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ABSTRACT 

The paper presents a model system that recognizes the distinct traffic incident duration profiles 

based on incident types. Specifically, a copula-based joint framework has been estimated with a 

scaled multinomial logit model system for incident type and a grouped generalized ordered logit 

model system for incident duration to accommodate for the impact of observed and unobserved 

effects on incident type and incident duration. The model system is estimated using traffic incident 

data from 2012 through 2017 for the Greater Orlando region, employing a comprehensive set of 

exogenous variables, including incident characteristics, roadway characteristics, traffic condition, 

weather condition, built environment and socio-demographic characteristics. In the presence of 

multiple years of data, the copula-based methodology is also customized to accommodate for 

observed and unobserved temporal effects (including heteroscedasticity) on incident duration. 

Based on a rigorous comparison across different copula models, parameterized Frank-Clayton-

Frank specification is found to offer the best data fit for crash, debris, and other types of incident. 

The value of the proposed model system is illustrated by comparing predictive performance of the 

proposed model relative to the traditional single duration model on a holdout sample.  

 

Keywords: Incident type; Incident duration; Scaled multi-nominal logit; Grouped generalized 

ordered logit; Joint framework 
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1 INTRODUCTION 

 

1.1 Background 

The prevalence of sub-urban life in North American cities in the latter half of the 20th century and 

early 21st century has resulted in an over-reliance on the private vehicle mode. The high private 

vehicle dependency burdens existing roadway infrastructure resulting in high congestion levels in 

metropolitan areas. Specifically, the economic costs of traffic congestion – direct costs (time and 

fuel wastage) and indirect costs (increase in transportation costs) – amount to nearly 305 billion 

dollars in 2017 (INRIX, 2018). The annual economic costs add up to nearly $3000 per resident in 

large urban regions such as Los Angeles and New York City. Traffic congestion can generally be 

attributed to either recurring or non-recurring events. Congestion arising from recurring events is 

generally a result of mismatched transportation demand and supply (or capacity). Non-recurring 

congestion, on the other hand, is a result of unexpected (or irregular) events such as abandoned 

vehicles, adverse weather, spilled loads, highway debris, and traffic crashes. It is estimated that 

delays arising from non-recurring congestion contribute between 40 to 60% of total congestion 

delays on the US highways (Tavassoli Hojati et al., 2013). Among non-recurring events, the US 

Department of Transportation (DOT) reports that traffic incidents alone contribute to 25% of the 

total delays leading to an annual loss of about 2.8 billion gallons of gasoline (FHWA EDC, 2012). 

The proposed research contributes to reducing traffic congestion on roadways by understanding 

the factors influencing incident duration and providing remedial solutions to improve clearance 

times. 

The overall incident duration, as identified by the Highway Capacity Manual (HCM 2010 ), 

is composed of the following four phases: Notification time, Response time, Clearance time and 

Traffic recovery time. The first three phases are directly affected by the traffic incident and the 

incident management response infrastructure in the urban region. On the other hand, the traffic 

recovery time (fourth phase) is a function of total duration of the first three phases and the traffic 

demand on the facility. Any improvements in reducing the duration of the first three phases of the 

incident will contribute to lower traffic recovery time. The objective of the proposed research effort 

is to study the factors influencing incident duration (estimated as the sum of the first three phases) 

with a goal of understanding what factors influence incident duration and providing 

recommendations for improved traffic incident management plans. Specifically, accurate 

estimation of incident duration can allow traffic operations staff to tailor their diversion messages 

at the occurrence of an incident.  

 

1.2 Existing Literature 

Given the significant influence of traffic incidents on roadways, several research efforts have 

examined the factors influencing incident duration focusing either on total duration or the 

individual components of duration (see Laman et al., 2018 for a detailed review). The most 

commonly employed outcome variable includes total incident duration and duration of individual 

incident components (such as notification, response and clearance time). 

The methodologies can be broadly classified into two groups: parametric methods and non-

parametric methods. Among parametric methods, the commonly used methodologies include (a) 

Linear regression analysis (Garib et al., 2002), (b) Truncated regression based time sequential 

method (Khattak et al., 2007), (c) Parametric hazard-based model (Chung, 2010; Junhua et al., 

2013; Tavassoli Hojati et al., 2013, 2014; Ghosh et al., 2014; Chung et al., 2015; Li et al., 2015) 

(d) Copula based grouped ordered response model (Laman et al., 2018), (e) Binary probit and 
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regression model based joint framework (Ding et al., 2015). In terms of non-parametric methods, 

approaches employed include (a) Tree based model (Valenti et al., 2010; Zhan et al., 2011), (b) 

Bayesian networks (Ozbay and Noyan, 2006), (c) Support vector machine (Valenti et al., 2010; 

Wu et al., 2011), (d) Artificial neural network (Lee and Wei, 2010), (e) Partial least square 

regression (Wang et al., 2013). Based on these models developed, the most important independent 

variables identified in literature include: incident characteristics (such as incident type, number of 

responders involved, first responder), roadway characteristics (such as functional classification, 

geometric characteristics, Average Annual Daily Traffic (AADT), Truck AADT), traffic 

conditions (such as time of the day, weekday/weekend), and weather conditions (such as season, 

rain, temperature). 

 

1.3 Critique of Earlier Work and Current Study 

In earlier studies, while the importance of incident type has been highlighted, it is mostly 

considered as an independent variable. The consideration potentially imposes several major 

restrictions on the analysis approaches. First, the analysis approaches restrict the influence of 

independent variables to be the same across all incident types i.e. the incident duration profile is 

restricted to be the same across all incident types. The only variation across incident types is 

estimated through the incident type indicator variables. However, it is possible that the impact of 

various independent variables is moderated by the incident type indicator. For example, consider 

the difference between two incidents: a traffic crash and an abandoned vehicle on roadway. In the 

traffic crash event, given the potential possibility of injury (or even fatality), the resource 

deployment urgency might be significantly different relative to the abandoned vehicle incident. 

This is an example of the same infrastructure availability acting at a different pace based on 

incident type. It is plausible to consider that several other independent variable effects are also 

affected by incident type.  

Second, factors that have led to a particular incident might also affect the incident duration. 

For instance, the absence of a shoulder on a roadway facility reduces room for error and might 

lead to traffic crashes. The same factor by not allowing adequate room for traffic incident 

management vehicles might result in longer incident clearance times. This is an example of an 

observed factor (absence of a shoulder) influencing incident type and incident duration. Such 

factors can be easily considered in the incident duration model. However, it is also possible that 

various unobserved factors that affect incident type might also influence incident duration. 

Consider a roadway facility that has a high share of tourist drivers that are unfamiliar with the 

roadway. In the presence of tourist drivers, the probability of a traffic crash might be higher. In 

this scenario, traffic incident management vehicles might also take longer to arrive at the scene as 

the tourist drivers are not aware of the appropriate maneuvers to allow these vehicles. While it is 

possible to ascertain locations with higher presence of tourist drivers, it is close to impossible to 

determine the exact share of these drivers on roadways. Thus, we have an unobserved factor (share 

of tourist drivers) on roadway facility that may affect incident type and incident duration. 

Accommodating for the influence of unobserved factors warrants the development of a model 

system that examines incident type and incident duration as a joint distribution. Finally, earlier 

research typically employed one cross-sectional sample of data for incident duration analysis. 

However, with availability of data for several years from various transportation agencies, it is 

important to develop model structures that incorporate for the influence of temporal factors 

(observed and unobserved) in modeling incident duration. 
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Toward addressing the aforementioned issues, the current study develops a joint model 

system with a scaled multinomial logit model (SMNL) system for incident type and a grouped 

generalized ordered logit (GGOL) model system for incident duration. The scaled model 

accommodates for common unobserved heterogeneity by allowing the variance of the unobserved 

component to vary by time period (see Mannering, 2018 for discussion on temporal instability)1. 

The grouped generalized ordered system (employed in Laman et al., 2018) offers a flexible non-

linear formulation for modeling duration variables. The approach retains a parametric form similar 

to traditional hazard duration models while also allowing for alternative specific effects. The two 

model components are stitched together as a joint distribution using the flexible copula-based 

approach. In the presence of multiple years of data, the copula-based methodology was also 

customized to accommodate for observed and unobserved temporal effects (including 

heteroscedasticity) on incident duration. In our analysis, we employ six different copula structures 

- the Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and set of Archimedean 

copulas including Frank, Clayton, Joe and Gumbel copulas (a detailed discussion of these copulas 

is available in Bhat and Eluru, 2009). The model system is estimated using traffic incident data 

from 2012 through 2017 for the Greater Orlando region. The incident data is augmented with a 

host of independent variables including traffic characteristics, roadway characteristics, incident 

characteristics, weather conditions, built environment and socio-demographic characteristics. 

Further, the value of the proposed model system is illustrated by comparing predictive 

performance of the proposed model relative to a single incident duration model (ignoring incident 

type profile) on a holdout sample (not used in estimation). The reader would note that such joint 

model systems have been employed in travel behavior and transportation safety literature. 

However, to the best of the authors’ knowledge, it is the first application in the incident duration 

modeling area.  

2. ECONOMETRIC METHODOLOGY 

The main focus of this paper is to jointly model incident type and incident duration using a copula-

based scaled multinomial logit-group ordered logit model (SMNL-GGOL). In this section, 

econometric formulation of the joint model is presented. 

 

2.1 Incident Type Component 

Let 𝑞 (𝑞 = 1, 2, … , 𝑄), and 𝑘 (𝑘 = 1, 2, … , 𝐾; 𝐾 = 3)  be the indices to represent incident and the 

corresponding incident type, respectively. In the joint framework, the modeling of incident type 

follows a SMNL model structure. Following the random utility theory, the propensity of an 

incident q being incident type k takes the following form: 

 

𝜇𝑞𝑘
∗ = 𝛽𝑘𝑥𝑞𝑘 + 𝜉𝑞𝑘 (1) 

 

Where, 𝑥𝑞𝑘 is a vector of independent variables and 𝛽𝑘 is a vector of unknown parameters specific 

to incident type  𝑘. 𝜉𝑞𝑘 is an idiosyncratic error term (assumed to be standard type-I extreme value 

distributed) capturing the effect of unobserved factors on the propensity associated with incident 

type 𝑘. An incident 𝑞 is identified as incident type 𝑘 if and only if the following condition holds:  

                                                 
1 In transportation research domain, most recently, several studies have addressed parameter stability over time (see 

Behnood and Mannering (2015), Marcoux et al. (2018), Anowar et al. (2016), Dabbour (2017)). A detailed review of 

these articles is beyond of scope of current study. Mannering (2018) presented a detailed discussion on temporal 

instability. 
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𝜇𝑞𝑘
∗ > 𝑚𝑎𝑥

𝑙=1,2,….,𝐾,   𝑙≠𝐾   
𝜇𝑞𝑙

∗  (2) 

 

The functional form presented in Equation (2) can also be represented as binary outcome 

models for each incident type k. For example, let 𝜂𝑞𝑘 be a dichotomous variable with binary 

outcome 𝜂𝑞𝑘 = 1 if an incident be incident type 𝑘 and 𝜂𝑞𝑘 = 0  if otherwise. Let us define 𝜈𝑞𝑘 as 

follows: 

 

𝜈𝑞𝑘 = 𝜉𝑞𝑘 − { 𝑚𝑎𝑥
𝑙=1,2,….,𝐾,   𝑙≠𝐾   

𝜇𝑞𝑙
∗ }  (3) 

 

Now, using equation (1), we can rewrite equation (3) as: 

 

𝜈𝑞𝑘 = 𝜇𝑞𝑘
∗ − 𝛽𝑘𝑥𝑞𝑘 − { 𝑚𝑎𝑥

𝑙=1,2,….,𝐾,   𝑙≠𝐾   
𝜇𝑞𝑙

∗ }  (4) 

 

We can update equation (4) as follows 

 

𝜈𝑞𝑘 + 𝛽𝑘𝑥𝑞𝑘 = 𝜇𝑞𝑘
∗ − { 𝑚𝑎𝑥

𝑙=1,2,….,𝐾,   𝑙≠𝐾   
𝜇𝑞𝑙

∗ }  (5) 

 

Now, using Equation (2) we can conclude that the RHS of Equation (5) can be modified as >0, 

thus providing the following expression 

 

ηqk = 1 if 𝜈𝑞𝑘 +  𝛽𝑘𝑥𝑞𝑘 > 0   (6) 

 

In Equation (6), probability distribution of incident type outcome depends on distributional 

assumption of 𝜈𝑞𝑘, which in turn, depends on distribution of 𝜉𝑞𝑘. Thus, an assumption of 

independent and identical Type I Gumbel distribution2 for 𝜉𝑞𝑘 provides a logistic distribution of 

𝜈𝑞𝑘. In the presence of multiple years of data, one can also estimate the variance of the error term 

with an appropriate base year. To accommodate for this, a scale parameter (𝜑) can be introduced 

to form a SMNL model and the probability expression takes the following form: 

 

𝑃𝑟(𝜈𝑞𝑘 < 𝜐) =  
𝑒𝑥𝑝 (

−𝜐
𝜑

)

𝑒𝑥𝑝 (
−𝜐
𝜑

) + ∑ 𝑒𝑥𝑝 (
𝛽𝑘𝑥𝑞𝑙

𝜑 )

𝑙≠𝑘

 
(7) 

 

Where, 𝜑 is the scale parameter of interest and is parameterized as exp(𝜚𝜏) and 𝜏 is a set of year 

specific factors such as time elapsed variable (computed as the time difference between the 

                                                 
2 The reader would note that under different Generalized Extreme Value distributional assumptions for 𝜉𝑞𝑘 (as 

opposed to independent and identical Type I Gumbel distribution) would result in more complex probability 

structures for the incident type component with and without closed form expressions. 
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analysis year (2012-2017) from the base year (2012) considered), thus takes the values of 0, 1, 

2,3,4 and 5 with 2012 as the base case.   

 

2.2 Incident Duration Component 

Let 𝑗𝑘 be the index for the discrete outcome that corresponds to incident duration category for 

incident type 𝑘. In joint model framework, incident duration is modelled using a GGOL 

specification. In group ordered response model, the discrete incident duration levels (𝑦𝑞𝑘) are 

assumed to be associated with an underlying continuous latent variable (𝑦𝑞𝑘
∗ ). This latent variable 

is typically specified as the following linear equation:  

 

𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘

+ 𝜀𝑞𝑘, 𝑦𝑞𝑘 = 𝑗𝑘 if 𝜓𝑗𝑘
< 𝑦𝑞𝑘

∗ < 𝜓𝑗𝑘+1 (8) 

 

Where, 𝑧𝑞𝑘 is a vector of exogenous variables for incident type 𝑘 in incident 𝑞, 𝛼𝑘 is row of 

unknown parameters, 𝜓𝑗𝑘
 is the observed lower bound threshold for time interval level 𝑗𝑘  for 

incident type 𝑘. 𝜀𝑞𝑘 captures the idiosyncratic effect of all omitted variables for incident type 𝑘. 

Further, 𝜎𝑗𝑘
 is vector of time interval category specific coefficient for time interval alternative 𝑗𝑘 

for incident type 𝑘. The 𝜀𝑞𝑘 terms are assumed identical across incident types. The error terms are 

assumed to be independently logistic distributed with variance 𝜆𝑞𝑘
2 . The variance vector is 

parameterized as follows: 

 

𝜆𝑞𝑘 = 𝑒𝑥𝑝(𝛿 + 𝜌𝑔𝑞𝑘)  (9) 

 

Where, 𝛿 is a constant, 𝑔𝑞𝑘 is a set of exogenous variables associated with incident type 𝑘 for an 

incident 𝑞 and 𝜌 is the corresponding parameters to be estimated. To be sure, 𝑔𝑞𝑘 also include the 

time elapsed variable, thus accommodate the effect of heteroscedasticity within the grouped 

ordered framework. The parameterization allows for variance to be different across incidents and 

also across time points accommodating heteroscedasticity. The probability for incident type 𝑘 for 

time interval in category 𝑗𝑘 is given by: 

 

Pr(𝑦𝑞𝑘 = 𝑗𝑘) = 𝛬 (
𝜓𝑗𝑘+1−(𝛼𝑘𝑧𝑞𝑘+𝜎𝑗𝑘

)

𝜆𝑞𝑘
) - 𝛬 (

𝜓𝑗𝑘
−(𝛼𝑘𝑧𝑞𝑘+𝜎𝑗𝑘

)

𝜆𝑞𝑘
)  (10) 

 

Where, 𝛬(. ) is the cumulative standard logistic distribution. 

 

2.3 The Joint Model: A Copula Based Approach 

The incident type and incident duration components discussed in previous two subsections can be 

brought together in the following equation system: 

 

ηqk = 1 if 𝛽𝑘𝑥𝑞𝑘 > −𝜈𝑞𝑘 

𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘

+ 𝜀𝑞𝑘 if 𝑦𝑞𝑘 = 1[ηqk = 1] 𝑦𝑞𝑘
∗  

(11) 

 

However, the level of dependency between incident type and duration category of an incident 

depends on the type and extent of dependency between the stochastic terms 𝜈𝑞𝑘 and 𝜀𝑞𝑘. These 

dependencies (or correlations) are explored in the current study by using a copula-based approach. 
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In constructing the copula dependency, the random variables (𝜈𝑞𝑘 and 𝜀𝑞𝑘) are transformed into 

uniform distributions by using their inverse cumulative distribution functions, which are then 

coupled or linked as a multivariate joint distribution function by applying the copula structure. Let 

us assume that 𝛬𝜈𝑘(. ) and 𝛬𝜀𝑘(. ) are the marginal distribution of 𝜈𝑞𝑘 and 𝜀𝑞𝑘, respectively. 

Moreover, 𝛬𝜈𝑘,𝜀𝑘(. ) is the joint distribution of 𝜈𝑞𝑘 and 𝜀𝑞𝑘. Subsequently, a bivariate distribution 

can be generated as a joint cumulative probability distribution of uniform [0, 1] marginal variables 

U1 and U2 as below: 

 

𝛬𝜈𝑘,𝜀𝑘(𝜈, 𝜀) = 𝑃𝑟(𝜈𝑘 < 𝜈, 𝜀𝑘 < 𝜀) 

 

= 𝑃𝑟(𝛬𝜈𝑘
−1(𝑈1) < 𝜈, 𝛬𝜀𝑘

−1(𝑈2) < 𝜀) 

 

= 𝑃𝑟(𝑈1 < 𝛬𝜈𝑘(𝜈), 𝑈2 < 𝛬𝜀𝑘(𝜀)) 

(12) 

 

The joint distribution (of uniform marginal variable) in Equation (12) can be generated by a 

function 𝐶𝜃𝑞(.,.) (Sklar, 1973), such that: 

 

𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝛿2) = 𝐶𝜃𝑞(𝑈1 = 𝛬𝑣𝑘(𝑣), 𝑈2 = 𝛬𝜀𝑘(𝜀)) (13) 

 

Where, Cθq(. , . ) is a copula function and θq the dependence parameter defining the link between 

vqk and εqk. It is important to note here that, the level of dependence between incident type and 

incident duration level can vary across incidents. Therefore, in the current study, the dependence 

parameter θq is parameterized as a function of observed incident attributes as follows: 

 

𝜃𝑞 = 𝑓𝑛(𝛾𝑘𝑠𝑞𝑘) (14) 

 

Where, sqk is a vector of exogenous variable, γk is a vector of unknown parameters (including a 

constant) specific to incident type 𝑘 and 𝑓𝑛 represents the functional form of parameterization. In 

our analysis, six different copulas structure – Gaussian, FGM, Frank, Clayton, Joe and Gumbel 

copulas are employed. Based on the dependency parameter permissible ranges, alternate 

parameterization forms for the six copulas are considered in our analysis. For Normal, FGM and 

Frank Copulas, we use θq = γksqk, for the Clayton copula we employ θq = exp (γksqk), and for 

Joe and Gumbel copulas we employ θq = 1 + exp (γksqk). 

 

2.3.1 Estimation Procedure 

The joint probability that the incident 𝑞 is identified to be incident type 𝑘 and the resulting incident 

duration level 𝑗𝑘, from equation (7) and (10), can be written as:  

 

𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘) 

= 𝑃𝑟 {(𝛽𝑘𝑥𝑞𝑘 > −𝑣𝑞𝑘), ((
𝜓𝑗𝑘−1 − (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘

)

𝜆𝑞𝑘
) < 𝜀𝑞𝑘 <  (

𝜓𝑗𝑘
− (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘

)

𝜆𝑞𝑘
))}   

= 𝑃𝑟 {(𝑣𝑞𝑘 > −𝛽𝑘𝑥𝑞𝑘), ((
𝜓𝑗𝑘−1 − (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘

)

𝜆𝑞𝑘
) < 𝜀𝑞𝑘 <  (

𝜓𝑗𝑘
− (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘

)

𝜆𝑞𝑘
))}   

(15) 
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= 𝑃𝑟 ((𝑣𝑞𝑘 > −𝛽𝑘𝑥𝑞𝑘), (𝜀𝑞𝑘 < (
𝜓𝑗𝑘

− (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘
)

𝜆𝑞𝑘
)))

−  𝑃𝑟 ((𝑣𝑞𝑘 > −𝛽𝑘𝑥𝑞𝑘), (𝜀𝑞𝑘 < (
𝜓𝑗𝑘−1 − (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘

)

𝜆𝑞𝑘
)))    

= 𝛬𝜀𝑘 ((
𝜓𝑗𝑘

−(𝛼𝑘𝑧𝑞𝑘+𝜎𝑗𝑘
)

𝜆𝑞𝑘
)) −  𝛬𝜀𝑘 ((

𝜓𝑗𝑘−1−(𝛼𝑘𝑧𝑞𝑘+𝜎𝑗𝑘
)

𝜆𝑞𝑘
)) − (𝑃𝑟 [𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <

(
𝜓𝑗𝑘

−(𝛼𝑘𝑧𝑞𝑘+𝜎𝑗𝑘
)

𝜆𝑞𝑘
) ] − 𝑃𝑟 [𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <  (

𝜓𝑗𝑘−1−(𝛼𝑘𝑧𝑞𝑘+𝜎𝑗𝑘
)

𝜆𝑞𝑘
)] ) 

 

The joint probability of Equation (15) can be expressed by using the copula function in 

equation (13) as: 

 

𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)

= 𝛬𝜀𝑘 (
𝜓𝑗𝑘

− (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘
)

𝜆𝑞𝑘
) − 𝛬𝜀𝑘 ((

𝜓𝑗𝑘−1 − (𝛼𝑘𝑧𝑞𝑘 + 𝜎𝑗𝑘
)

𝜆𝑞𝑘
))

−  [𝐶𝜃𝑞(𝑈𝑞,𝑗
𝑘 , 𝑈𝑞

𝑘) − 𝐶𝜃𝑞(𝑈𝑞,𝑗−1
𝑘 , 𝑈𝑞

𝑘)] 

(16) 

  

Thus, the likelihood function with the joint probability expression in equation (16) for 

incident type and duration level outcomes can be expressed as: 

 

𝐿 = ∏ [∏ ∏{𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)}
 𝜔𝑞𝑗𝑘

𝐽

𝑗=1

𝐾

𝑘=1

]

𝑄

𝑞=1

 (17) 

  

where, ωqjk is dummy with ωqjk = 1 if the incident 𝑞 sustains incident type 𝑘 and an incident 

duration level of 𝑗 and 0 otherwise. All the parameters in the model are then consistently estimated 

by maximizing the logarithmic function of L. The parameters to be estimated in the model are: βk 

and 𝜚 in the SMNL model component, 𝛼𝑘 and 𝜓𝑗𝑘
 in GGOL model component, and finally γk in 

the dependency component.  

3 DATA DESCRIPTION 
The main data source for the current study is the incident management dataset compiled by the 

Florida Department of Transportation (FDOT). Event management data collected over six years 

from 2012 to 2017 for Greater Orlando region was processed to prepare the final dataset. The study 

region consists of a number of major highways of the Greater Orlando Region including Interstate 

- 4 (I-4), East-West expressway (toll road 408), Beachline expressway (toll road 528), Central 

Florida Greenway (toll road 417), Daniel Webster Western Beltway (toll road 429) and other 

arterials, collectors and local roads.  
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FIGURE 1 Distribution of Incident Duration for Different Incident Types 

 

The study is confined to the incidents with an official reported response compiled by FDOT. 

The final dataset, after removing events without any response, consists of 326,348 incident records. 

In preparation of estimation sample, 2000 incidents were randomly sampled for each year (2012 

to 2017), to create an overall estimation sample of 12,000 records. For validation test, on the other 

hand, 2500 records from each year were sampled randomly from the unused data resulting in a 

validation dataset of 15,000 records. Three incident types indicating crash, debris and other 

incidents were considered. Other incidents include disabled vehicles, abandoned vehicle, and tire 

blown. Initial model estimation efforts considered “other category” as separate categories. 

However, the model estimation results indicated the absence of substantial differences between 

disabled, abandoned and tire blown categories. Hence, these alternatives were merged in the other 

category. For incident duration, we have considered 10 categories (>0-5, >5-10, >10-15, >15-20, 

>20-25, >25-30, >30-50, >50-80, >80-120 and >120minute). Distribution of incident duration 

categories for each incident type is presented in Figure 1. From Figure 1, we can observe that 

incident duration profile varies substantially across different incident type categories. Crash events 

has a left skewed duration distribution while the other two incident types have a right skewed 

distribution. Given these clear differences across the three incident types, developing a single 

duration model (as considered in existing literature) can potentially result in biased and incorrect 

parameter estimation.  

 

3.1 Independent Variables 

The incident management dataset is augmented with several exogenous variables. These variables 

are sourced from American Community Survey, Florida Geographic Data Library, FDOT and 

Florida Automated Weather Network databases. Exogenous variables considered can be classified 

into six broad categories: incident characteristics, traffic characteristics, roadway characteristics, 

weather conditions, built environment and socio-demographic characteristics. Incident 

characteristics include number of responders, first responder and notified agency. Roadway 

characteristics considered include location in terms of intersection and interchange, roadway’s 

functional class, geometric characteristics, average annual daily traffic (AADT). Traffic 

characteristics include time of the day to accommodate hourly variation of traffic and 

weekday/weekend. Weather condition include season and rain. Built environment characteristics 

include land-use mix variable, number of business centers, commercial establishment, recreational 
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establishment, restaurants and other establishments in 0.5mile buffer area of each incident. Socio-

demographic characteristics include population and median income in the 0.5mile buffer area. 

Built environment and socio-demographic variables are computed for the 0.5 miles buffers area of 

each incident location by using ArcGIS. The descriptive statistics of exogenous variables found 

significant in the final specified model are presented in Table 1. 

 

TABLE 1  Description of Model Estimation Sample 

Variable  Variable Description Freq. 
Percentage 

(%) 

Dependent Variable for Incident Type Component 

 Crash  2044 17.033 

 Debris  2197 18.308 

 Others type of incidents  7759 64.658 

Dependent Variable for Incident Duration Component 

Incident duration category 1 -T1  >0-5minute 4353 36.275 

Incident duration category 2 -T2   >5-10minute 1523 12.692 

Incident duration category 3 -T3   >10-15minute 1025 8.542 

Incident duration category 4 -T4   >15-20minute 747 6.225 

Incident duration category 5 -T5   >20-25minute 507 4.225 

Incident duration category 6 -T6   >25-30minute 357 2.975 

Incident duration category 7 -T7   >30-50minute 880 7.333 

Incident duration category 8 -T8   >50-80minute 798 6.65 

Incident duration category 9 -T9   >80-120minute 542 4.517 

Incident duration category 10 -

T10  
>120minute 1268 10.567 

Independent Variables (Categorical) 

Incident Characteristics 

First responder 

Road Ranger First responder is the Road Rangers 10417 86.808 

Other agencies First responder is Other agencies 1583 13.192 

Notified Agency 

Road Ranger (RR) Incidents were notified to the Road Rangers 5248 43.733 

Other agencies Incidents were notified to the Other agencies 6752 56.267 

Roadway Characteristics 

At interchange or not 

At interchange Incident was identified on an interchange 1323 11.025 

Non-interchange Incident was not identified on an interchange 10677 88.985 

At intersection or not 

At intersection Incident was identified on an intersection 3055 25.458 

Non-intersection Incident was not identified on an intersection 8945 74.542 

Functional Classification 

Rural Highway Incident was identified on rural highway 803 6.692 

Rural Arterial Incident was identified on rural arterial 485 4.042 

Rural Local Incident was identified on rural local road 53 0.442 
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Urban Interstate Incident was identified on urban interstate 3535 29.458 

Urban Freeway Incident was identified on urban freeway 2980 24.833 

Urban Arterial Incident was identified on urban arterial 2065 17.208 

Urban Local Incident was identified on urban local road 2079 17.325 

Posted speed limit 

Speed limit<55 
Posted speed limit is less than or equal to 

55mph 
4913 40.942 

Speed limit>55 Posted speed limit is higher than 55mph 7087 59.058 

Traffic Condition 

Weekend/Weekday 

Weekday  Monday - Friday 9196 76.633 

Weekend  Saturday and Sunday 2804 23.367 

Time of the day 

6am – 9am  1822 15.183 

9am – 4pm  5151 42.925 

4pm – 6pm  1877 15.642 

6pm – 9pm  1826 15.217 

9pm – 6am  1325 11.042 

Weather Condition 

Season 

Spring  March, April and May 2910 24.25 

Summer  June, July and August 3193 26.608 

Fall  September, October and November 3124 26.033 

Winter  December, January and February 2773 23.108 

Independent Variables (Ordinal) 

Variable   Mean Min/Max 

Incident Characteristics 

No. of responders No. of responders involved in clearance  1.175 1.000/8.000 

Time elapsed Time since 2012 in year 2.500 0.000/5.000 

Independent Variables (Continuous) 

Roadway Characteristics 

AADT Ln(AADT/10000) 1.421 0.030/3.033 

Inside shoulder Ln(Inside shoulder width in ft) 2.056 0.693/3.611 

Outside shoulder Ln(Outside shoulder width in ft) 2.009 0.693/3.045 

Median width Ln(Median width in ft) 3.698 1.099/5.889 

Weather Condition 

Rain 
Amount of rain in inch at the hour of incident 

occurrence 
0.006 0.000/1.617 

Built Environment 

Business 
Ln(No. of business establishments in 0.5mile 

buffer) 
0.101 0.000/1.609 

Commercial 
Ln(No. of commercial establishment in 0.5mile 

buffer) 
0.095 0.000/1.792 

Recreational 
Ln(No. of recreational establishment in 0.5mile 

buffer) 
0.271 0.000/2.565 
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Restaurant Ln(No. of restaurants in 0.5mile buffer) 1.111 0.000/4.357 

CBD distance 
Ln(Distance from central business district in 

miles) 
1.754 -2.182/3.444 

Land-use mix 

Land-use in computed as  
−𝛴𝑘(𝑝𝑘(ln 𝑝𝑘))

𝑙𝑛 𝑁
, where 

𝒌 is the category of land-use, 𝒑 is the 

proportion of the developed land area, 𝑵 is the 

number of land-use categories within a buffer 

0.377 0.000/0.963 

Socio-demographic Characteristics 

Population Ln(Total population in 0.5mile buffer) 6.805 2.652/8.721 

Median income 
Ln(Average median income in 0.5mile buffer 

in thousand) 
4.211 3.488/4.997 

 

4. MODEL SELECTION 

The empirical analysis involves the estimation of models by using six different copula structures: 

a) FGM, b) Frank, c) Gumbel, d) Clayton, e) Joe and f) Gaussian copulas. A series of models have 

been estimated in the current study context. First, an independent copula model (separate SMNL 

and GGOL models) is estimated to establish a benchmark for comparison. Second, 6 different 

models that restricted the copula dependency structure across the three incident types and incident 

duration models to be the same are estimated. Third, based on the copula parameter significance 

for each incident type, copula models that allow for different dependency structures for different 

incident type and incident duration combinations are estimated (for example Frank copula for the 

first two incident types and Clayton copula for other incident type). Fourth, joint models with 

different copula profiles are further augmented by parameterizing the copula profiles. Finally, to 

determine the most suitable copula model (including the independent copula model), a comparison 

exercise is undertaken. The alternative copula models estimated are non-nested and hence, cannot 

be tested using traditional log-likelihood (LL) ratio test. We employ the Bayesian Information 

Criterion (BIC) to determine the best model among all copula models without parameterization. 

  The computed BIC (LL, Number of parameters) value of the independent model is 

62434.01 (-30709.80, 108). With single copula dependency structure, the best model fit is obtained 

for Frank with BIC value of 62336.31 (LL = -30698.50, No. of parameters = 100). However, the 

lowest BIC value is obtained for a combination model of Frank-Clayton-Frank copulas (Frank 

copula structure for crash and other incident types and Clayton dependency structure for debris) 

and the BIC value is found to be 62335.11 (LL = -30697.92, No. of parameters = 100). 

Subsequently, the copula profile for the Frank-Clayton-Frank model has been parameterized. The 

copula model with and without parameterizations are nested within each other and can be 

compared by employing log-likelihood ratio test. The LL value for the parameterized Frank-

Clayton-Frank copula model is found to be LL = -30693.72 (No. of parameters = 101, BIC = 

62336.10). The log-likelihood ratio test yields a test statistic value of 8.40 which is substantially 

larger than the critical chi-square value (6.635) with 1 degrees of freedom at 99% level of 

significance. Thus, the comparison exercise confirms the importance of allowing the dependency 

profile to vary across different records. In presenting the effects of exogenous variables in the joint 

model specification, we will restrict ourselves to the discussion of the Frank-Clayton-Frank 

specification with parameterization. 
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5 MODEL RESULTS 

 

5.1 Incident Type Model Component 

Table 2 provides parameter estimates of incident type model component. A positive (negative) 

value of the parameters in Table 2 indicates higher (lower) propensity of the corresponding 

incident category compared to the base category.  

 

5.1.1 Roadway Characteristics 

Among roadway characteristics, interchange variable impact indicates that at interchange 

locations, the likelihood of debris incidence is higher while at intersections, the likelihood of 

crashes is higher. Incidents on rural highways are more likely to be crashes while less likely to be 

debris. The relationship is reversed for rural arterials. For rural local roads, crash incidences are 

found to be higher. On urban interstate, the results indicate higher possibility for crash and a lower 

possibility for debris incidents. The relationship is reversed for urban freeways. On urban arterials, 

the possibility of crash incident type is likely to be higher.  

Estimation result for posted speed limit indicates that the roadway speed limit being greater 

than 55 has a negative impact on the likelihood of crash incidence and positive influence on debris 

incidence. Parameter estimate for AADT indicates that increasing AADT is likely to reduce the 

possibility of Debris incidences. Shoulder width and median width variables have significant 

impacts on incident types. Specifically, with the increase in inside shoulder width, the probability 

of crash incidence is found to be higher. On the other hand, increasing width of the outside shoulder 

is likely to reduce the possibility of crash and debris incidents. This is expected because with 

increasing outside shoulder width more space for disabled or abandoned vehicles is available (a 

major share of the Other alternative). Median width variable is negatively associated with crash 

and positively associated with debris incidents.  

 

5.1.2 Traffic Characteristics 

Traffic characteristics prior to the occurrence of incident might affect the potential incident type. 

However, it is not feasible to generate detailed traffic information across all the incident records 

considered in our analysis. Hence, as potential surrogates reflecting traffic conditions, we 

considered the time period and day of the week. The results indicate that all time periods from 6 

am – 9 pm are less likely to result in crash. The possibility of crashes is particularly lower in the 

time period 9 am – 4 pm. At the same time, the results indicate that debris incidences are more 

likely to occur during the 6 am – 9 pm time period. The probability is particularly higher for debris 

during time period 6 am – 4 pm. Finally, the day of the week parameters indicate that the likelihood 

of debris incidence is lower on weekdays (relative to weekends).  

 

5.1.3 Weather Conditions  

The variables tested for seasonality resulted in a significant parameter for spring. The result 

indicates lower propensity for crash during spring season. The results for Rain variable indicate 

that in the presence of rain, crash incidences are likely to be higher. The result is expected in 

Florida with tropical weather where heavy showers appear in short time frame affecting overall 

road safety. 
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5.1.4 Built Environment 

Incident type is affected by crash proximity to central business district (CBD). Specifically, as the 

distance of the incident location to CBD increases the likelihood of crash and debris increases. 

Several land-use variables affect incident type likelihood. Business and restaurant land use 

contribute to lower debris incidence while recreational land use contributes to higher debris 

incidence. Commercial and restaurant land use contribute to higher crash possibilities. Finally, 

overall land-use mix variable is found to have a positive effect on debris variable.  

 

5.1.5 Socio-demographic Variables 

Population density and median income in the proximity of incident are found to be significant 

predictors of incident type. Higher population density increases probability of an incident being 

debris and reduces the likelihood of an incident being crash relative to other incidents. The result 

is reflective of the enhanced safety in highly populated areas. Similarly, incidents occurring in 

high income areas are less likely to be a crash. 

 

5.1.6 Scale parameter 

To accommodate for difference in incident type with time, we generated the time elapsed variable 

(time since 2012). The estimated model result indicates that the variance of the error term for the 

time elapsed variable increases with time highlighting the impact of unobserved time specific 

factors.  

 

TABLE 2 Parameter Estimates for Incident Type Component (SMNL Model Results) 

Variable 
Crash Debris Other Incidents 

Est. t-Stat Est. t-Stat Est. t-Stat 

Constant 7.6596 9.9390 -5.9350 -10.2680 -- -- 

Roadway Characteristics 

At Interchange or not (Base: Non-interchange) 

At interchange --1 -- 0.9211 9.9460 -- -- 

At intersection or not (Base: Non-intersection) 

At intersection 0.1787 2.176 -- -- --   

Function class of roadway (Base: Urban Local) 

Rural highway 0.4979 2.601 -0.5990 -2.048 -- -- 

Rural arterials -1.2389 -4.3970 0.9905 4.5440 -- -- 

Rural local 2.2113 4.3770 -- -- -- -- 

Urban interstate 0.8258 5.7170 -0.8513 -5.122 -- -- 

Urban Freeway -0.5846 -3.7250 1.5622 11.709 -- -- 

Urban arterials 0.4458 4.5400 -- -- -- -- 

Posted speed limit (Base: Speed limit<55) 

Speed limit>55 -0.4219 -3.8180 0.3847 3.6670 -- -- 

AADT -- -- -0.2971 -4.8940 -- -- 

Inside shoulder  0.1585 2.1560 -- -- -- -- 

Outside shoulder  -0.1880 -2.3040 -0.4233 -5.878 -- -- 
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Median width -0.5487 -8.7420 0.1502 1.9980 -- -- 

Traffic Condition 

Time of the day (Base: 9pm – 6am) 

6am – 9am  -0.2782 -2.3850 1.5825 7.0290 -- -- 

9am – 4pm -0.6918 -7.2730 1.5318 7.1820 -- -- 

4pm – 6pm -0.2568 -2.3760 1.1637 5.1630 -- -- 

6pm – 9pm -0.4600 -4.2390 0.9021 3.9670 -- -- 

Weekend/ Weekday (Base: Weekend) 

Weekday -- -- -0.4261 -5.4610 -- -- 

Weather Conditions 

Season (Base: Other seasons) 

Spring -0.2338 -3.1960  -- --   -- --  

Rain 2.2397 4.1600  --  --  --  -- 

Built Environment 

CBD Distance 0.3397 6.9950 0.3598 5.1390 -- -- 

Business  -- -- -1.1775 -7.3720 -- -- 

Commercial  

 
0.6877 5.8180 -- -- -- -- 

Recreational  

 
-- -- 0.3336 4.0340 -- -- 

Restaurants  0.1346 4.4310 -0.1513 -3.9760 -- -- 

Land-use mix -- -- 0.4499 2.6560 -- -- 

Socio-demographic 

Population -0.4200 -8.4150 0.3749 6.7340 -- -- 

Median income -1.1809 -9.2630 -- -- -- -- 

Scale Parameter 

Time elapsed Estimate = 0.0895 (t-stat = 10.4950) 

1-- = Attributes insignificant at 90% confidence level 

 

5.2 Incident Duration Model Component 

Table 3 provides parameter estimates of the duration model for crash, debris and other incident 

type categories considered in the study. A positive (negative) value of the parameter in Table 3 

indicates propensity for higher (lower) duration. 

 

5.2.1 Incident Characteristics 

Several incident characteristics such as number of responders, category of the first responder and 

notified agency are found to influence incident duration. In terms of number of responders, the 

incident duration is found to be higher with the increased number of responders for all duration 

models. The result might seem counterintuitive. However, the increase in the number of responders 

is representative of the seriousness of the incident. Thus, based on incident notification, for more 

serious incidents, a large number of responders are likely to arrive at a scene for assisting in 

incident clearance. Several agencies are involved in the incident notification and clearance 

activities. The results indicate that if Road Ranger is the notified agency then the incident durations 
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are likely to be lower for debris and other incidents (see (Laman et al.,  2018) for similar result). 

Incident durations are also found to be lower for all incident categories if Road Ranger is the first 

responder.  

 

5.2.2 Roadway Characteristics 

The roadway characteristics are found to have no impact on incident duration for crashes. The 

result is a reflection of the emphasis on crash incident clearance. The emphasis is warranted given 

the potential savings of life in the event of crash. For debris, the duration is likely to be longer on 

rural arterials. For other incidents, the roadway classification of rural arterials and urban freeways 

are found to have negative impact on the duration component. The results from our models are 

different from earlier research (Ghosh et al., 2014; Laman et al., 2018) and warrant further 

investigations. Roadway geometric characteristics are found to have no effect on incident duration 

for any incident categories. 

 

5.2.3 Traffic Characteristics 

For crash and debris, the model estimation results indicate that incident durations are likely to be 

higher during 9 pm to 6 am (see (Chung, 2010) and (Laman et al., 2018) for similar findings). On 

the other hand, for disabled vehicles duration is likely to be longer in the 6 am to 9 am time period. 

For the time period between 9 am to 9 pm, the disabled vehicles incidence is likely to have shorter 

incident duration. On weekdays, duration of crash incidence is likely to be shorter (as is supported 

by earlier research (Laman et al., 2018). On the other hand, duration is longer for debris on 

weekdays. Overall, the results are an indication of infrastructure readiness for crash incident 

clearance and reduced emphasis on debris clearance during the daytime and weekdays.  

 

5.2.4 Weather Effects  

Only seasonal effects are found to affect incident duration. Specifically, the results indicate that 

incident duration for debris is likely to be of longer duration in summer.  

 

5.2.5 Built Environment 

As the distance from CBD increases, the time for clearance for crash incidences are found to be 

higher. The result is indicative of the presence of more incident clearance infrastructure around 

CBD. 

 

5.2.6 Socio-demographic Variables 

While several socio-demographic variables were considered in the model only two variables 

offered statistically significant results in the incident duration component. As population increases, 

the model results indicate a reduction in duration for crash and other incidents. For debris incidents, 

the reduction in duration is associated with higher median income. Overall, the results indicate that 

the incident management authorities are likely to prioritize highly populated areas.  

 

5.2.7 Alternative specific constants 

The proposed duration model also allows for alternative specific effects on various duration 

categories. In our incident duration estimation, we consider various alternative specific constants 

based on model fit and sample sizes across each duration category. The estimation results of these 

parameters are reported in the second-row panel of Table 3. These constants are similar to constant 

in discrete choice models and do not have an interpretation after incorporating other variables. 
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5.2.8 Variance Components 

As described in the methodology section, the variance of the GGOL model components are 

estimated as a function of observed exogenous variables. The parameter estimates of these 

components are presented in the third-row panel of Table 3. From the results, it can be found that 

the exogenous variables that contribute to the variance profile of duration model of crash 

incidences include notified agency is Road Rangers and number of responders. The only 

exogenous variable that contributes to the variance profile of duration model of debris is outside 

shoulder width. The exogenous variables that contribute to the variance profile of duration model 

of other incidents include AADT, at intersection, first responder is Road Rangers and the incident 

was notified to Road Rangers. Thus, these results highlight the presence of heteroscedasticity in 

the data.   

 

5.2.9 Dependence Effects 

As indicated earlier, the estimated Frank-Clayton-Frank copula based SMNL-GGOL model with 

parameterization provides the best fit in incorporating the correlation between incident type and 

incident duration. The result of the dependency profile is presented in the last row panel of Table 

3. The results clearly highlight the presence of common unobserved factors affecting incident type 

and incident duration. The Frank copula dependency structure is associated with the crash and 

other incident categories, while the Clayton dependency structure is associated with the debris 

category. For the crash incident type, the Frank dependency is negative indicating that the 

unobserved factors that are likely to increase crash likelihood are likely to reduce the incident 

duration. The Frank dependency for other incidents offers similar results. The reader would note 

that for other incident type, the dependency parameter varies by season. Finally, for debris 

incident, Clayton copula parameter indicates that the unobserved factors affecting debris incident 

and its associated duration have a strong lower tail dependency.  

 

TABLE 3 Parameter Estimates for Incident Duration 

Variables 
Crash Debris Other Incidents 

Est. t-stat Est. t-stat Est. t-stat 

Propensity components 

Constant 104.2761 12.9790 -12.6649 -0.6340 78.3892 4.5180 

Incident characteristics 

No. of responders 9.7250 10.0730 24.5795 4.4010 25.9121 4.4290 

First responder (Base: Other agencies) 

Road Ranger -9.2166 -4.6170 -27.5312 -4.7480 -37.0589 -4.0290 

Notified agency (Base: Other agencies) 

Road Ranger --1 -- -36.8587 -6.4270 -49.5242 -8.0620 

Roadway Characteristics 

Functional class (Base: Other classes) 

Rural arterial -- -- 13.2396 2.8060 -102.6595 -9.5910 

Urban freeway -- -- -- -- -27.8564 -4.4550 

Traffic characteristics 

Time of the day (Base: 9pm – 6am) 
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6am – 9am -11.1390 -3.8540 -24.2698 -3.2280 14.5904 2.2610 

9am – 4pm -10.7558 -4.6140 -21.5290 -3.0470 -40.7983 -7.3300 

4pm – 6pm -5.8756 -2.1250 -25.9414 -3.4110 -36.9026 -5.6730 

6pm – 9pm -7.8879 -2.8990 -20.1242 -2.7090 -22.5256 -3.5450 

Weekend/ Weekday (Base: Weekend) 

Weekday -3.9172 -2.0310 6.0762 2.1960 -- -- 

Weather condition  

Season (Base: Other Seasons) 

Summer -- -- 5.4717 2.1250 -- -- 

Built Environment 

CBD distance 4.0977 3.7370 -- -- -- -- 

Socio-demographic Characteristics 

Population -5.2669 -5.7490 -- -- -6.7246 -4.0450 

Median income -- -- -8.2901 -2.1660 -- -- 

Category-specific constants 

Constant for T1 19.7306 7.3080 14.6056 9.6070 122.1130 27.4130 

Constant for T2 8.7898 5.5190 -- -- 73.8363 23.8800 

Constant for T3 -- -- -- -- 40.8383 19.5830 

Constant for T4 -- -- -- -- 16.4859 13.5050 

Constant for T5 -- -- -- -- -- -- 

Constant for T6 -- -- -- -- -- -- 

Constant for T7 -- -- -- -- -- -- 

Constant for T8 -- -- -- -- -- -- 

Constant for T9 18.8899 14.1380 24.0710 7.2220 -- -- 

Variance components 

Constant 3.3264 57.6220 3.2171 42.1950 3.8284 53.9040 

No. of responders -0.1324 -5.5390 -- -- -- -- 

First responder (Base: Other agencies) 

Road Ranger  -- -- -- -- 0.5878 8.4000 

Notified agency (Base: Other agencies) 

Road Ranger 0.4490 6.4160 -- -- -0.0711 -2.3800 

At intersection or not (Base: Non-intersection)  

At intersection -- -- -- -- 0.1458 2.8510 

AADT -- -- -- -- 0.0323 2.1030 

Outside shoulder -- -- 0.0594 2.1690 -- -- 

Dependence Effects 

Constant -2.5268 -4.5610 4.8241 4.4080 -1.5917 -3.7590 

Season (Base: Other seasons) 

Summer -- -- -- -- -0.8163 -2.8940 
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1-- = Attributes insignificant at 90% confidence level 

 

6 MODEL PERFORMANCE AND APPLICATION 

 

6.1 Validation Analysis 

To test the predictive performance of the estimated model, a validation exercise with holdout 

sample is performed. For this validation test, 2500 records from each year are drawn randomly 

from the unused data resulting in a validation dataset of 15,000 records. For testing the predictive 

performance of the models, 25 data samples, of about 1000 records each, are randomly generated 

from the hold out validation sample consisting of 15,000 records. The average log-likelihood and 

BIC score for the copula model are -3046.67 [(-3089.91, -3003.44)] and 6792.93 [(6705.32, 

6880.54)], respectively. The average log-likelihood and BIC score for the independent model are 

-3050.62 [(-3092.55, -3008.69)], and 6849.30 [(6764.22 ,6934.38)], respectively. The average log-

likelihood and BIC score for the traditional model (single duration model using incident type as 

an independent variable) are -3150.97 [(-3193.39, -3108.55)], and 6800.64 [(6714.99, 6886.30)], 

respectively. For every individual sample, the predicted log-likelihood and BIC value for the 

copula model are better than the corresponding log-likelihood and BIC value for the independent 

and the traditional model. The validation result clearly reflects the superiority of joint model over 

independent and traditional model.  

We also examine predictive performance by incident type: (a) All incidents, (b) crash, (c) 

debris and (d) other incidents. The predictive LL value box plots for the three models by these four 

categories are presented in Figure 2. For the overall sample comparison reflected in the first box 

plot comparison, it is clear that a single model that ignores duration profiles by incident type is 

outperformed by the two models that consider duration profiles by incident type (independent and 

copula models). Among incident type specific comparison, the models developed in our study out-

perform the traditional model for debris and other incident types. However, for crash incident 

records, the traditional model marginally outperforms the proposed models.  
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FIGURE 2 Comparison of Predictive Log-likelihood of the Three Models 

 

6.2 Elasticity Analysis 

The parameter estimates of developed copula-based incident model can be utilized to identify 

whether an independent variable increases or decreases the probability of higher/lower order 

incident duration categories. But parameter estimates do not directly identify the magnitude of the 

change on the probability of a duration category. Therefore, elasticity effects for all independent 

variables with regard to incident duration were calculated. For the sake of brevity, we restrict 

ourselves to the presentation of elasticity values of the highest duration category in Table 4. Values 

presented in Table 4 reflect the percentage change in aggregate probability of the highest duration 

category due to the change in independent variables. From the elasticity analysis results, it is found 

that an increase in the number of responders increases the probability of higher ordered incident 

duration categories significantly. On the other hand, Road rangers being the first responder and 

the incident being notified by the Road Rangers reduce the probability of higher ordered duration 

categories. In case of traffic characteristics variables, crashes and debris occurring 6am to 9pm 

and other incidents occurring 9am to 9pm have lower duration compared to nighttime from 9am 

to 6am. With increasing CBD distance, duration of crashes increases significantly. With increased 

population in close proximity of crashes and other incidents, incident duration decreases 

significantly. Another socio-demographic characteristic, median income significantly influences 

duration of debris type of incident. Increase of median income decreases the probability of higher 

order duration category. Overall, the elasticity analysis results can be helpful to the incident 

management agencies to identify the dominant factors affecting incident duration.  
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TABLE 4 Elasticity Analysis for Incident Duration 

Variables Crash Debris Other Incidents 

Incident characteristics 

No. of responders 3.06799 6.83959 0.84843 

First responder (Base: Other agencies) 

Road Ranger -14.82945 -104.78980 -4.92734 

Notified agency (Base: Other agencies) 

Road Ranger 0.26746 -65.26592 -16.50839 

Roadway Characteristics 

Functional class (Base: Other classes)  

Rural arterial -- 41.09485 -23.75875 

Urban freeway -- -- -8.087557 

Traffic characteristics 

Time of the day (Base: 9pm – 6am) 

6am – 9am -17.55639 -56.43968 4.531904 

9am – 4pm -16.94333 -61.75876 -12.17580 

4pm – 6pm -9.287986 -55.22964 -10.54608 

6pm – 9pm -12.47041 -43.79461 -6.61213 

Weekend/ Weekday (Base: Weekend) 

Weekday -6.18817 15.51287 -- 

Weather condition  

Season (Base: Other Seasons) 

Summer -- 14.96467 -- 

Built Environment 

CBD distance 4.10584 -- -- 

Socio-demographic Characteristics 

Population -5.64136 -- -1.37324 

Median income -- -8.72836 -- 

* Values indicate the percentage changes of aggregated probability of the highest duration category 

6.3 Model Illustration 

To demonstrate the applicability of the developed model, the final model was applied to generate 

response surface using duration categories, incident frequencies and selected independent 

variables for different incident types. In generating the values for plotting the response surface, the 

incident duration categories are identified based on probabilistic assignment by using predicted 

probabilities computed from the final copula model (Frank-Clayton-Frank parameterized). The 

probabilities are appropriately aggregated across categories to identify the corresponding incident 

frequencies. For example, incident frequencies of crashes are plotted against duration categories 

and number of responders in Figure 3a. The plotted surface shows that crash incidents are typically 

associated with longer clearance times and are likely to involve increased number of responders 

compared to other incident types. Figure 3b presents crash incident frequencies by time of the day 

and indicates that crash frequency is the highest between 9am to 4pm compared to other time of 

the day. Similar to Figure 3a, crash incident frequencies are higher for longer duration levels. 
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Figure 3c indicates that the likelihood of crash incidents is higher for locations between 5 to 10 

miles from central business district. Figure 3d presents other incident frequencies by duration 

category and time of the day. The reader would note that the plots provided are only a sample of 

the various illustrations that can be generated based on the independent variables in the models. 

The development of such response surface could be helpful for the incident management agencies 

to allocate their resources based on the reported incident scenarios. 
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(a) Crash frequencies with respect to number of responders (b) Crash frequencies with respect to time of the day 

 
(c) Crash frequencies with respect to CBD distance (d) Other Incidents frequencies with respect to time of the day 

FIGURE 3 Response Surface for Predicted Incident Frequencies
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7 CONCLUSION 

To understand the impact of observed and unobserved effects on incident type and incident 

duration, this paper formulated and estimated a copula-based joint model with a scaled 

multinomial logit model (SMNL) system for incident type and a grouped generalized ordered logit 

(GGOL) model system for incident duration. The proposed model is estimated using FDOT’s 

incident management data from Greater Orlando region, with a host of independent variables 

including incident characteristics, roadway characteristics, traffic condition, weather condition, 

built environment and socio-demographic characteristics. The current study contributes to incident 

duration literature in multiple ways. First, the current study posits that incident duration is strongly 

influenced by incident type and allows for distinct incident profile regimes. Further, the study 

accommodates for common unobserved factors affecting incident type and incident type within a 

closed form copula-based model structure. Second, the study using data from multiple years, 

develops a framework that accommodates for observed and unobserved temporal effects on 

incident type and incident duration. Finally, the proposed model system is estimated using a 

comprehensive set of exogenous variables.  

The empirical analysis involves the estimation of models by using six different copula 

structures: 1) FGM, 2) Clayton, 3) Gumbel, 4) Frank, 5) Joe and 6) Gaussian. The parameterized 

Frank-Clayton-Frank copula system (Frank copula structure for crash and other incident type and 

Clayton dependency structure for debris) offered the best data fit for our empirical context. The 

model estimation results presented in the current paper suggest that the impact of exogenous 

variables vary (for some variables) in magnitude as well as in sign across incident types. To further 

understand the performance of the developed model, a comprehensive model performance 

evaluation and applicability exercise was conducted. The results from the exercise illustrate the 

value offered by the proposed model system.  

The enhanced duration model can be employed by planning agencies to guide incident 

clearance as well as traffic congestion management. To elaborate, based on the model system, 

planning agencies can generate guidelines on incident duration times for important variables such 

as incident type, location and time of day. These guideline durations for incident clearance can 

allow agencies to identify the appropriate messaging signs (such as what is targeted demand for 

diversion) for route detours at the occurrence of an incident.  
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