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ABSTRACT 
The current research contributes to the burgeoning literature on multivariate models by 

proposing a hybrid model framework that (a) incorporates unobserved heterogeneity in a 

parsimonious framework and (b) allows for additional flexibility to accommodate for 

observed/systematic heterogeneity. Specifically, we estimate a Latent Segmentation Panel 

Mixed Negative Binomial (LPMNB) model to study the zonal level crash counts across 

different crash types. Further, we undertake a comparison exercise of the proposed hybrid 

LPMNB model with a Panel Mixed Negative Binomial model (PMNB) that accommodates for 

unobserved heterogeneity via a simulation setting. The analysis is conducted using the zonal 

level crash records by different crash types from Central Florida region for the year 2016 

considering a comprehensive set of exogenous variables. The comparison exercise is further 

augmented by computing several goodness of fit measures along with elasticity analysis and 

the results offered by the LPMNB model highlight the value of the proposed model. Further, 

to offer insights on model selection incorporating computational complexity dimension along 

with other important attributes, we conduct a trade-off analysis considering four different 

attributes: (a) model fit, (b) prediction, (c) inference power and (d) computational complexity; 

across six different model strictures including traditional crash frequency models and our 

proposed LPMNB model. 

 

Keywords: Unobserved heterogeneity; Parsimonious structure, Panel Latent segmentation; 

Panel mixed negative binomial; Crash type. 
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1 BACKGROUND  
Road traffic crashes and their consequences remain a global health concern given the extent of 

societal, emotional and economic impacts of these unfortunate events. According to a recent 

report by NHTSA (NHTSA, 2018), road traffic crashes, responsible for 36,750 fatalities in the 

US, ranked as the third deadliest in the decade and a leading cause of death among people aged 

between 17 and 21 years old. The numbers while declining relative to 2016 and 2017, are still 

12.2% higher than 2014 (an all time low) and warrants our attention for devising appropriate 

solutions for reducing the number and consequence of such unfortunate events (NHTSA, 

2018). Crash frequency models are an important component for devising and evaluating road 

safety policies and counter measures. These models examine crashes either at the micro-level 

(such as an intersection or roadway segment) or at the macro-level (such as a county or Traffic 

Analysis Zone (TAZ)). Traditionally, earlier studies developed crash prediction models 

considering a single count variable (typically the total number of crashes) for a spatial unit and 

study the impact of exogenous variables. Econometric approaches for developing crash 

prediction models in a univariate setting are dominated by count regression frameworks 

(Poisson and negative binomial (NB)) (please see (Anastasopoulos and Mannering, 2011, 

2009; Bhowmik et al., 2018; Cai et al., 2018; Lord and Mannering, 2010; Yasmin and Eluru, 

2018) for a literature review).  

In recent years, studies show that a single total crash model will not be able to parse the 

distinct crash distribution by different attributes (such as type, injury severity, and modes) and 

such aggregation can result in aggregation bias and loss of information available in the dataset. 

Hence, in recent years, safety researchers have focused on disaggregating the data by various 

attributes such as crash typology (Alarifi et al., 2018; Bhowmik et al., 2019a, 2018; Chen et 

al., 2016; Cheng et al., 2017; Intini et al., 2020; Wang et al., 2017), injury severity (Bhowmik 

et al., 2019a; Eluru and Bhat, 2007; Nashad et al., 2016; Serhiyenko et al., 2016; Wang et al., 

2021, 2019; Yasmin et al., 2016; Yu and Abdel-Aty, 2013), vehicle involvement (Dong et al., 

2014; Lee et al., 2018, 2015) and crash location (Bhowmik et al., 2021; Song et al., 2006). It 

is beyond the scope of our paper to review the vast literature on crash frequency (please see 

Bhowmik, 2020; Bhowmik et al., 2021 for a detailed documentation on crash frequency 

literature, particularly on crash type analysis). The disaggregation results in multiple dependent 

variables for each observational unit. Univariate models can be estimated for each dependent 

variable to address the influence of observed factors. However, accommodating for common 

unobserved factors across these dependent variables requires us to develop multivariate 

approaches. Ignoring the influence of such common unobserved factors, if present, may lead 

to biased and inefficient parameter estimates resulting in erroneous policy implications (see 

Mannering et al., 2016 for an extensive discussion).  

Recognizing this drawback, recent research in safety literature has shifted toward 

multivariate modeling frameworks that accommodate for the influence of these common 

unobserved factors (Anastasopoulos, 2016; Mannering et al., 2016; Nashad et al., 2016). In 

these multivariate models, typically probability computation requires integrating the 

probability function over the error term distribution. The exact computation is dependent on 

the distributional assumption and does not have a closed form expression usually1 requiring 

simulation. The simulation-based approaches are estimated within the classical regime using 

maximum simulated likelihood approaches or in the Bayesian regime using Markov Chain 

Monte Carlo (MCMC) methods (Anastasopoulos et al., 2012; Aguero-Valverde, 2013; Wang 

and Kockelman, 2013; Barua et al., 2014; Dong et al., 2014). The various model structures 

 
1 In some cases, a parametric multivariate distributional assumption might result in closed form approaches (such 

as the copula based approaches (Bhowmik et al., 2021; Nashad et al., 2016) or an approximated integral is 

computed using quasi-likelihood methods (see Narayanamoorthy et al., 2013). 
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developed from multivariate models include multivariate Poisson regression model (Ye et al., 

2009), multivariate Poisson lognormal model (Serhiyenko et al., 2016), multinomial-

generalized Poisson model (Chiou and Fu, 2013), multivariate Poisson gamma mixture count 

model (Mothafer et al., 2016), multivariate Poisson lognormal spatial and/or temporal model 

(Cheng et al., 2017; Jonathan et al., 2016), Integrated Nested Laplace Approximation 

Multivariate Poisson Lognormal model (Wang et al., 2017), Bayesian latent class flexible 

mixture multivariate model (Heydari et al., 2017), multivariate random-parameters zero-

inflated negative binomial model (Anastasopoulos, 2016), multivariate random parameter 

count model (Buddhavarapu et al., 2016; Huo et al., 2020), correlated grouped random 

parameters bivariate probit model (Fountas et al., 2019) and recently proposed fractional split 

approach (Afghari et al., 2020; Bhowmik, 2020; Bhowmik et al., 2019b, 2018; Yasmin et al., 

2016; Yasmin and Eluru, 2018).  

 

1.1 Contributions of the Current Study 
As is evident from the discussion above, simulation-based approaches have been extensively 

applied for multivariate models. However, several challenges still exist with these multivariate 

models. The current research contributes to burgeoning literature on multivariate models by 

proposing a model framework that (a) incorporates unobserved heterogeneity in a parsimonious 

framework and (b) allows for additional flexibility to accommodate for observed/systematic 

heterogeneity. The proposed approach builds on previous work from two studies (Bhowmik et 

al., 2019a; Yasmin and Eluru, 2016).  

Bhowmik and colleagues proposed a parsimonious model structure for multivariate 

models by recasting the multivariate crash frequency modeling problem as a pooled univariate 

crash frequency analysis problem (with unobserved heterogeneity accommodated). To 

elaborate, instead of considering the crash frequency by crash type as a multivariate 

distribution, the authors represent it as repeated measures of crash frequency while recognizing 

that each repetition represents a different crash type. The recasting process allows for the 

estimation of a parsimonious model system by allowing for an improved specification testing 

of variable impacts across different crash types (see (Bhowmik et al., 2019a) for details). Using 

this consideration, the proposed model system enhances the efficiency of estimation through a 

single crash frequency model while also allowing for parameter effects to vary across different 

crash types through crash type specific deviation terms. Further, as only one propensity 

equation is to be estimated, it allows for reduction in parameters especially for unobserved 

factors resulting in substantial improvements in model efficiency and computational times.  

Bhowmik et al. 2019a approach offered significant enhancement to the state of the art 

multivariate model estimation. However, the study implicitly started with a population 

homogeneity assumption for the estimated parameters i.e. the influence of exogenous variables 

was assumed to be the same across the dataset (Eluru et al., 2012; Yasmin and Eluru, 2016). 

While the assumption was partially relaxed through random parameters estimated for each 

parameter the process is computationally intensive and simulation reliant. Furthermore, the 

approach completely focuses on the unobserved error component of the propensity. To address 

this restriction, in our proposed study, we bridge the panel recasting approach with the latent 

segmentation based approach employed for crash frequency modeling (Park et al., 2010; Park 

and Lord, 2009; Zou et al., 2014; Yasmin and Eluru, 2016; Fountas et al., 2018; Yu et al., 

2019). In a latent segmentation model, TAZs are allocated probabilistically to different 

segments and a segment specific model is estimated for each segment. The probabilistic 

assignment explicitly acknowledges the role played by unobserved factors in moderating the 

impact of observed exogenous variables. Further, the approach provides valuable insights on 

how the exogenous variables affect segmentation. To the best of authors’ knowledge, this study 

is the first of its kind to develop a latent class count model considering multiple dependent 
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variables (different crash types) while simultaneously accommodating potential correlations 

resulting from unobserved factors across the count dimensions. 

To summarize, our current study contributes to crash frequency literature both 

methodologically and empirically by estimating a Latent Segmentation Panel Mixed Negative 

Binomial (LPMNB) to study the zonal level crash counts across different crash types. The 

newly formulated model will allow us to partition the TAZs into segments based on their 

attributes and estimate the influence of exogenous variables on crash counts of different crash 

types. From a methodological perspective, the current research makes a threefold contribution 

to literature on crash frequency analysis: First, the recasting allows us to estimate a 

parsimonious model system and reduce the computational time for estimating parameters 

associated with unobserved factors. Second, by introducing the latent class version of the 

PMNB model, we allow for both observed/systematic and unobserved heterogeneity relaxing 

the homogeneity assumption of the traditional count models. Third, we allow for a flexible 

segment membership function and test for the presence of multiple segments in the model 

estimation. Empirically, the research contributes to our understanding of analyzing zonal level 

crashes for both motorized and non-motorized road user group while considering different 

crash types within the motorized category including rear-end, angular, sideswipe, single 

vehicle and head-on crashes.  

The analysis is conducted using the zonal level crash records from Central Florida for 

the year 2016 considering a comprehensive set of exogenous variables. Further, we undertake 

a comparison exercise of the proposed LPMNB model with its’ counterpart proposed in 

previous work by Bhowmik and colleagues (Bhowmik et al., 2019a). 

 

2 METHODOLOGY 
The focus of our study is to estimate a Latent Segmentation based Panel Mixed NB modeling 

framework and compare its performance with previously proposed Panel Mixed NB model 

(PMNB). In this section, we restrict ourselves to the latent model system (please refer to section 

4.1 in the current paper and our earlier work (Bhowmik et al., 2019a) for details on PMNB 

model). The general structure for latent segmentation-based count models involves specifying 

these two components: (1) assignment component and (2) segment specific count model 

component. For the ease of presentation, we describe modeling framework by the components.  

 

2.1 Model Structure 
Let us assume that 𝑠 be the index for segments (𝑠 = 1, 2,3, … , 𝑆), 𝑖 be the index for TAZ (𝑖 =
1,2,3, … , 𝑁 = 3,815) and 𝑟(𝑟 = 1,2, … , 𝑅, 𝑅 = 6) be an index for different crash type at TAZ 

𝑖. 𝑦𝑖𝑟 be the index for crash counts occurring over a period of time in 𝑇𝐴𝑍𝑖 and crash type r. 

The assignments of TAZ to different segments are modeled as a function of a column vector 

of exogenous variable by using the multinomial logit model ((Dey et al., 2018; Eluru et al., 

2012; Wedel et al., 1993; Yasmin and Eluru, 2016) for similar formulation) as: 

𝑃𝑖𝑠 =
𝑒𝑥𝑝[𝜶𝑠𝒛𝑠]

∑ 𝑒𝑥𝑝[𝜶𝑠𝒛𝑠]𝑆
𝑠=1

 (1)  

where, 𝑃𝑖𝑠 is the probability of 𝑇𝐴𝑍𝑖 to be assigned to segment 𝑠, 𝒛𝑠 is a vector of attributes 

and 𝜶𝑠 is a conformable parameter vector to be estimated. Segment Specific Count Component 

The probability equation of the NB formulation can be rewritten as follow: 
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𝑃𝑖𝑠(𝑦𝑖𝑟|𝑠) =  
Γ (𝑦

𝑖𝑟
+

1
𝜆′

)

Γ(𝑦
𝑖𝑟

+ 1)Γ (
1
𝜆′

)
(

1

1 + 𝜆′𝑣𝑖𝑟

)

1
𝜆′

(1 −
1

1 + 𝜆′𝑣𝑖𝑟

)
𝑦𝑖𝑟

 (2)  

where, 𝑃(𝑦𝑖𝑟) is the probability that TAZ 𝑖 has 𝑦𝑖𝑟 number of crashes for crash type r. 𝜆′ is NB 

over dispersion parameter and 𝑣𝑖𝑟 is the expected number of crashes occurring in 𝑖 over a given 

time period for crash type r. 𝑣𝑖𝑟 an be expressed as a function of explanatory variables using a 

log-link function as follows: 

𝑣𝑖𝑟 = 𝐸(𝑦𝑖𝑟|𝒙𝑖𝑟) = 𝑒𝑥𝑝((𝜷 + 𝜽𝑖 + 𝝔𝑖𝑟)𝒙𝑖𝑟 + 𝜀𝑖𝑟) (3)  

where, 𝒙𝑖𝑟 is a vector of explanatory variables associated with observations 𝑖 for crash type r. 

𝜷 is a vector of coefficients to be estimated.  𝜽𝑖 is a vector of unobserved factors moderating 

the influence of attributes in 𝒙𝑖𝑟 on the crash count propensity for 𝑇𝐴𝑍𝑖, 𝝔𝑖𝑟 is a vector of 

unobserved effects specific to crash type 𝑟. 𝜀𝑖𝑟 is a gamma distributed error term with mean 1 

and variance 𝜆′. In estimating the model, it is necessary to specify the structure for the 

unobserved vectors 𝜽, 𝝔 represented by Ψ. In this paper, it is assumed that these elements are 

drawn from independent normal distribution: Ψ~𝑁(0, (𝝅′𝟐
, 𝜱𝟐 )). The 𝝔𝑖𝑟 will be same across 

each crash type and thus the unobserved heterogeneity across that crash type will be captured. 

For instance, a constant interacting with head-on crash type will allow for a head-on crash 

propensity to be distributed normally. The same vector can also be specified to allow for 

correlation across multiple crash types. Moreover, 𝜽𝑖 term will capture the random effect 

across observations for each TAZ.  

 

2.2 Model Estimation 
Thus, conditional on Ψ, the likelihood function for the latent segmentation based count model 

across TAZ can be expressed as 

𝐿𝑖 =  (∫ ∑[∏ ((𝑃𝑖𝑠) × (𝑃𝑖(𝑦
𝑖𝑟

|𝑠)))

𝑅

𝑟=1

𝑆

𝑠=1Ψ

]𝑓(Ψ)𝑑Ψ (4)  

Further, we apply simulation techniques to approximate the integrals in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function across 

individuals with respect to Ψ . The simulation technique approximates the likelihood function 

in Equation (4) by computing the 𝐿𝑖 for each 𝑇𝐴𝑍𝑖 at different realizations drawn from a 

multivariate normal distribution, and averaging it over the different realizations (see (Eluru and 

Bhat, 2007) for detail). Notationally, if 𝐷𝐿𝑖 is the realization of the likelihood function in the 

cth draw (c = 1, 2, …, C), then the observational likelihood function is approximated as: 

𝐷𝐿𝑖 =
1

𝐶
∑(DLi

𝑐)

𝐶

𝑐=1

 (5)  

Finally, the log-likelihood function is:       
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𝐿𝐿 = ∑ 𝐿𝑛(𝐷𝐿𝑖)

𝑖

 (6)  

All the parameters in the model are estimated by maximizing the logarithmic function 

𝐿𝐿 presented in equation 6.  

The parameters to be estimated in the model are: 𝜽, 𝜚, 𝛷  𝑎𝑛𝑑  𝜋. To estimate the 

proposed model, we apply Quasi-Monte Carlo simulation techniques based on the scrambled 

Halton sequence to approximate this integral in the likelihood function and maximize the 

logarithm of the resulting simulated likelihood function across individuals (see Bhat, 2001; 

Eluru et al., 2008 for examples of Quasi-Monte Carlo approaches in literature).The model 

estimation routine is coded in GAUSS Matrix Programming software (Aptech). 

 

3 DATA PREPARATION 
Our study area includes the Central Florida region associated with 4,747 zones encompassing 

a total of 11 counties in the state of Florida and covers an area of approximately 11,150 mile2
 

with a population of around 8.2 million. The empirical analysis focused on crashes by different 

types involving both motor vehicles and non-motorists at a zonal level for 2016. For processing 

the data, crash data were sorted into two classes based on the road user group: motorist and 

non-motorist2; within the motorized group, the records are further classified into five categories 

based on the manner of crash: rear-end, angular, sideswipe, head-on and single vehicle crashes.  

Thus, the number of dependent variables to be analyzed in the current study is six. Crash 

records for different crash types are sourced from Florida Department of Transportation 

(FDOT), Crash Analysis Reporting System (CARS) and Signal Four Analytics (S4A) 

databases.  Based on the crash records, crashes of different types are combined together as one 

category: left-turn, right-turn and angular crashes within angular class; off-road, and rollover 

in the single vehicle crash category. All the crash records are finally aggregated at a TAZ level 

using Geographic Information System (GIS). 

A total of 114,458 motorized (ranging from 0 to 243) and 3,413 non-motorized crashes 

(ranging from 0 to 12) were reported in the Central Florida region for the year 2016.  Within 

the motorized crashes, rear-end crash is found to be the most prevalent crash type (44.09%) 

while sideswipe crash is less frequent with 10.82% among all other motorized crash types. The 

crash counts for each crash type are presented in the top row panel in table 1. Further, we 

present the distribution of the crashes (across different count categories) corresponding to each 

crash types in Figure 1. As expected, we see a strong clustering for the non-motorized and 

head-on crashes around the lower values (<=5 crashes). From the total records, we have 

partitioned the zonal level records into two datasets as: 1) 3,815 TAZs for estimation analysis 

and 2) 932 TAZs set aside for validation.  

 

3.1 Explanatory Variables Considered 
In addition to the crash records, a number of zonal level attributes are considered for the current 

analysis including roadway, built environment, land-use, traffic and sociodemographic 

characteristics. Information about these variables are collected from different data sources 

including FDOT Transportation Statistics Division, US Census Bureau, American Community 

Survey and Florida Geographic Data Library databases. Similar to the crash records, 

explanatory attributes are also aggregated at a zonal level using the GIS. In order to access the 

 
2 Motorized crashes involved one or multiple motor vehicles and the non-motorized crashes are defined by the 

collision between a motor vehicle and one or multiple non-motorists (pedestrian/bicyclist). 
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roadway attributes, road lengths for different functional class, proportion of rural and urban 

road, proportion of road with different number of lanes (1, 2, and 3 or more), number of 

intersections and signals, average posted speed limit, length of road with different speed limit 

(≤40mph, 41-54mph and ≥55mph), average width of inside and outside shoulder, average 

width of bike lane and sidewalk are considered in the current study. While the information 

about land use category including area of urban, residential, industrial, institutional, 

recreational, office and land use mix are provided in the land use attributes, built environment 

characteristics mainly reflects the information about the number of business center, commercial 

centers, schools, hospitals, recreational centers, restaurants and shopping centers are collected. 

Further to accommodate for traffic attributes, we consider average annual daily traffic (AADT), 

average annual daily truck traffic (truck AADT), vehicle miles traveled (VMT), truck vehicle 

miles traveled (truck VMT) and proportion of heavy traffic. Finally, the sociodemographic 

attributes take into account the population and household density, proportion of means of 

transportation used by commuter for their work trips (car, motorcycle, transit, bike and walk) 

proportion of people by age and race and proportion of household by vehicle ownership level 

(0, 1, 2, and 3 or more).  

Table 1 summarizes sample characteristics of the explanatory variables with the 

appropriate definition considered for final model estimation along with the minimum, 

maximum and mean values at a zonal level. In estimating the model, several functional forms 

and combination of variables are considered and those that provides the best fit are retained in 

the final specification. The final specification of the model was based on removing the 

statistically insignificant variables in a systematic process based on 90% confidence level. 

 

4 Model Specification and Overall Measure of Fit 
As discussed earlier, out of 4,747 TAZs, 3,815 TAZs are randomly selected for model 

estimation and the remaining 932 TAZs are set aside for validation purpose. The number of 

count dependent variables (crash types) to be analyzed in the current study is six and so every 

TAZ is repeated six times recognizing that each repetition represents a different crash type 

(Bhowmik et al., 2019a). Thus, the estimation sample has 22,890 (3,815*6) records and the 

validation sample has 5,592 (932*6) data records. The empirical analysis involved a series of 

model estimations. First, we estimated six separate independent NB model for six crash types 

to establish a benchmark for comparison. Second, we estimated a parsimonious model structure 

(Panel independent NB model) using the same independent model system while restricting the 

parameters across different crash types considered. To elaborate, we estimate a base effect for 

each exogenous variable that is common across the crash types and estimate deviations for each 

crash types relative to the base effect. If a deviation is insignificant, it concludes that there is 

no significant difference in effect for that particular variable between the base crash type and 

crash type for which the deviation was computed (see (Bhowmik et al., 2019a) for more 

details). Thus, the model estimated in such a panel formulation results in fewer parameters. 

Third, we estimated a latent class version of the panel negative binomial (LPNB) model to 

capture the potential variation in the impact of exogenous variables. Fourth, within the Panel 

NB model and Latent Panel NB model, we consider unobserved heterogeneity in terms of 

correlation (across the crash count dimensions) and random parameters (within the crash count 

propensity). Prior to presenting the comparison exercise, we will briefly summarize the panel 

recasting approach followed by the latent segmentation model in the following section.  

 

4.1 Panel Recasting Approach 
The recasting approach involves four steps: First, we estimate the traditional 

univariate/multivariate NB model for all six crash types with six separate propensity equation. 

Second, we restructure the data so that each TAZ has repeats six records (same as the number 
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of crash types). With respect to exogeneous variables, we compute a base effect that will remain 

the same across the crash types and then estimate deviation terms (interaction between the 

variable and indicator variables for crash type) for each crash type relative to the base effect. 

The reader would note that our goal is to first replicate the traditional NB model results and 

then move to a more parsimonious system. So, the base variable will be defined based on the 

traditional univariate NB model specification. For instance, let us assume the variable AADT 

has a significant impact on the crash propensity across all the six crash types. Given the 6 

significant estimates, for our recasting approach, there will be 1 base AADT variable which 

will be common across the six crash types and 5 deviation terms for five crash types (the sixth 

one will serve as the base). On the other hand, let’s say from the univariate NB model results 

we find that number of intersections in a zone has significant effect on the crash propensity of 

three crash types say rear-end, sideswipe and angular crashes. For this case, the base variable 

for the number of intersections will be common across these three crash types and for the other 

remaining three crash types, the parameter value would be 0. Subsequently, we will estimate 

two deviation terms for two crash types (with the third set as the base). Third, we drop the 

statistically insignificant deviation terms for each variable. This is one of the advantages of the 

recasting approach. In traditional model, the analyst needs to conduct a log-likelihood ratio test 

for identifying the difference in parameter estimates across the crash types whereas in our 

system, we can easily identify whether a variable effect is significantly different or not across 

the crash types based on the t-statistics of the deviation term. After dropping the insignificant 

deviation terms, we will now have a panel negative binomial model specification in a more 

parsimonious system (please see (Bhowmik et al., 2019a) for more details on this approach). 

Fourth, we follow the same process (step 2 and 3) within a latent segmentation approach on a 

segment-by-segment basis to capture the population heterogeneity.  

 

4.2 Latent Segmentation Approach: Determining Appropriate Number of 

Segments 
In case of latent models, determining the appropriate number of segments is a critical issue 

with respect to interpretation and inferences. The estimation process for such latent class model 

begins with the independent model considering two segments. Then we continued adding 

additional segments until further addition does not enhance intuitive interpretation and data fit 

(Eluru et al., 2012). For identifying the appropriate number of segments for the latent class 

model, we employ the Bayesian Information Criterion (BIC) as it offers higher penalty on over-

fitting. Specifically, we estimated independent latent NB model with different number of 

segments (2, 3…) and selected the model with the lowest BIC value. Once, the independent 

latent model is finalized with appropriate number of segments, we estimated the mixed version 

of the corresponding independent model. 

Within the latent independent Panel NB frameworks, we estimated two models 

including i) LPNB model with two segments and ii) LPNB model with three segments. The 

BIC values for these estimated models are: i) LPNB model with two segments is 80, 250.87 

(with 57 parameters) and ii) LPNB model with three segments is 80, 157.94 (with 58 

parameters). Based on the BIC value, we can observe that the three segments model provide 

improved data fit. However, the sample share of one of the segments for the three segments 

model represents only 5% of the TAZs and does not provide any interpretable segment 

characteristics. As a result, we did not proceed further in adding segments and selected the 

model with two segments as the preferred model for the current analysis. From here on, we 

restrict ourselves to the discussion of only the LPNB model with two segments. 
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4.3 Comparison Between Models 
We estimated five models in two regimes: a) unsegmented models including: 1) Independent 

NB model; 2) Panel independent NB model (PNB); 3) Panel Mixed NB model (PMNB); and 

b) segmented model including: 4) Latent Segmentation Panel Independent NB model with two 

segments (LPNB II) and 5) Latent Segmentation Panel Mixed NB model with two segments 

(LPMNB II). Finally, we compare the unsegmented models with the latent segmentation based 

count models in order to assess the importance of accounting for population heterogeneity in 

estimating zonal level crash frequency models. The reader would note that all the models 

mentioned above are non-nested in nature and so, we employ several goodness of fit measures 

including the Akaike information criterion  (AIC), corrected AIC (see (Fountas et al., 2020) 

for details of corrected AIC) and Bayesian Information Criterion (BIC) measures for the 

comparison exercise.  

The results from the various model systems – convergence log-likelihood, number of 

parameters and the model fit measures are presented in Table 2. Based on the measures in table 

2, several observations can be made. First, the PNB model that accounts for penalty for 

additional parameters provide improved data fit compared to the independent NB model. This 

supports our hypothesis that the impact of some variables may not differ across the crash types 

and through the recasting, we can have a parsimonious model system with improved parameter 

efficiency. Second, the segmented independent LPNB II model performs better relative to the 

PNB model. This result provides strong evidence in favour of our hypothesis that crash counts 

by different crash types can be investigated in a more efficient way through the segmentation 

of the TAZs. Third, models accommodating unobserved effects perform better than their 

corresponding independent models in both unsegmented (PMNB vs PNB) and segmented 

regimes (LPMNB II vs LPNB II) highlighting the importance of accommodating for 

unobserved heterogeneity in examining crash count by different crash types. Fourth, within the 

mixed models, the unsegmented model (PMNB) provides improved data fit relative to the 

segmented model (LPMNB II). Based on the results provide above, we can conclude that the 

segmented model is a preferred choice as long as the framework is estimated in a closed form 

structure (independent models that do not account for unobserved heterogeneity). However, 

when we rely on simulation in the latent segmentation model system (LPMNB II) and the panel 

negative binomial model system (PMNB) for capturing the unobserved effects, the PMNB 

model outperforms its segmented counterparts.  

 

5 Estimation Results 
This section offers a detailed discussion of exogenous variable effects on the crash count 

outcome for different crash types. Table 4 presents the model estimation results for the 

proposed Latent Panel Mixed NB model (LPMNB II). The estimation results of the PMNB 

model are presented in Table 5 for comparison. In discussing the model results, for the sake of 

brevity, we will restrict ourselves to the discussion of the LPMNB II model only (see Appendix 

for the results of independent models, PNB and LPNB II models). For the ease of presentation, 

we first present an intuitive discussion of the segmentation component followed by the segment 

specific count component by different variable groups.  

 

5.1 Segmentation Component 
 

5.1.1 Descriptive Characteristics of the Segments 

To delve into the segmentation characteristics, the model estimates are used to generate 

information on two criterion including: 1) percentage TAZ share across the two segments, and 

2) expected mean of crash count events of different crash types within each segment (see (Eluru 

et al., 2012) for detail). Table 3 provides these estimates. From the estimates, it is clear that the 
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likelihood of a TAZ being assigned to segment 1 is substantially higher than the likelihood of 

being assigned to segment 2 (0.74 vs 0.26). Further, the expected number of crash counts by 

different crash types conditional on their belonging to a particular segment offer contrasting 

results indicating that the two segments exhibit distinct crash risk profiles for different crash 

types in the current study. As evident form table 3, we can observe that relative to observed 

sample mean, the expected mean crash counts by different crash types is higher in segment 1 

(except head -on) while in segment 2, the expected mean is lower for every crash types except 

head-on crashes. Interestingly, segment 2 has higher risk for head-on crashes relative to 

segment 1. Based on overall results, it is clear that a TAZ, if allocated to segment 1 is likely to 

experience higher number of crashes by most of the crash types than if allocated to segment 2. 

Thus, we may label segment 1 as the “high risk segment” and segment 2 as the “low risk 

segment”.  

 

5.1.2 Segment Membership Component 

The latent segmentation component determines the relative prevalence of each segments, as 

well as the likelihood of a TAZ being allocated to one of the two segments based on zonal level 

exogenous variables. In our analysis, we find that segment share is influenced by zonal level 

roadway and land use attributes. In particular, number of intersections, average outside should 

width, urban area and residential area in a zone affect the assignment of a TAZ to a segment. 

The first row panel of Table 4 represents the effect of these control variables. In the 

segmentation component, one of the segments must be the base for every variable for the sake 

of identification. In our current analysis, the high risk segment (segment 1) is chosen to be the 

base and the coefficients presented in the table correspond to the propensity for being a part of 

the low risk segment (Segment 2). Thus, a positive (negative) sign for a variable in the 

segmentation component indicates that TAZs with the variable characteristics are more (less) 

likely to be assigned to the low risk segment relative to the high risk segment.  

The positive sign on the constant does not have any substantive interpretation after the 

introduction of other independent variables.  From the estimated results, we can observe that 

higher number of intersections in a zone increase the likelihood of assigning the TAZ to the 

high risk segment while TAZ with wider shoulder width have a higher probability to be 

allocated to the low-risk segment. TAZ with more urbanized area are more likely to be assigned 

to the high-risk segment. On the other hand, with increase in residential area, the likelihood of 

a TAZ to being allocated in the low risk segment increases. Based on these results, we can 

argue that high risk segment consists of urbanized zone having higher number of intersections 

with narrow average outside shoulder and less residential area. On the other hand, zones within 

segment 2 are more likely to be characterized by rural area with less intersections, wider 

average outside shoulder width and more residential area.  

 

5.2 Segment Specific Count Component 
The coefficients in Table 4 represent the effect of exogenous variables on the frequency 

component of each crash type within each segment. The reader would note that, within each 

segment, the variables in the crash count component of Table 4 with positive (negative) sign 

indicates that an increase in the variable is likely to result in more (less) crashes. In the 

subsequent sections, we provide a discussion of model results for different crash types by 

segment groups.  

 

5.2.1 High Risk Segment (Segment 1) 

The crash risk component for different crash types within the high risk segment (segment 1) is 

discussed in this section by variable groups. Within the high-risk segment, the impact of 

explanatory attributes within different groups are along expected lines.  
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Crash Specific Constants:  

The crash specific constants represent the intercept of crash propensity after adding the various 

exogenous variables and do not have any substantive interpretation.   

 

Roadway Characteristics:  

The results regarding the impact of proportion of arterial roads reveal that a TAZ with higher 

proportion of arterial roads is more likely to experience increased incidence of rear-end, 

angular and non-motorized crashes while the number of single vehicle crashes reduces. This is 

expected as single vehicle crashes usually occur on high speed roads while on arterial roads, 

drivers are restricted to operate at lower operating speed due to higher vehicular interactions. 

At the same time, the increased traffic interactions result in higher number of rear-end, angular 

crashes and non motorized crash (Bhowmik et al., 2019a). Further, the estimated results show 

that TAZs with a higher variance in speed limit are likely to have higher number of rear-end, 

sideswipe and non-motorized crashes within the high risk segment. An interesting thing to note 

is that the influence of variance of speed limit is not different for the three crash types which 

support our hypothesis that the impact of some variables may not differ across crash types. 

Traditional approaches in frequency modeling would have estimated three separate parameters 

for the three crash types while in our approach, a single parameter is adequate to accommodate 

for the impact of the variable (variance of speed limit).  

In terms of proportion of roads over or equal 55mph speed limits, we find contrasting 

results across different crash types within the high risk segment. For instance, the positive 

coefficient offered by the variable on rear-end, sideswipe and single vehicle crashes (same 

effect) indicates an increased likelihood of these crash types in a TAZ having higher percentage 

of roads over 55mph speed limit. On the other hand, the estimated results show that TAZ with 

more high-speed roads (≥55mph) results in reduced incidence of angular, head-on and non-

motorized crashes. The result is expected since high speed roads are usually straight (less 

curvature) with a divider or median which reduce the risk of angular and head-on crashes. 

Further, we found that the impact of the proportion of road over 55mph has significant 

variability on angular crashes (indicated by the standard deviation parameter) which implies 

that the overall impact is most likely to be negative (98%).  

 

Land-use Characteristics:  

Within the high risk segment, the only land use characteristic influencing crash risk by different 

crash types is the amount of office area in a zone. As evident from Table 4, we can see that 

office area is positively associated with rear-end, sideswipe and non-motorized crashes 

indicating a higher likelihood of these crash types in a TAZ with increased office areas. This 

variable basically reflects the presence of higher vehicular and non-motorist interactions and 

in turn, higher exposure for both road user groups. 

 

Built Environment Characteristics:  

In terms of built environment attributes, we considered a number of variables, among which 

only number of restaurants and shopping centers have significant impact on zonal level crash 

risks within the high risk segment. In particular, higher number of restaurant and shopping 

centers in a TAZ results in higher incidence of rear-end and sideswipe crashes perhaps due to 

the higher density of traffic volume for these zones.  With respect to non-motorized crashes, 

number of restaurants is found to be a significant determinant with a positive impact (see 

(Yasmin et al., 2021)for similar result). 
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Traffic Characteristics:  

The parameters associated with traffic characteristics offer expected results. The parameter 

associated with VMT surrogates for traffic volume reveals a positive impact on angular, 

sideswipe, head-on and non-motorized crashes indicating a higher risk of such crashes in a 

TAZ with increased VMT. Interestingly, the study found no significant impact of the truck 

volume on any of the crash types within the high risk segment.  

 

Socio-demographic Characteristics:  

For socio-demographic attributes, we consider the number of non-motorists (walk/bike) and 

transit commuters in a zone as additional exposure measures for the crash risk model. As 

evident from table 4, our analysis shows that TAZ with increased number of non-motorist 

commuters is likely to experience increased number of rear-end, sideswipe, non-motorized and 

angular crashes. In fact, the reader would note that the magnitude of these impacts is same 

across the three crash types (rear-end, sideswipe and non-motorized) while a more larger 

impact is observed for the angular crashes. On the other hand, the likelihood of being involved 

in a rear-end and non-motorized crashes increases with increasing share of transit commuters 

in a zone.  

 

Unobserved Common Factors:  

The final set of variables in Table 4 correspond to the potential correlation affecting zonal level 

crash counts by different crash types simultaneously. The reader would note that, in estimating 

the model, we found significant impact of two common unobserved components3  including 

(1) common unobserved factors affecting rear-end and non-motorized crashes and (2) common 

unobserved factors affecting angular, sideswipe and all single vehicle crashes. Overall, the 

results clearly indicate the presence of common unobserved heterogeneity across different 

crash types within the high risk segment. As explained earlier, though we consider both road 

user groups, all the crash types considered in the analysis involved motor vehicles and this 

common involvement might be a possible reason for the significant correlation across these 

crash types. 

 

5.2.2 Low Risk Segment (Segment 2) 

The crash risk component for different crash types within the low risk segment (segment 2) is 

discussed in this section by variable groups. Similar to the high-risk segment, the effect 

observed for different attributes on different crash types are also intuitive in the low risk 

segment.  As evident form table 4, we can see that the crash count propensity for different crash 

types for the “low risk” segment provides variable impacts that are significantly different, in 

magnitude (for a few variables), from the impacts offered by the exogenous variables in “high 

risk” segment. Additionally, the number of variables influencing the zonal level crash 

frequency by different crash types are significantly lower in the low risk segment relative to 

the high risk segment which further highlights the difference between the two segments.  

 

Crash Specific Constants:  

Similar to the high risk segment, the crash specific constants in the low risk segments also 

represent the intercept of crash propensity after adding the various exogenous variables and do 

not have any substantive interpretation.   

 

 
3 The same correlation structure was revealed from the PMNB model also (as shown in Table 5). 
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Roadway Characteristics:  

As in the high risk segment, proportion of arterial roads offers a negative influence on single 

vehicle crashes in the low risk segment also (same reasoning as segment 1) though the 

magnitude is much higher in the low risk segment. One possible explanation can be attributed 

to the fact that segment 2 consists of zone with wider outside average shoulder width. Outside 

shoulder width in a road reflects the extra margin of safety for vehicular maneuvers and thus 

reduce the potential for single vehicle crashes. Further, the parameter associated with signal 

intensity offers contrasting effects on different crash types. While an increase in the variable 

positively influences the rear-end, sideswipe and non-motorized crashes, a negative association 

is observed for single vehicle crashes. This is intuitive as with more signals on the road, the 

traffic density increases thus results in increased conflicts between vehicles to vehicles and 

vehicles to non-motorists. At the same time, these conflicts result in lower operating speed 

which in turn reduce the potential for single vehicle crashes. Interesting thing to note is that the 

influence of signal intensity is not different for the three crash types (rear-end, sideswipe and 

non-motorized).  

Similar to the segment 1, variance of speed limit reflects a same positive impact on 

rear-end, sideswipe and non motorized crashes in segment 2, but the impact is larger in the 

second segment. Further our analysis shows that TAZs’ with higher proportion of high-speed 

roads (≥55mph) are more likely to experience increased number of single vehicle crashes 

relative to other zones in the low risk segment. Relative to segment 1, the effect (magnitude) 

is smaller in the low risk segment. In addition, we found that proportion of road over 55mph 

has significant variability specific to single vehicle crashes as indicated by the standard 

deviation parameter. The reader would note that the distributional parameter indicates that the 

overall impact of the variable on single vehicle crashes is likely to be positive (84%). In terms 

of proportion of road with separate median, the variable is found to have the same positive 

effect on rear-end, angular and sideswipe crashes while a negative coefficient is observed for 

head-on crashes. Separated medians such as guardrail on a road provide additional safety 

margin to a vehicle from colliding with the opposite direction traffic thus reducing the risk for 

head-on crashes. At the same time, vehicle hitting the guardrail have a higher likelihood of 

colliding with same direction traffic and hence the positive impact is also intuitive.  

 

Land-use Characteristics:  

For low risk segment, none of the variables within land use characteristics are found to 

significantly influence zonal level crash counts of any crash types in the current study context. 

 

Built Environment Characteristics:  

We did not find any variable specific to build environment characteristics to significantly affect 

the zonal level crash counts of different crash types in the low risk segment.  

 

Traffic Characteristics:  

Unlike the high risk segment, we did not find any significant impact of VMT on any crash 

types. In terms of traffic characteristics, the only variable influencing the crash counts of 

different crash types in the low risk segment is the truck VMT. Truck VMT serves as a 

surrogate for exposure for truck volume. As expected, truck VMT is found to positively 

influence the rear-end and all single vehicle crash propensity indicating a higher risk of getting 

involved in rear-end and all single vehicle specific crashes with increased exposure to truck 

volume.  
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Socio-demographic Characteristics:  

With respect to socio-demographic characteristics, we find that increased presence of transit 

commuters is associated with higher risk of rear-end and non-motorized crashes in the low risk 

segment (same as high risk segment). However, the magnitude of the impact of the variable is 

larger in the low risk segment.  

 

Unobserved Common Factors: 

Within the low risk segments, we found the presence of common unobserved factors affecting 

angular, sideswipe and all single vehicle crashes simultaneously. Unlike high risk segments, 

we did not find any common unobserved factors affecting rear-end and non motorized crashes.  

 

6 COMPARISON EXERCISE 
6.1 Predictive Performance 
In an effort to assess the predictive performance of the estimated models, we compute several 

goodness fit of measures at disaggregate level including MPB (Mean prediction bias), MAD 

(mean absolute deviation), MAPE (mean absolute percentage error), RMSE (Root mean square 

error) and predictive log-likelihood (see Bhowmik et al., 2018 for a discussion on estimating 

these measures). Specifically, we employ these measure on two datasets: 1) in-sample dataset: 

for the records used in the model estimation (sample size = 3,815 TAZs) and 2) holdout sample: 

records that are set aside for validation analysis (sample size = 932 TAZs). The reader would 

note that the model with lower value of predictive measures and higher value of predictive log-

likelihood will reflect better performance in terms of prediction and statistical fit relative to the 

observed data. Table 6 presents the values of these measures for PMNB and LPMNB models 

for both in-sample and holdout-sample measures.  

Several observations can be made based on the measures presented in Table 6. First, a 

total of 70 prediction measures are estimated considering six crash types and total crash counts 

in both estimation and validation sample. Out of these 70 measures, LPMNB model provide 

improved predictive performance for most of the measures (52). Second, whenever PMNB 

model performs better, the differences are not substantially large. For example, the RMSE 

value estimated for sideswipe crashes form PMNB model is 4.171 (for estimation sample) 

while LPMNB model provides a RMSE value of 4.216. On the other hand, for rear-end, the 

RMSE value found from PMNB is 38.098 (for estimation sample) whereas for LPMNB, it is 

only 18.682. This clearly indicates the improved predictive power of the segmented model over 

its’ unsegmented counterpart. Third, with respect to predictive log-likelihood, again LPMNB 

model performs better in most of the crash types (10 out of 14). The reader would note that, 

there is a difference between estimated and predicted log-likelihood. When we estimate our 

model considering correlation and unobserved effects, for every observation unit (TAZ), we 

get a joint probability for log-likelihood estimation. However, in terms of prediction, we want 

to see the difference in likelihood across crash types and thus need to estimate probability by 

crash type. Though PMNB model provides improved data fit in terms of model estimation 

(estimated log-likelihood, discussed in section 4.1.2), it falls short in prediction (based on 

predictive log-likelihood). In summary, the resulting goodness of fit measures and predictive 

log-likelihood offer by the LPMNB model clearly highlight its improved performance over the 

PMNB model.  

 

6.2 Elasticity Effects 
The parameters of the exogenous variables in Table 4 and 5 do not directly provide the exact 

magnitude of the effects of variables on the zonal level crash counts across different crash 

types. However, it might be possible that the effects (exact magnitude) of some attributes could 

differ considerably across the two frameworks. To evaluate this, we compute aggregate level 



Bhowmik, Yasmin and Eluru 

 

16 

 

elasticity effects for both PMNB and LPMNB models. In particular, we estimate the percentage 

change in the expected zonal level crash counts for every crash types in response to the increase 

of the explanatory variable by 10% (see (Eluru and Bhat, 2007; Kabli et al., 2020) for a 

discussion on the methodology for computing elasticities). For this purpose, we identify a 

subset of exogenous variables including proportion of arterial roads, variance of speed limit, 

proportion of roads over 55mph and proportion of roads with separated median. Further, for 

the LPMNB model, we estimate the aggregate level elasticities for the overall sample as well 

as for each segment separately to emphasize policy repercussions based on most critical 

contributory factors. For the overall sample, we took the segmentation probabilities into 

consideration. Table 7 provides the elasticity results across the crash types for both PMNB and 

LPMNB models. Further, to generate a distribution of the elasticity effects, we employ 50 

realizations of the parameters from both model employing a normal distribution assumption 

based on the parameter and its standard error from the corresponding model. The generated 

confidence band of the elasticity effects will allow us to test if the elasticity effects significantly 

differ across the two models (LPMNB and PMNB) for same variable. Figure 2 represents the 

confidence bands for 4 different variables across six crash types generated for the two models 

based on the results from 50 realizations.  

Several observations can be made based on the elasticity effects presented in Table  and 

Figure 2. First, from the elasticity effects presented in table, we can clearly see some significant 

differences across two segments for some variables which highlights the importance of 

allowing for population heterogeneity in examining aggregate level crash counts across 

different crash types. For instance, due to the 10% increase in proportion of arterial roads, the 

expected mean of single vehicle crashes will reduce by 0.97% in the high risk segment whereas 

the effect is larger in low risk segment with a reduction rate of 1.66%. Such differences can 

also be observed for other variables including variance of speed limit on rear-end, angular and 

sideswipe crash counts; and proportion of roads over 55mph on single vehicle crashes. Second, 

interestingly, with respect to the variables present in both segments, TAZs assigned to low risk 

segment have higher elasticities relative to the high risk segment. Third, in terms of comparison 

across the two models adopted in the study (from Figure 2), we found substantial differences 

in elasticities.  Specifically, the confidence band for the two models are quite different (with 

the exception of the proportion of arterial roads). For example, across rear-end, angular and 

sideswipe crashes, LPMNB model has narrower band relative to PMNB model for the 

proportion of road over 55mph speed. On the other hand, for the same three crash types, 

LPMNB model provides wider confidence band for the variable that corresponds to proportion 

of roads with separated median.  

An examination of the mean elasticity values indicates that for the proportion of roads 

over 55mph speed, the PMNB model predicts an increase of 0.88% in expected mean for single 

vehicle crashes while LPMNB model predicts 1.16%. Similarly, with a 10% increase in the 

proportion of roads with separated median, PMNB model predicts a 0.74% increase in expected 

mean for rear-end crashes whereas the elasticity value is almost doubled (1.62% increase) in 

LPMNB model. Thus, it is evident that allowing for a flexible specification (population 

heterogeneity) of observed and unobserved factors provides representative variable impacts. 

 

6.3 Trade-off 
The earlier sections presented the comparison of the various model frameworks in terms of 

model fit and predictive power. However, other considerations such as inference power and 

computational complexity also influence model selection.  It is quite possible that the model 

that has a greater inference and prediction capability (say RPMNB) can be computationally 

resource intensive while a model that is simple to estimate has a moderate prediction power 

but fail to discover the underlying factors properly (Mannering et al., 2020). Based on the 
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application purpose, there is possible variation in the “best” model selection. To offer insights 

on model selection incorporating computational complexity dimension along with other 

important attributes, we conduct a multi-attribute comparison across the six different models 

comparing four attributes: (a) model fit, (b) prediction, (c) inference power and (d) 

computational complexity. We will illustrate the trade-off across the mentioned measures 

considering six different models along the three streams: 1. Traditional count models: a) 

univariate NB model and b) random parameter multivariate NB model; 2. Panel recasting 

Model: a) Panel negative binomial model (PNB) and b) Panel mixed negative binomial model 

(PMNB) and 3. Latent segmentation panel recasting model: a) Latent segmentation panel NB 

model (LPNB) and b) Latent segmentation panel mixed NB model (LPMNB).   

While several potential measures can be generated as surrogates for these attributes, we 

employed the following measures in our comparison: (a) Model fit is measured employing 

BIC, (b) prediction capability is evaluated using RMSE, (c) inference power was measured 

based on the number of distinct independent variables in the model and (d) computation 

complexity is measured in run times. The measures are defined such that the best performing 

model to has a value of 1 and the corresponding measures are generated relative to the best 

model. For BIC, for each model, the distance from the lowest fit model is measured and a ratio 

is computed as the ratio of the distance of the model from the lowest fit model to the 

corresponding model distance from the lowest fit model (we add 1 to both the numerator and 

the denominator for each ratio to avoid the 0/0 issue for the lowest fit model). Similarly, a 

normalization process has been applied to other measures as follows: 1) RMSE ratio: RMSE 

of best model/ RMSE of each model (the model with lowest RMSE will have a ratio of 1 and 

other models provides a RMSE ratio less than 1_; 2) Parameter ratio: total distinct independent 

variables in each model / total distinct parameters in the best model; and 3) Run time ratio: 

model with lowest run time/run times corresponding to each model (model with the fastest run 

times will have a ratio of 1 and other models will provide a  run time ratio less than 1).  Figure 

3 presents attribute measures for the six model systems. 

Several observations can be made from Figure 3. First, the models accommodating for 

unobserved heterogeneity always provide superior performance in terms of prediction, model 

fitness and inference power relative to its simpler counterparts (RPMNB vs UNB; PMNB vs 

PNB and LPMNB vs LPNB), however these models are usually associated with increased 

computational burden as indicated by the higher complexity in the figure. Second, among the 

simpler models (that do not accommodate for unobserved factors; UNB, PNB and LPNB); the 

latent segmentation model (LPNB) has the best goodness of fit, prediction and inference 

accuracy while having a slightly higher complexity rate relative to the other two models (UNB 

and PMNB). Third, interestingly, within the models accommodating for unobserved factors, 

the traditional RPMNB model provides inferior performance across all the measures. The 

recasted PMNB model is usually easy to estimate and also results in good prediction and 

inference power (this finding is supported by our previous work). However, our proposed 

LPMNB model provides the best inference and prediction capability, however this model 

comes with a moderate complexity rate and high run times (still lower than traditional RPMNB 

model). For instance, with six dependent variable and 3,815 observations, the RPMNB model 

took around 32 hours to converge while the LPMNB and PMNB model took 27 hours and 21 

hours respectively.  

Based on our multi-attribute analysis, we provide the following concluding thoughts: 

a) if an analyst wants to maximize the prediction and inference power irrespective of the 

complexity of the model, then the LPMNB model would be the preferred framework; b) If an 

analyst needs to check for complexity while not loosing prediction and inference power 

significantly, PMNB model would be the suitable one ; c) however, if the focus is entirely on 

model complexity i.e. an analyst wants to minimize the complexity while having relatively 
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good model fitness, prediction and inference power, the independent LPNB model is a good 

choice.  

 

7 CONCLUSIONS 
The current research contributes to burgeoning literature on multivariate models by proposing 

a model framework that (a) incorporates unobserved heterogeneity in a parsimonious 

framework and (b) allows for additional flexibility to accommodate for observed/systematic 

heterogeneity. Specifically, we extend our previous work (Bhowmik et al., 2019a) by 

addressing the population homogeneity assumption with the latent segmentation based 

approach employed for crash frequency modeling. Our current study contributes to crash 

frequency literature both methodologically and empirically by estimating a latent 

segmentation-based Panel Negative Binomial (LPNB) to study the zonal level crash counts 

across different crash types. Finally, we undertake a comparison exercise of the proposed 

LPMNB model with its’ counterpart PMNB model proposed in our previous work to assess the 

importance of accounting for population heterogeneity in estimating zonal level crash 

frequency models. The analysis is conducted using the zonal level crash records from Central 

Florida for the year 2016 considering a comprehensive set of exogenous variables. 

Based on the statistical data fit, we can conclude that the segmented model is a preferred 

choice as long as the framework is estimated in a closed form structure (independent models 

that do not account for unobserved heterogeneity; no need for simulation). However, when we 

rely on simulation for capturing the unobserved effects, the unsegmented model outperforms 

its’ segmented counterparts. In an effort to assess the predictive performance of the estimated 

models, we compute several goodness fit of measures at disaggregate level including MPB 

(Mean prediction bias), MAD (mean absolute deviation), MAPE (mean absolute percentage 

error), RMSE (Root mean square error) and predictive log-likelihood for a discussion on 

estimating these measures). Specifically, we employ these measure on two datasets: 1) in-

sample dataset: for the records used in the model estimation (sample size = 3,815 TAZs) and 

2) holdout sample: records that are set aside for validation analysis (sample size = 932 TAZs). 

The resulting goodness of fit measures and predictive log-likelihood highlight the improved 

performance of LPMNB model over the PMNB model. Further, we compute aggregate level 

elasticity effects for both PMNB and LPMNB models to quantify whether the effect of 

variables significantly differs across the two frameworks. For this purpose, we identify a subset 

of exogenous variables including proportion of arterial roads, variance of speed limit, 

proportion of roads over 55mph and proportion of roads with separated median in a zone. For 

the LPMNB model, we estimate the aggregate level elasticities for the overall sample as well 

as for each segment separately to emphasize policy repercussions based on most critical 

contributory factors. From the elasticity effects, we can clearly see some significant differences 

across two segments for some variables which highlights the importance of allowing for 

population heterogeneity. Further, in terms of comparison across the two models adopted in 

the study, we found differences in elasticities across the two regimes. From the elasticity 

results, it is evident that allowing for a flexible specification (population heterogeneity) of 

observed and unobserved factors provides representative variable impacts. Further, to offer 

insights on model selection incorporating computational complexity dimension along with 

other important attributes, we conduct a multi-attribute comparison across the six different 

models comparing four attributes: (a) model fit, (b) prediction, (c) inference power and (d) 

computational complexity. The results highlight that our proposed LPMNB model provides the 

best inference and prediction capability,  with a moderate complexity and higher run times. 

Finally, the paper is not without its limitations. We evaluate zonal level (aggregate) 

crash counts for different crash types, and it would be useful to consider spatial correlation for 

such aggregate level planning analysis which could further improve the estimation process. 
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Moreover, it would be interesting to see if the findings are consistent with other spatial units 

and temporal periods.  
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Table 1 Summary Statistics of Exogenous Variables (Zonal Level) 

Variables Definition 
Zonal (N=4,747) 

Minimum Maximum Mean Std. Deviation 

Dependent Variables 

Rear-end Number of rear-end crashes in a zone 0.000 243.000 10.947 18.517 

Angular Number of angular crashes in a zone 0.000 104.000 4.215 6.816 

Sideswipe Number of sideswipe crashes in a zone 0.000 66.000 2.686 5.228 

Head-on Number of head-on crashes in a zone 0.000 24.000 0.344 1.028 

Single Vehicle Number of single vehicle crashes in a zone 0.000 51.000 2.366 3.573 

Non-motorized  Number of non-motorized crashes in a zone 0.000 12.000 0.719 1.318 

Roadway Characteristic 

Proportion of rural road (Rural road length/total road length)  0.000 1.000 0.121 0.309 

Proportion of urban road (Urban road length/total road length)  0.000 1.000 0.806 0.381 

Proportion of arterial road (Arterial road length/total road length)  0.000 1.000 00377 0.393 

Number of Intersection Ln (no of intersection) 0.000 4.682 1.921 1.053 

Signal intensity Total number of traffic signal per intersection 0.000 1.000 0.038 0.096 

Average speed limit Ln (mean speed limit in mph) 0.000 4.248 3.228 1.279 

Variance of speed limit Ln (variance of speed limit in mph) 0.000 6.686 2.325 2.041 

Average bike lane length Ln (average length of bike lane in feet) 0.000 1.662 0.044 0.147 

Average inside shoulder width Ln (average inside shoulder width in feet) 0.000 2.650 0.288 0.445 

Average outside shoulder 

width 
Ln (average outside shoulder width in feet) 0.000 2.977 0.964 0.579 

Average sidewalk width Ln (average sidewalk width in feet) 0.000 2.977 0.964 0.579 

Divided road length Ln of (divided road length in meter)  0.000 1.547 0.037 0.096 

Road ≥55mph Proportion of road length greater than 55mph 0.000 1.000 0.088 0.174 

Land-use Attributes 

Urban area Ln (urban area+1) in acre 0.000 9.440 4.921 1.970 

Recreational area Ln (recreational area+1) in acre 0.000 9.814 0.470 1.408 

Office area Ln (office area+1) in acre 0.000 6.440 0.877 1.383 

Residential area Ln (residential area+1) in acre 0.000 8.131 3.811 2.075 
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Industrial area Ln (industrial area+1) in acre 0.000 7.067 1.118 1.306 

Institutional area Ln (institutional area+1) in acre 0.000 6.617 1.946 1.589 

Land use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the 

category of land-use, 𝑝 is the proportion of the 

developed land area for specific land-use, 𝑁  is the 

number of land-use categories   

0.000 

 

 

 

  

0.946 0.369 0.221 

Built Environment Characteristics 

No of business center Z score4:  No of business center -0.138 19.664 0.000 1.000 

No of commercial center Z score:  No of commercial center -0.270 9.521 0.000 1.000 

No of educational center Z score:  No of educational center -0.487 11.610 0.000 1.000 

No of recreational center Z score:  No of park and recreational center -0.475 16.678 0.000 1.000 

No of restaurant Z score:  No of restaurant -0.464 11.021 0.000 1.000 

No of shop Z score:  No of shopping center -0.442 19.728 0.000 1.000 

Traffic Characteristics 

VMT Vehicle miles travelled 0.000 15.026 7.914 3.368 

Truck VMT Tuck vehicle miles traveled 0.000 13.049 3.474 2.864 

Proportion of heavy vehicles Total truck AADT/ Total AADT 0.000 0.369 0.068 0.046 

Sociodemographic Characteristics 

Population density Total population/Total area of TAZ in acre 0.000 21.293 2.364 2.233 

Average TAZ income Ln (Average TAZ income+1) 0.000 12.534 11.065 0.386 

Proportion of commuter  Total number of commuter/total population 0.000 0.778 0.408 0.085 

Non-motorist commuter Ln (NMT means to work for a TAZ) 0.000 5.261 1.278 1.098 

Proportion of senior people 
Total number of people over 65 years/total 

population in TAZ 
0.000 0.821 0.206 0.114 

Proportion of African-

American people 

Total number of African-American people /total 

population in TAZ 
0.000 0.969 0.142 0.159 

Proportion of household with 

no vehicle 

Number of household with no vehicle/total 

household 
0.000 0.471 0.069 0.065 

 

 
4 Z-score represents the standardized form of the actual variable. 
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Table 2 Measure of Fit for Different Models 

Model 
Log-

Likelihood 

No. Of 

Parameters 
AIC 

Corrected 

AIC 
BIC 

Model without Unobserved heterogeneity 

Univariate NB Model -39954.90 68.00 80045.80 80048.30 80592.41 

Panel independent NB model 

(PNB) 
-39961.82 52.00 80027.64 80029.10 80352.47 

Latent Segmentation 

Independent NB with two 

segments (LPNB II) 

-39890.40 57.00 79894.81 79896.57 80250.87 

Latent Segmentation 

Independent NB with three 

segments (LPNB III) 

-39839.82 58.00 79795.63 79797.45 80157.94 

Model with Unobserved heterogeneity 

Panel Mixed NB (PMNB) -39235.75 53.00 78577.50 78579.02 78908.57 

Latent Segmentation Mixed 

NB with two segments 

(LPMNB II) 

-39352.26 57.00 78818.52 78820.28 79174.58 

 

 

Table 3 Segment Characteristics for LPMNB model 

Crash Type Observed 
Segment 1 

(0.74) 

Segment 2 

(0.26) 

Rear-end 10.934 13.183 5.899 

Angular 4.176 4.820 1.770 

Sideswipe 2.687 2.791 1.799 

Single Vehicle 2.390 2.489 1.986 

Head-on 0.334 0.301 0.466 

Non-motorized 0.712 0.869 0.239 

Overall 3.539 4.075 2.027 
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Table 4 LPMNB Model Results 

Segment Component 

Variables 
Segment 1 Segment 2 

Coeff. T-stat Coeff. T-stat 

Constant -- -- 1.532 11.898 

Number of intersections -- -- -0.660 -14.394 

Average outside shoulder width -- -- 0.897 13.163 

Urban Area (acre) -- -- -0.534 -21.139 

Residential area -- -- 0.056 2.932 

Crash Count Component 

Crash Specific Characteristic 

Rear-end -0.171 -3.372 -3.298 -13.797 

Angular -1.654 -27.320 -4.363 -13.680 

Sideswipe -0.325 -6.400 -4.225 -11.594 

Single Vehicle -0.345 -8.048 -3.185 -14.410 

Head-on -2.882 -18.544 -4.227 -12.654 

Non-motorized -2.040 -15.908 -5.338 -14.331 

Roadway Characteristics 

Proportion of arterial roads     

Rear-end+angular+NMT 0.166 4.933 -- -- 

All single vehicle -0.260 -4.087 -0.472 -3.312 

Signal Intensity     

Rear-end+sideswipe+NMT -- -- 2.350 3.479 

Single vehicle -- -- -1.760 -1.686 

Variance of speed limit     

Rear-end+sideswipe+NMT 0.036 5.167 0.133 5.244 

Road length over 55mph     

Rear-end+sideswipe 0.846 12.212 -- -- 

Angular -2.058 -11.470 -- -- 

Standard Deviation 0.452 1.904 -- -- 

Single vehicle 0.846 12.212 0.753 2.921 

Standard Deviation -- -- 0.930 3.149 

Head-on -2.103 -4.559 -- -- 

Non-motorized -1.900 -6.312   

Roads with separated median     

Rear-end+angular+sideswipe -- -- 0.925 6.286 

Head-on -- -- -0.276 -1.138 

Land Use Characteristics 

Office area (acre)     

Rear-end+sideswipe 0.195 20.947 -- -- 

Non-motorized 0.169 6.687 -- -- 

Built Environment Characteristics 

Number of restaurants     

Rear-end+sideswipe 0.192 13.919 -- -- 

Non-motorized 0.190 6.635   

Number of shopping centers     
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Rear-end+sideswipe 0.034 2.676 -- -- 

Traffic Characteristics 

VMT     

Angular+sideswipe 0.147 45.205 -- -- 

Head-on 0.171 10.550 -- -- 

Non-motorized 0.102 8.365   

Truck VMT     

Rear-end -- -- 0.418 14.386 

Single vehicle -- -- 0.554 21.272 

Socio-economic Characteristics 

Non-motorist commuter     

Rear-end+sideswipe+NMT 0.076 3.924 -- -- 

Angular 0.170 8.790   

Transit commuter -- -- -- -- 

Rear-end+ Non-motorized 0.217 11.883 0.576 8.584 

Over Dispersion Parameter 

Rear-end 0.279 9.521 0.965 11.865 

Angular 0.190 7.825 1.512 3.064 

Sideswipe 0.284 8.294 0.965 11.865 

Single Vehicle 0.726 17.746 0.115 1.554 

Head-on 0.190 7.825 1.512 3.064 

Non-motorized 0.279 9.521 0.965 11.865 

Correlations 

Rear-end+NMT 0.679 23.659 -- -- 

Angular+sideswipe+single vehicle 0.840 34.284 1.245 7.913 

Log-likelihood at zero: -44378.90; log likelihood at convergence: -39890.40 
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Table 5 PMNB Model Results   

Variables (np) 
Rear-End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant (6) -0.930 -13.685 -1.623 -20.072 -2.590 -22.568 -3.499 -23.345 -0.747 -15.927 -3.016 -19.626 

Roadway Characteristics 

Proportion of 

arterial roads (2) 
0.158 4.732 0.158 4.732 -- -- -- -- -0.287 -5.422 0.158 4.732 

Number of 

intersections (1) 
-- -- 0.359 14.033 -- -- 0.359 14.033 -- -- 0.359 14.033 

Signal intensity (3) 0.716 3.347 -- -- -0.494 -1.828 -- -- -0.443 -2.693 0.716 3.347 

Road length over 

55mph (5) 
0.422 5.047 -1.599 -8.872 0.422 5.047 0.866 6.410 -1.098 -4.575 -1.135 -4.580 

Standard 

deviation 
-- -- 0.703 2.171 -- -- -- -- -0.509 -2.253 -- -- 

Variance of Speed 

(2) 
0.038 5.079 0.038 5.079 0.070 5.021 -- -- -- -- -- -- 

Roads with 

separated median 

(2) 

0.204 7.758 0.204 7.758 0.204 7.758 -0.108 -1.516 -- -- -- -- 

Average outside 

shoulder width (4) 
-0.252 -7.489 -0.428 -9.693 -0.530 -10.186 -0.252 -7.489 -0.118 -3.221 -- -- 

Traffic Characteristic 

VMT (4) -- -- 0.1219 11.19 0.2392 18.689 0.1546 9.292 -- -- 0.0182 1.800 

Truck VMT (2) 0.1909 19.089 -- -- -- -- -- -- 0.2708 34.334 -- -- 

Land-use attributes 

Urban area (4) 0.156 20.876 0.156 20.876 0.142 9.762 0.106 4.882 -- -- 0.115 5.284 

Office area (2) 0.163 18.620 -- -- 0.163 18.620   -- -- 0.164 6.635 

Residential area (1) -- -- -- -- -0.077 -7.218 -0.077 -7.218 -- -- -- -- 

Built environment characteristic 

No. of restaurants 

(3) 
0.3082 13.34 -- -- 0.1091 4.297 -- -- -- -- 0.2568 9.068 

No. of shopping 

centers (1) 
0.029 2.029 -- -- 0.029 2.029 -- -- -- -- -- -- 
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Socio-demographic characteristics 

Non-motorists (3) 0.070 3.408 0.148 6.956 0.164 6.505 -- -- -- -- 0.070 3.408 

Transit users (1) 0.239 13.596 -- -- -- -- -- -- -- -- 0.239 13.596 

Over dispersion (6) 0.396 31.904 0.384 14.952 0.396 31.904 0.384 14.952 0.700 22.059 0.396 31.904 

Unobserved Effects 

Correlation 1 (1) 0.741 33.753 -- -- -- -- -- -- -- -- 0.741 33.753 

Correlation 2 (1) -- -- 0.936 40.216 0.936 40.216 0.936 40.216 -- -- -- -- 

Log-likelihood at zero: -44541.65; log likelihood at convergence: -39235.75 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 

--= attribute insignificant at 90% confidence level 
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Table 6 Predictive Performance Measure of Two Models (PMNB and LPMNB) 

Dataset Crash Type 
MPB MAD MAPE RMSE 

Predicted  

Log-likelihood 

PMNB* LPMNB PMNB LPMNB PMNB LPMNB PMNB LPMNB PMNB LPMNB 

In-Sample 

Measures 

(3,815 

TAZs) 

Rear-end -0.312 -0.823 8.519 7.741 3.077 2.980 38.098 18.682 -11113.5 -11087.6 

Angular 1.148 -0.040 3.126 3.445 1.892 1.010 5.834 5.769 -8645.03 -8635.75 

Sideswipe 0.868 0.071 2.028 2.210 0.861 0.697 4.171 4.216 -6744.93 -6747.99 

Single Vehicle 0.062 0.029 1.809 1.866 1.547 0.333 2.903 3.070 -7098.68 -7074.95 

Head-on 0.107 -0.004 0.429 0.494 0.089 0.153 0.990 1.001 -2584.61 -2596.1 

Non-motorized 0.077 -0.043 0.680 0.699 0.067 0.133 1.360 1.203 -3761.8 -3756.02 

Overall 1.950 -0.809 16.590 16.454 7.533 5.306 38.912 20.296 -39948.5 -39898.4 

Hold-out 

sample 

Measures 

(932 TAZs) 

Rear-end -0.615 1.833 19.694 14.999 2.144 4.161 74.047 34.174 -3783.87 -3758.93 

Angular 4.660 3.311 6.046 5.856 3.274 0.925 10.048 9.627 -3086.49 -3072.68 

Sideswipe 3.287 2.167 4.173 4.079 2.241 0.616 7.292 7.214 -2628.16 -2662.63 

Single Vehicle 1.195 1.261 2.513 2.594 1.661 0.747 3.979 4.156 -2271.89 -2259.24 

Head-on 0.151 0.053 0.515 0.555 0.038 0.101 0.769 0.768 -828.111 -833.142 

Non-motorized 0.177 -0.010 1.186 1.172 0.402 0.085 2.308 1.949 -1405.31 -1402.91 

Overall 8.855 8.615 34.129 29.254 9.760 6.635 75.225 36.527 -14003.8 -13989.5 
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Table 7 Elasticity Effects Across Two Models (PMNB and LPMNB) 

Variables Models 
Crash Types 

Rear-end Angular Sideswipe Single Vehicle Head-on Non-motorized 

Arterial 

Roads 

LPMNB 

Segment 1 0.800 0.735 0.000 -0.974 0.000 0.787 

Segment 2 0.000 0.000 0.000 -1.655 0.000 0.000 

Overall 0.736 0.704 0.000 -1.110 0.000 0.752 

PMNB 0.859 0.753 0.000 -1.093 0.000 0.816 

Variance 
LPMNB 

Segment 1 1.178 1.061 1.171 0.000 0.000 0.000 

Segment 2 5.036 5.056 5.032 0.000 0.000 0.000 

Overall 1.556 1.315 1.539 0.000 0.000 0.000 

PMNB 1.343 1.331 1.409 0.000 0.000 0.000 

Speed 

≥55mph 

LPMNB 

Segment 1 0.824 -1.137 0.886 1.115 -1.184 -0.906 

Segment 2 0.000 0.000 0.000 1.349 0.000 0.000 

Overall 0.640 -0.954 0.684 1.163 -0.826 -0.782 

PMNB 0.246 -0.769 0.322 0.887 -0.615 -0.465 

Road with 

Median 

LPMNB 

Segment 1 0.000 0.000 0.000 0.000 0.000 0.000 

Segment 2 7.754 7.776 7.793 0.000 -1.703 0.000 

Overall 0.741 0.443 0.716 0.000 -0.342 0.000 

PMNB 1.623 1.469 1.590 0.000 -0.723 0.000 
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Figure 1: Distribution of Different Crash Types 
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*ES: Elasticity, RE: Rear-end; ANG: Angular; SW: Sideswipe; SV: Single vehicle; HD: Head-on; NMT: Non-motorized 

Figure 2: Elasticity Band of LPMNB and PMNB Model  
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Note: UNB: Univariate Negative Binomial model; RPMNB: Random parameter multivariate negative binomial model 

Figure 3: Modelling Trade-off Across Inference capability, Prediction Capability and Complexity 


