the importance of accounting for common unobserved 

factors in modeling episode participation frequency. For the sake of conciseness, we focus only 

on the salient aspects of the covariance matrix structure in the discussion here. Specifically, the 
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following observations may be made from Table 5. First, the shaded matrices along the diagonal 

of the correlation matrix do not have many off-diagonal elements. This suggests the absence of 

common unobserved factors that affect participation across accompaniment types for any given 

activity purpose category. Thus, for example, a higher than average propensity to participate 

alone in non-maintenance activity (due to unobserved factors) does not increase or decrease the 

propensity to participate in non-maintenance activity with others. The main exception to this 

general observation is for meal activities, where there are significant substitution effects across 

accompaniment types. That is, an individual’s propensity to pursue dining out with a particular 

companion type is negatively correlated with the individual’s propensity to pursue dining out 

with other companion types. Second, the large number of parameters significant and consistently 

positive along the diagonals in each off-diagonal matrix of Table 5 highlights the preference for 

sticking to the same accompaniment (social) group for undertaking different types of activities. 

For example, individuals predisposed to participating in maintenance shopping activity with 

“only family” tend to participate in other activity purposes too with “only family”. This 

preference (or stickiness) to pursue all types of activities with the same accompaniment group is 

particularly strong for the non-alone accompaniment categories. Third, some of the highest 

correlation values may be observed along the diagonal of the matrix corresponding to meals (row 

entry) and physically inactive recreation (column entry), suggesting that meals out and 

physically inactive recreation episodes are frequently combined (for instance, dinner out and a 

movie, or dinner out and a cultural event). This is reinforced by the fact that individuals who 

tend to have meals with “only friends” are not very likely to pursue physically inactive recreation 

alone or with “only relatives”. In any case, there is a general complementary relationship 

between the propensities to participate in meals out and physically inactive recreation. Fourth, 

there are also quite high correlation values along the diagonals of the matrices corresponding to 

maintenance shopping and non-maintenance shopping, maintenance shopping and meals, and 

non-maintenance shopping and meals, highlighting the strong complementary tendencies among 

shopping/meal activities with the same accompaniment type. Fifth, the most number of off-

diagonal correlation elements may be found in the matrix for non-maintenance shopping and 

physically inactive recreation, indicating substantial complementary effects in participation 

propensities for these two activity purpose categories across all types of accompaniment 

arrangements. Sixth, rather than the common perception that there is a substitution effect 
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between physically active and physically inactive recreation propensities, there is in fact a 

complementary effect. That is, individuals who participate more in physically inactive recreation 

are also more likely (after controlling for observed factors) to participate in physically active 

recreation. Finally, there is a general complementary relationship between participation with 

“mixed company” and participation with other company types for the non-maintenance shopping 

activity and other discretionary activity purposes (meals, physically inactive recreation, and 

physically active recreation).  

 

5.2.6 Overall Measures of Fit 

The log-composite likelihood value for the independent ordered response probit model (that is, 

independent ordered response probit models for each episode category) with only the threshold 

parameters is –1,136,772.91. The corresponding value at convergence for the fully specified 

independent ordered response probit model (IORP) is –1,083,191.5 and that for the fully 

specified multivariate ordered response probit model (MORP) is –1,081,484.6. The composite 

likelihood ratio test (CLRT) statistic for comparing the MORP model with the IORP model is 

3413.83. However, the CLRT statistic does not have the standard chi-squared asymptotic 

distribution under the null hypothesis as in the case of the maximum likelihood inference 

procedure. In the current paper, we use bootstrapping to obtain the precise distribution of the 

CLRT statistic. The procedure is as follows (Varin and Czado, 2008):  

1. Let the estimation sample be denoted as obsy , and the observed CLRT value as 

).( obsyCLRT  

2. Generate B sample data (here, B = 50) sets 
Byyyy ,...,,, 321  using the CML convergent 

values under the null hypothesis. 

3. Compute the CLRT statistic for each generated data set, and label it as ( ).bCLRT y  

4. Calculate the p-value of the test using the following expression: 
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 where 1}{ =AI if A is true.  

The estimated p-value based on 50 bootstrap samples is 0.0196 for the test between the 

MORP and IORP models. This low p-value rejects the null hypotheses of absence of correlations 

across the propensities of participation for the different episode categories, and highlights the 
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value of the MORP model estimated in the current paper. Of course, this should also be obvious 

from the many statistically significant parameters in the correlation matrix in Table 5.  

Another more intuitive, but aggregate, approach to obtain a sense of measure of fit would 

be to compare the predicted versus the actual number of out-of-home episodes for each activity 

purpose-accompaniment combination level. In this paper, and to illustrate the data fit of the 

models while also conserving on space, we present the results only for the episode level 

combinations of two categories: meals with friends and physically inactive recreation with 

friends. These are two of the most common episode categories participated in during weekdays, 

as observed earlier in Section 4.2. Also, we select these two episode categories because they are 

helpful in demonstrating the application of the model in response to changes in socio-

demographic variables (see next section). Table 6 presents the results, where the numbers in 

underlined font correspond to the actual number of individuals participating in each level of the 

two episode categories. The numbers in plain font are the predicted values from the MORP 

model, while the italicized numbers are the predicted values from the IORP model. A visual 

comparison of these numbers indicates the superiority in data fit of the MORP model. To 

quantify this, we develop a weighted mean absolute percentage error statistic that is computed as 

the absolute percentage error for each cell weighted by the fraction of individuals in each cell 

(based on the actual numbers in each cell). This statistic is 4.5% for the MORP model and 17.8% 

for the IORP model. One can also compute a more traditional root mean-squared error (RMSE) 

statistic between the predicted and actual values across all the cells for each of the MORP and 

IORP models. This statistic is 17.8 for the MORP and 76.4 for the IORP.  

Overall, from the perspectives of both disaggregate and aggregate measures of fit, the 

MORP model clearly outperforms the IORP model.  

  

5.3 Model Application 

The model estimated in this paper can be used to determine the change in the number of out-of-

home episodes for each activity purpose-accompaniment type combination due to changes in 

independent variables over time. This is particularly important because of changing employment-

related and demographic trends. For instance, the number of employed individuals is projected to 

continue to rise (albeit at a slower rate than in the past), despite the short-term slump due to the 

economy (see the latest national employment projections to 2016 by the Bureau of Labor 
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Statistics, 2007). Also, according to the US Census Bureau estimates from the Current 

Population Survey (CPS) (see US Census Bureau, 2009), the structure of the household is 

changing with a decrease in nuclear family households and an increase in single individual 

households. Such socio-demographic changes will have an effect on weekday episode 

participation, and the model in this paper can be used to assess these impacts and provide reliable 

information that can be used for activity-based travel demand forecasting and air quality 

analysis. 

 In this paper, we demonstrate the application of the model by studying the effect of two 

socio-demographic changes. The first is an increase in the number of full-time employed adults 

and the second is a decrease in nuclear family households along with a concomitant increase in 

single individual households. The increase in the number of full-time employed adults is 

reflected by randomly selecting current non-employed adults in the sample and designating them 

as full-time employees so that the number of full-time employees increases by 20% over the 

current full-time employment level. As indicated earlier, such a change mirrors the projected 

increase in employment levels in the U.S. population. The change in nuclear family households 

is similarly “implemented” by randomly selecting 20% of individuals who belong to nuclear 

families and placing them in single individual households. The impact of the two changes 

discussed above is evaluated by modifying exogenous variables to reflect the change, computing 

revised expected aggregate values for number of episodes in each combination category, and 

then obtaining a percentage change from the baseline estimates.  

The effects of the changes in variables can be evaluated on each combination level of 

number of episodes across all the 30 episode categories. But there are about 80 trillion such 

combination levels. So, in this paper, we present the results only for the episode level 

combinations for two categories: meals with friends and physically inactive recreation with 

friends. These are two of the most common episode categories participated in during weekdays, 

as observed earlier in Section 4.2. Besides, the estimation results indicate that employment status 

and household structure, the two variables being examined here, have a direct influence on the 

“meals with friends” and “physically inactive recreation with friends” categories.  

Table 7 presents the results from both the MORP (plain font) and IORP (italicized font) 

models. For each model, the predicted change in the number of individuals participating in each 

combination level of “meals with friends” and “physically inactive recreation with friends” is 
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computed as a percentage of the baseline (actual) numbers of individuals in each combination 

level. For ease in presentation, and also because the share of individuals participating in three or 

more episodes of physically active recreation with friends is very small, we have consolidated 

the 2 and 3 episode levels into a single 2+ episode level in Table 7. The results show a decrease 

in the (0,0) combination level due to an increase in full-time employed adults and decrease 

(increase) in nuclear family (single individual) households. This is, of course, because of the 

positive effect of full-time employed status on both the episode categories under consideration, 

and the negative (positive) effect of nuclear family household (single individual households) on 

both the episode categories (see Table 4). However, the percentage reduction in the number of 

individuals in the (0,0) cell is lower in the MORP case because of the positive correlation in the 

propensities of participation in the two episode categories. At the other extreme, both models 

show, as expected, an increase in the (2,2+) combination level. However, the MORP model 

indicates a substantially higher increase because of the complementary effect (positive 

correlation) in the unobserved propensities. The changes in the other cells, in general, also show 

a shift toward combinations of higher levels of episode participation in the two episode 

categories due to changes in the socio-demographic variables.  

Overall, the exercise above demonstrates the application of the MORP model to predict 

the shifts in number of episodes of different activity purposes and accompaniment types due to 

changing socio-demographic characteristics of the population. In addition, the results also point 

to the biased results that can be obtained by ignoring the jointness in the propensity to participate 

in different episode categories.  

 

6. SUMMARY AND CONCLUSIONS 

This paper proposes a multivariate ordered response system framework to model the interactions 

in activity episode decisions across household and non-household members at the fundamental 

level of activity generation. Such a system recognizes the dependence in the number of episodes 

generated for different purposes as well as with different accompaniment types, and explicitly 

allows complementary and substitution effects in activity episode participation decisions. The 

econometric challenge in estimating such a joint multivariate ordered-response system with a 

large number of episode categories is that traditional classical and Bayesian simulation 

techniques become saddled with convergence problems and imprecision; they are also extremely 
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cumbersome if not impractical to implement. We address this estimation problem by resorting to 

the technique of composite marginal likelihood (CML), an emerging inference approach in the 

statistics field that is based on the classical frequentist approach, is very simple to estimate, is 

easy to implement regardless of the number of count outcomes to be modeled jointly, and 

requires no simulation machinery whatsoever. It also represents a conceptually and 

pedagogically simpler procedure relative to simulation techniques, and has the advantage of 

reproducibility of the results. The simulation exercises undertaken for 3- and 5-dimensional 

multivariate ordered response models in the paper also indicate that the CML approach recovers 

the parameters extremely well. To our knowledge, this is the first study to adopt a CML 

approach in the field of activity-travel modeling, though Bhat et al. (2009) use the CML 

approach in the context of a spatially dependent discrete choice model formulation.  

 The empirical analysis in the paper uses data drawn from the 2007 American Time Use 

Survey (ATUS). Unlike conventional activity-travel surveys, the ATUS survey explicitly collects 

information on all accompanying family and non-family members for all activity episode 

participations. Thus, it is an ideal dataset for exploring the social context of adults’ activity 

episode participations.7 The empirical results provide important insights into the determinants of 

adults’ weekday activity episode generation behavior. For instance, the results indicate the 

presence of distinct gender effects in activity type participation and accompaniment, with women 

being more responsible for, and/or more vested and interested in, family care and shopping 

activities, and men being more likely to undertake active and inactive leisure activities either 

alone or with friends. Further, there are also clear age-related effects. Individuals below the age 

of 40 years are the least likely (relative to other age groups) to participate in activity episodes 

alone and most likely to participate in episodes with mixed company, suggesting a combination 

of the family orientation and larger social networks of younger individuals. Race, education 

level, employment and student status, household structure and presence of children, household 

income, the day of week, and season of the year also have important effects on adults’ weekday 

activity episodes by purpose and the social context of participation. In addition to estimating the 

coefficients of explanatory variables, the CML approach allows us to estimate the parameters 

                                                            
7 A limitation of ATUS is that it does not collect locational information on household residences or activity episode 
participation locations. Hence, our analysis is unable to include built environment and locational effects on episode 
generation behavior. If available, this information can be incorporated as additional attributes in our multivariate 
ordered response system. 
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underlying the correlation due to unobserved factors in the propensity to participate in the 30 

different purpose-accompaniment episode categories. Accommodating these unobserved 

correlation effects leads to a statistically superior data fit in the empirical context of this study 

and also provides useful insights into complementary and substitution effects among activity 

type and companionship type dimensions. Overall, the empirical estimation results underscore 

the ability of the CML approach to specify and estimate behaviorally rich structures to analyze 

inter-individual interactions in activity episode generation. The multivariate ordered-response 

system is applied in a demonstration exercise to evaluate the effect of changes in full-time 

employment and household structure “over time”.  

In summary, the results underscore the substantial linkages in the activity episode 

generation of adults based on activity purpose and accompaniment type. The extent of this 

linkage varies by individual demographics, household demographics, day of the week, and 

season of the year. These inter- and intra-family linkages, and their variations across individuals, 

need to be accommodated within the framework of activity-based travel modeling for accurate 

travel forecasting and reliable transportation policy analysis. 
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Table 1 Evaluation of Ability to Recover “True” Parameters by CML Estimation Technique – Trivariate Case 

Parameter 

Low Correlation High Correlation 

True 
Value 

Mean 
Estimate 

Mean 
Standard 

Error 

Absolute 
Bias 

Absolute 
Percentage 

Bias 

Root Mean 
Square 
Error 

(RMSE) 

True 
Value 

Mean 
Estimate

Mean 
Standard 

Error 

Absolute 
Bias 

Absolute 
Percentage 

Bias 

Root Mean 
Square 
Error 

(RMSE) 

θ1
1 -1.0000 -1.0078 0.0553 0.0078 0.7821 0.0553 -1.0000 -1.0086 0.0532 0.0086 0.8644 0.0535 

θ1
2 1.0000 0.9998 0.0553 0.0002 0.0202 0.0556 1.0000 0.9977 0.0528 0.0023 0.2275 0.0524 

θ1
3 3.0000 3.0104 0.1301 0.0104 0.3473 0.1305 3.0000 3.0113 0.1208 0.0113 0.3756 0.1185 

θ2
1 0.0000 0.0074 0.0493 0.0074 - 0.0521 0.0000 -0.0081 0.0456 0.0081 - 0.0456 

θ2
2 2.0000 2.0100 0.0855 0.0100 0.5005 0.1023 2.0000 1.9976 0.0808 0.0024 0.1194 0.0638 

θ3
1 -2.0000 -1.9860 0.0765 0.0140 0.7018 0.0749 -2.0000 -2.0022 0.0758 0.0022 0.1118 0.0752 

θ3
2 -0.5000 -0.5002 0.0465 0.0002 0.0433 0.0443 -0.5000 -0.5026 0.0455 0.0026 0.5141 0.0381 

θ3
3 1.0000 1.0144 0.0528 0.0144 1.4445 0.0530 1.0000 1.0025 0.0517 0.0025 0.2542 0.0573 

θ3
4 2.5000 2.5218 0.1018 0.0218 0.8719 0.1100 2.5000 2.5144 0.0981 0.0144 0.5776 0.1143 

β11 0.5000 0.4949 0.0400 0.0051 1.0283 0.0391 0.5000 0.4979 0.0309 0.0021 0.4216 0.0300 

β21 1.0000 0.9976 0.0477 0.0024 0.2388 0.0508 1.0000 0.9975 0.0402 0.0025 0.2478 0.0384 

β31 0.2500 0.2516 0.0375 0.0016 0.6541 0.0374 0.2500 0.2521 0.0278 0.0021 0.8247 0.0251 

β12 0.7500 0.7515 0.0492 0.0015 0.1963 0.0519 0.7500 0.749 0.0395 0.0010 0.1299 0.0405 

β22 1.0000 1.0013 0.0542 0.0013 0.1257 0.0701 1.0000 0.9913 0.0449 0.0087 0.8683 0.0523 

β32 0.5000 0.5076 0.0447 0.0076 1.5247 0.0392 0.5000 0.5035 0.0349 0.0035 0.6967 0.0274 

β42 0.2500 0.2605 0.0421 0.0105 4.1928 0.0440 0.2500 0.2523 0.0315 0.0023 0.9082 0.0289 

β13 0.2500 0.2522 0.0352 0.0022 0.8743 0.0341 0.2500 0.2539 0.0278 0.0039 1.5671 0.0254 

β23 0.5000 0.4974 0.0364 0.0026 0.5117 0.0357 0.5000 0.5011 0.0297 0.0011 0.2217 0.0293 

β33 0.7500 0.7485 0.0395 0.0015 0.1937 0.0331 0.7500 0.7528 0.0330 0.0028 0.3787 0.0293 

ρ12 0.3000 0.2995 0.0468 0.0005 0.1608 0.0400 0.9000 0.9031 0.0181 0.0031 0.3491 0.0194 

ρ13 0.2000 0.1989 0.0399 0.0011 0.5720 0.0422 0.8000 0.8006 0.0201 0.0006 0.0704 0.0233 

ρ23 0.2500 0.2644 0.0436 0.0144 5.7437 0.0477 0.7500 0.7565 0.0257 0.0065 0.8669 0.0255 

Overall mean value across 
parameters 0.0550 0.0063 0.9871% 0.0565 Overall mean value 

across parameters 0.0467 0.0043 0.5046% 0.0461 
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Table 2 Evaluation of Ability to Recover “True” Parameters by CML Estimation Technique - Five-variate Case  

Parameter 

Low Correlation High Correlation 

True 
Value 

Mean 
Estimate 

Mean 
Standard 

Error 

Absolute 
Bias 

Absolute 
Percentage 

Bias 

Root Mean 
Square 
Error 

(RMSE) 

True 
Value 

Mean 
Estimate 

Mean 
Standard 

Error 

Absolute 
Bias 

Absolute 
Percentage 

Bias 

Root Mean 
Square 
Error 

(RMSE) 
θ1

1 -1.0000 -1.0176 0.0559 0.0176 1.76% 0.0647 -1.0000 -1.017 0.0540 0.0170 1.70% 0.0644 
θ1

2 1.0000 1.0085 0.0556 0.0085 0.85% 0.0530 1.0000 1.0077 0.0531 0.0077 0.77% 0.0495 
θ1

3 3.0000 2.9876 0.1261 0.0124 0.41% 0.1236 3.0000 2.9906 0.1194 0.0094 0.31% 0.1193 
θ2

1 0.0000 -0.0074 0.0492 0.0074 - 0.0454 0.0000 -0.0024 0.0454 0.0024 - 0.0399 
θ2

2 2.0000 2.0054 0.0849 0.0054 0.27% 0.0890 2.0000 2.021 0.0810 0.0210 1.05% 0.0943 
θ3

1 -2.0000 -2.0214 0.0788 0.0214 1.07% 0.0927 -2.0000 -2.036 0.0766 0.0360 1.80% 0.0833 
θ3

2 -0.5000 -0.5081 0.0468 0.0081 1.63% 0.0494 -0.5000 -0.5029 0.0452 0.0029 0.58% 0.0418 
θ3

3 1.0000 1.0053 0.0524 0.0053 0.53% 0.0593 1.0000 1.0085 0.0511 0.0085 0.85% 0.0534 
θ3

4 2.5000 2.5241 0.1008 0.0241 0.97% 0.0926 2.5000 2.5207 0.0956 0.0207 0.83% 0.1002 
θ4

1 1.0000 1.0124 0.0628 0.0124 1.24% 0.0560 1.0000 1.0122 0.0566 0.0122 1.22% 0.0601 
θ4

2 3.0000 3.0059 0.1362 0.0059 0.20% 0.0972 3.0000 3.0003 0.1269 0.0003 0.01% 0.1045 
θ5

1 -1.5000 -1.5114 0.0661 0.0114 0.76% 0.0766 -1.5000 -1.5204 0.0649 0.0204 1.36% 0.0664 
θ5

2 0.5000 0.5074 0.0499 0.0074 1.48% 0.0421 0.5000 0.5044 0.0476 0.0044 0.88% 0.0431 
θ5

3 2.0000 2.0215 0.0794 0.0215 1.08% 0.0690 2.0000 2.0082 0.0770 0.0082 0.41% 0.0775 
β11 0.5000 0.5035 0.0401 0.0035 0.71% 0.0418 0.5000 0.5037 0.0318 0.0037 0.75% 0.0330 
β21 1.0000 1.0068 0.0484 0.0068 0.68% 0.0454 1.0000 1.0051 0.0411 0.0051 0.51% 0.0424 
β31 0.2500 0.2538 0.0379 0.0038 1.54% 0.0328 0.2500 0.2533 0.0289 0.0033 1.32% 0.0271 
β12 0.7500 0.7568 0.0492 0.0068 0.90% 0.0547 0.7500 0.7624 0.0392 0.0124 1.65% 0.0426 
β22 1.0000 0.9995 0.0543 0.0005 0.05% 0.0495 1.0000 1.0197 0.0455 0.0197 1.97% 0.0586 
β32 0.5000 0.5006 0.0450 0.0006 0.13% 0.0371 0.5000 0.5083 0.0345 0.0083 1.65% 0.0362 
β42 0.2500 0.2553 0.0426 0.0053 2.14% 0.0369 0.2500 0.2622 0.0316 0.0122 4.90% 0.0311 
β13 0.2500 0.2602 0.0344 0.0102 4.06% 0.0337 0.2500 0.2574 0.0251 0.0074 2.96% 0.0287 
β23 0.5000 0.5038 0.0366 0.0038 0.77% 0.0406 0.5000 0.5097 0.0279 0.0097 1.94% 0.0313 
β33 0.7500 0.7538 0.0392 0.0038 0.51% 0.0437 0.7500 0.7575 0.0318 0.0075 1.00% 0.0293 
β14 0.7500 0.7633 0.0577 0.0133 1.78% 0.0572 0.7500 0.7636 0.0451 0.0136 1.82% 0.0428 
β24 0.2500 0.2482 0.0491 0.0018 0.72% 0.0426 0.2500 0.2456 0.0358 0.0044 1.74% 0.0307 
β34 1.0000 1.0083 0.0637 0.0083 0.83% 0.0610 1.0000 1.0067 0.0516 0.0067 0.67% 0.0453 
β44 0.3000 0.3053 0.0493 0.0053 1.77% 0.0483 0.3000 0.3026 0.0363 0.0026 0.85% 0.0365 
β15 0.4000 0.4057 0.0383 0.0057 1.44% 0.0370 0.4000 0.4056 0.0304 0.0056 1.41% 0.0265 
β25 1.0000 1.0035 0.0465 0.0035 0.35% 0.0475 1.0000 1.0067 0.0404 0.0067 0.67% 0.0417 
β35 0.6000 0.6053 0.0405 0.0053 0.89% 0.0469 0.6000 0.6125 0.0332 0.0125 2.09% 0.0389 
ρ12 0.3000 0.2988 0.0468 0.0012 0.40% 0.0522 0.9000 0.905 0.0180 0.0050 0.56% 0.0200 
ρ13 0.2000 0.1951 0.0401 0.0049 2.46% 0.0401 0.8000 0.7973 0.0205 0.0027 0.34% 0.0221 
ρ14 0.2200 0.227 0.0559 0.0070 3.19% 0.0565 0.8200 0.8231 0.0290 0.0031 0.38% 0.0323 
ρ15 0.1500 0.1411 0.0432 0.0089 5.96% 0.0382 0.7500 0.7501 0.0251 0.0001 0.01% 0.0249 
ρ23 0.2500 0.2477 0.0441 0.0023 0.92% 0.0403 0.8500 0.8457 0.0200 0.0043 0.50% 0.0195 
ρ24 0.3000 0.2978 0.0606 0.0022 0.75% 0.0581 0.9000 0.9021 0.0240 0.0021 0.23% 0.0252 
ρ25 0.1200 0.1227 0.0482 0.0027 2.27% 0.0541 0.7200 0.7205 0.0300 0.0005 0.06% 0.0308 
ρ34 0.2700 0.263 0.0508 0.0070 2.58% 0.0578 0.8700 0.8662 0.0220 0.0038 0.43% 0.0195 
ρ35 0.2000 0.1884 0.0393 0.0116 5.79% 0.0404 0.8000 0.7987 0.0198 0.0013 0.16% 0.0184 
ρ45 0.2500 0.2575 0.0540 0.0075 3.00% 0.0469 0.8500 0.8517 0.0256 0.0017 0.20% 0.0249 

Overall mean value across 
parameters 0.0561 0.0076 1.47% 0.0549 Overall mean value 

across parameters 0.0448 0.0082 1.06% 0.0453 
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Table 3 Percentage of Individuals in Each Number of Episodes Category by ‘With Whom’ and Activity Types (Weekday) 

'With Whom' Dimension 
Number 

of 
Episodes 

Activity Type Dimension 

Family care Maintenance 
shopping 

Non-
maintenance 

shopping 
Meals 

Physically 
active 

recreation 

Physically 
inactive 

recreation 

Alone 

0 91.3 73.7 86.7 79.1 90.2 87.4 
1 7.3 18.6 10.9 18.6 7.9 9.7 
2 1.4 5.6 2.4 2.3 1.9 2.8 
≥ 3  2.2     

Only family 
(children/spouse/partner) 

0 78.8 90.5 92.5 91.6 96.4 95.7 
1 11.2 7.6 5.6 7.4 3.0 3.6 
2 6.5 1.9 1.9 1.0 0.6 0.7 
3 2.1      
≥ 4 1.4      

Only relatives (includes parents, 
brother, sister, and other related 
persons) 

0 91.5 95.8 96.5 93.5 97.5 91.1 
1 5.6 3.4 2.9 5.6 2.1 6.6 
≥ 2 3.0 0.8 0.6 0.9 0.4 2.3 

Only friends (includes friends, co-
workers, neighbors, etc.) 

0 96.7 96.5 98.5 72.9 94.9 81.6 
1 2.4 2.9 1.5 22.3 4.2 12.9 
2 0.9 0.5  4.8 0.9 4.1 
≥ 3      1.4 

Mixed company (i.e., with family 
and/or relatives and/or friends) 

0 94.2 98.3 99.3 95.6 97.9 92.8 
1 4.0 1.7 0.7 4.4 2.1 5.8 
≥ 2 1.8     1.4 
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Table 4 Model Estimation Results (t-statistics in parentheses) 
  Individual socio-demographics variables 

  Male  
(base: female) 

Age  
(base: age ≥ 60) Caucasian 

(base: non-
Caucasian) 

Education level  
(base: high school graduate) 

Employment status  
(base: not employed) Student  

(base: not 
student) 

Have a 
disability 
(base: no 
disability) 

  
Age <40  40≤ Age <60 Education < 

bachelors  
Education ≥ 

bachelors 
Full time 
employed  

Part time 
employed 

Fa
m

ily
 c

ar
e 

Alone -0.179 -0.122 -0.318 -0.174
(-3.05) (-2.12)   (-5.05) (-2.03) 

Only family -0.509 0.339 0.438   
(-10.31) (3.76) (4.76)   

Only relatives -0.195 -0.347 -0.220 -0.327   0.406
(-3.24) (-4.68) (-2.88) (-5.00)   (3.02)

Only friends         
        

Mixed company -0.398 0.314   -0.113 -0.182 
(-5.81) (5.00)   (-1.62) (-1.81) 

M
ai

nt
en

an
ce

 sh
op

pi
ng

 Alone -0.363 0.277 0.298
  (-8.55)   (5.47) (6.23)   

Only family -0.218 0.305 0.376 -0.278   
(-3.82) (3.62) (4.37) (-4.69)   

Only relatives -0.226     -0.323   0.398
(-3.00)     (-4.34)   (2.67)

Only friends       -0.126   
      (-1.72)   

Mixed company -0.210 0.303   -0.190   
(-2.07) (3.13)   (-1.95)   

N
on

-m
ai

nt
en

an
ce

 sh
op

pi
ng

 

Alone -0.101 -0.430 -0.188 0.241 0.162 -0.198 -0.134
(-1.97) (-6.45) (-2.76) (3.92) (2.65) (-3.19) (-1.62) 

Only family -0.233     0.322   
(-3.84)     (3.45)   

Only relatives -0.310       0.419
(-3.89)       (2.33)

Only friends         
        

Mixed company -0.289 0.394     
(-2.01) (2.91)     

M
ea

ls
 

Alone 0.290 1.075 0.600
(6.34)     (16.02) (6.57) 

Only family   0.161 0.131   
  (1.85) (1.52)   

Only relatives         
        

Only friends 0.088     0.107 0.867 0.447 0.489
(2.10)     (1.89) (16.53) (6.10) (7.36)

Mixed company   0.287   0.310   
  (4.19)   (2.95)   

Ph
ys

ic
al

ly
 a

ct
iv

e 
re

cr
ea

tio
n Alone 0.190 -0.261 -0.242 0.136 0.451

(3.54) (-3.57) (-3.38) (1.91) (7.21)   

Only family   0.168   0.254   0.589
  (2.16)   (2.12)   (3.21)

Only relatives       0.189   
      (2.20)   

Only friends   -0.281 -0.403 0.156   0.461
  (-3.00) (-4.56) (2.25)   (4.59)

Mixed company   0.205     0.331
  (2.10)     (2.62)

Ph
ys

ic
al

ly
 in

ac
tiv

e 
re

cr
ea

tio
n 

Alone 0.080 -0.188 0.386
(1.58)     (-2.98) (7.18)   

Only family   0.212   -0.465   
  (2.87)   (-6.34)   

Only relatives       -0.250   
      (-4.54)   

Only friends 0.123     0.225   0.377
(2.73)     (4.78)   (5.50)

Mixed company -0.205 0.284   -0.192   
(-3.35) (4.85)   (-3.25)   
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Table 4 (Continued) Model Estimation Results 
   Household socio-demographics variables Day-of-the-week and 

seasonal effect variables

   Household (HH) structure 
(base: "other" HH) 

Presence of children 
(base: age ≤  4) 

HH income 
( base: < 30k) 

Spouse/partner 
employed 

(base: 
unemployed) 

Friday 
(base: other 
days of the 

week) 

Summer 
(base: fall, 
spring, and 

winter)     Nuclear 
family HH 

Couple 
HH 

Single 
individual HH 4< Age ≤ 10 10< Age ≤ 15 30k ≤ Income 

< 75k Income ≥ 75k 

Fa
m

ily
 c

ar
e 

Alone         0.161 
       (2.82) 

Only family 0.381 -0.418   0.579 0.308 0.537 
(6.39) (-4.60)   (10.98) (5.87) (9.78) 

Only relatives         0.183
        (2.80)

Only friends       -0.477 
      (-5.20) 

Mixed company         
        

M
ai

nt
en

an
ce

 sh
op

pi
ng

 Alone 0.098
        (1.92)

Only family 0.487 0.364   0.161   0.210
(6.81) (4.92)   (2.27)   (3.26)

Only relatives -0.423       0.184
(-4.59)       (2.23)

Only friends         
        

Mixed company         
        

N
on

-m
ai

nt
en

an
ce

 sh
op

pi
ng

 

Alone         
        

Only family 0.614 0.393     0.202
(9.04) (4.96)     (2.93)

Only relatives -0.321       0.237
(-3.38)       (2.81)

Only friends       -0.216   
      (-2.02)   

Mixed company         
        

M
ea

ls
 

Alone 0.278 -0.143
    (5.31)   (-2.42)

Only family 0.576 0.532   0.345 0.294   0.124
(8.14) (7.15)   (4.36) (3.49)   (1.83)

Only relatives -0.451 -0.215     
(-5.82) (-2.77)     

Only friends -0.166   0.202 0.189   0.141
(-3.37)   (3.78) (3.60)   (2.80)

Mixed company         0.275
        (3.47)

Ph
ys

ic
al

ly
 a

ct
iv

e 
re

cr
ea

tio
n Alone     0.169   

    (2.67)   

Only family 0.357 0.187   0.206 0.348   0.222
(3.99) (1.80)   (1.99) (3.20)   (2.77)

Only relatives         
        

Only friends -0.191       0.157
(-2.29)       (2.09)

Mixed company       0.384 0.546   
      (2.70) (3.85)   

Ph
ys

ic
al

ly
 in

ac
tiv

e 
re

cr
ea

tio
n 

Alone 0.146 -0.273
    (2.56) (-4.70)   

Only family 0.405 0.210   0.327 0.411   0.161
(4.73) (2.12)   (3.19) (3.86)   (2.01)

Only relatives -0.462       0.150
(-6.63)       (2.26)

Only friends -0.225   0.247 0.342   0.088
(-4.09)   (4.37) (6.16)   (1.63)

Mixed company         0.275
        (4.05)

 



 

44 

Table 5 Correlation in Unobserved Propensities Across the Choice Dimension (t-statistics in parentheses) 
  

Family care Maintenance shopping Non-maintenance shopping Meals Physically active recreation Physically inactive recreation 

  
Alone Only 

family 
Only 

relatives 
Only 

friends 
Mixed 

company Alone Only 
family 

Only 
relatives

Only 
friends

Mixed 
company Alone Only 

family 
Only 

relatives
Only 

friends
Mixed 

company Alone Only 
family 

Only 
relatives

Only 
friends 

Mixed 
company Alone Only 

family 
Only 

relatives
Only 

friends 
Mixed 

company Alone Only 
family 

Only 
relatives

Only 
friends 

Mixed 
company 

Fa
m

ily
 c

ar
e 

Alone 1 0.087 0.087 0.275            
  (2.88) (2.88) (5.67)         

Only family   1             
                

Only relatives     1       0.363 0.460  0.460 0.228 0.363   
            (1.03) (15.95)  (15.95) (5.04) (1.03)   

Only friends       1     0.476 0.476   0.290 0.248 0.377   
            (7.49) (7.49)   (5.58) (7.53) (6.79)   

Mixed company         1   0.377   0.377 0.352 0.395 
            (9.91)   (9.91) (3.22) (16.28) 

M
ai

nt
en

an
ce

 sh
op

pi
ng

 

Alone       1 -0.042 0.278       
        (-1.33) (11.99)     

Only family         1 0.473 0.473  0.282 0.282 0.257 
         (22.84) (22.84)  (5.26) (5.26) (4.60) 

Only relatives          1 0.492  0.442 0.228 0.286 0.357   
         (8.58)  (9.46) (5.04) (3.10) (27.57)   

Only friends          1 0.429   0.347 0.248 0.347   
         (2.44)   (23.95) (7.53) (23.95)   

Mixed company          1   0.437 0.337 0.313 0.341 0.331 0.305 0.394 
           (2.62) (2.75) (7.83) (14.28) (3.84) (6.29) (9.61) 

N
on

-m
ai

nt
en

an
ce

 
sh

op
pi

ng
 

Alone         1       
            

Only family         1 0.430  0.303 0.285 0.232 
        (17.31)  (4.11) (6.56) (6.16) 

Only relatives         1  0.509 0.228 0.298 0.357 0.265 
         (11.47) (5.04) (3.00) (27.57) (7.41) 

Only friends         1   0.320 0.248 0.320 0.289 
          (13.32) (7.53) (13.32) (2.34) 

Mixed company         1 0.308 0.339 0.340 0.426 0.365 0.364 0.344 0.366 0.363 0.326 0.319 0.366 
        (4.94) (4.89) (5.25) (7.35) (2.80) (4.21) (10.48) (16.50) (2.91) (5.60) (6.59) (16.50) 

M
ea

ls
 

Alone         1 -0.192 -0.032 -0.526 -0.192 0.191   
        (-13.92) (-0.47) (-57.74) (-13.92) (2.66)   

Only family         1   -0.131 0.389 0.302 0.531 0.238 
            (-2.27) (8.48) (3.74) (22.70) (4.45) 

Only relatives           1 -0.131 0.228 0.605   
            (-3.14) (5.04) (31.21)   

Only friends             1 0.300 -0.179 -0.155 0.407   
            (5.89) (-6.82) (-3.07) (29.45)   

Mixed company             1 0.341 0.567 
            (14.28) (8.88) 

Ph
ys

ic
al

ly
 a

ct
iv

e 
   

  
re

cr
ea

tio
n 

Alone           1   
            

Only family           1 0.354 0.341 0.275 
          (2.58) (9.11) (5.32) 

Only relatives           1 0.302 0.322   
          (3.44) (13.77)   

Only friends           1 0.255   
          (8.12)   

Mixed company           1 0.331 0.340 
          (2.96) (8.04) 

Ph
ys

ic
al

ly
 in

ac
tiv

e 
   

 
re

cr
ea

tio
n 

Alone           1   
            

Only family           1 0.308 
          (8.77) 

Only relatives           1 -0.076   
          (-2.18)   

Only friends           1   
            

Mixed company           1 
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Table 6 Number of Individuals Choosing “Meals with Friends” and “Physically Inactive Recreation with Friends” Episodes 

 

Number of “meals with friends” episodes  
Number of “physically inactive recreation with friends” episodes 

0 1 2 3 

0 

2667.00a 269.00 67.00 19.00 

2650.14b 285.22 70.17 16.87 

2501.61c 375.46 117.54 38.47 

1 

597.00 207.00 92.00 28.00 

638.12 188.62 69.20 24.84 

729.13 127.76 42.60 14.92 

2 

117.00 58.00 12.00 10.00 

100.39 55.14 28.72 15.57 

152.35 29.27 10.16 3.72 

 

 

                                                            
a The actual number of individuals participating in each combination level of episode category. 
b The predicted number of individuals from the MORP model participating in each combination level of episode category.  
c The predicted number of individuals from the IORP model participating in each combination level of episode category. 
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Table 7 Impact of Changes on the Percentage of Individuals Choosing Each Combination Level of “Meals with Friends” and 

“Physically Inactive Recreation with Friends” Episodes 
 

Change Number of “meals with 
friends” episodes 

Number of “physically inactive recreation with friends” 
episodes  

0 1 2+ 

Increase in full-time employed adults by 20% 
(and corresponding decrease in the number of 
non-employed adults)  

0 
-3.99a -3.79 -4.14 

-4.38b -1.70 1.24 

1 
10.52 8.24 6.54 

10.92 7.33 6.62 

2 
13.67 15.56 34.07 

20.12 9.48 13.46 

Decrease in nuclear family households by 20% 
(and corresponding increase in the number of 
single individual households)  

0 
-1.57 2.07 4.08 

-1.80 2.66 9.03 

1 
0.82 4.12 5.84 

0.94 4.18 5.46 

2 
2.80 6.86 22.66 

5.47 5.83 10.87 

 

                                                            
a Percentage change in the number of individuals from the MORP model participating in each combination level of episode category.  
b Percentage change in the number of individuals from the IORP model participating in each combination level of episode category. 
 


