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ABSTRACT 
In this study, we develop an advanced econometric model that considers the potential endogeneity 

of stop level headway in modeling bus ridership. We recognize that bus stops with higher potential 

demand are also like to have higher frequency of buses (or lower headway between buses). We 

consider headway endogeneity by proposing a simultaneous equation system that considers 

headway and ridership in a joint framework. The proposed model is developed employing stop 

level ridership data from the Orlando region for 11 quadrimesters (four-month time periods). The 

presence of multiple data points for each stop allows us to develop panel models for headway, 

boarding, and alighting. The headway variable is modeled using a panel ordered logit model while 

the ridership variables are modeled using a panel grouped ordered logit models. The model 

estimation results justify the consideration of headway endogeneity in bus ridership analysis. To 

illustrate the value of the proposed model, a validation exercise and a policy analysis exercise are 

conducted.  

 
Keywords: Endogeneity; Headway; Joint Framework; Panel Ordered Logit; Panel Grouped 

Order Logit  
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INTRODUCTION 
In urban regions, public transportation systems ought to provide an equitable, safe and accessible 

transportation mode for residents. According to 2016 American Community Survey data, transit 

mode only accounts for about 5% of the commute trips in the United States (Tomer 2016). Existing 

public transportation systems are either facing reduction in ridership and/or facing challenges with 

regards to providing equitable services to residents. In fact, in recent years, several urban transit 

systems have experienced declines in ridership (Gomez-Ibanez 1996, Garrett and Taylor 1999, 

Bliss 2017, Schmitt 2017, Lewyn 2018, Siddiqui 2018). Ideally, in the presence of a well-designed 

public transit system, urban residents irrespective of their ethnicity, household income, and vehicle 

ownership should have similar access to activity participation or employment opportunities. 

Several researchers have found evidence to the contrary while examining the influence of 

transportation on employment opportunities (Shen 2001, Wenglenski and Orfeuil 2004, Kawabata 

and Shen 2006, 2007, Grengs 2010, Boarnet et al. 2017). These studies identified that access to 

employment by transit is substantially lower than access to employment by car mode. However, 

several public transit riders own no cars and are reliant on public transportation to arrive at work. 

Thus, there is a need to examine public transportation system design and operation to enhance 

transit adoption and equity for urban residents.  

Policy makers and urban agencies across different parts of North America, are considering 

investments in various public transportation alternatives including bus, light rail, commuter rail, 

and metro (see Jaffe 2014, TP 2016 for public transportation projects under construction or 

consideration). A critical component for evaluating the success of these investments is the 

development of appropriate statistical tools to examine the impact. Our proposed research 

contributes to public transit literature by developing econometric models that consider the potential 

endogeneity of stop level headway in modeling ridership. To elaborate, earlier research in public 

transportation has identified headway (alternatively bus frequency) as one of the primary 

determinants affecting ridership. The studies conclude that stops with higher headway (lower 

frequency) between buses are likely to have lower ridership. While this is a perfectly acceptable 

conclusion, most (if not all) studies in public transit literature ignore that the stop level headway 

was determined (by choice) in response to expected ridership i.e. stops with lower headway were 

expected to have higher ridership numbers. In traditional ridership studies, this potential 

endogeneity is often neglected, and headway is considered as an independent variable. The 

approach violates the requirement that the unobserved factors affecting the dependent variable do 

not have impact on independent variables. If this is the case, the estimated impact of headway on 

ridership would be biased (potentially over-estimated). More importantly, the estimated impact of 

all other variables (such as land use factors, bus infrastructure) will also be biased (possibly under-

estimated). Traditional ridership models also consider transit ridership at a single time point for 

analysis using cross-sectional datasets. Ideally, it would be beneficial to consider data from 

multiple time points. The consideration of data from multiple time points is of particular value in 

accommodating for the impact of headway associated endogeneity.  

In this study, we address these challenges by proposing a simultaneous equation system 

that considers headway and ridership (characterized as boarding and alighting) in a joint 

framework while accounting for the influence of common unobserved factors affecting headway 

and ridership. The proposed model is developed employing ridership data from Orlando region for 

the Lynx bus transit system. The ridership data includes stop level quadrimester (four-month time 

period) average weekday boarding and alighting information. The average ridership information 

are available for 11 quadrimesters from May 2013 to December 2016. The presence of multiple 
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data points for each stop allows us to develop panel models for headway, boarding and alighting. 

In the joint modeling approach, the headway variable is modeled using a panel ordered logit model 

while the ridership variables are modeled using panel grouped ordered logit models. In addition to 

unobserved effects in the form of panel random effects, several exogenous variables including stop 

level attributes (such as number of bus stop), transportation infrastructure variables (such as 

secondary highway length, rail road length and local road length, sidewalk length), transit 

infrastructure variables (such as bus route length, presence of shelter and distance of bus stop from 

central business district (CBD)), land use and built environment attributes (such as land use mix, 

residential area, recreational area, institutional area, office area, etc.) and demographic and 

socioeconomic variables in the vicinity of the bus stop (income, vehicle ownership, age and gender 

distribution) are considered in the model estimation. Finally, to illustrate the model applicability, 

we generate changes to ridership based on changes in multiple independent variables.  

The remainder of the paper is organized as follows. A brief overview of earlier research is 

described in the literature review section. The methodology section outlines the econometric 

frameworks considered. The data section presents data source and data preparation for analysis. 

The model estimation results section presents the estimation results and validation. The policy 

analysis results are discussed in the next section. Finally, the conclusion section provides a 

summary of the findings and concludes our paper. 

 

LITERATURE REVIEW 
 

Background 
Transit ridership literature can be categorized into two groups. The first group of studies focuses 

on the factors that affect transit adoption at a disaggregate level by exploring individual 

perceptions and behavioral responses (Fan et al. 1993, Handy 1996, Wardman and Whelan 1999, 

Balcombe et al. 2004, Evans 2004, McCollom and Pratt 2004a, McCollom and Pratt 2004b, Handy 

et al. 2005, Debrezion et al. 2007, 2009, Van Acker et al. 2010, Chakour and Eluru 2014). The 

second group of studies examines the impact of various factors on system level (or route level) 

ridership measures (Seskin et al. 1996, FitzRoy and Smith 1998, Kain and Liu 1999, Babalik-

Sutcliffe 2002, Johnson 2003, Mackett and Sutcliffe 2003, Ma et al. 2018). The current proposed 

research effort falls into the second group of studies. A detailed review of all these studies is 

beyond the scope of the paper. The reader is referred to a recent study by Rahman et al. (2019) 

that provides a detailed summary of literature across these two groups. In this section, we focus on 

literature particularly relevant to our research effort. We begin with an overview of studies in 

transportation that attempt to accommodate for endogeneity. Subsequently, we examine studies 

that consider endogeneity within transit literature.  

 

Addressing Endogeneity in Transportation 

The travel behavior field has extensively examined the influence of endogeneity across various 

decision processes. Specifically, these studies have explored the potential impact of residential 

location choice – labelled as residential self-selection – on various travel behavior choices (Bhat 

and Guo 2007, Mokhtarian and Cao 2008, Bhat and Eluru 2009, Cao et al. 2009, Pinjari et al. 

2009, Walker et al. 2011, Aditjandra et al. 2012, Vij and Walker 2014, Ding et al. 2017, Ettema 

and Nieuwenhuis 2017). More recently, several researchers developed/analyzed approaches to 

incorporate endogeneity associated with omitted variables such as attitudinal attributes (Paulsen 

et al. 2014, Fernández-Antolín et al. 2016, Guevara and Polanco 2016, Guevara 2015, Beck et al. 
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2017, Mariel et al. 2018). Furthermore, several studies have incorporated the impact of individual 

attitudes and social influence characteristics on travel behavior within hybrid choice models 

(Chorus and Kroesen 2014, Kamargianni et al. 2014, Kim et al. 2014, Kim et al. 2017).  

There are examples from other fields including seat belt choice in driver injury severity 

models (Eluru and Bhat 2007, Abay et al. 2013); emergency medical response time affecting 

fatality timeline (Yasmin et al. 2015) and bicycle sharing system station capacity decision 

influencing bicycle sharing demand (Faghih-Imani and Eluru 2016). The endogenous variables 

and the choice variables could be examined as continuous or discrete indicators. Based on the 

nature of the variables involved, several approaches such as proxy variables (Wardman and 

Whelan 2011, Tirachani et al. 2013), control function method (Guevara and Ben-Akiva 2012), 

multiple indicator solution (Guevara and Polanco 2016), instrument variables regression, two-

stage residual inclusion (2SRI) approach and Roy’s (Roy 1951) endogenous system or the 

treatment effects model (see Maddala 1983, Heckman and Vytlacil 2005), and joint econometric 

modeling approaches (Eluru and Bhat 2007) are employed. 

 

Research in Transit Field Accommodating Endogeneity  

Given the prevalence of modeling approaches for addressing endogeneity bias in transportation 

field, it is not surprising that multiple studies have either alluded to the presence of endogeneity or 

specifically employed approaches to control for it in the context of public transit analysis. Earlier 

research in transit ridership analysis have discussed potential endogeneity of transit ridership and 

transit price, service and automobile ownership dimensions (Creutzig 2014). Holmgren (2007) 

conducted a meta-analysis of elasticity estimates of bus demand in transit literature and 

recommended that service variable (headway) should be treated as endogenous while other 

variables such as car ownership, fuel price and ticket price should be considered as exogenous 

variables. The studies that considered endogeneity have controlled for different dimensions 

governed by the authors’ judgement. Voith (1991) developed community transit demand models 

while accommodating for the interaction between transit fare prices and service decisions on 

ridership. The authors estimate a dynamic fixed effects panel model with Instrumental Variables 

(IV) using data from Southeastern Pennsylvania Transportation Authority (SEPTA). Voith (1997) 

extended the model developed in Voith (1991) with a larger data sample with IV approach 

developing separate equations for price and service.  

Fitzroy and Smith (1999) developed a framework to examine the impact of season tickets 

on transit ridership across four Swiss cities. To account for the potential impact of investments on 

road and transit infrastructure on overall ridership, the authors employed an IV approach. Further, 

the authors controlled for potential contemporaneous unobserved correlation by developing 

seemingly unrelated regression approach. Deka (2002) examined the potential endogeneity of 

automobile ownership and transit availability in the Los Angeles region. Specifically, the author 

estimated a model for transit availability and employed its predicted value as an independent 

variable in modeling automobile ownership. Novak and Savage (2013) studied the cross-elasticity 

between fuel price and transit usage for the Chicago region for various rail and bus services. The 

authors indicate that adopting a two stage least squares approach leads to counter-intuitive results 

in their data analysis. The reader would note that a majority of these studies develop models at a 

system level i.e. employ aggregate measures of ridership.  
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Current Study in Context 
The literature review highlights how well recognised the issue of endogeneity is within the transit 

filed. However, the literature is not without limitations. First, while several studies have explicitly 

considered/controlled for endogeneity, the study frameworks focus on aggregate transit ridership 

metrics such as monthly boardings at the system level. There is no study that has examined the 

endogeneity issue at a more disaggregate level such as bus route or stop level. The aggregate level 

models are adequate for planning at a system level. However, for any analysis of changes to the 

existing service for various bus routes, more detailed analysis at the bus route or stop level is 

warranted. Second, earlier analysis was explored using cross-sectional or panel data with very 

small data samples. This is expected because the analysis was conducted at a system level yielding 

smaller data samples. Third, while several studies developed IV and/or 2SRI approaches there is 

no effort in the discrete choice realm controlling for endogeneity. The current research effort 

addresses these limitations by undertaking a disaggregate stop level ridership analysis (for 

boarding and alighting) while controlling for endogeneity associated with stop-level headway. For 

the Orlando region, while headway is a continuous value in minutes, due to the nature of the service 

in the region, it is more accurate to consider headway as a discrete variable. In our study, we have 

considered three categories for headway model: (i) Category 1 (0-15 minutes), (ii) Category 2 (15-

30 minutes) and (iii) Category 3 (>30 minutes). Hence, we have considered headway as an ordered 

discrete variable. Further, to model ridership, building on our earlier work (Rahman et al. 2019), 

we categorize the boardings and alightings as grouped ordered variables1. Thus, the overall 

econometric methodology employed results in a panel multivariate ordered system with three 

separate equations (for headway, boarding and alighting). The proposed model system is estimated 

using data for 11 quadrimesters (four-month periods) from May 2013 to December 2016. The 

proposed joint panel modeling approach is the first of its kind for transit ridership analysis to the 

best of the authors’ knowledge.  

 

METHODOLOGY 
The focus of this study is to examine stop-level boarding, alighting and headway simultaneously. 

Let q (q = 1, 2,…, Q) be an index to represent bus stops, t (t = 1, 2, 3,…, T) represent the different 

time periods,  m (m = 1,2,…M=3) be an index to represent headway categories and j (j = 1, 2, 3,…, 

J = 13) be an index to represent the categories of boardings or alightings. For headway component, 

we consider three categories: category 1 = 0-15 minutes; category 2= 15-30 minutes and category 

3= > 30minutes. The thirteen categories for ridership analysis considered are: Bin 1 = ≤5; Bin 2 = 

5-10; Bin 3 = 10-20, Bin 4 = 20-30, Bin 5 = 30-40, Bin 6 = 40-50, Bin 7 = 50-60, Bin 8 = 60-70, 

Bin 9 = 70-80, Bin 10 = 80-90, Bin 11 = 90-100, Bin 12 = 100-120 and Bin 13= >120. Then, the 

equation system for modeling headway, boarding and alighting jointly can be written as: 

 

𝐻𝑞𝑡
∗  = (𝜈′ + 𝜎𝑞

′)𝑥′𝑞𝑡 + (𝜂′𝑞)𝑦𝑞𝑡 + 𝛥𝑞𝑡, 𝐻𝑞𝑡 = 𝑚  𝑖𝑓 𝜛𝑚−1 < 𝐻𝑞𝑡
∗ ≤ 𝜛𝑚 (1) 

  

                                                 
1 The grouped response approach proposed in Rahman et al. (2019) provides a true non-linear variant of the linear 

regression model structure (with the same number of model parameters as linear regression). In this model system, 

while continuous data is binned into various categories, the binning is simply to facilitate model estimation. Unlike 

traditional ordered discrete models, the grouped response model does not estimate thresholds in the ridership model. 

The thresholds of the bins selected are directly used in the model estimation; thus, observed levels of the dependent 

variable are tied to the propensity. Post model estimation, the model developed can be used to estimate the probability 

of any ridership level (see Rahman et al. 2019 for more details).  
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𝐵𝑞𝑡
∗  = (𝛼′ + 𝛾𝑞

′)𝑥′′
𝑞𝑡 + (𝜃′ + 𝜇′

𝑞
) ℎ𝑞𝑡 ± (𝜂′

𝑞
)𝑦𝑞𝑡 + 𝜀𝑞𝑡;   

         𝐵𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝐵𝑞𝑡
∗ ≤ 𝜓𝑗 

(2) 

  

𝐴𝑞𝑡
∗  = (𝛽′ + 𝛿𝑞

′ )𝑥′′𝑞𝑡 + (𝜃′′ + 𝜇′′𝑞)ℎ𝑞𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡 + 𝜉𝑞𝑡;  

        𝐴𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝐴𝑞𝑡
∗ ≤ 𝜓𝑗 

(3) 

 

In equation 1, 𝐻𝑞𝑡
∗  is the latent (continuous) propensity for headway at stop q for the tth time 

period. This latent propensity 𝐻𝑞𝑡
∗  is mapped to the actual headway category m by the 𝜛 thresholds, 

in the usual ordered-response modeling framework. 𝑥′𝑞𝑡 is a matrix of attributes that influences 

stop level headway, 𝜈 is the vector of mean coefficients and 𝜎𝑞 is a vector of coefficients 

representing the impact of unobserved factors moderating the influence of corresponding element 

of 𝑥′𝑞𝑡. 

In equations 2 and 3, 𝐵𝑞𝑡
∗  (𝐴𝑞𝑡

∗ ) is the latent propensity for stop level boardings (alightings) 

of stop q for the tth time period. This latent propensity 𝐵𝑞𝑡
∗  (𝐴𝑞𝑡

∗ ) is mapped to the actual grouped 

ridership category j by the 𝜓 thresholds, in the usual ordered-response modeling framework. In 

our case, we consider J = 13 and the 𝜓 values are fixed as follows: -∞, 5, 10, 20, 30, 40, 50, 60, 

70, 80, 90, 100, 120, and +∞. 𝑥′′
𝑞𝑡 is a matrix of attributes that influences stop level boarding and 

alighting. 𝛼 (𝛽) is the corresponding vector of mean coefficients and 𝛾𝑞(𝛿𝑞) is a vector of 

coefficients representing the impact of unobserved factors moderating the influence of 

corresponding element of 𝑥′′
𝑞𝑡 for boardings (alightings), ℎ𝑞𝑡 represents the headway variables 

generated from 𝐻𝑞𝑡 for consideration in boarding and alighting. 𝜃′ (𝜃′′) represents the 

corresponding vector of mean coefficients and 𝜇′𝑞 (𝜇′′𝑞) is a vector of coefficients representing 

the impact of unobserved factors moderating the influence of corresponding element ℎ𝑞𝑡 for 

boardings (alightings). 𝜀𝑞𝑡 (𝜉𝑞𝑡) is an idiosyncratic random error term assumed to be 

independently logistic distributed across choice stops and choice occasions for boardings 

(alightings) with variance 𝜆𝐵
2  (𝜆𝐴

2). The variance vectors for boarding’s and alighting’s are 

parameterized as a function of independent variables as follows: 𝜆𝐵 = exp (𝜋′𝑙𝑞𝑡) and: 𝜆𝐴 =

exp (𝜋′′𝑙𝑞𝑡) where 𝑙𝑞𝑡 represent independent variables that influence the variance, while 𝜋′ and 𝜋′′ 
are corresponding coefficient vectors. The parameterization allows for the variance to be different 

across the bus stops accommodating for heteroscedasticity. 𝜂𝑞 present in all three equations 

represents the vector of coefficients that accommodates for the impact of stop level common 

unobserved factors that jointly influence boardings, alightings and headway. The ′ ± ′ sign 

indicates that the potential impact could be either positive or negative. A positive sign implies that 

unobserved factors that increase the headway for a given reason will also increase the propensity 

for boarding/alighting, while a negative sign suggests that unobserved individual factors that 

increase the propensity for headway will decrease the propensity for boarding/alighting. In our 

empirical context, we expect the relationship to be negative.  

Further, to accommodate for ridership category specific effects 𝑧𝑞𝑗𝑡 is a vector of attributes 

specific to stop 𝑞 and ridership category alternative 𝑗, while 𝜌𝑗 and 𝜏𝑗 is the vector of corresponding 

ridership category-specific coefficients for boarding and alighting components, respectively. To 

complete the model structure of Equations (1), (2) and (3), it is necessary to define the structure 

for the unobserved vectors 𝛾𝑞 , 𝛿𝑞, 𝜎𝑞, 𝜇𝑞 (combined vector of 𝜇′𝑞 and 𝜇′′𝑞) and 𝜂𝑞. In this paper, 
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we assume that these vectors are independent realizations from normal distributions as follows: 

𝛾𝑞𝑛 ~𝑁(0, 𝜅𝑛
2) 𝛿𝑞𝑛~𝑁(0, 𝜈𝑛

2), 𝜎𝑞𝑛~𝑁(0, 𝜍𝑛
2) 𝜇𝑞𝑛~𝑁(0, 𝜊𝑛

2) and 𝜂𝑞𝑛 ~𝑁(0, 𝜚𝑛
2). 

With these assumptions, the probability expressions for the ridership category may be 

derived. Conditional on 𝛾𝑞𝑛, 𝛿𝑞𝑛, 𝜎𝑞𝑛, 𝜇𝑞𝑛 and 𝜂𝑞𝑛, the probability for stop q to have headway,  

boarding, and alighting in the tth time period is respectively given by: 

 

𝑃(𝐻𝑚𝑡)|𝜎, 𝜂 =  Λ [𝜛𝑚 − ((𝜈′ + 𝜎𝑞
′ )𝑥′𝑞𝑡 + (𝜂′𝑞)𝑦𝑞𝑡)]

−  Λ [𝜛𝑚−1 − ((𝜈′ + 𝜎𝑞
′ )𝑥′𝑞𝑡 + (𝜂′𝑞)𝑦𝑞𝑡)] 

(4) 

 

𝑃(𝐵𝑗𝑡)|𝛾, 𝜂 =  Λ [
𝜓𝑗−((𝛼′+𝛾𝑞

′)𝑥′′𝑞𝑡+(𝜌𝑗
′)𝑧𝑞𝑗𝑡+(𝜃′+𝜇′𝑞)ℎ𝑞𝑡±(𝜂′

𝑞)𝑦𝑞𝑡)

𝜆𝐵
] −

 Λ [
𝜓𝑗−1−((𝛼′+𝛾𝑞

′)𝑥′′𝑞𝑡+(𝜌𝑗
′)𝑧𝑞𝑗𝑡+(𝜃′+𝜇′𝑞)ℎ𝑞𝑡±(𝜂′

𝑞)𝑦𝑞𝑡)

𝜆𝐵
]  

(5) 

  
𝑃(𝐴𝑗𝑡)|𝛿, 𝜂

=  Λ

[
 
 
 
 𝜓𝑗 − ((𝛽

′
+ 𝛿𝑞

′
)𝑥′′𝑞𝑡 + (𝜏𝑗

′)𝑧𝑞𝑗𝑡 + (𝜃′′ + 𝜇′′𝑞)ℎ𝑞𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐵

]
 
 
 
 

−  Λ

[
 
 
 
 𝜓𝑗−1 − ((𝛽

′
+ 𝛿𝑞

′
)𝑥′′𝑞𝑡 + (𝜏𝑗

′)𝑧𝑞𝑗𝑡 + (𝜃′′ + 𝜇′′𝑞)ℎ𝑞𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐵

]
 
 
 
 

 

(6) 

  

where Λ (.) is the cumulative standard logistic distribution.  

Let Ω  represent a vector that includes all the standard error parameters to be estimated. 

Given these assumptions the joint likelihood for stop level boarding and alighting is provided as 

follows: 

  

𝐿𝑞|Ω =  ∏ [∏ [𝑃(𝐻𝑚𝑡)|𝜎, 𝜂]𝑑ℎ𝑚𝑡

𝑀

𝑚=1

𝑇

𝑡=1

∗  {∏ [(𝑃(𝐵𝑗𝑡)|𝛾, 𝜂)]
𝑑𝑏𝑗𝑡

𝐽

𝑗=1
[(𝑃(𝐴𝑗𝑡)|𝛿, 𝜂)]

𝑑𝑎𝑗𝑡
}] 

(7) 

 

where 𝑑ℎ𝑚𝑡 is a dummy variable taking a value of 1 if stop q has headway within the mth category 

for the tth time period and 0 otherwise; 𝑑𝑏𝑗𝑡 and 𝑑𝑎𝑗𝑡 are dummy variables taking a value of 1 if 

stop q has ridership within the jth category for the tth time period and 0 otherwise. Finally, the 

unconditional likelihood function may be computed for stop q as: 

 

𝐿𝑞 = ∫ (𝐿𝑞|Ω)𝑓(Ω)𝑑Ω
Ω

 (8) 

 

The log-likelihood function is given by 



   

9 

 

Ln(L) =  ∑ ln 𝐿𝑞

𝑄

𝑞=1
 (9) 

 

The likelihood function in Equation (8) involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in Ω. We apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function (See Bhat 

2003, Yasmin and Eluru 2013 for more details). The likelihood functions are programmed in 

GAUSS (Aptech 2016). 

 

EMPIRICAL ANALYSIS 
The current research effort is conducted using data from the Greater Orlando region. Orlando is a 

typical American city in the south with the following transportation mode share: automobile 

(85.7%), public transit (1.0%), walk (9.2%) and bike (1.2%). The main public transit system 

serving the Orlando metropolitan region is the Lynx transit system. Lynx system serves the 

population of about 1.8 million in Orange, Seminole, Osceola and Polk County covering 2,500 

square miles. The system has 77 daily routes offering about 105,682 rides on weekdays. The 

number of bus stops considered for analysis include 3,444 stops. Of these, 2,800 stops data are 

used for model estimation while 644 stops data are set aside for validation from each quarter. The 

average weekday ridership data for each time period were obtained from Lynx transit authority. 

For our analysis, headway, average weekday boarding and alighting ridership data was considered 

from May 2013 to December 2016 for 11 quadrimesters. The final sample consists of 37,884 

records (3,444 stops × 11 quarters).  

 

Dependent Variables 
For our analysis, headway variable and ridership variables – boarding and alighting – are 

considered as dependent variables. For headway variable, the percentage across categories is 9.1%, 

37.7% and 53.2% for category 1, category 2 and category 3, respectively. The average daily stop 

level boarding (alighting) is around 18.84 (18.70) with a minimum of 0 (0) and maximum of 6,135 

(5,943). A summary of the system-level ridership (boarding and alighting) is provided in Table 1. 

The reader would note that the standard deviation of ridership reported is large as the ridership 

varies significantly across different bus stops.  

 

Table 1 Summary Statistics of Lynx Bus Ridership (August 2013 to December 2016) 

Time-

period 
Quarter Name 

Boarding Alighting 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

1 August-13 19.91 140.54 19.63 132.67 

2 December-13 19.17 135.70 19.04 129.16 

3 April-14 19.03 142.17 18.88 137.42 

4 August-14 19.66 144.18 19.50 136.68 

5 December-14 18.51 132.80 18.45 128.70 

6 April-15 18.81 138.54 18.89 133.20 

7 August-15 18.79 138.63 18.77 132.55 

8 December-15 18.55 131.09 18.43 129.42 
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9 April-16 17.84 127.10 17.83 126.67 

10 August-16 18.64 131.77 18.50 130.15 

11 December-16 18.29 129.38 17.84 124.80 

 

Independent Variables 
Several exogenous variables are generated to augment the ridership information. The information 

is sourced from Lynx GIS shapefiles, 2010 US census data, American Community Survey, Florida 

Geographic Data Library, and Florida Department of Transportation (FDOT) databases. The 

exogenous attributes considered in our study can be divided into four broad categories: (1) Stop 

level attributes (such as headway), (2) Transportation and transit infrastructure variables 

(secondary highway length, rail road length and local road length, sidewalk length, Lynx bus route 

length, presence of shelter and distance of bus stop from central business district (CBD)), (3) Built 

environment and land use attributes (such as institutional area, residential area, recreation area, 

office area) (4) Demographic and socioeconomic variables in the vicinity of the stop (such as 

income, vehicle ownership, and age and gender distribution) for each time period. For generating 

exogenous variable values, we have considered several buffer distances (800m, 600m, and 400m) 

around each bus stop. The descriptive statistics of exogenous variables are presented in Table 2.

 

MODEL ESTIMATION RESULTS 
 

Model Specification and Overall Measures of Fit 
The empirical analysis involves estimation of different models: 1) Independent ridership-headway 

(IRH) model that does not accommodate for headway endogeneity and 2) Joint ridership-headway 

(JRH) model that explicitly accommodates for headway endogeneity. Prior to discussing the 

estimation results, we compare the performance of these models in this section. We employ the 

Bayesian Information Criterion (BIC) to determine the best model between independent and joint 

model. The BIC for a given empirical model is equal to: 

 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (10) 

 

where 𝐿𝐿 is the log-likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 is the 

number of observations. The model with the lower BIC is the preferred model. The log-likelihood 

values at convergence for the models estimated are as follows: (1) IRH model (with 54 parameters) 

is -110,705.364 (2) JRH model (with 56 parameters) is -104,965.476. The BIC values for the final 

specifications of IRH and JRH are 221,968.833 and 210,509.727, respectively. The comparison 

exercise clearly highlights the superiority of the Joint model in terms of data fit compared to 

independent model.  

 

Variable Effects 
In presenting the effects of the exogenous variables, we will restrict ourselves to the discussion of 

the joint model2. The final specification of the model was based on removing the statistically 

insignificant variables in a systematic process based on statistical confidence (95% confidence 

level). The specification process was also guided by prior research and parsimony considerations. 

In estimating the models, several functional forms and variable specifications are explored. The 

                                                 
2 Estimation results for independent model is presented in Appendix A. 
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functional form that provided the best result was used for the final model specifications. In 

determining the appropriate buffer sizes, each variable for a buffer size was systematically 

introduced (starting from 800m to 400m buffer size) and the buffer variable that offered the best 

fit was considered in the final model specification.  

Table 3 presents the estimation results of the joint model. Specifically, columns 2 and 3 

provide the variable impacts of the headway component while columns 4 through 7 present the 

results of boarding and alighting components. The results are organized in 4 categories: (a) 

independent variables, (b) alternative specific effects for ridership component, (c) variance 

parameters for ridership component and (d) joint common unobserved factors. The reader would 

note that after accounting for joint common unobserved factors across the three variables, the 

impact of other unobserved factors - parameter vectors 𝛾𝑞 , 𝛿𝑞, 𝜎𝑞, 𝜇𝑞- in the headway and ridership 

models were not statistically significant. The model results are discussed separately for headway 

and ridership components.  

 

Headway Component 

The positive (negative) coefficient corresponds to increased (decreased) propensity for longer 

headway categories.  

 

Transportation Infrastructure Characteristics 

The bus route length of 800m buffer has a negative impact on headway. The variable impact is 

expected. Bus stops with larger bus route length are likely to have higher frequency of bus arrivals 

i.e. lower headway. A negative impact of the presence of bike length in 800m vicinity of the bus 

stop on headway is also along expected lines. The presence of bicycle infrastructure serves as a 

proxy for denser neighborhoods encouraging non-automobile alternatives. The presence of 

increased secondary highway length in the 800m buffer decreases the headway while a 

corresponding increase in local road length increases headway. The roadway length variable is 

possibly serving as an indicator of urban locations. The results also indicate that in the presence of 

a railroad, headway is likely to be lower. The result warrants further investigation.   

 

Built Environment Attributes 

The built environment around a bus stop has a significant impact on bus frequency. The presence 

of industrial and residential areas within an 800m buffer of a bus stop is likely to increase the 

headway. On the other hand, in the presence of institutional, recreational and office area (800m 

buffer), the headway is likely to be lower. The results are intuitive. An increase in the stop distance 

from the CBD is likely to increase the headway (as expected). 

 

Demographic and Socioeconomic Characteristics 

In terms of demographic and socioeconomic variables, vehicle ownership variable has a significant 

impact. Specifically, locations with higher proportion of households with no vehicle are likely to 

have a lower headway value. The result is perhaps indicating the fact that households with no 

vehicles are captive to transit mode.  
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Table 2 Descriptive Statistics of Exogenous Variables 

Variable Name Variable Description Percentage Minimum Maximum Mean 

Stop Level Attributes          

Dummy for headway category 1  Headway 0~15 minutes 9.094% - - - 

Dummy for headway category 2 Headway >15~30 minutes 37.688% - - - 

Dummy for headway category 3 Headway >30 minutes 53.218% - - - 

Number of bus stop (800m buffer)  No of bus stop within 800m buffer of a stop/10 - 0.100 9.300 1.727 

Transportation Infrastructure Around the Stop 

Bus route length in a 800m buffer Bus route length in kilometers (Bus route length in 800 m 

buffer/10) 

- 0.000 8.710 0.878 

Sidewalk length in an 400m buffer Sidewalk length in kilometers in 400m buffer - 0.000 7.557 0.985 

Bike Lane Length (800m buffer) Bike Lane length in km in 800m buffer  - 0.000 9.100 0.458 

Secondary highway length (800m 

buffer) 

Secondary highway length in 800 m buffer / 10 - 0.000 4.278 0.964 

Railroad length in an 800m buffer Railroad length in kilometers in 800m buffer - 0.000 6.312 0.301 

Local road length in an 800m buffer Local road length in 800 m buffer / 10 - 0.000 6.048 2.138 

Presence of shelter in bus stop Shelter (1 = Yes and 0 = No) 22.750% - - - 

Built Environment Around the Bus Stop  

Industrial area (800m buffer) Proportion of the industrial area in 800m buffer = 

Industrial area/Total area 

- 0.000 0.738 0.054 

Residential area (800m buffer) Proportion of the Residential area in 800m buffer = 

Residential area/Total area 

- 0.000 0.992 0.443 

Institutional area (800m buffer) Proportion of the Institutional area in 800m buffer = 

Institutional area/Total area 

- 0.000 0.720 0.041 

Recreational area (800m buffer) Proportion of the Recreational area in 800m buffer  = 

Recreational area/Total area 

- 0.000 0.557 0.012 

Office area (800m buffer) Proportion of the office area in 800m buffer = Office 

area/Total area 

- 0.000 0.957 0.171 

Central business district (CBD) distance (CBD distance in km from bus stop)/10 - 0.003 5.058 1.183 

Demographic and Socioeconomic Variables in Census Tract  

Zero vehicle in household (HH) Percentage of zero vehicle HH - 0.000 0.618 0.061 

High income (>100k) Percentage of High income HH (>100k) - 0.000 0.695 0.131 

Household rent Percentage of rented HH  50.058% - - - 
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Table 3 Lynx Ridership Analysis Results 

Variable Name 
Headway  Alighting  Boarding  

Estimates t-stat Estimates t-stat Estimates t-stat 

Independent Variables (𝜈, 𝛼, 𝛽) 

Constant - - -13.010 -16.049 -23.992 -24.242 

Threshold Value 1 -3.998 -76.179 - - - - 

Threshold Value 2 0.302 6.016 - - - - 

Stop Level Attributes 

Headway (Base: Category 1)       

Dummy for headway category 2 - - -45.477 -99.782 -51.083 -99.457 

Dummy for headway category 3 - - -70.976 -135.682 -77.723 -130.697 

No of Bus stop in an 800 m buffer - - -4.422 -29.238 -4.447 -26.104 

Bus route Length in an 800 m buffer -0.815 -73.068 -2.374 -15.692 -3.546 -21.583 

Presence of shelter in bus stop - - 19.981 75.939 34.953 111.848 

Transportation Infrastructure  

Sidewalk length in an       

400 m buffer - - 2.694 14.902 2.184 10.767 

Bike road length in an       

800 m buffer -0.204 -26.582 - - - - 

Secondary road length in an       

800 m buffer -0.506 -38.451 8.436 39.398 7.011 29.586 

Local road length in an       

800 m buffer 0.312 21.616 4.568 22.290 4.788 19.872 

Railroad length in an       

800 m buffer -0.633 -53.374 - - - - 

Built Environment and Land-use Attributes 

Land use area type in an 800m buffer       

Institutional area -1.879 -18.141 24.718 13.492 6.032 2.721 

Residential area 1.770 31.501 - - 14.806 17.950 

Office area -2.164 -27.960 40.455 43.718 42.40 32.023 

Recreational area -0.432 -1.917 -75.918 -25.522 -65.009 -19.079 

Industrial Area 5.208 42.210 - - - - 

Distance from Central business 

district (CBD)  
0.489 44.374 -3.358 -17.764 -3.796 -18.357 

Demographic and Socioeconomic Variables  

Zero vehicle in HH -2.206 -14.453 76.737 29.154 72.871 24.309 

High income population -0.620 -8.667 - - - - 

Household rent - - 30.784 47.983 35.120 48.800 

SunRail Effects 

Distance Decay Function for 

SunRail*SunRail operation period 
- - -5.008 -18.494 -5.167 -17.671 

Alternative Specific Effects (𝜌𝑗 and 𝜏𝑗) 

Constant – Alternative 1 (0-5 

ridership) 
- - 37.502 125.131 42.933 123.530 
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Constant – Alternative 2 (>5-10 

ridership) 
- - 17.910 82.816 20.340 82.613 

Variance (𝜆𝐵
2  and 𝜆𝐴

2) 

Constant - - 3.263 753.061 3.348 706.331 

Joint Common Unobserved Factors (𝜂′𝑞) 

Constant 1.736 157.142 

Route Length in 800m buffer 0.792 106.031 

 

Boarding and Alighting Components  

 

Stop Level Attributes 

In our ridership models, headway variable was considered with lowest headway category as the 

base case. The corresponding parameter estimates for headway categories 2 and 3 clearly indicate 

that increasing headway has a negative impact on ridership (for both boarding and alighting). The 

reader would note that incorporating headway endogeneity does not eliminate the impact of 

headway on ridership. It is estimated more accurately. The parameter for the number of bus stops 

in an 800m buffer indicates that with increasing number of stops in the buffer, ridership values 

decrease indicating competition across the stops (see Rahman et al. 2019 for similar result). The 

result is further reinforced by the parameter estimates of bus route length in an 800m buffer. The 

presence of bus shelter has a significant impact on ridership and as expected, the impact is positive 

on ridership.  

 

Transportation Infrastructure Characteristics 

Several transportation infrastructure variables affect boarding and alighting including sidewalk 

length in a 400m buffer, secondary highway road length in an 800m buffer and local road length 

in an 800m buffer. All the three variables have a positive impact on ridership. The results are 

intuitive. In the presence of sidewalk, transit riders have easy access to bus stops and are more 

likely to use transit in their presence. The presence of secondary highway and local roads is more 

conducive to transit ridership as opposed to major highways. Also, these roads connect transit 

riders to the residences (local roads) and potential destinations (secondary highways connecting to 

jobs and activities). 

 

Built Environment Attributes 

The built environment around a bus stop has a significant influence on bus ridership at the stop 

level. The presence of office area and the institutional area in 800m buffer within a stop 

significantly increase the bus ridership in Orlando. The proportion of residential area has positive 

effect on boarding ridership of 800m buffer, but no impact on alighting ridership. On the other 

hand, the presence of recreation area within 800m buffer of a stop reduces bus ridership. The 

distance from the CBD from a bus stop negatively impacts the bus ridership. This is expected 

because ridership is likely to fall as we move away from CBD. As SunRail was introduced during 

the study period, we also considered the impact of the commuter rail system on bus ridership. In 

our analysis, we tested several functional forms. Only the inverse distance from SunRail station to 

the bus stop – referred to as distance decay function - offered significant parameter for ridership. 

Specifically, the distance decay function with the interaction of SunRail operation period (from 

March, 2014) is found to have significant impact in the final specified model. The interaction term 

indicating that the SunRail influence has a negative coefficient implies that the bus ridership is 
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likely to be lower for the stops closer to the SunRail stations. The result is perhaps indicative of 

the competition between the two transit systems.  

 

Demographic and Socioeconomic Characteristics 

The demographic and socioeconomic variables based on census tract of the bus stop significantly 

affect bus ridership in Orlando. Specifically, an increased share of rented household in Orlando is 

likely to increase bus ridership. The automobile ownership variable defined as household with no 

vehicle has a positive impact on ridership. The result is expected as these individuals are likely to 

be captive riders and mostly rely on public transportation.  

 

Alternative Specific Effects for Ridership Component 

In the ridership components, the alternative specific impacts were examined for a subset of the 

alternatives (denoted as 𝜌𝑗 and 𝜏𝑗). In both components, constant for first two categories offered 

statistically significant results improving the data fit. These parameters do not have any specific 

interpretations except to serve as intercepts. 

 

Variance Parameters for Ridership Component  

As described in the methodology section, the proposed model framework relaxes the assumption 

that the error terms 𝜀𝑞𝑡, 𝜉𝑞𝑡 are standard logistically distributed. Hence, the standard deviation of 

the error terms estimated are reported. While we tested for several variables in the parameterization 

only the constant variable was statistically significant.  

 

Joint Common Unobserved Factors (Endogeneity) 

The last row panel of results in Table 3 provide the estimates for joint common unobserved factors 

(𝜂′𝑞) affecting the three dependent variables. The endogeneity impact is captured through two 

variables – a constant and route length in 800 m buffer. The correlation among the components 

could be either positive or negative. In our analysis, we found the negative sign to offer better fit 

for common correlation. Overall, the results clearly support our hypothesis that common 

unobserved factors influence the three components. The results indicate that as the bus route length 

increases the influence of common factors affecting the three dependent variables increases.  

 

MODEL VALIDATION 
The model developed was validated using a hold-out sample. For this purpose, we generated 

various measures for the hold-out sample with 644 stops (11 records per stop). We calculated 

predictive log-likelihood, Bayesian information criterion (BIC), Akaike information criterion 

(AIC) and Corrected Akaike information criterion (AICc) measures to compare the performance 

of the estimated independent and joint models. The predictive log-likelihood value for the joint 

model and independent model are -243,072.04 and -271,401.66, respectively; the corresponding 

BIC values are 486,640.55 and 543,282.06, respectively. The AIC (AICc) values for the joint and 

independent models are 486,256.08 (486,256.54) and 542,911.32 (542,911.75) respectively. All 

of these measures clearly highlight that the improvement in the joint model is not a manifestation 

of over fitting, and further supports our hypothesis that headway is endogenous to ridership 

components in the current study context.  
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POLICY ANALYSIS 
To illustrate the influence of headway endogeneity, we investigate change in boarding and 

alighting ridership categories by changing various independent variables for independent and joint 

models. The variables considered in our exercise include the number of zero vehicle households, 

length of sidewalk in a 400m buffer, number of rented households, presence of shelter at the bus 

stop, change to the headway category, institutional area and residential area in an 800m buffer. For 

our analysis, we consider a 25% increase in all variables except residential area. For residential 

area, we consider 10% increase in an 800m buffer variable. For headway variable, we randomly 

changed headway for 25% of the stops from category 2 to category 3 (i.e. increased headway for 

some randomly selected stops). Based on these new variable values, an elasticity analysis is 

performed (see Eluru and Bhat 2007 for a discussion on the methodology for computing 

elasticities). The results for the elasticity effects across different ridership categories are presented 

in Table 4 for boardings and alightings for both independent and joint models. The numbers in 

Table 4 may be interpreted as the percentage change in each ridership categories due to the change 

in exogenous variable. Several observations can be made from Table 4. First, the elasticity 

estimates obtained for all variables are significantly different for the independent and the joint 

model. The elasticity comparison highlights how ignoring the presence of headway endogeneity 

could result in incorrect estimates and elasticities for headway and other independent variables. 

Second, sidewalk length, number of rented households and presence of shelter have positive 

impact on ridership. The changes in these variables is likely to increase the ridership significantly. 

Third, as expected, change of headway category for category 2 to category 3 has a negative impact 

on ridership. Finally, the policy analysis illustrates how any potential change to independent 

variables can be analyzed using the proposed model framework.  

 The proposed model structure can also be utilized to predict boardings and alightings after 

making changes to the independent variables. To illustrate this, we perform a forecasting analysis 

by considering the change in residential area (10% increase), headway (25% increase in headway 

category 3 to 2), length of sidewalk (25% increase), bike length (25% increase), and zero vehicles 

household (25% increase). We consider these variables for the forecasting exercise to reflect transit 

friendly development and investments. In generating the forecasted ridership categories based on 

the change in above variables, we identify the ridership categories based on probabilistic 

assignment by using predicted probabilities computed from the joint model. The probabilities are 

appropriately aggregated across ridership categories to identify the corresponding bin specific 

frequencies. For illustration purposes, we plot the ridership categories identified for the observed 

and forecasted scenarios for a sample of 200 randomly selected stops. These plots are presented in 

Figure 1 (for alighting) and Figure 2 (for boarding). From these figures, it is evident that transit 

friendly investments have substantial impact on increasing transit ridership providing credence to 

the rationale that to increase the ridership, service improvements related to public transit 

(improvement of headway, sidewalk and addition of shelters) should be considered. The 

development of such forecasting scenarios would assist policy makers and transit agencies in 

identifying ideal locations for transit friendly infrastructure installation.
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Table 4 Policy Analysis 

Bin 

Zero vehicle HH 

25% Increase 

Sidewalk 25% 

increase 

Rented HH  25% 

increase 

Presence of 

Shelter 25% 

increase 

25% add to 

headway 

category 2 from 

headway 

category 3 

Institutional 

area 25% 

increase 

Residential area 

10% increase 

IM JM IM JM IM JM IM JM IM JM IM JM IM JM 

Boarding Component 

1 -0.49% -0.57% -8.44% -6.19% -5.37% -5.66% -6.78% -7.74% 4.72% 6.00% 0.57% -0.14% -2.07% -1.67% 

2 0.25% 0.22% 3.21% 1.96% 2.76% 2.24% 0.12% -1.20% -6.98% -8.38% -0.45% 0.09% 2.94% 2.17% 

3 0.64% 0.61% 10.72% 6.51% 6.94% 6.06% 8.01% 6.44% -6.06% -7.21% -0.80% 0.16% 3.91% 2.86% 

4 0.92% 0.85% 16.60% 9.45% 9.97% 8.40% 15.41% 12.60% -4.98% -6.04% -1.00% 0.20% 3.80% 2.84% 

5 1.07% 0.95% 19.80% 10.67% 11.58% 9.35% 19.69% 15.57% -4.43% -5.50% -1.06% 0.22% 3.33% 2.67% 

6 1.22% 1.05% 22.82% 11.81% 13.09% 10.22% 23.57% 18.59% -4.02% -5.01% -1.10% 0.23% 2.58% 2.42% 

7 1.35% 1.14% 25.55% 12.90% 14.45% 11.07% 26.73% 21.65% -3.74% -4.58% -1.11% 0.24% 1.53% 2.09% 

8 1.45% 1.23% 27.75% 13.97% 15.51% 11.92% 28.94% 24.67% -3.60% -4.22% -1.10% 0.25% 0.04% 1.69% 

9 1.50% 1.33% 29.11% 15.04% 16.11% 12.80% 30.10% 27.53% -3.55% -3.93% -1.07% 0.26% -2.12% 1.22% 

10 1.51% 1.43% 29.40% 16.09% 16.19% 13.70% 30.17% 30.09% -3.59% -3.72% -1.01% 0.27% -5.28% 0.65% 

11 1.46% 1.52% 28.55% 17.11% 15.79% 14.57% 29.23% 32.27% -3.73% -3.57% -0.93% 0.27% -9.68% -0.04% 

12 1.34% 1.63% 25.80% 18.35% 14.92% 15.65% 26.78% 34.54% -4.10% -3.48% -0.74% 0.27% -17.71% -1.33% 

13 0.75% 1.59% 12.07% 17.37% 9.82% 15.68% 15.42% 32.71% -3.38% -3.33% -0.06% 0.21% -56.61% -13.87% 

Alighting Component 

1 -0.72% -0.69% -9.31% -8.58% -4.96% -5.76% -2.95% -4.98% 5.04% 6.59% -0.03% -0.66% - - 

2 0.21% 0.14% 1.69% 0.77% 1.87% 1.48% 0.00% -0.88% -6.86% -8.50% 0.02% 0.26% - - 

3 0.82% 0.64% 10.00% 7.33% 5.74% 5.45% 2.93% 3.40% -5.87% -7.24% 0.04% 0.67% - - 

4 1.30% 0.97% 17.25% 12.06% 8.67% 7.97% 5.89% 7.00% -4.72% -5.94% 0.05% 0.91% - - 

5 1.58% 1.11% 21.72% 14.20% 10.31% 9.02% 7.87% 8.91% -4.14% -5.31% 0.05% 1.00% - - 

6 1.84% 1.25% 26.22% 16.26% 11.82% 10.02% 9.78% 10.95% -3.70% -4.75% 0.06% 1.07% - - 

7 2.07% 1.39% 30.55% 18.36% 13.11% 11.02% 11.43% 13.12% -3.42% -4.27% 0.06% 1.15% - - 
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8 2.25% 1.53% 34.34% 20.56% 14.10% 12.05% 12.68% 15.35% -3.25% -3.88% 0.06% 1.22% - - 

9 2.37% 1.67% 37.22% 22.89% 14.76% 13.09% 13.50% 17.52% -3.19% -3.57% 0.06% 1.28% - - 

10 2.44% 1.81% 38.96% 25.30% 15.05% 14.12% 13.86% 19.52% -3.17% -3.33% 0.06% 1.35% - - 

11 2.43% 1.95% 39.44% 27.68% 14.97% 15.08% 13.77% 21.26% -3.14% -3.16% 0.06% 1.40% - - 

12 2.30% 2.10% 37.70% 30.65% 14.16% 16.18% 12.77% 23.13% -2.98% -3.01% 0.06% 1.46% - - 

13 1.76% 2.20% 24.94% 32.77% 11.18% 16.80% 10.11% 24.00% -1.97% -2.67% 0.03% 1.40% - - 

Note: IM = Independent Model; JM = Joint Model 
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Figure 1 Policy Analysis (Observed and Forecasted Alighting Ridership Categories) 
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Figure 2 Policy Analysis (Observed and Forecasted Boarding Ridership Categories) 
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CONCLUSIONS 
Policy makers and urban agencies, across different parts of North America, are considering 

investments in various public transportation alternatives including bus, light rail, commuter rail, 

and metro. A critical component to evaluating the success of these investments is the development 

of appropriate statistical tools to examine the impact. Our proposed research contributes to public 

transit literature by developing econometric models that consider the potential endogeneity of stop 

level headway in modeling ridership. Most of the earlier studies in public transit literature ignore 

that the stop level headway was determined (by choice) in response to the expected ridership. In 

traditional ridership studies, this potential endogeneity is often neglected, and headway is 

considered as an independent variable. The approach violates the requirement that the unobserved 

factors that affect the dependent variable do not affect the independent variable. If this is the case, 

the estimated impact of headway on ridership would be biased (potentially over-estimated). More 

importantly, the estimated impact of all other variables (such as land use factors, bus infrastructure) 

will also be biased (possible under-estimated).  

In this study, we addressed these challenges by proposing a simultaneous equation system 

that considered headway and ridership in a joint framework accounting for the influence of 

common unobserved factors that affect headway and ridership. The proposed model was 

developed employing ridership data from the Lynx bus transit system of the Greater Orlando 

region. The ridership data included stop level average weekday boarding and alighting information 

for 11 quadrimesters from May-2013 to December-2016. The presence of multiple data points for 

each stop allowed us to develop panel models for headway, boarding and alighting. The headway 

variable was modeled using a panel ordered logit model while the ridership variables were 

modeled using panel grouped ordered logit models. In addition to unobserved effects in the form 

panel random effects, several exogenous variables including stop level attributes, transportation 

infrastructure variables, transit infrastructure variables, land use and built environment attributes 

and demographic and socioeconomic variables in the vicinity of the bus stop were considered in 

the model estimation.  

The proposed model was estimated and compared to the model that ignore the potential 

endogeneity of headway. The comparison results clearly highlighted the improved model fit of the 

proposed framework. The model estimation results identified that headway, number of the bus 

stops in the 800m buffer, presence of shelter at the bus stop, sidewalk length in a 400m buffer, bus 

stop distance from the central business district (CBD), distance between Sunrail station and bus 

stop, and automobile ownership are likely to impact bus ridership in Orlando. The model system 

developed was also validated with a hold-out sample. Finally, a policy analysis exercise was 

conducted to illustrate how the model framework can be used by policy makers. The model 

developed can provide policy makers the necessary framework to evaluate changes to ridership 

based on a series of changes under consideration.    
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APPENDIX A Lynx Ridership Independent Model Results –  

Variable Name 
Headway  Alighting  Boarding  

Estimates t-stat Estimates t-stat Estimates t-stat 

Independent Variables (𝜈, 𝛼, 𝛽) 

Constant - - -12.06 -22.96 -18.65 -27.88 

Threshold Value 1 -2.20 -66.78 - - - - 

Threshold Value 2 0.40 12.49 - - - - 

Stop Level Attributes 

Headway (Base: Category 1)       

Dummy for headway category 2 - - -22.77 -70.01 -25.99 -71.63 

Dummy for headway category 3 - - -39.64 -107.02 -42.69 -103.36 

No of Bus stop in an 800 m buffer - - -2.41 -27.99 -2.77 -28.14 

Bus route Length in an 800 m buffer -0.44 -66.26 -0.70 -6.99 -0.80 -6.59 

Presence of shelter in bus stop - - 7.77 44.99 19.71 97.05 

Transportation Infrastructure  

Sidewalk length in an       

400 m buffer - - 1.97 17.55 1.98 15.79 

Bike road length in an       

800 m buffer -0.17 -38.02 - - - - 

Secondary road length in an       

800 m buffer -0.32 -42.02 5.55 40.65 4.72 31.61 

Local road length in an       

800 m buffer 0.26 27.24 1.87 14.34 1.32 8.00 

Railroad length in an       

800 m buffer -0.27 -37.84 - - - - 

Built Environment and Land-use Attributes 

Land use area type in an 800m buffer       

Institutional area -1.68 -21.10 0.75 0.58 -16.81 -11.14 

Residential area 1.36 39.35 - - 11.91 20.06 

Office area -1.89 -37.55 30.93 50.71 25.94 28.63 

Recreational area -1.37 -11.11 -46.26 -25.16 -39.75 -19.09 

Industrial Area 2.63 42.87 - - - - 

Distance from Central business 

district (CBD)  
0.59 78.50 -1.09 -9.37 -1.98 -15.20 

Demographic and Socioeconomic Variables  

Zero vehicle in HH -1.37 -14.36 53.86 32.60 41.89 22.30 

High income population -0.67 -14.67 - - - - 

Household rent - - 17.90 43.25 22.24 47.32 

SunRail Effects 

Distance Decay Function for 

SunRail*SunRail operation period 
- - -5.06 -27.50 -5.35 -24.74 

Alternative Specific Effects (𝜌𝑗 and 𝜏𝑗) 

Constant – Alternative 1 (0-5 

ridership) 
- - 22.63 90.62 25.89 86.68 



 

24 

 

Constant – Alternative 2 (>5-10 

ridership) 
- - 10.61 58.69 12.29 57.54 

Variance (𝜆𝐵
2  and 𝜆𝐴

2) 

Constant - - 2.86 571.65 2.92 516.67 

 

 

 

 

 

 

 

 

 


