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ABSTRACT 

A major hurdle in freight demand modeling has always been the lack of adequate data on freight 

movements for different industry sectors for planning applications. Both Freight Analysis 

Framework (FAF) and Transearch (TS) databases contain annualized commodity flow data. 

However, the representation of commodity flow in the two databases are inherently different. 

FAF flows represent estimated transportation network flows while TS flows represent 

production-consumption commodity flows. Our study aims to develop a fused database from 

FAF and TS to realize transportation network flows at a fine spatial resolution (county level) 

while accommodating for the production and consumption behavioral trends (provided by TS). 

Towards this end, we formulate and estimate a joint econometric model framework embedded 

within a network flow approach and grounded in maximum likelihood technique to estimate 

county level commodity flows. The algorithm is implemented for the commodity flow 

information from 2012 FAF data and 2011 TS databases to generate transportation network 

flows for 67 counties in Florida. The proposed approach can potentially circumvent the need 

for the purchase of expensive TS database for future years. 

Keywords: Freight; FAF4; Transearch; Data Fusion; Fractional Split; Joint Model; Florida 
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INTRODUCTION 

Study Motivation 

On a daily basis, 122.5 million households, 7.5 million business establishments, and 90,000 

governmental units in the United States rely heavily on the efficient movement of freight. In 

2015, the country’s transportation system moved a daily average of about 49.3 million tons of 

freight valued at more than $52.5 billion. According to Bureau of Transportation Statistics 

(BTS), between 1998 and 2015, movement of freight (including imports and exports) grew by 

approximately 18 percent and is forecasted to increase by more than 40 percent by 2045 

(Freight Facts and Figures, 2017). The increased volume of freight movements, within and 

across the country, may be attributed to rapid population and employment growth, economic 

expansion, continued globalisation, altering landscape of consumer and business preferences, 

and overwhelming popularity of e-commerce (Giuliano et al., 2018; Dablanc and Rodrigue, 

2017). The growth in freight activities coupled with the continuing growth in passenger vehicle 

miles will undoubtedly put additional strain on the nation’s highway system in the form of 

additional congestion, traffic accidents, air pollution, noise, and expeditious deterioration of 

the highway surface.  

Traditionally, the travel demand forecasting field has only focused on estimating 

passenger travel demand. Hedges (1971) suggested that one of the pre-requisites of a successful 

and effective urban transportation model is its ability to accommodate the interactions between 

passenger and freight trips. In recent years, there is growing recognition among travel demand 

modellers that freight planning is an important exercise for overall demand forecasting 

procedure. In the passenger travel realm, trip based or activity based demand models are often 

developed using household travel surveys (small or large scale) conducted in urban regions. 

Compared to passenger travel demand, a major hurdle in freight demand modeling has always 

been the lack of adequate, accessible, and reliable data on commodity movements amongst 
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different industry sectors at a sufficiently fine geographic level for planning applications. The 

scarcity of a comprehensive freight flow dataset leaves the analyst with two choices: (1) 

develop a methodological tool based on available data, or (2) collect the necessary data for 

developing models either directly from shippers/carriers or indirectly through third party data 

providers (Giuliano et al., 2010). Extensive data collection approaches are costly and the 

validity of third party data is questionable. Moreover, despite the recent advances in freight 

travel demand modeling, the development of tools to estimate current and future freight flows 

has been limited. The current research effort is geared towards addressing the data availability 

challenge through an innovative econometric methodology for data fusion.  

 

Comparison between FAF and Transearch Data 

Several data sources are available for freight planning purposes in the United States. Of these, 

the most commonly adopted sources include Freight Analysis Framework (FAF), Transearch 

(TS), American Trucking Research Institute (ATRI) truck GPS data, and Department of 

Transportation (DOT) weigh-in-motion (WIM) data. FAF and TS databases contain annualized 

commodity flow data that can be used in long range freight forecasting. FAF database is a 

derivative product of the Commodity Flow Survey (CFS). CFS is a shipper based survey 

carried out every five years since 1997 as part of the Economic Census by the US Census 

Bureau, in partnership with Bureau of Transportation Statistics (BTS)). While FAF is derived 

from CFS data, several additional steps are undertaken to arrive at FAF flows. FAF 

supplements CFS by integrating variety of other sources for sectors not covered in the survey 

and estimating flows for commodities that are not included in CFS comprised of goods 

generated from imports (foreign establishments), publishing, farms, construction and 

demolition, logging services and fisheries. FAF data is freely available to the public and can 

be downloaded from the Federal Highway Administration (FHWA) website (FHWA and BTS, 
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2012). It provides freight flows (by weight, value and mode) for 43 commodity types classified 

by Standard Classification of Transported Goods (SCTG 2-digit) code. FAF geographic zones 

are determined based on the spatial resolution considered in the Commodity Flow Survey. The 

smallest spatial resolution at which CFS generates commodity flow estimates are the 132 

domestic zones across the United States and 8 foreign zones (Hwang et al., 2016). The baseline 

year for current FAF data (FAF4) is 2012 and includes forecasts on freight flows between 2015 

and 2045 at a 5-year interval. 

The Transearch database, a proprietary product developed by IHS Global Insight, 

provides detailed information on freight flows (by weight, value and mode) as well. The 

database is constructed from various commercial and public sources including: Annual Survey 

of Manufacturers (ASM), Surface Transportation Board (STB) Rail Waybill Sample, Army 

Corps of Engineers Waterborne Commerce data, Federal Aviation Administration (FAA), 

Enplanement Statistics, and Airport-to-airport cargo volumes. However, the algorithm used to 

generate the final data product is not publicly available. The freight flows in TS are reported 

by commodity type based on the Standard Transportation Commodity Code (STCC) in more 

than 500 categories. The data can be purchased at a fine spatial resolution (such as county 

level). However, the database is expensive to acquire and requires substantial investment from 

transportation agencies.  

Although both FAF and TS provide annual commodity flows in the United States, 

several differences exist between these sources. The most obvious difference arises from the 

variability in data collection mechanism employed; FAF relies on processing commodity flow 

data (such as CFS 2012) while TS employs various sources of data to generate county level 

flows using a proprietary algorithm. A second difference arises from what the commodity flows 

in each dataset represent. FAF flows represent estimated transportation network flows while 

TS flows represent production-consumption commodity flows. To illustrate the difference, 
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consider that X units of a commodity is shipped from location A (production zone) to location 

B (consumption zone) through an intermediate location C. The FAF flows would represent 

these flows as X units from A to C and X units form C to B. On the other hand, in TS, these 

flows are only represented as X units from A to B. Thus, FAF would report a total tonnage of 

2X units transferred while TS would report only a transfer of X units. A more general summary 

of data sampling procedures in FAF and TS is presented in Figure 1. From the figure, it is 

evident that FAF flows are potentially sampled at more intermediate points such as 

warehousing locations while TS flows are considered only at origin and destination.  

For understanding transportation network usage measured through network flows, FAF 

is a more appropriate database as the reporting is based on realized network flows. On the other 

hand, the flows represented in the TS database are annual production-consumption measures 

from the TS defined regions and do not represent the estimated transportation network path 

flows. To be sure, there is significant value in understanding production and consumption 

trends to develop a behavioral framework of freight commodity flows in the future. In terms 

of cost, FAF data is freely available while TS database is an expensive database and the 

algorithm employed is inaccessible to users. The commodity type definition across the two 

datasets is also different – 43 commodity types in FAF and over 500 commodity types in TS. 

Finally, the coarser spatial and commodity type resolution in FAF makes it challenging to 

generate reliable network flow estimates. While TS provides data at a fine spatial and 

commodity type resolution, the production consumption behavior of the database requires 

additional analysis to realize transportation network flows. Overall, the comparison highlights 

the inherent strengths and weaknesses of the two databases.  
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Current Study Context 

FAF is a comprehensive database providing useful information for evaluating the impact of 

freight movement on transportation network (Hwang et al., 2016). However, it has limited use 

for freight planning and decision-making processes at the state, district, or Metropolitan 

Planning Organizations (MPO) due to its high level of spatial aggregation (Roman-Rodriguez 

et al., 2014; Harris et al., 2010). Thus, several research efforts have attempted to address this 

spatial resolution challenge with FAF data. A summary of earlier studies that attempted to 

merge or disaggregate different freight data sources is provided in Table 1. The table provides 

information on the study area, datasets employed, objective(s) of the research effort, modeling 

methodology employed, and exogenous variables considered.  

Several observations can be made from the table. First, the primary objective of 

majority of the studies is on developing a procedure for disaggregating FAF data from the FAF 

zone level to a county level or traffic analysis zone (TAZ) level. Second, the states in the US 

which have developed disaggregation procedures include Texas, California, New Jersey, 

Wisconsin, Georgia, and Florida. Third, the various methods considered to disaggregate FAF 

flows include: (i) proportional weighting method, and (ii) statistical methods. In the 

proportional weighting method, a “disaggregation factor” is estimated using various socio-

economic variables (such as employment and population), land use (occupied by ports), truck 

flows, and truck VMT variables by computing the ratio of the variables of interest at the 

disaggregate spatial resolution and aggregate spatial resolution. Using these factors, the freight 

flows are allocated to the disaggregate spatial resolution. The disaggregation factors are 

considered to vary based on the type of origin and destination spatial configuration (such as 

internal – internal zonal pair, external – internal zonal pair). The statistical methods considered 

in freight modeling include linear or log-linear regression, structural equation modeling, 

economic input output models, and fractional split methods that employ socio-economic and 
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demographic variables such as employment and population as exogenous variables. The 

models developed are employed to generate freight flows at the desired disaggregate spatial 

resolution. These models are typically validated by aggregating freight flows at the finer 

resolution and comparing it to the observed flows at the aggregate resolution. Fourth, in the 

disaggregation studies, the variables of interest include tonnage, value and/or ton-miles. 

Finally, the variables considered to be of significance in the data merging process are: 

employment, population, travel time and cost, business establishments, and transportation 

system characteristics. 

Based on the literature review, it is evident that multiple research efforts have attempted 

disaggregation of FAF commodity flow to a lower spatial resolution such as county or TAZ. 

While the disaggregation is of immense value, the approach employed is purely a factoring 

exercise without any attempt to address production consumption relationships. FAF data 

inherently does not provide production consumption relationship and hence, using FAF alone 

to arrive at production consumption flows is not possible. To be sure, several earlier research 

studies employed TS flows for validating FAF disaggregation outputs (Opie et al., 2009; Ruan 

& Lin, 2010; Viswanathan et al., 2008). In our study, we enhance earlier research efforts by 

developing a fusion framework that disaggregates FAF flows while accounting for production 

consumption relationships observed in TS.  

In summary, the primary motivation for our study is the development of a fused 

database to realize transportation network flows at a fine spatial resolution (county level) while 

accommodating for production and consumption behavioral trends. Thus, we undertake 

disaggregation of FAF flows while augmenting with production consumption based TS flows. 

Towards this end, we formulate and estimate a joint econometric model framework embedded 

within a network flow approach grounded in maximum likelihood technique to estimate county 

level commodity flows. The framework has two separate modules to ensure matching estimated 
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county level flows with commodity flows in FAF and TS at the appropriate spatial resolution. 

A third module generates a behavioral connection between FAF and TS. In our algorithm, we 

connect the flows between TS and FAF by generating potential paths between the origin and 

destination of interest for TS flows. Note that the inherent differences in the data cannot be 

completely reconciled. Hence, the framework focuses on building a fused database that 

maximizes the match with the commodity flows in the two databases. The consideration of 

behavioral trends in the model framework can assist us in parameterizing TS flow relationships 

thus allowing us to circumvent TS for the future (if needed). The proposed algorithm is 

implemented for the commodity flow information from 2012 FAF data for five FAF zones and 

2011 TS databases for 67 counties in Florida. 

The remainder of the paper is organized as follows. Mathematical formulation details 

are presented in the econometric model framework section. The empirical data and data 

preparation steps are discussed in empirical data section. The fifth section presents the results 

of the proposed data fusion algorithm along with validation of outputs. The final section 

concludes the paper with a discussion of the limitations of the current study and directions for 

future research. 

 

ECONOMETRIC FRAMEWORK 

In this section, the proposed algorithm is described. Prior to discussing the algorithm details, 

the notations and terminology used in the algorithm are presented. 

 

Network Representation 

The study defines nodes, paths, and links in the usual network theoretic approach. Nodes 

represent county centroids. These represent either origin, destination or intermediate points. A 

direct connection between any two nodes is defined as a link. Paths represent a series of links 
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that connect an origin and destination. To elaborate on the terminology, a simple representation 

is provided in Figure 2. In Figure 2(a), from origin county ‘A’, freight flow can be transferred 

to destination county ‘B’ via a direct path (i.e. no intermediate nodes) which is indicated by a 

solid line. The flow could also move along an indirect path. In our study, given the model is a 

statewide model, we assume that one intermediate node is adequate for considering all possible 

paths between OD pairs to ensure computational tractability of the algorithm. The path with 

one intermediate node is referred to as one-hop path. In Figure 2(a), a one-hop path from county 

‘A’ to county ‘B’ with an intermediate stop at county ‘C’ is shown with the dashed line. In 

Figure 2(b), origin node ‘1’ and destination node ‘4’ have the following possible paths on the 

network. (i) ‘1’ - ‘4’ direct path (link ‘1’ – say, path 1), (ii) ‘1’ - ‘3’ - ‘4’ is a one-hop path (link 

‘2’ – link ‘3’ – say path 2, or link ‘2’ – link ‘6’ – say path 3). Therefore, three different paths 

are considered here from origin ‘1’ to destination ‘4’ that uses four different links (i.e. links 

‘1’, ‘2’, ‘3’, and ‘6’). 

To represent the relationship between paths and links in our system, a link path matrix 

is generated. For the network in Figure 2(a) and 2(b), the link-path matrix (A) is shown in 

Figure 2(c). The rows represent the links and the columns represent the paths between the given 

OD pairs (see Figure 2 for details). Each element of the matrix is a binary indicator that 

represents if the link ‘𝑖’ is included in the corresponding path. The variable of interest in the 

algorithm is the transportation network county to county flows generated by fusing TS data at 

the county level and FAF data at the FAF region level. Let 𝑉𝑖𝑗 represent the link flows between 

county pair 𝑖 and 𝑗. The entire set of link flows are considered in a matrix form as 𝑉. Given the 

link-path matrix 𝐴, and path flow vector ‘ℎ’, the link flow matrix, ‘𝑉’ is given by the following 

equation. 
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𝑉 = 𝐴 ∗ ℎ (1) 

Joint Model System 

Let, 𝑦𝑖𝑗
  represent the natural logarithm of the reported TS flow, and �̂�𝑖𝑗 the estimated transearch 

flow. With these notations, the log-linear model takes the following form: 

�̂�𝑖𝑗 =   𝛽𝑋𝑖𝑗 (2) 

where, 𝑋𝑖𝑗 are the independent variables for the specific county pair 𝑖 − 𝑗 and 𝛽 represents the 

corresponding vector of parameters. Assuming the usual linear regression formulation, the 

likelihood for the estimation takes the following form: 

𝐿𝐿𝑇𝑆𝑖,𝑗
=  

∅(
�̂�𝑖𝑗 − 𝑦𝑖𝑗 

𝜎𝑇𝑆
)

𝜎𝑇𝑆
 

(3) 

where, ∅ represent the probability density function of the standard normal distribution, and 𝜎𝑇𝑆 

is the standard deviation of 𝜀𝑖𝑗. 

Given that TS flow is an input-output flow, the objective is to decompose these flows 

into estimated network level link flows by considering the various paths between each OD pair. 

The path flows will allow us to determine the link flows. These flows are generated by 

employing a fractional split approach. The actual path flow is unobserved; hence, a latent 

variable is considered and the resulting link flows are matched with the observed flows. The 

probability for each path is determined using a random utility approach. The proposed approach 

recognizes that the proportion of the commodity flow assigned to a path is influenced by the 

utility of the path relative to other alternative paths. The mathematical formulation employed 

is as follows: 
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∪𝑖𝑗
𝑘  =  ∑ 𝛼 𝑋𝑖𝑗

𝑘

𝐾

𝑖,𝑗 ∈𝑂,𝐷; 𝑘=1

 (4) 

𝑃(𝑘𝑖𝑗|𝑥𝑖𝑗
𝑘 ) =  

exp (∪𝑖𝑗
𝑘 )

∑  exp (∪𝑖𝑗
𝑙𝐾

𝑙=1 )
 (5) 

∪𝑖𝑗
𝑘  represents the utility for the 𝑘𝑡ℎ path between 𝑖 and 𝑗; 𝛼 represents the vector of parameters 

for path utility and 𝑃(𝑘𝑖𝑗|𝑥𝑖𝑗
𝑘 ) 𝑟espresents the probability for the 𝑘𝑡ℎ path between 𝑖 and 𝑗. 

Based on the path flow probability the flow assigned to each path is determined as follows: 

ℎ𝑖𝑗
𝑘 = �̂�𝑖𝑗 ∗ 𝑃(𝑘𝑖𝑗|𝑥𝑖𝑗

𝑘 ) (6) 

The path flow estimation leads to the estimation of the link flows 𝑉, using Equation (1). Given 

that these flows are available at the county level, we need to aggregate them to a coarser level 

to compare the flows to observed FAF flows. The aggregation is achieved over Origin (O) and 

Destination (D) FAF zone as:  

�̂�𝑂𝐷 = ∑ 𝑉𝑖𝑗
 
𝑖 ∈𝑂,𝑗 ∈𝐷       ∀ 𝑂, 𝐷 ∈ Θ  (7) 

where 𝑖, 𝑗 represent counties in O and D respectively and 𝑉𝑖𝑗 represents the corresponding link 

flow between county 𝑖 and county 𝑗; where Θ is set of all FAF zones. Let 𝐹𝑂𝐷
  be the observed 

FAF flows. The log-likelihood for comparing the predicted FAF flows with observed FAF 

flows in the linear regression form is given by the following mathematical expression, where, 

𝜎𝐹𝐴𝐹 is the standard deviation of the estimate of FAF flows. 
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𝐿𝐿𝐹𝐴𝐹 =  
∅(

�̂�𝑂𝐷 − 𝐹𝑂𝐷
  

𝜎𝐹𝐴𝐹
)

𝜎𝐹𝐴𝐹
 

(8) 

Given the aggregation proposed, the contribution of the FAF log-likelihood needs to be 

carefully computed. While origin and destination counties have their corresponding FAF zones, 

the intermediate zones also have a FAF zone. Therefore, the allocation is obtained for an OD 

pair by apportioning the error to all FAF zones involved over the entire path set for that OD 

pair. For this purpose: 

𝐿𝐿𝐹𝐴𝐹
𝑘𝑖𝑗 =

∑ 𝐿𝐿𝐹𝐴𝐹
𝑟𝑛

𝑟=1

𝑛
 (9) 

where, 𝑛 is the number of link in the path 𝑘 = {
1,          𝑓𝑜𝑟 𝑑𝑖𝑟𝑒𝑐𝑡 𝑝𝑎𝑡ℎ
2, 𝑓𝑜𝑟 𝑜𝑛𝑒 − ℎ𝑜𝑝 𝑝𝑎𝑡ℎ𝑠

 

Further, FAF zones can represent a large number of counties. To normalize for the number of 

counties, we employ the following equation: 

𝐿𝐿𝐹𝐴𝐹
𝑂𝐷,𝑁𝑜𝑟𝑚

𝑖,𝑗
=

∑ 𝐿𝐿𝐹𝐴𝐹
𝑘𝑖𝑗𝑁

𝑠=1

𝑁𝐶
 (10) 

where, 𝑁𝑐 is the number of county pairs in the OD FAF region pairs. Finally, the joint log-

likelihood is provided by the sum of log-likelihood for FAF and TS flow.  

𝐿𝐿𝑡𝑜𝑡𝑎𝑙 𝑖,𝑗
= ∑ (ln (𝐿𝐿𝑇𝑆𝑖,𝑗

) + ln (𝐿𝐿𝐹𝐴𝐹
𝑂𝐷,𝑁𝑜𝑟𝑚

𝑖,𝑗
))

 

𝑖,   𝑗 
 (11) 

A flowchart describing the econometric modeling approach is provided in Figure 3. The 

proposed algorithm is programmed in Gauss matrix programming language (Aptech, 2015).  
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DATA PREPARATION 

In this section, we briefly discuss the data preparation steps. Florida has five FAF regions: 

Jacksonville, Miami, Orlando, Tampa, and remainder of Florida (see Figure 4). On the other 

hand, the state is represented as 68 zones in the TS database. In our study, we have access to 

the 2011 base year data for Florida that includes forecasts for 2015 through 2040 at a five-year 

interval. 

 

Commodity Classification 

As mentioned before, there are 43 commodity types in FAF while TS commodities are 

classified into 562 commodity types. To generate a comparable commodity type classification, 

we consolidated the different commodity types in the two databases into 13 commodity types 

(see, Viswanathan et al., 2008 for a similar classification of commodities). The consolidated 

commodity types are: (1) agricultural products, (2) minerals, (3) coal, (4) food, (5) nondurable 

manufacturing, (6) lumber, (7) chemicals, (8) paper, (9) petroleum, (10) other durable 

manufacturing, (11) clay and stone, (11) waste, (12) miscellaneous freight (including 

warehousing) and (13) unknown. Table 2 provides a comparison of freight flows by the 

consolidated commodity types within Florida. The highest variation in flow is observed for 

non-durable manufacturing and chemicals commodity type (6). The lowest ratio is observed 

for miscellaneous freight and warehousing commodity type (0.28). Note that TS reports 

secondary flows including drayage whereas FAF does not contain any information on drayage. 

Thus, it is not surprising that we have a lower ratio. 

 

Independent Variables Generation 

We compiled several exogenous variables for the fusion model. These are: (1) origin-

destination indicator variables including origin (or destination) is in Orlando, Tampa, 
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Jacksonville, Miami, Remainder of Florida region, (2) socio-demographic and socio-economic 

indicators including population and employment, (3) transportation infrastructure indicators 

including road and railway line length, number of ports, airports, and intermodal facilities, and 

(4) several interactions of these variables. Population and employment data were collected at 

the county level from the U.S. Census Bureau (U.S.C. Bureau, 2017a, 2017b). Transportation 

related variables were generated using the ArcGIS platform intersecting the facility shapefiles 

collected from Florida Geographic Data Library (FGDL, 2017) with that of the county 

shapefile. Post-processing of the intersected files provided us the length of roadways and 

railways, number of seaports, airports, and intermodal facilities at the county level. Please note 

that these variables were compiled for the base year of 2011.  

Finally, for the fractional split model, we needed to generate all path choice set for 

every OD pair. For this purpose, we considered 1 direct path and 66 one-hop paths (that pass 

through another county). The paths were generated for all OD pairs with non-zero flow. The 

overall path matrix was quite large with number of elements ranging from 6700 to 270000 

across various commodities. For the paths created, path distances between origin and 

destination counties were generated as a sum of the link distances. A link distance for county 

pairs was determined using the shortest path procedure of ArcGIS’s network OD cost tool. The 

highway route for the local and highways provided by the Florida Department of 

Transportation (FDOT) was used for this purpose. 

 

IMPLEMENTATION OF DATA FUSION ALGORITHM 

The proposed algorithm is implemented separately for each commodity type. For the sake of 

brevity, we only present the model results for two commodities: Agricultural products and 

Food. The results for the other commodities are available from the authors upon request. We 

discuss the results for the two commodities separately. 
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Commodity Type: Agricultural Products 

In Table 3, columns 3 and 4 provide parameter estimates and t-statistics for Agricultural 

products. The TS module corresponds to the overall county to county flow tonnage while the 

FAF module provides the fractional split model estimates. 

 

TS Module 

In terms of Origin indicator variables, for agricultural products, Jacksonville origin region is 

likely to have lower flow relative to other locations. On the other hand, Miami origin is 

associated with larger flows. For Destination indicator variables, Orlando is associated with 

larger flows while Miami is associated with smaller flows. The overall regional trends closely 

align with the trends of agricultural commodity generation reported by Hodges and Rahmani, 

2008. The reader would note that these indicator variables serve as region specific constants 

and are influenced by other exogenous variables. To elaborate, these variables represent the 

inherent influence of regions specific characteristics not considered in the exogenous variables.  

For agricultural products, several destination specific attributes have significant impact 

on flows. The number of warehouses in the destination county is associated positively with 

flows to the destination county. The number of intermodal facilities in the destination county 

is negatively associated with flows. The reader would note that while the impact of intermodal 

facilities appears to be negative on first glance, it needs to be recognized that increased inter-

modal facilities in a county is also likely to have a higher number of warehouses. Thus, the 

model result for these parameters need to be considered together. On the other hand, no 

attributes for the origin location provided significant parameters. Several interaction variables 

from different variable categories were also considered. The interaction term between origin 

county employment and destination county employment was found to be positively associated 
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with county to county flows. Specifically, a higher rate of employment at the origin county 

relative to employment at the destination county indicates higher movement of agricultural 

product commodity. The standard error of the estimate represents the standard deviation of the 

unobserved component in the regression model.  

  

FAF Module 

The fractional split model in the FAF module is based on a large number of alternatives. Hence, 

the model only allows for the estimation of generic coefficients i.e. no alternative specific 

effects can be estimated. The path distance variable is considered in the model. Any other origin 

or destination variable would require us to consider interaction with path distance. The models 

with such interaction variables did not provide intuitive results. Hence, we resorted to 

considering only the path distance variable in our FAF module. The path distance variable was 

negative as expected, indicating that longer distance reduces the probability of the paths being 

chosen. The result clearly indicates a larger path flow allocation to direct paths and a smaller 

flow allocation to one-hop paths. 

 

Commodity Type: Food  

In Table 3, columns 5 and 6 provide parameter estimates and t-statistics for Food.  

 

TS Module 

For Food commodity, indicator variables for Tampa and Orlando origins are positively 

associated with flows. The magnitude of coefficient for the Tampa region is larger than the 

corresponding magnitude of coefficient for Orlando region. In terms of destination county 

attributes, number of ports and road network length in the destination counties are associated 

positively with food flows. The flow is also influenced by origin county road network length. 
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The interaction between origin county employment and destination county population was 

negatively associated with Food flows. The result might be indicating that an increase in origin 

county employment reduces the need for transporting Food products further from the origin. 

The parameter impacts while intuitive in general also necessitate the need for further analysis 

using data from different spatial and temporal regions.  

 

FAF Module 

Similar to the model for agricultural products, we found negative relationship between the path 

distance and the path flow proportions in the model for food as well. The magnitude of the 

parameter is substantially larger for Food relative to Agricultural products. To be sure, these 

two parameters are not directly comparable.  

 

Model Validation 

To evaluate the performance of our proposed algorithm, several validation exercises were 

conducted. To be sure, the county to county transportation flows generated from the exercise 

do not have an observed counterpart to validate. Hence, we resort to validation by examining 

the outputs. After fusing FAF and TS databases, we compare the transportation link flows 

obtained with the production consumption flows. For example, the ratio of FAF and TS for 

agricultural products is 2 (see Table 2). The ratio of the fused flows with TS flows was found 

to be 1.45 (see Table 4). The reader would note that while Transearch flows are non-zero for 

only a subset of county flows, the  transportation network flows are theoretically non-zero for 

all pairs. Hence, the number of observations in Table 4 for fused flows are (67*67=4489).  A 

similar exercise for Food yielded a value of 1.62 (relative to the original ratio of 2.40). In both 

cases, the results are quite reasonable (see Table 4). To further characterize these differences, 

we compare flows originating (or destined) from (to) a county for Transearch flows and fused 
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flows. The comparison is undertaken by computing the percentage of total flows originating 

(or destined) from (to) each county. Then the percentage point difference for each county for 

Transearch and fused flows is computed. The results from the comparison are presented in 

Table 5. We present the mean and standard deviation of the differences over all the counties in 

our analysis by origin and destination county. The fused flows for agricultural products 

commodity show larger variation from Transearch flows – 2.30 points for origin counties and 

2.29 points for destination counties. On the other hand for food commodity, the difference 

between fused flows and Transearch flows is within a narrower range – 1.37 points for origin 

counties and 1.44 points for destination counties. The standard deviation results also confirm 

the trend – larger variability for agricultural products commodity. While these results are quite 

informative, it is important to recognize that the differences do not necessarily reflect error in 

the fused flows.  

As a second step, we plot the relationship between county to county flows for TS and 

fused flows. The plots are created by considering proportion of statewide flows originating (or 

destined) to each county. Figures 5 and 6 provides the plots for Agricultural Products and Food, 

respectively. In these figures, the plots for TS are on the left and the plots for fused flows are 

on the right. We can see from the figures that for Agricultural Products, both origin and 

destination based plots, are quite similar. The counties in Central and South Florida regions 

account for larger share of the flows in TS as well as fused flows. For Food, the fused flows 

indicate a larger share of flows in Central and South Florida relative to TS flows. However, the 

overall trends are still very similar. 

As a final comparison exercise, we compare TS and fused flows originating from 

Miami-Dade County for the two commodities. For this purpose, we plot the tonnage of flows 

transferred between counties (see Figure 7). For TS, the reported flows originating form 

Miami-Dade to all counties are plotted as direct flows on the network for illustration. For fused 
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flows, the path flows estimated from our algorithm for Miami-Dade to all counties are plotted. 

The thicker the line on the road network, the larger is the tonnage transferred. From the figure, 

it is evident that we observe substantially thicker lines for fused flows. This is expected because 

fused flows should represent network flows whereas TS flows only represent origin destination 

flows. Hence, they always are likely to pass directly, whereas fused flows would be a result for 

multiple origin destination flows. Overall, the three validation steps provide evidence that the 

fusion algorithm provides outputs as expected from a joint system disaggregating FAF with 

production consumption trends form TS. 

 

CONCLUSIONS 

A major hurdle in freight demand modeling has always been lack of adequate data on 

commodity movements amongst different industry sectors for planning applications. Several 

data sources are available for freight planning purpose in the United States. Of these, the two 

most commonly adopted sources are Freight Analysis Framework (FAF) and Transearch (TS). 

FAF (freely available) and TS (proprietary) databases contain annualized commodity flow data 

that can be used in long range freight forecasting. Although both FAF and Transearch provide 

annual commodity flows in the United States, several differences exist between these sources, 

including the variability in data collection mechanism employed, and variability in the spatial 

and commodity type resolution. The coarser spatial resolution in FAF makes it challenging to 

generate reliable network flow estimates. While TS provides data at a fine spatial resolution, 

the supply demand nature of the database does not represent the actual transportation network 

path flows and requires additional analysis to realize transportation network flows. The primary 

motivation for our study is the development of a fused database to realize transportation 

network flows at a fine spatial resolution (county level) while accommodating for production 

and consumption behavioral trends. Clearly, the level of detail provided by FAF data would be 
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much enhanced through the disaggregation of this data from a zonal level to a county level. 

The disaggregated commodity flow data will allow for the estimation of truck trips, which will 

be useful for both regional and local level freight demand forecasting. 

To achieve the goal of the study, we undertake disaggregation of FAF flows while 

augmenting with production consumption based TS flows. Towards this end, we formulate and 

estimate a joint econometric model framework embedded within a network flow approach 

grounded in maximum likelihood technique to estimate county level commodity flows. The 

algorithm is implemented for the commodity flow information from 2012 FAF data for five 

FAF zones and 2011 TS databases for 67 counties in Florida. Overall, our model system 

predicted well as manifested from the ratio of fused flows to observed TS flows for the two 

commodities for which the results are presented (Agricultural Products and Food). Moreover, 

the path distance coefficients are intuitive. As expected, shorter paths are allocated higher 

fraction of the flows compared to the longer paths. The fusion algorithm can be applied to 

obtain fused flows for future years without having to purchase expensive TS dataset.  

To be sure, the study is not without limitations. In our algorithm, only one-hop paths 

are considered for computational tractability. It would be interesting to examine how the fused 

outputs are influenced by a larger choice set of paths.  It might also be interesting to examine 

the spatial and temporal transferability of the proposed algorithm using either past or future 

data.  
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FIGURE 1 FAF and Transearch Data Collection Methods and Dataset Generation 
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FIGURE 2 Paths, Links, and Nodes of a Simple Transportation Network 
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FIGURE 3 Econometric Modeling Approach 
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FIGURE 4 FAF and Transearch TAZ 
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FIGURE 5 Transearch and Fused Flows within Florida Counties for Agricultural Product 
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FIGURE 6 Transearch and Fused Flows within Florida Counties for Food 
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FIGURE 7 Transearch and Fused Flows from Miami-Dade County for Agricultural Products and Food 
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TABLE 1 Review of Earlier Studies 

Study 
Geographic 

Region 
Dataset(s) Used Research Objective Methodology Variables Used 

Giuliano et al., 

2010 
Los Angeles  

CFS, IMPLAN, 

WISERTrade, WCUS, 

SCAG 

Estimate link specific truck 

flows  

Data integration; I-O model; 

gravity model; user optimal 

network assignment 

Small area employment data 

Bujanda et al., 

2014 
Texas 

FAF3, Transborder 

freight flow, Maritime 

flow 

Estimate state level flows from 

FAF3 (import and export flows) 

ArcGIS spatial analysis; 

network assignment 
- 

Aly and Regan, 

2014 
California FAF2 

Disaggregate FAF commodity 

flow at the county level 

Proportional weighting for 

both origin and destination 
Truck VMT 

Opie et al., 2009 New Jersey 
FAF2, Transearch (for 

validation) 

Disaggregate FAF commodity 

flow at the county level  
Proportional weighting  

Total land area occupied by port 

(import and export flows); for 

domestic flows: commodity-

specific employment, truck VMT, 

total employment, population 

Ranaiefar et al., 

2013 
California FAF3 

Develop structural commodity 

generation model at the FAZ 

level 

Structural equation model 

Employment, number of 

establishments, population, 

agriculture related variables (farm 

acreages), manufacturing sector 

GDP, energy-related data 

(refinery capacity) 

Mitra and 

Tolliver, 2009 
North Dakota 

FAF2, truck count data 

(validation) 

Disaggregate truck flows 

(productions and attractions) 

Proportional weighting 

(production); I-O model 

(attraction)  gravity model 

(internal flow) 

Two-digit NAICS  

employment count 

Vishwanathan 

et al., 2008 
Florida 

FAF2, Transearch 

(output cross-check) 

Disaggregate FAF commodity 

flow at the county level 

Proportional weighting; linear 

regression  

Total employment, population, 

two/three-digit NAICS 

employment count 
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Study 
Geographic 

Region 
Dataset(s) Used Research Objective Methodology Variables Used 

Ruan and Lin, 

2010 
Wisconsin 

FAF2, Transearch 

(validation) 

Comparison of different data 

synthesis method for 

disaggregating FAF flows  

Proportional weighting; direct 

regression; optimal 

disaggregation model 

Employment by industry type, 

number of intermodal facilities 

Ross et al., 2016 Georgia FAF3, CBP, Census data 
Disaggregate FAF flows to 

county and TAZ level 

Spatial regression; 

proportional weighting 

Three-digit NAICS employment 

count, population, freight network 

density 

Oliveira-Neto et 

al., 2012 
USA FAF3, CFS (validation) 

Disaggregate FAF flows at the 

county level; estimate ton-mile 

by mode 

Log-linear regression; gravity 

model 

 

Total employment payroll 

Sorratini and 

Smith, 2000 
Wisconsin CFS, Transearch 

Disaggregate truck flows at the 

TAZ level 
I-O model Employment 

Lim et al., 2014 California 
FAF3, FAF2, Transearch 

(validation) 

Disaggregate FAF flows at the 

county level 
Linear regression 

Population, employment, farm 

acreage and crop sales 

Note: Commodity Flow Survey (CFS), Freight Analysis Framework (FAF), Freight Analysis Zone (FAZ), Traffic Analysis Zone (TAZ), Waterborne Commerce of the US (WCUS), Southern 

California Association of Government (SCAG), Input-Output (I-O), North American Industry Classification System (NAICS), County Business Pattern (CBP), Input-Output (I-O)
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TABLE 2 Freight Flows by Weight for Within Florida Flows reported in Transearch and 

FAF4 

FCC 
Transearch Flow 

(million tons) 

FAF4 Flow 

(million tons) 

Ratio 

(FAF4 flow/ 

Transearch flow) 

Agricultural Products 17.130 34.257 2.00 

Minerals 51.593 191.119 3.70 

Food 12.210 29.284 2.40 

Nondurable Manufacturing 0.855 5.087 5.95 

Lumber 5.232 19.636 3.75 

Chemicals 1.715 10.281 5.99 

Paper 3.039 2.797 0.92 

Petroleum 13.611 59.766 4.39 

Other Durable Manufacturing 5.122 12.908 2.52 

Clay and Stone 24.146 39.951 1.65 

Waste 7.466 29.179 3.91 

Miscellaneous Freight and Warehousing 51.132 14.544 0.28 

Total 193.253 448.811 2.32 

** There is no flow for the commodity Coal in the within Florida flow  
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TABLE 3 Model Estimates for Agricultural Product and Food 

Model Explanatory Variables 
Agricultural Product Food 

Estimates t-stats Estimates t-stats 

Transearch 

Module 

Intercept 3.7763 99.4770 1.4275 9.7080 

Dummy for Origin/Destination   

Jacksonville Origin -0.7353 -5.4510 -1 - 

Miami Origin 1.9115 10.5330 - - 

Tampa Origin - - 0.8029 4.3680 

Orlando Origin - - 0.4654 3.0710 

Orlando Destination 0.7980 8.4710 - - 

Miami Destination -1.8459 -13.2560 - - 

Destination County Attribute   

Number of Warehouses 3.8474 20.3630 - - 

Number of Ports - - 0.1649 4.0970 

Number of intermodal facilities -0.1948 -5.4730 - - 

Network Length (in KM) - - 1.2484 10.5550 

Origin County Attribute   

Network Length (in KM) - - 1.6818 18.8570 

Interaction Variables   

Origin County Employment (in 103) * 

Destination County Employment (in 

103) 

0.7266 9.6940 - - 

Origin County Employment (in 103) 

/Destination County Population (in 106) 
- - -0.8736 -9.7270 

Standard Error of the Estimate for 

Transearch 
1.8413 87.7510 2.4667 62.8660 

FAF 

Module 

Path Distance (in 10 Miles) -0.0248 -1.199 -1.0858 -1.0200 

Standard Error of the Estimate for 

FAF 
2.1615 22.591 0.8101 8.3480 

Number of observations 4070 2447 

Log-Likelihood of the model -11496.773 -6850.817 

  

                                                 
1 Variable not found significant 
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TABLE 4 County Level Link Flow Prediction for Agricultural Product and Food 

FCC 
Description of 

Flow 

Mean 

(Thousand 

Tons) 

Std. Dev. 

(Thousand 

Tons) 

Total 

(Million 

Tons) 

No of 

Observations 

FAF4 

vs TS 

Ratio 

Fused 

Link flows 

vs TS 

Ratio 

Agricultural 

Products 

TS County to 

County Flow 
4.209 179.222 17.130 4070 

2.000 1.445 

Estimated County 

Level Link Flow 
5.514 22.105 24.752 4489 

Food 

TS County to 

County Flow 
4.990 35.063 12.210 2447 

2.400 1.624 

Estimated County 

Level Link Flow 
4.417 37.167 19.830 4489 
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TABLE 5 County Level Percentage Point Differences between Transearch and Fused flows  

 

FCC 

By Origin County By Destination County 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Agricultural Products 2.39 7.62 2.29 2.74 

Food 1.37 9.42 1.44 3.31 

 


