
1 

 

 
 

 
 
 

Impact of ICT access on personal activity space and greenhouse gas 
production: evidence from Quebec City, Canada 

 
 

Luis F. Miranda-Moreno 
Assistant Professor 

Department of Civil Engineering and Applied Mechanics 
McGill University, Montréal, Québec 

Canada H3A 2K6 
E-mail:  luis.miranda-moreno@mcgill.ca 

 
 

Naveen Eluru 
Assistant Professor 

Department of Civil Engineering and Applied Mechanics 
McGill University, Montréal, Québec 

Canada H3A 2K6 
E-mail:  naveen.eluru@mcgill.ca 

 
 

Martin Lee-Gosselin* 
Emeritus Professeur  

École Supérieure d'Aménagement du Territoire et de Développement Régional, 
and Centre de Recherche en Aménagement et Développement 

Université Laval, Quebec City 
Canada G1K 7P4 

*Corresponding author: 
E-mail: Martin.Lee-Gosselin@crad.ulaval.ca 

Fax: +1 418 656 2018 
Phone: + 1 418 828 9918 

 
 

Tyler Kreider 
Research Assistant 

Department of Civil Engineering and Applied Mechanics 
McGill University, Montréal, Québec 

Canada H3A 2K6 
E-mail:  tyler.kreider@mail.mcgill.ca 

 

 

 

mailto:Martin.Lee-Gosselin@crad.ulaval.ca


2 

 

ABSTRACT:  This paper presents an approach to investigating the impact of information and 

communication technologies (ICTs) on travel behaviour and its environmental effects.  The 

paper focuses on the spatial dispersion of out-of-home activities and travel (activity space) and 

greenhouse gas emissions (GHGs) at the level of the individual. An original method, combining 

spatial analysis in a geographic information system (GIS) with advanced regression techniques, 

is proposed to explore these potentially complex relationships in the case of access to mobile 

phones and the Internet, while taking into account the influence of socio-economics and built 

environment factors. The proposed methodology is tested using a 7-day activity-based survey in 

Quebec City in 2003-2004, a juncture of particular interest because these ICTs had recently 

crossed the threshold of 40% (mobile phone) and 60% (home-based Internet) penetration at the 

time. The study period also largely pre-dates the era of mobile Internet access.  Among other 

results, socio-demographic factors were found to significantly affect both ICT access and travel 

out-comes. The built environment, represented by neighbourhood typologies, also played an 

important role. However, it was found that after controlling for the self-selection effect, built 

environment and socio-demographics, those who had a mobile phone available produced 30% 

more GHGs during the observed week than those who did not.  This higher level of GHG pro-

duction was accompanied by a 12% higher measure of activity dispersion. On the other hand, 

having Internet access at home was associated with lower GHGs (-19%) and lesser activity 

dispersion (-25%). Possibly, mobile phones enable individuals to cover more space and produce 

more emissions, while the Internet provides opportunities to stay at home or avoid motorized 

travel thus reducing emissions. The estimated effects of having a mobile phone were not only 

negative but also larger in magnitude from the environmental point of view than those of fixed 

Internet access.  However, the results of this study also suggest that access to mobile phones 

and Internet may have substantial and compensatory effects at the individual level that are 

undetected when using model structures that do not take into account that unobserved factors 

may influence both ICT choices and travel outcomes.  
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1.  INTRODUCTION 

A number of earlier studies of Information and Communication Technologies (ICT) and individual 

travel behaviour have provided useful insights into the complex relationship between ICTs and 

travel patterns.  However, past research has mainly focused on the impact of ICTs on activity 

and travel outcomes such as number of trips, number of activities (total or per-capita) and 

distance travelled:  Bhat et al (2003), Kim & Goulias (2003), Sasaki & Nishii (2003), Srinivasan & 

Athuru (2004), Kenyon (2006), De Graaff & Rietveld (2007), Nobis & Lenz (2007), Lee-Gosselin 

& Miranda-Moreno (2009),  Nobis, & Lenz (2009), and Lyons (2009).  To our knowledge, no 

previous study has looked in an integrated way at the possible effects of ICTs on travel through 

changes in the dispersal of activities and the resulting consequences (positive or negative) for 

greenhouse gas (GHG) production, while controlling for other factors.  In particular, past studies 

that control for socio-demographic factors and/or the influence of the built environment, do not 

account for the possible presence of endogeneity between ICT take-up and travel1.  Controlling 

for both socio-demographics and the built environment, it is not hard to believe that a person 

who has a heavy daily agenda with a lack of time and a very active lifestyle may be more likely 

to have and use mobile phones, and to use motor-vehicles to reach activity locations over a 

wide area with a resulting high production of GHG emissions.2 If ICT access or use is not 

considered as a potentially endogenous variable, one might find a “spurious” dependence of ICT 

access and/or use on travel patterns. Finally, few studies have used fully disaggregated data to 

estimate ICT impacts at the individual level.  

 

This paper focuses on the potential role of access to two ICTs – mobile phones and home 

Internet connections – in the spatial dispersion of an individual‟s out-of-home activities and 

                                                 
1
 Endogeneity may be present in statistical models owing to the correlation between ICT access or use 

and travel outcomes (e.g., car usage and GHGs).  
2
 In other words, ICT can motivate travel and at the same time travel can motivate ICT access and use. 
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travel, and in her/his production of GHGs.  We introduce a novel integrated approach that 

controls not only for socio-demographics, but also for differences in the built environment at the 

home location, represented by neighbourhood typologies.  This is tested using a 7-day 

activity/travel diary with geocoded out-of-home activity locations, enabling measures of each 

respondent‟s spatial dispersion of activities and a GHG emissions inventory constructed from 

his/her trips. Socio-demographics and built environment factors are also taken into account, 

involving complementary sources of data. The approach combines a set of spatial analysis 

techniques and an advanced simultaneous modelling approach that takes potential self-

selection effects into account.   

 

2. LITERATURE REVIEW 

There is a significant body of literature investigating different aspects of the complex relationship 

between ICTs (such as the Internet and mobile phones) and travel behaviour. This goes back to 

the seminal work of Salomon (1985), who introduced the four potential interactions of ICT and 

travel: substitution, modification, neutrality and the generation of travel. Empirical evidence has 

provided insights on these interactions. For example, contrary to the initial speculation that ICT 

would lead to the elimination or substitution of the need for some travel, the so-called 

information revolution has been accompanied by an increase or generation of additional travel, 

e.g., see Choo & Mokhtarian, 2007. 

Moreover, other studies have provided some insights on how ICTs can lead to a more flexible 

organization of activities in time and space, and hence the generation of additional travel. Some 

examples are Kim & Goulias (2003), Bhat et al. (2003), Srinivasan & Raghavender (2006), Lenz 

& Nobis (2007), Kenyon & Lyons (2007), De Graaff & Rietveld (2007), Lee-Gosselin & Miranda-

Moreno (2009), and Foss & Couclelis (2011). From these studies, the impact of mobile 

telephones seems to be different from the impact of the Internet on activity and travel patterns. 

Mobile phone use is sometimes associated with increased out-of-home activity participation and 
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travel. However, the effect of Internet is less clear and in some cases, it has been associated 

with reduced travel.  The complexity of interactions between ICT and travel behaviour has 

required the introduction of new concepts such as activity fragmentation (Couclelis, 2000; Lenz 

& Nobis, 2007), multitasking (Kenyon & Lyons, 2007) and the balance between 

e-communication and travel (Foss & Couclelis 2011; Roy et al, 2011). An important body of 

research has also looked at teleworking and the size of net benefits from any changes in travel 

and emissions – e.g., see Koenig et al. (1996). Teleworking is, however, outside the scope of 

this paper. 

From these developments, it is reasonable to infer that ICTs are connected to the dispersal of 

out-of-home activities, the predominant measure of which is known as “activity space”.  The 

concept of activity space and its use to represent spatial behaviour draws on more than four 

decades of research in behavioural geography, and in recent years this has received a boost 

from increasingly accessible geocomputing tools. Buliung & Remmel (2008) and Buliung et al 

(2008) provide a literature review and an introduction to the software tools available.  Among the 

examples of research from the past decade is Axhausen et al (2001), who provide evidence of 

behavioural dynamics from unusually long activity-travel diaries (the six week Mobidrive survey). 

Buliung & Kanaroglou (2006) examine the potential household activity-travel response to a 

planned metropolitan polycentric hierarchy of activity centers. Their empirical evidence indicates 

an urban/suburban differential, with less daily travel and smaller activity spaces for urban 

households. Along similar lines, Manaugh & El-Geneidy (2011) use centrographic analysis to 

study the spatial dispersal of household activities. They explore the effect of accessibility 

measures, household size and socio-demographic factors. Among their results was that, while 

controlling for accessibility measures, wealthier households with high car access have more 

dispersed activity locations than poorer households. Harding et al (2012) examine the effect of 

clusters of land-use indicators on activity spaces while controlling for socio-demographics. Their 

results point to a significant relationship between activity dispersion and low levels of population 
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and employment density, low levels of public transit accessibility and land use mix. However, in 

the literature, the effects of ICT on the dispersion of activities have been reported only rarely. An 

exception is the recent work of Alexander et al. (2011) who studied activity dispersion in the 

context of the fragmentation of work-related activities. Their study found that ICT variables were 

associated with the fragmentation of work activities, in space and time. 

Despite these important theoretical concepts and the accumulation of empirical evidence on ICT 

and travel behaviour, little research has been done on direct or indirect impacts on energy 

consumption and the environment – one can refer to Koening et al. (1996), Fuchs (2008), and 

OECD (2010). Questions remain about the effects of the rapid adoption of ICTs on energy 

consumption, and therefore GHGs, at the individual, household or regional levels. Arguably, 

ICTs have contributed to major changes in the way we organize and execute activities and 

travel. With access to ICT, it is now possible to perform certain activities faster, in a more 

efficient and comfortable way, and at flexible times and places (such as organizing a 

spontaneous meeting with friends, e-commerce, e-work, online banking). It is plausible that 

these changes bring about decreases and/or increases in personal energy consumption and 

GHG production, but the net effects of theses changes is unclear. From the environmental point 

of view, smaller activity spaces seem desirable since they represent opportunities for lower 

energy consumption and GHG production from motorized travel at the individual and household 

level. Although this seems logical, it has not been tested empirically, and we sought a new 

modelling approach for the purpose. 

 

3. MODEL FORMULATION 

Our working conceptualisation was thus that the spatial dispersion of activities performed, and 

GHGs produced, by a given individual depend not only on socio-demographics and land-use 

(neighbourhood) characteristics, but also on the accessibility of technological instruments such 

as ICTs, that facilitate the flexibility of activities.  
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The choice of whether or not a person owns and uses ICT is multi-faceted. It depends on 

various factors that can directly or indirectly affect both the ICT choice and travel outcomes that 

ICT use may engender.  In this paper, we limit the notion of ICT choice to whether or not an 

individual has access to either or both of a mobile phone and a home Internet connection, rather 

than the level of ICT use. The following conceptual framework (Figure 1) illustrates the potential 

factors associated with access to mobile phone and Internet service for a given individual: 

 

 

Figure 1. Conceptual framework – link between ICT and travel outcomes  

In this framework, the choice of whether or not someone has access to a mobile phone and/or 

the Internet is directly affected by demographics.  ICT access then directly influences the two 

travel outcomes: activity spaces and GHGs. The two travel outcomes, in addition to the ICT 

access, are affected in turn by socio-demographics and neighbourhood land-use characteristics. 

Moreover, unobserved factors that affect the individual‟s propensity to having ICT access are 

likely to affect his/her travel outcomes (activity spaces and GHGs) as well. For example, the 

social network of an individual might require him/her to be more connected through ICT access. 
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Furthermore, these individuals may be more likely to travel for longer distances to pursue joint 

activities with network members. The challenge, therefore, is to address the likely presence of  

endogeneity within the decision framework.   

To estimate the effects of ICT access, an endogenous switching model is formulated adopting a 

similar approach to that proposed by Bhat & Eluru (2009). These authors estimated the impact 

of the built environment on daily household vehicle miles of travel (VMT), considering the self-

selection effect of neighbourhood household location. In the current study, we hypothesise that 

an individuals‟ access to a mobile phone and Internet depends on his/her activity-travel desires 

and needs, socio-demographic profiles and unobserved personality traits. We assume that the 

unobserved individual factors are common to the travel behaviour outcomes (GHG and activity 

space). Hence, introducing ICT access as an independent variable in the travel outcome model 

does not adequately capture the relationship between ICT access and travel outcome. Further, 

the potential endogeneity will result in biased model estimation results.  

To study the influence of ICT access on travel outcomes, taking into account the self-selection 

effect, the relationship is cast in the form of Roy‟s (1951) endogenous switching model system, 

which takes the following form (for details, see Maddala, 1983): 

*
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The first selection equation represents a binary discrete decision of an individual to have access 

to ICT (mobile phone or Internet). Note that this model however can be extended to the 

multinomial setting when modelling the different combinations of mobile phone and internet. As 

discussed above, due to the small sample size of the data used, this work models ICT only as a 

binary choice. The parameter,  in Equation (1) is the unobserved propensity to purchase 
*

q
r
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access to ICT relative to not having access to ICT, which is a function of an (M x 1)-column 

vector  of individual attributes (including a constant).  represents a corresponding (M x 1)-

column vector of individual attribute effects on the unobserved propensity to employ ICT. In the 

usual structure of a binary choice model, the unobserved propensity  gets reflected in the 

actual observed choice ( = 1 if the qth individual chooses to have access to ICT, and = 0 

if the qth individual decides not to use ICT).  is standard logistic error term capturing the 

effects of unobserved factors.  

The second and third equations of the system in Equation (1) represent the continuous outcome 

variables (such as activity space and GHGs) in our empirical context.  is a latent variable 

representing the area or GHGs if a random individual q were to have ICT available, and  is the 

corresponding variable if the individual q were to not have access to ICT. These are related to 

vectors of individual attributes  and , respectively, in the usual linear regression fashion, 

with  and  being random error terms. Of course, we observe  in the form of  only if 

individual q in the sample is observed not to employ ICT. Similarly, we observe  in the form 

of  only if individual q in the sample is observed to have access to ICT. The potential 

dependence between the error pairs  and has to be expressly recognized in the 

above system. In our study we employ the framework developed in Bhat and Eluru (2009) to 

accommodate for the potential dependence. For the sake of brevity, the copula framework3 that 

was employed is not elaborated here.  

4. CASE STUDY 

4.1 Initial steps 

For model development, the following preparatory steps were taken: 

                                                 
3
 The copula framework refers to coupling techniques of marginal error terms from various distributions 

through a pre-defined relationship. The copula approach allows for many flexible coupling options. 
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 Data preparation: An extract was made from a multi-day activity-based survey including out-

of-home activities, travel characteristics and socio-demographics. Measures of activity 

spaces and GHG production were generated from these survey data. 

 Neighbourhood typology generation. This was performed using a grid-based GIS approach 

and a k-means cluster analysis using supplementary data on three land-use variables: land 

use mix, population density, and public transit accessibility.  

These two steps of data generation are explained further below. 

 

4.2  Activity dispersion and GHGs 

The primary data used in this study are from Quebec City, a provincial capital with a 

predominantly tertiary economic base and a slowly growing metropolitan area population in the 

region of 700,000.  It has an unusually high penetration of limited access urban roads and a 

substantial urban bus network.4 

The study data were collected in the period 2003 to 2004, during the first wave of the Quebec 

City Travel and Activity Panel Survey (QCTAPS), a three-wave panel survey that ended in 2006.  

This period is of a particular interest since the penetration of mobile phones and home-based 

Internet was at or approaching a majority of individuals. Canadian mobile phone penetration was 

at approximately 42% in 2003 while the Internet penetration (individuals with internet access at 

home) for the same year was at approximately 61%. Note that in the sample of individuals used 

in our analysis, the mobile phone penetration was 41.6% and that of internet penetration was 

69.8%- which are not far from the mean national values for the same year.  

                                                 
4
  In 2006, the north shore communities that had about 525,000 of the metropolitan Quebec City region‟s 
population had 178 Km of “autoroutes”, or about 33 Km for per 100,000 inhabitants.  By comparison, the 
whole island of Montréal had about 200 Km of “autoroutes” for about 1,855,000 people, or about 11 Km 
per 100,000 inhabitants. 
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The QCTAPS employed an unusually in-depth multi-instrument package known as OPFAST to 

investigate the decision processes employed by individuals and households to organise their 

activities in space and time.  Part of the package was an activity/travel diary that covered 7 

consecutive days in wave 1 and two days in waves 2 and 3. Although the wave 1 to wave 3 

retention rate was high (67%), only the first wave has been used in this analysis.  The 7-day 

diaries were kept by 400 respondents aged 16 years and over from 247 households, yielding 

observations on 15,353 activities that took place in 4,971 unique locations (including both out-of-

home activity locations and the individual‟s residential location).  Information was validated and 

augmented during a home interview following the diary week, including the geographical location 

of each activity, which was later geocoded using a geographic information system (GIS).  As can 

be seen in Figure 2, the activity locations were largely centred in the Quebec City census 

metropolitan area (CMA), but extended to New Brunswick, Montreal, and to Lac Saint-Jean in 

the North.  
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Figure 2: Location of activities in the Quebec City region 

 

a) Activity space per individual - centrographic analysis 

 A centrographic analysis5 was undertaken to effectively measure certain characteristics 

of the activity spaces of the respondents to the survey, including the area or space 

covered during the development of the out-of-home activities of each individual. This 

analysis was performed in ESRI‟s ArcGIS using the directional distribution (standard 

deviational ellipse) tool, which creates an elliptical shape taking a given number of 

standard deviations based on the activities‟ geographical locations (Lee & Wong, 2001). 

In this case, an ellipse for each individual is generated at two standard deviations. As a 

first step, the standard deviation along the x axis (Sx) and y axis (Sy) are determined 

according to the form ul as given in Eq. 2. The ellipse area is then determined based on 

                                                 
5
 Centrographic analysis refers to spatial statistical measures of central tendency and dispersion such as 

mean centre, standard deviational ellipse, elongation and orientation. 
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these standard deviations. To determine Sx and y Sy, the angle of rotation () is also 

needed. The result is one ellipse per respondent, generated using the out-of-home 

activity locations visited during a week. These measures are defined as: 

          ,       (2) 
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With,  ̅ and  ̅ represents the mean center for the activities. In addition,  ̃  and   ̃  are the 

deviations of the xy-coordinates from the mean center.  Although other centrographic measures 

can be generated such as the elongation and orientation of the ellipse (X/Y), as well as 

distances from the centroid of the ellipse to home and work or school anchor, for the purposes of 

this study, our primary interest is in activity space, for which the area of the ellipse is considered 

a simple and appropriate standardized representation. Moreover, other activity pattern measures 

can be used including shortest-path network measures and density of the activity locations - 

Schönfelder and Axhausen (2003). One could also calculate a polygon centroid, then measure 

dispersal with respect to such a point, but this has to been tested. Moreover, different 

geometries (shapes) have been tested such as the Cassini ovals, bean curves, polygons and 

super ellipses (Rai et al., 2007). However, none of the shape types is always the best activity-
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space representation as recognized in Rai et al., (2007). The comparison of different measures 

and shapes is out of the scope of this work.  

Figure 3 shows the ellipse for a particular respondent, overlaid on a map of the region.  This 

visualisation of her/his activity space does not, of course, imply that the respondent visited all 

parts of the space encircled, nor that all of her/his activity locations are contained therein.  

Rather, it allows inter-respondent comparisons of size, shape, orientation and centroid. 

 

Figure 3. Ellipse representation for a given individual 6 

b) GHG emissions per individual 

GHGs were calculated for each individual trip using the methodology described in Barla et al. 

(2011).  Emissions were computed taking into account distance, mode choice, vehicle 

characteristics (e.g., make, model and year), average trip speed and passenger occupancy 

(number of passengers in a given trip). Two emitting modes were distinguished, private motor 

                                                 
6
  To respect confidentiality, the home location shown is intentionally imprecise. 
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vehicle (PV) and public bus (B). For the PV mode, the GHG emissions (in grams of CO2 

equivalent) generated for the respondent i in a given trip t are estimated as:  

 

GHGPV
i,t = [FCRi,t × SCFt × EFi,t × (Di,t /100)] / NPi,t     (3) 

 
Where FCRi,t  represents the average fuel consumption rate of the motor vehicle used in trip t, in 

liters per 100 km, and  represents the average speed correction factor7. Dt represents the 

estimated O-D distance in km for trip i. Distance was simulated using ArcGIS and the regional 

route network using shortest time trip. EFi,t is the emission factor. Type of fuel and the age of the 

vehicle were taken into account to obtain the emission factors reported by Environment Canada 

(2007). Finally, NPi,t  corresponds to vehicle occupancy (or the number of passengers in the 

vehicle in each trip) excluding household children less than 16 years of age. For public bus, the 

GHG emissions are estimated using a similar approach. GHGs emissions at the trip level were 

then aggregated at the weekly individual level.8 Again, for additional details we refer to Barla et 

al. 2011. Summary statistics for the travel outcomes are provided at the beginning of the results 

section.  

 

4.3  Neighbourhood typology  

A neighbourhood typology was generated to represent built environment characteristics. The 

typology was developed according to the approach discussed in Miranda-Moreno et al. 2011, 

using population density, land use mix, and accessibility to public transportation, as the main 

built environment indicators. These variables were developed using a nine-cell grid method, 

which has been used in a number of projects that have proven the method a useful and efficient 

                                                 
7
 Each trip was associated with an average speed according to the departure time (peak or off-peak 

period) and the origin and destination. The speeds and the fuel consumption correction factors were 
estimated by the Quebec Ministry of Transport (Barla et al. 2011). 
 
8
 Non-motorized trips were covered by the survey, but are treated as having zero GHG emissions. 

 

t
SCF
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way of representing neighbourhood types. This method has been found useful in that it avoids 

issues of processing time caused by buffer overlap, and allows the use of the same generated 

data for multiple projects, as the method is not based on any unit other than a grid across the 

area in question. Briefly, variables are generated at the grid cell level (with cells being defined as 

having a width and length of 500 meters each), and an observation (e.g. household) is given the 

attributes of the cell in which it lies as well as of the eight immediately surrounding cells.  

The population density information was generated using data from the 2001 Canadian census. It 

was calculated as the number of people per area of residential use inside the nine-cell grid. 

Land use coverage data from DMTI Spatial was used for the development of a land use mix 

index and in the calculation of population density (area of residential development). Land use 

mix was based on the entropy index, which calculates the relative proportions of land uses in the 

nine-cell grid. Relevant land uses calculated in the index are residential, commercial, institutional 

and governmental, industrial and resource, and park or water. Bus lines and stops were 

obtained from the Réseau de transport de la capitale (RTC) and the Société de transport de 

Lévis, which were used in the calculation of public transportation accessibility. Public transit 

accessibility was created using an equation that incorporates the distance to the closest bus 

stop on each line passing through the nine-cell grid and the average daily headway of each of 

those lines. For more information on the neighbourhood typology analysis using the nine-cell 

grid technique, see Miranda-Moreno, et al. 2011.  

Using these three variables (density, land use mix and transit accessibility), a k-means 

cluster analysis was used to generate five groups presented in Figure 4. Table 1 gives a 

description of the five clusters with regard to the mean entropy index, population density (in 

persons/km2), and public transit accessibility. Note that each cluster has some particularities: 

Cluster 1 - is characterized by the lowest values in all categories, which is also referred 

to as the periphery.  
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Cluster 2 & 3 are neighborhoods with low to medium density, land-use mix and transit 

accessibility. Most of these neighborhoods were built after the 60‟s.The observations (individual 

residential location) of these two clusters were grouped given the fact that cluster 3 has few 

observations, in addition to the fact that they have similar characteristics.  

Cluster 4 represents neighborhoods with medium land-use mix and population density. 

This cluster also contains those neighborhoods that are served by the main transit lines (having 

moderated transit accessibility, similar to cluster 2). These neighborhoods are referred also as 

old suburbs since they were mostly built between the 1920s and the 1950s. 

Cluster 5 – represents mostly the downtown core and central neighborhoods, with the 

highest values in each of the three input variables. This includes the historic core city, dating 

from the 17th century onwards, and a wide range of residential, commercial and industrial 

quarters built in the 18th to the 20th centuries. 

 

 
Figure 4. Neighbourhood typology 
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Table 1: Mean values for entropy, density, and accessibility per cluster group 

Cluster 
Entropy 
index

9
 

Population Density 
(persons/ km

2
)
 

 

Public transit 
Accessibility 

Cluster 1 (periphery) 0.20 498 7.4 

Cluster 2 (new suburbs) 0.34 2,230 51.0 

Cluster 3 (new suburbs) 0.39 4,097 88.4 

Cluster 4  (old suburb) 0.43 6,622 83.9 

Cluster 5 (downtown) 0.60 14,289 235.8 

 

5. EMPIRICAL RESULTS 

5.1 Exploratory data analysis 

This section starts with an exploration of the variables involved in this study. Table 2 presents 

summary statistics of travel outcomes including number of trips, total out-of-home activities, 

GHGs and ellipse area for individuals with and without access to a mobile phone, and with and 

without access to Internet. From these numbers, we can observe that the travel outcomes are 

higher for individuals who have access to mobile phone than for those who do not.  In particular, 

important differences are observed for weekly GHG production and activity area, with a ratio of 

1.3 (69.4/52.8kg) and 1.94 (3.7/1.9km2), respectively. For Internet access, a similar pattern is 

observed; however, the ratios are lower. This is without controlling for any other variables.  

Summary statistics of the socio-economics at the individual and household level are presented 

in Table 3, and the distribution of the sample across the four neighbourhood types that were 

developed from the cluster analysis is also shown.  

 

                                                 
9
 The entropy index varies between 0 and 1 (with 1 corresponding to a “perfect mix” and 0 to a 

homogenous area characterized by one sole land use).  
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Table 2. Statistics of travel outcomes at the individual level during 7-days (a week) 

Travel outcomes (7 days) Mean 
Std. 
Dev. Min Max 

Without mobile phone     

Number of trips in 7 days 26.6 10.3 4 73 

Total activities in 7 days 34.1 15.4 4 95 

Monday-Fri GHGs (kg) 40.9 37.0 0.0 263.2 

Weekly GHGs (kg) 52.8 43.6 0.0 278.2 

Total area (km2) 1.9 6.4 6.0 57.1 
 Individuals = 195 
     

With mobile phone     

Number of trips in 7 days 29.0 10.2 7 55 

Total activities in 7 days 38.9 15.4 10 86 

Monday-Fri GHGs (kg) 62.9 53.8 0 308.5 

Weekly GHGs (kg) 79.4 61.2 0 347.9 

Total area (km2) 3.7 27.9 18 330.4 
Individuals = 139 
     

Without Internet at home     

Number of trips in 7 days 26.9 9.3 7 55 

Total activities in 7 days 36.0 15.9 4 85 

Monday-Fri GHGs (kg) 45.2 42.7 0 263.2 

Weekly GHGs (kg) 58.4 50.0 0 278.2 

Total area (km2) 2.0 67.0 0.1 571.0 
 Individuals = 121 
     

With Internet at home     

Number of trips in 7 days 27.9 10.7 4 73 

Total activities in 7 days 35.8 15.1 0 95 

Monday-Fri GHGs (kg) 52.4 45.7 0 308.5 

Weekly GHGs (kg) 66.2 52.5 0 347.9 

Total area (km2) 2.5 19.9 0.1 330.4 
Individuals = 279 
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Table 3. Sample Summary statistics 

Variable group Characteristics  Distribution of sample (%)  

Individual 
Level 

Age (years)   

   < 25 15.8 

   25 to 50 47.2 

   50 to 75 33.0 

   Greater than 75 4.0 

Gender   

   Female 53.0 

   Male 47.0 

Employment Status  

   Employed 56.5 

   Student 8.8 

   Retired 20.0 

   Other 14.7 

Education  

   Bachelors or higher 30.5 

   Education but less than Bachelors 41.5 

   No education 28.0 

Household 
Level 

Household Size   

   1 22.3 

   2 37.5 

   3 16.3 

   4 or more 23.9 

 Household Children   

    No children 59.8 

   1 15.3 

   2 13.5 

   3 or more 11.4 

Household Income (dollars)   

   < 20,0000 18.3 

   20,001 to 60,000 48.0 

   >60,000 30.3 

Household car Ownership   

   0 9.4 

   1 49.8 

   2 and above 40.8 

Neighbourhood 
Typologies 

   Cluster 1 (Periphery) 21.1 

   Cluster 2&3 (New suburbs) 34.8 

   Cluster 4 (Old suburbs) 26.8 

   Cluster 5 (Downtown) 17.3 
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5.2 Model selection  

Based on the model formulation presented in equation 1, different copula model settings can be 

formulated. Specifically, 6 different copula structures were considered in this study: Gaussian, 

FGM, Frank, Gumbel, Clayton and Joe; for more details on these copulas, see Bhat & Eluru 

2009. Note also that the model structure proposed is flexible enough to allow for the two copulas 

for each switching module to be different thus leading to 36 possible combinations. In this 

empirical analysis, we have two travel-related responses (activity space and GHGs) and two ICT 

choices (mobile phone and home Internet). For each travel outcome, an endogenous model 

system is formulated for each choice. For each of these systems, we empirically tested all 36 

copula combinations. For the sake of brevity only the results of the best copula model are 

presented. It is also clear that ideally the choices should be examined as a four possible 

groupings of mobile and internet: „with both mobile and internet‟, „with mobile and without 

internet‟, „without mobile and with internet‟ and „without both mobile and internet‟. However, 

modelling the 4 combinations would leave out some records that do not have cell phone 

information (66 records). By undertaking the estimation separately, it is possible to employ 

different samples for mobile (334 records) and internet (400 records). Given the small sample 

available for analysis, ICT choices are modelled independently.        

For the selection of the best copula models, the Bayesian Information Criterion (or BIC) was 

used. The BIC for a given copula model is equal to -2ln(L) + Kln(Q), where  is the log-

likelihood value at convergence, K is the number of parameters, and Q is the number of 

observations. The copula that results in the lowest BIC value is the preferred copula. Note 

however that if all the competing models have the same exogenous variables and a single 

copula dependence parameter θ, the BIC information selection procedure measure is equivalent 

to selection based on the largest value of the log-likelihood function at convergence. Hence, in 

)ln( L
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our model estimation the log-likelihood measure can be used to determine the superior copula 

model. 

The variable selection for the different models estimated in the study was based on a systematic 

process of examining the influence of the same universal set of variables. The universal set of 

variables included: (1) individual demographics (age, gender, respondent status, education 

level), (2) household demographics (household size, number of adults, presence and number of 

children, household income, household ownership, residence type -- such as detached home or 

apartment -- and car ownership), and (3) neighbourhood typology (represented by 5 clusters as 

defined previously, with cluster 2 and 3 being grouped in one cluster). The variables were 

selected based on intuitive reasonableness of the effect on the choice process as well as 

statistical significance. The sample size of the data used for analysis was smaller than in most 

applications and hence a less stringent statistical significance criterion was adopted i.e. if the 

variable impact was intuitively reasonable, the variable was retained for the universal set, even 

though the variable does not satisfy the usual significance criterion of p value <0.1. Authors have 

also tested the specification to avoid multi-collinearity issues. The variance covariance matrix 

was also revised for the same purpose. Further, due to the smaller sample size, the coefficients 

in the linear equation (GHGs or activity area) are specified to be the same across the two linear 

regimes with the access indicator parameter, the scale parameter and the copula parameter 

accommodating the differences across regimes. This approach allows us to incorporate the 

influence of ICT access with fewer parameters.  

 
5.3 Model results for mobile phone access   
 
The upper part of Table 4 presents the results for the choice to have a mobile phone available, 

estimated within a model of the natural logarithm of an individual‟s activity space (on the left), 

and a model of total GHGs (on the right).  The lower part shows results for choice models of 
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activity space (on the left) and total GHGs (on the right), in both cases where an indicator of 

access to a mobile phone is included as an independent variable. 

Table 4. Model results for mobile phone access 

Component Variables 

Model for Activity Space Model for GHGs 

Estimates
***

 
Std. 
Err. p-value. Estimates 

Std. 
err. p-value 

Mobile phone 
access (dummy 

variable, 0/1) 

constant 1 -0.53 0.38 0.17 -0.85 0.42 0.04 

Residential ownership 0.61 0.29 0.04 0.44 0.31 0.16 

Medium income
*
  0.35 0.30 0.24 0.68 0.32 0.04 

High income
*
 0.71 0.34 0.04 0.92 0.37 0.01 

Age -0.02 0.01 0.03 -0.01 0.01 0.14 

Men 0.51 0.22 0.02 0.55 0.22 0.02 

No Diploma -0.81 0.59 0.17 -0.89 0.77 0.25 

Activity space 
(columns 1 to 3)  

or  
GHGs  

(columns 4 to 6) 

Constant 2 20.14 0.52 0.00 0.45 0.10 0.00 

Car ownership 0.52 0.16 0.00 0.23 0.05 0.00 

Residential ownership 0.67 0.32 0.04  -  -  - 

Children present -0.31 0.20 0.13  -  -  - 

Medium income  -0.25 0.26 0.34  -  -  - 

High income -0.49 0.34 0.15  -  -  - 

Age -0.02 0.01 0.03  -  -  - 

Men 0.21 0.19 0.26 0.08 0.05 0.15 

Employed 0.39 0.19 0.04 0.18 0.05 0.00 

Apartment 0.28 0.28 0.31  -  -  - 

Bac. degree or higher 0.27 0.19 0.15 0.07 0.05 0.16 

Cluster 2&3 
**
 -0.30 0.23 0.20 -0.18 0.06 0.00 

Cluster 4  -0.34 0.24 0.15 -0.29 0.08 0.00 

Cluster 5  -0.44 0.31 0.16 -0.32 0.09 0.00 

Mobile phone access 
indicator

 
0.27 0.41 0.51 0.25 0.12 0.04 

Copula   Clayton Frank 

copula parameter 1 rho1 1.65 1.02 0.11 4.32 1.39 0.00 

copula parameter 2 rho2 1.13 0.54 0.04 3.93 1.79 0.03 

scale parameter 1 sig1 1.56 0.15 0.00 0.40 0.02 0.00 

scale parameter 2 sig2 1.40 0.10 0.00 0.59 0.05 0.00 
* 
Reference category: low income; ** reference category: cluster 1, *** Parameters in bold are statistically 

significant at the 95% level. 
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Mobile phone access (0 or 1): In the activity space model, socio-demographics that were 

associated with access to mobile phones included: residential ownership, high household 

income, age and gender (with p-values less than 5%). From the results shown in the upper part 

of Table 4, the coefficients for males (0.51) and for higher income households (0.71) indicate 

that respondents with these characteristics were more likely to have a mobile phone available.  

But older individuals (coefficient of -0.02) were less likely to have access to a mobile phone. 

Residential ownership (coefficient of 0.61), a surrogate for social standing, may also be 

associated with mobile phone access. For the GHGs model, income categories and being men 

were the only factors statistically and positively associated with mobile phone access choice. 

The variable “no diploma” was found not statistically significant at the 10% level in both models, 

 

Activity area component: After accounting for the unobserved influence of mobile phone 

access on the activity space component, individual socio-demographics, car ownership, and 

residential neighbourhood attributes were directly associated with activity space. Car ownership 

(0.52), as expected, was associated with a larger activity space, as was being employed (0.39), 

or owning one‟s home (0.67). These variables were all statistically significant at the 5% 

significance level. The results also imply that individuals‟ areas of activities diminish with age (-

0.02). Being male or having a university degree shows only an indicative positive association 

with activity space (these variables were not statistically significant at the 0.10 level). 

 There is some indication that individuals from high and medium income households may have 

smaller activity spaces than households with lower incomes. Individuals living in apartment units 

had larger activity spaces than individuals from other residential types, yet individuals from 

clusters 4 and 5 are likely to cover a smaller area than cluster 1. However, note that the p-values 

of these associations are up to 0.20. 
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GHG component: Compared to the activity space model, few socio-demographic variables 

turned out to be statistically associated with GHGs. Positive and statistically significant 

associations included car ownership (0.23), and employed (0.18).  Unlike the activity space 

model, the neighbourhood clusters 2 to 5 have a negative and statistically significant effect on 

the GHGs with respect to the reference cluster (cluster 1 – periphery). From the cluster 

parameters, one can observe that the closer to downtown, the lower the GHGs.      

 

Mobile phone effect on activity space and GHGs:  Finally, the parameter “mobile phone 

access indicator” clearly highlights that individuals with a mobile phone available are likely to 

have a larger  GHGs than individuals who do not, with a statistically significant effect at the 0.05 

level. The same result was obtained for the activity space model - individuals with a mobile 

phone available were likely to have larger activity spaces compared to individuals who did not. 

However, in this model, the effect is not significant. Note also that the copula parameters in both 

models are statistically significant, clearly supporting the influence of common unobserved 

factors on both mobile phone access and the two travel-related outcomes, activity space and 

GHGs. Further, the non-significance of the “mobile phone” variable in the activity space model 

implies only that there is no mean observed effect of mobile phone on activity space. However, 

the significance of one copula parameter (0.04) and marginal significance (0.11) of the other 

copula parameter implies that the unobserved factors affecting mobile phone ownership also 

influence the dimension of activity spaces. This confirms the existence of endogeneity in the 

decision process. 

 
5.4 Model results for Internet access 

 

Table 5 uses the same layout as Table 4 to show the results for access to the Internet at home.  

Thus, top left is the estimation of Internet access choice within the activity space model, and top 

right within the GHG model. Similarly, bottom left shows results for a choice model of activity 
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space, and bottom right a choice model of total GHGs, where an indicator of access to the 

Internet is included as an independent variable. 

 

Internet access (0/1): The list of variables that affect access at home to the Internet is similar to 

that identified in the “mobile phone access” model. For the activity space model, variables 

positively associated with Internet access were residential ownership (0.81), presence of 

children (1.05), the number of adults within the household (0.48), age (-0.03), being male (0.21), 

higher education (0.78) and no diploma (-1.11) - all of them being statistically significant, except 

gender. For the GHGs model, very similar results were obtained, with the exception that number 

of household adults was also not statistically significant. 

 

Activity area component: Most socio-demographic variables showed similar effects to those 

discussed above in the model that included an indicator of mobile phone access. These 

variables included a positive association with the area of an individual‟s activity space for car 

ownership, being male, being employed and or living in an apartment.  (some variables such as 

home ownership, living in a detached house or having a university education are not statistically 

significant).  The principal negative associations were with the presence of children (-0.59) and 

age (-0.01), both being statistically significant.  

GHG component:  The socio-demographic variables across the GHG component are very 

similar to those in the “mobile phone” models in Table 4. Variables that appear in both travel-

related models are car ownership, gender, and being employed. Other variables such as the 

presence of children and education do not have significant effects. 
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Table 5. Internet access results 

Model 
components Variables 

Model for Activity Space  Model for GHGs 

Estimates* Std. err. Sig. Estimates 
Std. 
err. sig. 

Internet access 
(dummy variable, 

0/1) 
 

Constant 1 0.43 0.50 0.39 0.78 0.43 0.07 
Residential 
ownership 0.81 0.34 0.02 0.71 0.31 0.02 

Children present 1.05 0.31 0.00 1.02 0.28 0.00 
No of household 
adults 0.48 0.25 0.05 0.22 0.25 0.37 

Age -0.03 0.01 0.00 -0.03 0.01 0.00 

Men 0.21 0.25 0.41 0.22 0.23 0.35 
Bac. degree or 
higher 0.78 0.31 0.01 0.75 0.27 0.00 

No Diploma -1.11 0.54 0.04       

Activity space 
(columns 1 to 3) 

or 
GHGs 

(columns 4 to 6) 
  
  
  

Constant 2 19.63 0.68 0.00 0.64 0.11 0.00 

Car ownership 0.45 0.16 0.00 0.23 0.05 0.00 
Residential 
ownership 0.44 0.30 0.14  -   -   -  

Children present -0.59 0.22 0.01 -0.06 0.06 0.36 

Age -0.01 0.01 0.09  -   -   -  

Men 0.29 0.16 0.07 0.08 0.05 0.11 

Employed 0.37 0.17 0.03 0.20 0.05 0.00 

Detached home type 0.26 0.24 0.28  -   -   -  

Apartment type 0.45 0.27 0.10  -   -   -  
Bac. degree or 
higher 0.21 0.18 0.25 0.04 0.05 0.44 

Cluster 2&3 -0.27 0.23 0.24 -0.20 0.06 0.00 

Cluster 4  -0.16 0.23 0.49 -0.30 0.07 0.00 

Cluster 5 -0.47 0.27 0.09 -0.33 0.09 0.00 
Internet access 
indicator -0.18 0.57 0.76 -0.11 0.11 0.29 

copula parameter 
1 rho1 1.29 1.67 0.44 3.87 1.49 0.01 
copula parameter 
2 rho2 2.01 1.88 0.28 4.84 1.59 0.00 

scale parameter 1 sig1 1.52 0.14 0.00 0.48 0.03 0.00 

scale parameter 2 sig2 1.42 0.06 0.00 0.46 0.02 0.00 
* 
Reference category: low income; ** reference category: cluster 1, *** Parameters in bold are statistically 

significant at the 90%. 
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Internet effect on activity space and GHGs: Contrary to those with mobile phones available in 

the previous section, those with Internet at home have smaller activity spaces (ellipses) and 

GHGs. As noted above, this is consistent with the results obtained in some previous research. 

These effects are denoted by the negative coefficients on the Internet access indicator in both 

travel outcomes. Note however that these effects show only an indicative association (with large 

standard errors) and probably a larger data sample is necessary to confirm this finding. In 

addition, the copula parameters in GHG model are significant while the corresponding 

parameters in the activity space model are non-significant.  The findings provide evidence of 

endogeneity between the internet presence and travel indicators, in particular for GHGs. 

However, analysis based on a larger sample is essential to confirm these findings.  

 
 
5.5 Potential effect of ICT penetration 

The potential impact of ICT access on activity space and GHGs is evaluated using the 

parameter estimates of switching models. The expected gains/losses (i.e., increase or decrease 

in GHGs) are evaluated with a change in ICT access. For this purpose, we apply four measures 

that Bhat & Eluru (2009) proposed to study the potential influence of treatments:   

(1) Average effect of ICT (Average Treatment Effect (ATE)): this provides the expected 

travel outcome change for a random individual if s/he were to have access to ICT 

versus not having access to ICT.  

(2) Average impact of ICT access on those who have it (Treatment on the Treated (TT)): 

the TT measure captures the expected travel outcome change for an individual with 

ICT available, if s/he instead did not have access to ICT.  

(3) Average impact of ICT access on those who do not have it (Treatment on the Non-

Treated (TNT)): this measure assesses the expected TB change for an individual 

picked from among those without access to ICT, and placed in a pool of those with 

ICT available.  

(4) Average impact of ICT on those with and without ICT access (Treatment on the 

Treated and Non-Treated(TTNT)):  this measure combines the TT and TNT 
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measures into a single measure that represents the average impact of ICT on 

individuals who currently have access to ITC, and on those who currently have none.  

 
 

Table 6: ICT Effects for Independent model and Best Copula model 

 
Model 

structure  
 

Model 
Average effect 

of ICT   
(ATE) 

Ave. effect on 
those with 

access 
(TT) 

Ave. effect on 
those without 

access 
(TNT) 

Average impact on 
those with and 
without access  

(TTNT) 

 
 

ICT effects 
for Best 
Copula 
model

**
  

Mobile phone 
impacting Activity 

Area 
2.81 14.89 10.50 12.32 

Mobile phone 
impacting GHGs 

39.02 27.55 30.95 29.54 

Internet impacting  
Activity Area 

-25.21 -25.49 -22.27 -24.52 

Internet impacting  
GHGs 

-17.70 -18.60 -20.35 -19.13 

ICT effects 
for an 

independent 
model that 
fails to take 
account of 

endogeneity 
** 

 

Mobile phone 
impacting Activity 

Area 
-1.12 -1.34 -0.96 -1.12 

Mobile phone 
impacting GHGs 

-1.56 -1.66 -1.67 -1.67 

Internet impacting 
Activity Area 

-16.97 -17.36 -14.99 -16.65 

Internet impacting 
GHGs 

-1.57 -1.67 -1.67 -1.67 

** In terms of % change with respect to the mean 

 

 

The results of this sensitivity analysis are presented in Table 6. From these results, one can 

observe the impact of using the inappropriate model (independent model without accounting for 

endogeneity) and the hypothetical or potential effect of ITC on the studied travel outcomes. 

 

Potential effect of mobile phone access: Examining the impact of mobile phone 

access on activity space and GHG outcomes, the results clearly illustrate that access to 

mobile phone associates with an increased activity space for individuals. In fact, a 100% 

rate of mobile phone access would be accompanied by an increase in activity space by 
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12.3% (TTNT). The potential implications for GHG emissions are more important. In this 

model, we see that a hypothetical saturation of mobile phone access would be 

associated with an increase of 29.5% in GHG emissions. With the increasing take-up of 

mobile phone services in Canada, this could be cause for concern. The results also 

clearly highlight the difference between the independent model and the copula model. It 

is also important to mention that the failure to take endogeniety into account would 

change the sign on the results. 

 

Potential effect of Internet access:   The corresponding results for Internet access show an 

opposite trend to those from the mobile phone access model. Thus, according to these models, 

increased access to Internet would be associated with a reduction in activity space (-24.5%) and 

in GHG emissions (-19.1%). The results indicate that this effect, however, is not as pronounced 

as the (positive) associations with mobile phone access. Again, even in this case, the difference 

between the copula model and the independent models is very large, clearly indicating the 

presence of common unobserved factors affecting the choice process.   

 

6.  CONCLUSION 

This paper presents an original methodology for evaluating the impact of ICT access (Internet 

and mobile phone) on two important mobility-related measures: activity spaces and weekly 

GHGs at the individual level. The proposed methodology was implemented on data from a diary 

survey of the activities and travel of respondents during a 7-day period. As a first step, 

respondent activity spaces were generated using a centrographic measure of the spatial 

dispersion of out-of-home activity locations. Secondly, individual production of GHGs from 

motorized travel was estimated as a function of travel distance, average trip speed, vehicle 

characteristics and vehicle occupancy for both household passenger vehicles and transit. 
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Thirdly, a neighbourhood typology was generated to represent land-use characteristics based on 

three indexes: population density, land use mix and transit accessibility. As a final step, an 

endogenous switching model was used to deal with the correlation between the ICT choices and 

travel outcomes (endogeneity). 

 

The principal findings from this study include: 

- Socio-demographics have an important role in both ICT access and the two travel 

outcomes. Among the important factors affecting access to personal mobile phone and 

home-based Internet are gender, age, income and educational level.   

- Not only socio-demographic factors, but also land-use neighbourhood typologies had a 

significant impact on both the size of activity spaces and GHGs. After controlling for other 

factors (including access to ICTs), residents of neighbourhoods with low population 

density and limited land use mix (Cluster 1) produced more emissions than those in the 

centrally-located Clusters 4 and 5. 

- Model results show that mobile phone access was associated with increases in both 

personal activity spaces and GHGs, after controlling for built environment 

(neighbourhood typologies) and socio-demographics. From this study, it is estimated that 

those with a mobile phone available frequented activity spaces that were 12.3% larger, 

and produced 27.6% more GHG, than those with none, which is consistent with the 

positive impact of mobile phones on travel demand that has been identified in previous 

studies.  

- Conversely, individuals with Internet access at home exploited smaller activity spaces (-

24.5%) and produced lower GHG emissions (-19.1%). This result is also similar to past 

studies that have reported a negative impact of Internet access and use on travel 

distance or trip/activity frequency. 
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- This study shows the importance of using an appropriate model structure. The use of an 

incorrect model can lead to incorrect inferences. 

 

The disaggregate approach to controlling for socio-economic factors and differences in the built 

environment, in combination with recent modelling techniques, yielded promising and plausible 

results using a relatively small sample in this study (about 400 individuals). In future work, it 

should be tested using a larger sample size. In addition to the small sample size, this study was 

limited to ICT access. The effect of ICT usage (e.g., hours using the Internet, or number of 

mobile phone calls) should also be explored. Moreover, a longitudinal study (survey with 

repeated measures over time for same individuals) would be ideal to measure the effect before 

and after a change in ICT access and usage, and as ICT access approaches saturation, more 

nuanced measures of usage, such as duration and type of communication, will become 

increasingly important. A larger sample size will be needed to examine the four possible 

groupings of the ICT choices (with and without mobile and/or internet). It is also important to 

note that ICT is not the only technological instrument that is a candidate for endogenisation.  Car 

ownership is of particular interest for future development of this modelling approach as 

automobiles, like ICTs, facilitate the spatial and temporal flexibility of activities. Also, a 

comparative analysis of different activity dispersion measures and activity space shapes should 

be conducted to validate the sensitivity of the results to the measure used. The influence of ICT 

on various out-of-home activity types could be also explored. 

, 

Although this study was of limited scale, the results are of particular interest because they were 

drawn from a region at a juncture when mobile phone and Internet had recently crossed the 

threshold of 40% and 60% penetration in Canada, respectively. In more recent statistics, more 

than three-quarters (78%) of Canadian households reported they had a cell phone in 2010. 
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However, Quebec had the lowest rate of cell phone use at 69% of households for this year. . 

This means that there is still an important proportion of the population without cell phones.  

 

Finally, the results suggest that access to mobile phones and Internet may have substantial but 

opposite effects on the spatial dispersion of individual activities, and on the personal production 

of greenhouse gases. These effects are undetected when using model structures that do not 

address the likelihood that unobserved factors affecting the individual‟s propensity to have 

access to ICTs are also likely to affect his/her travel outcomes.  
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