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ABSTRACT 
 

While there is growing application of generalized ordered outcome model variants (widely known 

as Generalized Ordered Logit (GOL) model and Partial Proportional Odds Logit (PPO) model) in 

crash injury severity analysis, there are several aspects of these approaches that are not well 

documented in extant safety literature. The current research note presents the relationship between 

these two variants of generalized ordered outcome models and elaborates on model interpretation 

issues. While these variants arise from different mathematical approaches employed to enhance 

the traditional ordered outcome model, we establish that these are mathematically identical. We 

also discuss how one can facilitate estimation and interpretation while building on the ordered 

outcome model estimates – a useful process for practitioners considering upgrading their existing 

traditional ordered logit/probit injury severity models. Finally, the note presents the differences 

within GOL and PPO model frameworks, for accommodating the effect of unobserved 

heterogeneity, referred to as Mixed Generalized Ordered Logit (MGOL) and Mixed Partial 

Proportional Odds Logit (MPPO) models while also discussing the computational difficulties that 

may arise in estimating these models. 

 

Keywords: Ordered discrete outcome models, transportation safety, ordinal discrete variables, 

generalized ordered logit, partial proportional odds model, unobserved heterogeneity 

 

  



1 INTRODUCTION 

Road traffic crash injury severity outcomes are often reported as an ordinal scale variable (such as 

no injury, minor injury, major injury, and fatal injury). Naturally, road safety researchers have 

widely employed different econometric approaches within ordered outcome frameworks to 

evaluate the influence of exogenous factors on ordinal-level crash injury severity outcomes1 (for 

example O’Donnell and Connor, 1996; Renski et al., 1999; Yasmin and Eluru, 2013). The ordered 

outcome models explicitly recognize the inherent ordering within the outcome variable. These 

models represent the outcome process under consideration using a single latent propensity. Thus, 

the outcome probabilities are determined by partitioning the uni-dimensional propensity into as 

many categories as the dependent variable alternatives through a set of thresholds. 

Traditional ordered outcome formulations (such as ordered logit/probit) are the primary 

tools to model the ordinal-level outcomes. But the traditional ordered outcome models impose a 

restrictive and monotonic impact  most widely referred to as proportional odds or parallel line 

regression assumption (McCullagh, 1980)  of the exogenous variables on the injury severity 

alternatives. Imposing such restriction can lead to inconsistent parameter estimation. The recent 

revival in the ordered regime has addressed this limitation by either allowing the analyst to estimate 

individual level thresholds as function of exogenous variables or allowing the impact of exogenous 

variables to vary across alternatives. In fact several generalized ordered frameworks (partial 

proportional odds model, proportional odds model with partial proportionality constraints and 

generalized ordered model) relaxing this restrictive assumption have been proposed and employed 

in extant econometric literature (Fullerton (2009)). More recent research efforts in safety literature 

following Wang and Abdel-Aty (2008) and Eluru et al. (2008), have encompassed two 

methodological approaches of generalized ordered outcome formulation that rely on logistic 

distribution2 and relax the fixed threshold assumption. These approaches are widely referred to as 

the Generalized Ordered Logit (GOL) model and Partial Proportional Odds Logit (PPO) model. 

The generalization of traditional ordered logit (OL) model is achieved in GOL model by allowing 

the thresholds to be linear functions of observed exogenous variables (as proposed in Terza 

(1985)). On the other hand, PPO model allows a subset of the explanatory variables to vary across 

alternatives of interest in generalizing the tradition OL model (as proposed in Peterson and Harrell 

(1990))3. 

A list of earlier research on crash injury severity analysis that employed these variants of 

generalized ordered outcome approaches is provided in Table 1. While there is growing application 

of GOL and PPO models in severity analysis (as evident from table 1), there are still several aspects 

of these approaches that are not well documented in extant safety literature. It would be beneficial 

to discuss these variants of generalized ordered outcome models so that researchers and 

practitioners that consider their application are fully aware of the theoretical and practical 

similarities and differences between GOL and PPO models. Towards this end, the current research 

note presents the relationship between these two variants of generalized ordered outcome models 

                                                 
1 To be sure, researchers have also employed unordered discrete outcome frameworks to study the influence of 

exogenous variables (see Yasmin and Eluru (2013) and Savolainen et al. (2011) for a detailed description of studies 

employing different econometric approaches). 
2 In current study, we focus on the logistic error term as it is the most commonly employed model in safety literature; 

however the same discussion will hold for normal error term assumption too. 
3 In several studies PPO model is also referred to as GOL model (for instance Kaplan and Prato, 2012). However, for 

ease of discussion we will refer threshold generalization as GOL model and generalization of estimates in propensity 

as PPO model throughout the note. 



and elaborates on model interpretation issues. While these variants arise from different 

mathematical approaches employed to enhance the traditional ordered outcome model, we 

establish that these are mathematically identical. To illustrate this we derive the GOL/PPO models 

from the traditional OL model and show how one can facilitate estimation and interpretation while 

building on the OL model estimates – a useful process for practitioners considering upgrading their 

existing traditional ordered logit/probit injury severity models. Finally, the note presents the 

differences within GOL and PPO model frameworks, referred to as mixed generalized ordered 

logit (MGOL) and mixed partial proportional odds logit (MPPO) models while also discussing the 

computational difficulties that may arise in estimating these models. 

2 Methodological Framework 

In discussing the econometric details of the GOL and PPO models, we begin our discussion with 

the traditional OL model and build upon the OL framework to arrive at the GOL and PPO models.  

 

2.1 Ordered Logit Model 

In the traditional OL model, the discrete injury severity levels (𝑦𝑖) are assumed to be associated 

with an underlying continuous, latent variable (𝑦𝑖
∗). This latent variable is typically specified as a 

linear function as follows    

𝑦𝑖
∗ = 𝑿𝑖𝜷 + 𝜀𝑖, for 𝑖 = 1,2, … … …,N (1)  

where, 

𝑖 (𝑖 = 1,2, … … … , 𝑁) represents the individual 

𝑿i is a vector of exogenous variables (excluding a constant) 

𝜷 is a vector of unknown parameters to be estimated 

𝜀 is the random disturbance term assumed to be standard logistic 

Let 𝑗 (𝑗 = 1,2, … … … , 𝐽) and 𝜏𝑗 denote the injury severity levels and the thresholds 

associated with these severity levels, respectively. These unknown thresholds are assumed to 

partition the propensity into 𝐽 − 1 intervals. The unobservable latent variable 𝑦𝑖
∗ is related to the 

observable ordinal variable 𝑦𝑖 by the τs with a response mechanism of the following form: 

𝑦𝑖 = 𝑗, 𝑖𝑓 𝜏𝑗−1 <  𝑦𝑖
∗ < 𝜏𝑗, for 𝑗 = 1,2, … … … , 𝐽 (2)  

In order to ensure the well-defined intervals and natural ordering of observed severity, the 

thresholds are assumed to be ascending in order, such that 𝜏0 < 𝜏1 <  … … … < 𝜏𝐽 where 𝜏0 = −∞ 

and 𝜏𝐽 = +∞. The probability expressions take the form: 

𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝑋𝑖) = 𝛬(𝜏𝑗 − 𝑿𝒊𝜷) − 𝛬(𝜏𝑗−1 − 𝑿𝒊𝜷) (3)  

where 𝛬(∙) represents the standard logistic cumulative distribution function and 𝜋𝑖𝑗 is the 

probability that individual 𝑖 sustains an injury severity level 𝑗. The standard logistic cumulative 

distribution function (cdf), 𝛬(𝑡) =  
1

1+𝑒−𝑡
; applying the transformation in equation 3, the 

probability takes the following form: 



𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝑋𝑖) =
𝑒𝑥𝑝(𝜏𝑗 − 𝑿𝑖𝜷)

(1 + 𝑒𝑥𝑝(𝜏𝑗 − 𝑿𝒊𝜷))
−

𝑒𝑥𝑝(𝜏𝑗−1 − 𝑿𝒊𝜷)

(1 + 𝑒𝑥𝑝(𝜏𝑗−1 − 𝑿𝒊𝜷))
 (4)  

In equation 4, the parameter 𝜷 are constrained to be the same across all alternatives – thus resulting 

in a monotonic impact of the exogenous variables on probability levels. Any enhancement to the 

systematic component in the ordered outcome system will require addressing the assumption of 

restricting 𝜷 parameters.  

 

2.2 Generalized Ordered Outcome Approach 

The restrictive fixed threshold assumption of traditional ordered outcome models can be relaxed 

by modifying equation 1: (1) either for 𝜏𝑗  will result in GOL model (2) or for 𝜷  will result in 

PPO model. The mathematical formulations of these models are presented in the following 

sections. 

 

2.2.1 Generalized Ordered Logit Model 

The basic idea of the GOL approach is to represent the threshold parameters as a linear function 

of exogenous variables (Terza, 1985; Srinivasan, 2002; Eluru et al., 2008). We can employ the 

following parametric form: 

𝜏𝑖,𝑗 = 𝛼𝑗 + 𝜹𝑗𝒁𝑖𝑗 (5)  

where, 𝒁𝑖 is a set of exogenous variable (without a constant). 

𝜹𝑗 is a vector of parameters to be estimated.  

With the modification the probability expression of equation 4 takes the following form: 

𝜋𝑖𝑗 =
𝑒𝑥𝑝(𝛼𝑗 + 𝜹𝑗𝒁𝑖 − 𝑿𝑖𝜷)

(1 + 𝑒𝑥𝑝(𝛼𝑗 + 𝜹𝑗𝒁𝑖 − 𝑿𝑖𝜷))
−

𝑒𝑥𝑝(𝛼𝑗−1 + 𝜹𝑗−1𝒁𝑖 − 𝑿𝑖𝜷)

(1 + 𝑒𝑥𝑝(𝛼𝑗−1 + 𝜹𝑗−1𝒁𝑖 − 𝑿𝑖𝜷))
 (6)  

It is important to note that the 𝜷 vector is still restricted to be the same in the above model. 

 

2.2.2 Partial Proportional Odds Model 

The PPO model is generated from the idea that some of the explanatory variables may meet the 

proportional odds assumption, while a subset of explanatory variables may not (Peterson and 

Harrell, 1990). Thus, in PPO model the vector of exogenous variables (𝑿𝑖) in equation 1 is 

partitioned into two groups  coefficients of variables not-varying across alternatives (𝑿𝑖1) and 

coefficients of variables varying across alternatives (𝑿𝑖2). 𝑿𝑖1 and 𝑿𝑖2 have no common elements.  

Thus, the probability expression for PPO model can be expressed as:  



𝜋𝑖𝑗 =
𝑒𝑥𝑝(𝜏𝑗 − 𝑿𝑖1𝜷1 − 𝑿𝑖2𝜷2𝑗)

(1 + 𝑒𝑥𝑝(𝜏𝑗 − 𝑿𝑖1𝜷1 − 𝑿𝑖2𝜷2𝑗))
−

𝑒𝑥𝑝(𝜏𝑗−1 − 𝑿𝑖1𝜷1 − 𝑿𝑖2𝜷2(𝑗−1))

(1 + 𝑒𝑥𝑝(𝜏𝑗−1 − 𝑿𝑖1𝜷1 − 𝑿𝑖2𝜷2(𝑗−1)))
 (7)  

where, 𝜷1 is the vector of coefficients associated with 𝑿𝑖1 (the subset of independent variables for 

which the parallel regression assumption is not violated)  

𝜷2𝑗 is the vector of coefficients associated with 𝑿𝑖2 (the subset of independent variables 

for which the parallel regression assumption is violated)  

 

2.2.3 Mathematical Equivalency 

If one compares the probability expressions in equations 6 and 7, it is evident that both approaches 

relaxing the traditional OL model yield exactly the same mathematical model. Specifically, if we 

set 𝛼𝑗 = 𝜏𝑗 , 𝜷 =  𝜷1 and 𝜹𝑗 = −𝜷2𝑗, identical mathematical structures for both formulations are 

arrived at. The only difference is that parameters corresponding to varying group might offer 

opposite signs in the two models because in one structure (GOL model) these parameters enter the 

thresholds and in the other (PPO model) the parameters enter the propensity. Hence, one can 

establish that the GOL and PPO models are mathematically equivalent and thus the results of one 

model can be converted into the estimates of the other one.   

 

2.2.4 Model Estimation Procedure 

In both the GOL and PPO formulation, the objective is to identify variables for which the parallel 

line assumption is violated and consider additional parameters for this purpose. The identification 

process requires careful additional analysis. We outline the procedure for GOL and PPO models 

for a single exogenous variable. 

In the GOL structure, the analyst would estimate a model with only one coefficient in the 

propensity (a simple ordered model) and another model with the variable appearing in the 

propensity and thresholds (J-1 parameters). The analyst then would conduct a Wald test at a 

specific confidence level (95% is most commonly used confidence level) based on the t-statistic 

to see if all the parameters (single estimate in the simple ordered model or the multiple estimates 

of the GOL) are statistically significant. If a subset of the parameters are statistically insignificant, 

the analyst would drop the insignificant parameters and re-estimate the model. After obtaining the 

best specification between the simple ordered and GOL structure, the analyst can compare model 

performance using the Log-likelihood ratio (LR) test4. For the GOL model, if the propensity 

parameter and additional parameters are significant then the LR test will definitely outperform the 

simple ordered model. The LR test is particularly useful if the propensity variable in the GOL is 

insignificant and only threshold parameters are significant. In this case, a Wald test is not adequate 

and a LR ratio test is required to identify the superior model. 

In the PPO structure, the analyst would employ a similar approach of estimating a simple 

ordered model and the PPO model with J-1 parameters. A combination of Wald test and LR test 

will allow the analyst to identify if the parallel line assumption is violated. For PPO model, another 

                                                 
4 The LR test statistic can be computed as 2[𝐿𝐿𝑈 − 𝐿𝐿𝑅],  where 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood of the unrestricted 

and the restricted models, respectively. 



diagnostic tool, proposed by Brant (1990), is also commonly used for identifying the set of 𝜷s 

varying across alternatives. This method assesses the non-proportionality not only for the whole 

model, but also on a detailed variable by variable basis using Wald test. However, LR test is a 

universal approach and is widely used for testing if the addition of significant variable in threshold 

(for GOL) and across alternative specific equation (for PPO) has any significant impact on the 

corresponding log-likelihood value at convergence.   

The above procedure needs to be repeated for every exogenous variable. While the 

approach might seem very burdensome, once the analysts starts model estimation, the testing 

process is relatively straight-forward and is not different from an unordered multinomial logit 

model estimation. 

  

2.2.5 Parameter Interpretation 

In GOL model, 𝜷 retains the same interpretation as the traditional OL model. However, the 𝛿𝑗 

parameters represent shifting of thresholds depending on decision unit specific exogenous 

variables. Thus, in GOL model when the threshold parameter is positive (negative) the result 

implies that the threshold is bound to increase (decrease) thus resulting in increase (decrease) in 

the probability of the alternative to the left of the threshold and decrease (increase) in the 

probability of the alternative to the right of the threshold.  

In PPO model formulation, 𝜷1 retains the same interpretation as the traditional OL model. 

However, the 𝜷2𝑗 parameters represent varying impact of exogenous variables across alternatives. 

The interpretation of 𝜷2𝑗 is similar to unordered logistic regressions i.e. a positive coefficients 

indicate higher likelihood of being in a higher category of the outcome, whereas negative 

coefficients indicate higher likelihood of being in the current or a lower category of the outcome.  

In both mathematical formulations, the analyst can easily interpret the impact of each coefficient. 

However, when all the possible coefficients for a particular exogenous variable are statistically 

significant in GOL or PPO structure the net impact of these variables on the ordered outcome 

variable is generally not straight forward and would require an elasticity or marginal effect 

computation.  

 

3 UNOBSERVED HETEROGENEITY 

In crash injury severity analysis missing or unobserved information is a very common issue. The 

conventional police/hospital reported crash databases may not include individual specific 

behavioural or physiological characteristics and vehicle safety equipment specifications for 

crashes. Due to the possibility of such critical missing information, it is important to incorporate 

the effect of unobserved attributes within the modeling approach (see for example Srinivasan, 

2002; Eluru et al., 2008; Kim et al., 2013). In non-linear models, neglecting the effect of such 

unobserved heterogeneity can result in inconsistent estimates (Chamberlain, 1980; Bhat, 2001). 

Hence, it is also important to discuss the variants of generalized ordered outcome models in the 

context of accommodating unobserved heterogeneity. In the following section, we discuss the 

potential structure of GOL and PPO model frameworks, referred to as mixed generalized ordered 

logit (MGOL) and mixed partial proportional odds logit (MPPO) models, in accommodating the 

effect of unobserved heterogeneity. Further, we also discuss the computational difficulties that 

may arise in estimating these mixed models. 



 

3.1 Mixed Generalized Ordered Logit Model 

The MGOL model accommodates unobserved heterogeneity in the effect of exogenous variable 

on outcome levels in both the latent propensity function and the threshold functions (Srinivasan 

2002; Eluru et al., 2008). Let us assume that 𝝁𝑖 and 𝜸𝑖𝑗 are two column vectors representing the 

unobserved factors specific to individual 𝑖 in equation 1 and 5, respectively. Thus, conditional on 

𝝁𝑖 and 𝜸𝑖𝑗, the probability expression for individual 𝑖 and alternative 𝑗 in MGOL model take the 

following form: 

𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝝁𝑖, 𝜸𝑖𝑗) 

       = 𝛬[(𝜏𝑖,𝑗 − (𝜷 + 𝝁𝑖 )𝑿𝑖] − 𝛬[𝜏𝑖,𝑗−1 − (𝜷 + 𝝁𝑖 )𝑿𝑖] 
(8)  

where Λ(. ) represents the standard logistic cumulative distribution function and 

           𝜏𝑖,𝑗 = 𝛼𝑗 + (𝜹𝑗 + 𝜸𝑖𝑗)𝒁𝑖𝑗. 

 

The unconditional probability can subsequently be obtained as: 

𝑃𝑖𝑗 = ∫ [𝑃𝑟(𝑦𝑖 = 𝑗|𝜶𝑖, 𝜸𝑖𝑗)] ∗ 𝒅𝑭(𝝁𝑖, 𝜸𝑖𝑗)𝒅(𝝁𝑖, 𝜸𝑖𝑗)
𝜶𝑖,𝜸𝑖𝑗

 (9)  

 

3.2 Mixed Partial Proportional Odds Logit Model 

The MPPO model allows the parameters for exogenous variables to vary across individual by 

accommodating unobserved heterogeneity on the propensity functions for different outcome 

levels. Let us assume that 𝝑𝑖 and 𝝎𝑖𝑗 are two column vectors representing the unobserved factors 

specific to individual 𝑖 for 𝑿𝑖1 and 𝑿𝑖2, respectively, in equation 7. Thus, conditional on 𝝑𝑖 and 

𝝎𝑖𝑗, the probability expression for individual 𝑖 and alternative 𝑗 in MPPO model takes the 

following form: 

𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝝑𝑖, 𝝎𝑖𝑗) 

       = 𝛬[𝜏𝑗 − (𝜷1 + 𝝑𝑖) 𝑿𝑖1 − (𝜷2,𝑗 + 𝝎𝑖𝑗)𝑿𝑖2] − 𝛬[𝜏𝑗−1 − (𝜷1 + 𝝑𝑖) 𝑿𝑖1

− (𝜷2,𝑗−1 + 𝝎𝑖,𝑗−1)𝑿𝑖2] 

(10)  

where Λ(. ) represents the standard logistic cumulative distribution function. The unconditional 

probability can subsequently be obtained as: 

𝑃𝑖𝑗 = ∫ [𝑃𝑟(𝑦𝑖 = 𝑗|𝝑𝑖, 𝝎𝑖𝑗)] ∗ 𝒅𝑭(𝝑𝑖, 𝝎𝑖𝑗)𝒅(𝝑𝑖, 𝝎𝑖𝑗)
𝝑𝑖,𝝎𝑖𝑗

 (11)  

The reader would note that the formulation presented here has never been documented in existing 

literature. 

 



3.3 Computational Difficulties of Mixed Models 

In ordered outcome framework, a necessary condition for non-negative probability predictions is 

that the thresholds remain ordered. However, in the generalized ordered outcome models this 

requirement is modified. Specifically, to maintain the ordering conditions and thus to ensure the 

non-negative probability, (𝛼𝑗 + 𝜹𝑗𝒁𝑖 − 𝑿𝑖𝜷) > (𝛼𝑗−1 + 𝜹𝑗−1𝒁𝑖 − 𝑿𝑖𝜷) condition should 

maintain in equation 6 of GOL model framework, while (𝜏𝑗 − 𝑿𝑖1𝜷1 − 𝑿𝑖2𝜷2𝑗) > (𝜏𝑗−1 −

𝑿𝑖1𝜷1 − 𝑿𝑖2𝜷2(𝑗−1))  condition should maintain in equation 7 of PPO model framework. For, 

these generalized ordered outcome models with fixed parameters i.e. when we ignore the presence 

of unobserved heterogeneity, the convergence estimates will rarely violate the above conditions 

(theoretically possible). However, if we need to incorporate unobserved heterogeneity within these 

structures the possibility of the error becomes very critical and might occur often (see Srinivasan, 

2002 and Eluru et al., 2008 for a discussion). 

These two mathematical formulations of generalized ordered outcome approach employed 

in literature differ in this aspect. Within GOL model framework, a possible way around to 

theoretically avoid such potential negative probability issues is to adopt the following non-linear 

parameterization of the thresholds as a function of exogenous variables, as proposed in Eluru et al. 

(2008): 

𝜏𝑖,𝑗 = 𝜏𝑖,𝑗−1 + 𝑒𝑥𝑝((𝜹𝑗 + 𝜸𝑖𝑗) 𝒁𝑖𝑗) (12)  

The above formulation capitalizes on the fact that the thresholds are parameterized and 

hence ensuring they are ordered will ensure that the probabilities remain positive. Thus, it is 

computationally feasible to estimate the model as presented in equation 9 while employing the 

parameterization of equation 12. In fact, several previous studies in existing safety literature have 

employed this approach in accommodating the effect of unobserved heterogeneity within GOL 

framework (Yasmin and Eluru, 2013).  

On the other hand, within PPO model framework accommodating such parameterization is 

far from straight forward because any parameter in 𝜷1 and 𝜷2𝑗 of equation 10 could potentially 

affect the nature of the probability expression thus not allowing for non-negative probabilities for 

all realisations of 𝝑𝑖 and 𝝎𝑖𝑗 i.e. for some realization of 𝝑𝑖 and 𝝎𝑖𝑗, it is theoretically possible that 

𝜏𝑗 − (𝜷1 + 𝝑𝑖) 𝑿𝑖1 − (𝜷2,𝑗 + 𝝎𝑖𝑗)𝑿𝑖2 < 𝜏𝑗−1 − (𝜷1 + 𝝑𝑖) 𝑿𝑖1 − (𝜷2,𝑗−1 + 𝝎𝑖,𝑗−1)𝑿𝑖2. This 

would lead to a negative probability value. To be sure, this does not mean that we cannot 

accommodate unobserved heterogeneity in the MPPO model. To ensure non-negative probability 

values, while generating the realisations of 𝝑𝑖 and 𝝎𝑖𝑗, an initial screening procedure to ensure 

that 𝜏𝑗 − (𝜷1 + 𝝑𝑖) 𝑿𝑖1 − (𝜷2,𝑗 + 𝝎𝑖𝑗)𝑿𝑖2 < 𝜏𝑗−1 − (𝜷1 + 𝝑𝑖) 𝑿𝑖1 − (𝜷2,𝑗−1 + 𝝎𝑖,𝑗−1)𝑿𝑖2 is not 

violated can be added to the simulation procedure. Of course, this would require access to a larger 

number of random draws compared to the MGOL model estimation process. Given that the 

screening process will add substantial computation burden for each iteration of the maximum 

simulated likelihood process, this could yield to substantial increase in model convergence run 

times. In fact, a similar procedure was considered in Srinivasan, 2002 for a variant of the MGOL 

model. In summary, the MPPO model requires additional computation to estimate the model 

whereas the MGOL approach offers a direct parameterization approach while offering the same 

flexibility. In fact, this could potentially be a reason why no study in literature has employed the 

MPPO model. 



4 CONCLUSIONS 

With increasing application of generalized ordered outcome model variants (such as generalized 

ordered logit (GOL) and partial proportional odds logit (PPO) models in severity analysis, there 

are several aspects of these model approaches that are not well documented in extant safety 

literature. The research note discussed the equivalency between the two variants of generalized 

ordered outcome models. We also presented how one can facilitate enhanced interpretations while 

building on the ordered outcome model estimates – a useful process for practitioners considering 

upgrading their existing traditional ordered logit/probit injury severity models. While the variants 

offer equivalent mathematical and estimation approaches for traditional specification, in the 

presence of unobserved heterogeneity the GOL model variant offers enhanced model specification 

and estimation framework due to its parameterization structure. To be sure, the mixed PPO model 

can also be accommodated to account for unobserved heterogeneity but it would require additional 

steps to ensure consistent model estimation.  
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TABLE 1 Existing Injury Severity Studies Employing Generalized Ordered Outcome 

Approaches 

 

Alternate Approaches Previous Studies 

Partial Proportional 

Odds Model 

Wang and Abdel-Aty (2008); Kweon and Lee (2010); Quddus et al. 

(2010); Kaplan  and Prato (2012); Rifaat et al. (2012a); Rifaat et al. 

(2012b); Yasmin et al. (2012); Mooradian et al. (2013); Abegaz et 

al. (2014); Anowar et al. (2014); Sasidharan and Menéndez (2014)  

Generalized Ordered 

Models 

Srinivasan (2002); Eluru et al. (2008); Chiou et al. (2013); Eluru 

(2013); Castro et al. (2013); Yasmin and Eluru (2013); Yasmin et al. 

(2014a); Yasmin et al. (2014b)  

 


