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Abstract 

Given the recent growth of bicycle-sharing systems (BSS) around the world, it is of interest to BSS 

operators/analysts to identify contributing factors that influence individuals’ decision processes in 

adoption and usage of bicycle-sharing systems. The current study contributes to research on BSS 

by examining user behavior at a trip level. Specifically, we study the decision process involved in 

identifying destination locations after picking up the bicycle at a BSS station. In the traditional 

destination/location choice approaches, the model frameworks implicitly assume that the influence 

of exogenous factors on the destination preferences is constant across the entire population. We 

propose a Finite Mixture Multinomial Logit (FMMNL) model that accommodates such 

heterogeneity by probabilistically assigning trips to different segments and estimate segment-

specific destination choice models for each segment. Unlike the traditional destination choice 

based Multinomial Logit (MNL) model or Mixed Multinomial Logit (MMNL), in an FMMNL 

model, we can consider the effect of fixed attributes across destinations such as users’ or origins’ 

attributes in the decision process. Using data from New York City bicycle-sharing system 

(CitiBike) for 2014, we develop separate models for members and non-members. We validate our 

models using hold-out samples and compare our proposed FMMNL model results with the 

traditional MNL and MMNL model results. The proposed FMMNL model provides better results 

in terms of goodness of fit measures, explanatory power and prediction performance. 

 

Keywords: Bicycle Sharing Systems, CitiBike New York, Finite Mixture Model, Multinomial 

Logit Model, Destination Choice
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1. INTRODUCTION 

In recent years, the adoption of the bicycling mode of transportation for commuting and leisure 

has experienced significant growth. Nationally, the mode share for commuting by bicycle has 

increased 46% since 2005 (McLeod, 2014). Coupled with the increasing adoption of bicycling, 

analysis of millennials’ travel behavior suggests increased willingness among millennials to use 

shared transportation systems rather than private vehicles (Davis et al., 2012). These recent trends 

have encouraged urban regions to invest substantially in bicycle-sharing systems (BSS). Over 1000 

cities have a BSS in operation or under construction (Meddin, and DeMaio, 2016). BSS offer a 

practical, physically active and sustainable mode of transportation for short to medium distance 

trips in dense urban regions. If shorter private vehicle trips can be substituted by BSS trips, 

significant benefits in terms of reducing traffic congestion, GHG emissions and air pollution will 

be accrued. A well designed bicycle-sharing system can also potentially provide a solution for the 

first/last mile problem of other public transportation systems (Jäppinen et al., 2013). Earlier 

research efforts indicate that BSS have assisted in normalizing the image of the bicycle as a daily 

mode of travel in public perception and thus have contributed to expanding the demographics of 

cyclists (Goodman et al., 2014). Further, the presence of BSS in a city might enhance the driver 

awareness towards cyclists and thus increase the safety for cyclists (Murphy and Usher, 2015).  

Considering all the benefits of bicycle-sharing systems, it is not surprising that there is a 

rapid growth of these systems around the world. Accordingly, the number of studies on bicycle-

sharing systems have increased in recent years (for a review of recent literature on BSS, please see 

Fishman, 2016). The relevant literature in the burgeoning area of BSS research can be classified 

based on the data employed in the analysis as: (1) Survey compiled data and (2) BSS operation 

data. The first stream of studies employs survey compiled data to examine BSS users travel 

behavior and choices. Bachand-Marleau et al. (2012) conducted a survey in Montreal, Canada, and 

found that convenience and having a BSS station closer to home location are the main motivators 

for individuals to use BSS. Fishman et al. (2015a) examined the factors influencing the user’s 

membership of BSS in two major Australia cities (Melbourne and Brisbane) and identified riding 

frequency, age, proximity to docking station as significant contributing factors for membership. 

Buck et al. (2013) highlighted the differences between BSS short-term users and annual members 

and regular cyclists in Washington, DC. Several studies investigated the impact of BSS on cyclists’ 

safety and prevalence of using helmets by BSS users (Kraemer et al., 2012; Graves et al., 2014; 

Fishman and Schepers, 2016). Murphy and Usher (2015) employed survey data conducted in 

Dublin, Ireland, and underlined the gender gap and income equity issues with regard to accessing 

and using BSS. Further, the impact of BSS on mode choice and modal shift to BSS was analyzed 

in several studies (Buck et al., 2013; Martin and Shaheen, 2014; Murphy and Usher, 2015). It is 

found that BSS mostly substituted trips made by public transport and by walking. However, the 

overall impact of BSS on increasing active transportation is found to be positive (Fishman et al., 

2015b). The overall benefits of BSS in terms of car use and air pollution reduction are strongly 

dependent on the design of the system, the need for the bicycle redistribution in the system and the 

how the rebalancing operations are performed by the system operators (Fishman et al., 2014).  

The second stream of studies, and of particular relevance to our study, develops 

quantitative frameworks to understand BSS employing real operation data provided by the BSS 

operator or downloaded through automated scripts from BSS operator websites. In this context, 

most of the earlier studies focused on the relationship between BSS usage and demand with 

bicycling infrastructure, land use and built environment, public transportation infrastructure, 
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temporal and meteorological attributes. For example, it is found that increasing BSS infrastructure 

(number of stations and capacity) or bicycle routes around BSS stations would increase the usage 

of BSS (Faghih-Imani et al., 2014; Wang et al., 2015). Studies demonstrate that population and 

job density, as well as point of interests (such as retail stores, and universities), have a positive 

impact on the ridership of BSS (Rixey, 2013; Faghih-Imani et al., 2014; Faghih-Imani et al., 2017). 

A subset of studies examined the link between BSS usage and other public transportation systems 

(Nair et al., 2013; Faghih-Imani et al., 2014; Faghih-Imani and Eluru, 2015; González et al., 2015). 

The use of BSS for the daily commute to work is identified in several studies (O’Brien et al., 2014; 

Faghih-Imani et al., 2014). Further, it is demonstrated by several studies that BSS users prefer 

routes with bicycle facilities such as bicycle lanes and shorter trips with all else same (Faghih-

Imani and Eluru, 2015; González et al., 2015). The weather attributes influence on BSS usage is 

highlighted by several earlier research efforts (Gebhart and Noland, 2014, Faghih-Imani et al., 

2014). Further, a small subset of studies employed advanced models to highlight the importance 

of recognizing the spatial correlation and the self-selection impact of BSS infrastructure 

installation decision process in modeling BSS usage (Faghih-Imani and Eluru, 2016a; Faghih-

Imani and Eluru, 2016b).  

Within this group of studies, several studies also focus on operational issues of BSS 

including identifying problematic stations (stations that are full or empty) and efficiency of 

operator rebalancing program. For example, Fricker and Gast (2014), studied the effect of the 

randomness of user decisions on the number of problematic stations. Vogel and Mattfeld, (2011) 

and Bouveyron et al. (2015) developed cluster analysis and found different categories of stations 

within the bicycle-share systems. Several studies analyzed various methods for optimizing bicycle 

rebalancing operations and repositioning trucks’ routing schemes (Vogel and Mattfeld, 2011; Nair 

et al. 2013; Raviv et al., 2013; Pfrommer et al., 2014; Forma et al., 2015).  

 

2. CURRENT STUDY IN CONTEXT 

The current study belongs to the second stream of research that employs operational data from 

BSS. The study contributes to research on BSS by examining user behavior at a trip level to provide 

a better understanding of the system for the BSS planners/operators. Specifically, the destination 

station choice of individuals after picking up the bicycle at a BSS station is studied using a random 

utility maximization approach. Such approach is common in location choice studies in 

transportation literature (Waddell et al. 2007; Chakour and Eluru 2014; Faghih-Imani and Eluru, 

2015). For example, Faghih-Imani and Eluru (2015) employed a random utility based multinomial 

logit model to study destination choice preferences for the Chicago’s Divvy BSS.  

In these traditional approaches, the model frameworks implicitly assume that the influence 

of exogenous factors on the destination preferences is constant across the entire population. To 

illustrate this, consider the destination station choice behavior for two users (U1 and U2) with the 

same attributes except for trip start time period. U1 starts her trip in AM time period while U2 

starts her trip in the PM time period. Now let us consider the influence of “job density” and 

“restaurant density” in the vicinity of the destination alternatives on destination station preferences. 

U1 beginning her trip in the AM period is more likely to be positively affected by “job density” 

while being minimally affected by “restaurant density”. U2, on the other hand, is likely to be 

positively influenced by “restaurant density” and either minimally (or even negatively) affected 

by “job density”. This is an illustration of how based on the trip start time, impact of exogenous 



4 

 

variables can be substantially different across users. The illustration provided is a case of one 

variable (trip start time) moderating the influence of other variables (“job density” and “restaurant 

density”). The reader would recognize that it is possible that multiple variables might serve as a 

moderating influence on a reasonably large set of exogenous variables. If such distinct profile of 

exogenous variables across users is not considered, a restrictive assumption that all exogenous 

variables have the same effect on user destination choice process is imposed.  

 A commonly proposed solution to address the restrictive homogeneity assumption is the 

clustering of the sample population based on exogenous variables and developing cluster specific 

models. However, based on the number of exogenous variables of interest, the number of mutually 

exclusive sample clusters could increase very rapidly thus increasing the number of models to be 

developed (see Eluru et al., 2012 for more discussion). Further, the large number of mutually 

exclusive clusters might result in samples with fewer records. Another alternative approach to 

address homogeneity is to employ mixed versions of the traditional models that accommodate for 

unobserved heterogeneity across the population. These approaches are focussed on the error 

component of the model and usually require extensive simulation for model estimation. However, 

one disadvantage is that they do not capture the heterogeneity corresponding to observed variables 

(systematic heterogeneity) in the modeling framework. Also, the large number of alternatives in 

destination choice models further reduce the appeal for such approaches.  

A third approach to accommodate heterogeneity is to undertake an endogenous 

segmentation or a finite mixture model approach. In this approach, the sample population is 

allocated probabilistically to different segments, and segment-specific destination choice models 

are estimated. The segment membership is achieved based on a multivariate set of exogenous 

variables within a closed form approach. Thus the finite mixture approach addresses the limitations 

of the two previous methods by accommodating for heterogeneity within a closed form model. 

The proposed approach also addresses a specific limitation of the traditional Multinomial Logit 

(MNL) model, exogenous segmentation or mixed models. In a destination choice based MNL 

model and its variants such as Mixed Multinomial Logit model (MMNL), only attributes that vary 

across alternatives within the choice set can be considered for influencing utility i.e. the model is 

limited to destination attributes. The consideration of socio-demographics and other attributes 

fixed across all alternatives (such as origin variables or temporal and meteorological 

characteristics) is possible only through their interaction with destination attributes. However, 

within the Finite Mixture Multinomial Logit (FMMNL) framework, we can account for such user 

level attributes (that are fixed across alternatives) through the segmentation component of the 

model. The use of FMMNL framework has increased in the transportation literature over the past 

few years. Studies employed FMMNL to examine travel mode choice (Kemperman and 

Timmerman, 2009; Vij et al. 2013; Ma et al. 2015), vehicle ownership (Anowar et al. 2014), 

residential location (Walker and Li, 2007; Ettema, 2010), activity participation (Sobhani et al. 

2013), and driver injury severity (Eluru et al. 2012; Yasmin et al; 2014).  

The current study extends Faghih-Imani and Eluru’s (2015) work by developing an 

FMMNL model on data from the New York City bicycle-sharing system (CitiBike) for 2014. We 

develop two separate models for members and non-members. In addition, we consider a pooled 

dataset of members and non-members and compare the pooled model estimation with separate 

models. Further, we validate our estimated models with hold-out samples and compare the 

prediction performance of the proposed FMMNL models with the traditional MNL and MMNL 

models. The broad set of exogenous variables considered in the FMMNL model include temporal 
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and weather characteristics (such as time period of the day or temperature), trip attributes (such as 

trip distance), users’ attributes (such as age and gender), and origin and destination characteristics 

(such as BSS capacity, and built environment attributes around the stations).  

The remainder of the paper is organized as follows. The next section presents the data and 

the sample formation steps. Section 4 describes the methodology used and model structure. The 

model results and validation are presented in Section 5. Finally, Section 6 concludes the paper. 

  

3. DATA 

New York’s CitiBike system is one of the major public BSS in the world and the largest in the 

United States. The service was launched in May 2013 with 330 stations and 6,000 bicycles in the 

lower half of Manhattan and some part of northwest of Brooklyn. The system covers the city’s 

major commercial business districts and some residential areas with an annual ridership of more 

than 8 million trips in 2014. The city’s dense and walkable urban form provides a good opportunity 

for the success of a well-designed BSS. The users can either buy the annual membership for or a 

temporary daily pass. The first 45 minutes (30 minutes) of each ride are included in the annual 

membership (daily pass) price with additional charges for each additional 15 minutes. 

The trip itinerary dataset of New York’s CitiBike system was obtained from its website 

(https://www.citibikenyc.com/system-data). The dataset has the information for every trip made 

by the CitiBike system since beginning operations in 2013. For every trip, origin and destination 

stations, start time and end time, and type of user information are provided in the dataset, as well 

as, the age and gender of annual members. Further, the CitiBike stations’ coordinates and capacity 

are also available in the dataset. The built environment attributes such as bicycle routes and subway 

stations were derived from New York City open data (https://nycopendata.socrata.com) while the 

socio-demographic characteristics of resident population were gathered from US 2010 census and 

the weather information corresponding to the Central Park station was retrieved from the National 

Climatic Data Center (http://www.ncdc.noaa.gov/data-access). 

 

3.1. Sample Formation 

We employed data for trips for the year 2014. Several steps were followed to generate the final 

samples for model estimation. First, trips with missing or inconsistent information as well as very 

long trips (longer than 2 hours) were deleted (only 0.5% of all the trips). Second, modeling trips 

with the same origin and destination is beyond the scope of this study and thus were also excluded 

from the sample. Further, trips made by annual members and users with daily passes were 

separated; about 90% of all the trips were made by annual members. Further, to maintain a 

reasonable sample for data processing and model estimation related computational effort, 10,000 

trips by members were randomly selected from the entire year of 2014. For non-members, we 

chose two different sample sizes for two different model estimations: 1) a sample size of 10,000 

trips for non-member only model; 2) a sample size of 1087 trips to add to the 10,000 member trips 

to obtain an overall pooled sample representing the CitBike trips (90.2% members and 9.8% non-

members). The sample sizes followed the recommendations of an earlier study that investigated 

the impact of different sample sizes on BSS analyses (Faghih-Imani and Eluru, 2017). 

There are 332 CitiBike stations in New York City in 2014. Since we focus on trips that 

were destined outward, there are 331 stations in the universal choice set of destinations. Three 

https://www.citibikenyc.com/system-data
http://www.ncdc.noaa.gov/data-access
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samples of 30, 60 and 120 alternatives (destination stations) including the chosen alternative were 

randomly selected for analysis1.  

  

3.2. Independent Variables Generation 

The independent variables considered in our analysis can be categorized into three groups: (1) 

weather and temporal characteristics, (2) spatial variables and (3) trip attributes. Weather variables 

include hourly temperature and relative humidity. In order to capture the time of the day effect on 

usage, based on the start time of the trips, five time periods were created - AM (6:00-10:00), 

Midday (10:00-16:00), PM (16:00-20:00), Evening (20:00-24:00), and Night (0:00-7:00). Day of 

the week impact also was considered in the model estimation by a categorical variable indicating 

weekends. Moreover, for the users with an annual membership, the gender, and age information 

were available. 

Several variables were considered from the spatial variables group. The distance from each 

station to Washington Square Park was computed as a measure to identify the impact of Central 

Business District (CBD). We employed the population information at census block level and the 

employment data at zip code level to generate population density and job density variables. For 

the rest of the attributes a 250-meter buffer around each station is used. The 250-meter buffer 

seems an appropriate walking distance based on the distances between CitiBike stations and the 

dense urban form of New York City (Kaufman et al., 2015). The set of variables generated at 

buffer level include the length of bicycle routes, streets and railways in the buffer, the number and 

capacity of CitiBike stations in the buffer, the presence of subway and Path train stations in the 

buffer, the number of restaurants (including coffee shops and bars), and area of park in the buffer. 

Trip attributes considered in destination choice model include the street network distance 

between the origin and destination of every trip. The shortest distance is computed based on the 

street network around the stations (excluding highways). Although the actual trip might take place 

on another route, the shortest distance can act as a reasonable surrogate for the actual distance 

travelled.  Further, a categorical variable indicating whether the trip needed to cross a bridge (i.e. 

origin or destination in two boroughs of Manhattan or Brooklyn) or not also was generated. Table 

1 presents a descriptive summary of sample characteristics. 

 

4. METHODOLOGY 

A brief description of the FMMNL model employed in our study is provided below2.  

Let us consider S homogenous segments of trips (the optimal number S is to be 

determined). The utility for assigning a trip q (1,2,..Q) to segment s is defined as: 

                                                 

1 To be sure, random sampling of alternative might affect parameter estimates in the FMMNL model. Random 

sampling does not introduce a bias in the estimation process for simple multinomial logit model.  However, based on 

recent research by Guevara and Ben-Akiva (2013) there is evidence to suggest that the naïve estimator (i.e. employing 

random sampling based estimation) offers reasonable accuracy in model estimation for MMNL model. We conducted 

a comparison exercise with different number of alternatives for the FMMNL model and observed relatively similar 

parameters with increasing choice set size (similar to MMNL).  

2 For sake of brevity, we did not include the mathematical formulations for MNL and MMNL models.   
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 𝑈𝑞𝑠
∗ = 𝛽𝑠

′𝑧𝑞 + 𝜉𝑞𝑠 (1) 

𝑧𝑞 is a (M x 1) column vector of attributes that influences the propensity of belonging to segment 

s, 𝛽𝑠
′ is a corresponding (M x 1) column vector of coefficients and 𝜉𝑞𝑠 is an idiosyncratic random 

error term assumed to be identically and independently Gumbel-distributed across trips q and 

segment s. Then the probability that trip q belongs to segment s is given as:  

 𝑃𝑞𝑠 =  
exp(𝛽𝑠

′𝑧𝑞)

∑  exp(𝛽𝑠
′𝑧𝑞)𝑠

 (2) 

Now let us assume k (1,2, … K, in our study K=30) represents destination station choices, 

then the random utility formulation takes the following form when a trip probabilistically assigned 

to a segment s and station k is chosen as destination: 

 𝑈𝑞𝑘| 𝑠 = 𝛼𝑠
′  𝑥𝑞 + 𝜀𝑞𝑘 (3) 

𝑥𝑞 is a (L x 1) column vector of attributes that influences the utility of destination choice model. 

α is a corresponding (L x 1)-column vector of coefficients and 𝜀𝑞𝑘 is an idiosyncratic random error 

term assumed to be identically and independently Gumbel distributed across the dataset. Then the 

probability that trip q chooses station k as destination within the segment s is given as: 

 𝑃𝑞(𝑘) | 𝑠 =  
exp(𝛼𝑠

′𝑥𝑞)

∑ exp(𝑘 𝛼𝑠
′ 𝑥𝑞)

 (4) 

Within the finite mixture framework, the overall probability of trip q to be destined to 

station k is given as: 

 𝑃𝑞(𝑘) =  ∑(

𝑆

𝑠=1

𝑃𝑞(𝑘) | 𝑠)(𝑃𝑞𝑠) (5) 

Therefore, the log-likelihood function for the entire dataset is: 

 𝐿 = ∑ log(𝑃𝑞(𝑘𝑞
∗ ))

𝑄

𝑞=1

 (6) 

where 𝑘𝑞
∗  represents the chosen destination station for trip q. By maximizing this log-likelihood 

function, the model parameters β and α are estimated. GAUSS matrix programming language is 

used to code the maximum likelihood model estimation.  

 

5. ANALYSIS AND DISCUSSION 

We estimated the traditional MNL and MMNL models and used their results as a starting point for 

our FMMNL estimation. The FMMNL estimation process starts with a model with only two 

segments. Then, we continue to add segments to model until it does not significantly improve 
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model performance. The model performance is evaluated using Bayesian Information Criterion 

(BIC). For a given empirical model, BIC = Kln(Q) - 2ln(L) where K is the number of parameters, 

Q is the number of observations and ln(L) is the log–likelihood value at convergence. The model 

with the lowest value of BIC is preferred. Thus, the final and optimal number of segments 

corresponds to the model with lowest BIC value. We separately estimated the models for members 

and non-members on samples of 10,000 trips. In addition, we estimated one pooled model of 

10,000 trips by members and 1087 trips by non-members. The separate models out-performed the 

pooled model in terms of model goodness of fit. The better fit produced by the separate models 

can be attributed to two factors: (1) gender and age variables could be utilized for members in the 

separate models. The information was ignored in the pooled model as it was available only partially 

(for members only) and (2) the pooled model by implicitly restricting the influence of exogenous 

factors to be the same for members and non-members ignores the behavioral differences across 

the two user types. While the pooled model performed reasonably, for the sake of brevity in this 

paper, we focus on two separate models by user membership type. The reader would note that the 

FMMNL model was tested with multiple choice set sizes (30, 60 and 120). The specification was 

quite stable and offered minor differences across the various sample sizes. Hence, we restricted 

ourselves to presenting the results of sample size 30 in our paper.  

For members and non-members, the FMMNL with three segments provided the best fit. 

We also estimated the corresponding traditional MNL models and MMNL models and used them 

as benchmarks to evaluate our FMMNL model performances. Table 2 summarizes the models’ 

performance. For members, the final log-likelihood (BIC) value of the FMMNL model with three 

segments is -28132.6 (56762.5) while the corresponding values for the traditional MNL model is 

-28451.0 (57012.5) and for MMNL model is -28421.2 (56980.6). Similarly, for non-members, the 

final log-likelihood (BIC) value of the FMMNL model with three segments is -28589.8 (57594.1) 

while the corresponding value for the traditional MNL model is -29270.4 (58679.0) and for 

MMNL model is -29231.4 (58637.7). The improvement in the data fit illustrates the improved data 

fit provided by the FMMNL based destination choice models; providing evidence in favor of the 

presence of segments within the spectrum of trips especially for the non-member users. The results 

confirm our hypothesis that BSS users’ decision process heterogeneity can be investigated through 

segmentation of trips. Moreover, the FMMNL allows us to capture behaviorally richer contributing 

factors. 

 

5.1. Model Estimation Results  

The estimation results for traditional MNL and MMNL models are presented in Table 3. In 

traditional MNL and MMNL models, we can only estimate parameters for destination station 

attributes. The FMMNL model estimation results are presented in Table 5 and 6. Table 5 presents 

the segmentation component and Table 6 presents the destination choice component of the 

FMMNL model. For the sake of brevity, this section focuses on the discussion of the results of the 

FMMNL model with three segments for members and non-members to understand the different 

factors influencing users’ choice of destination in the New York City’s CitiBike bicycle-sharing 

system.  

 

5.1.1. Behavioral interpretation  
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To provide insights on the segments identified by FMMNL, it is useful to examine the segment 

characteristics. Specifically, we can estimate the trips’ share across the segments as well as the 

distribution of independent variables within each segment (see Anowar et al., 2014 or Bhat 1997 

for more details on computation procedures). These estimates are presented in Table 4.  

For members, the probabilities of trips belonging to the different segments are: segment 1 

(39.4%), segment 2 (18.8%) and segment 3 (41.8%). A closer examination of the mean values of 

exogenous variables will allow us to understand the membership of these segments. Segment 1 is 

likely to have users’ bicycling in AM, Midday and PM periods toward destinations with high job 

density indicating the higher likelihood of daily commuters being allocated to this segment. 

Segment 2 is primarily composed of recreational trips of younger individuals (average age under 

30) as indicated by higher evening and weekend participation with trips destined to lower job 

density areas. Segment 3 can be considered an everyday bicyclist group who show high bicycling 

on weekdays (AM, PM, and midday) and weekends. To be sure, these labels are indicative of the 

potential identifiers for each segment based on the average values of exogenous variables. The 

difference of mean values for some exogenous variables might be very small to draw clear 

distinctions. 

For non-members, the composition of the three segments are: segment 1 (17.7%), segment 

2 (43.0%) and segment 3 (39.3%). The non-members trips are usually made in better weather 

conditions compared to members’ trips and are of longer duration. Based on the exogenous 

variable comparison, segment 1 is mostly weekend long trips as indicated by higher values of travel 

duration and weekend variable values. The second segment corresponds to casual short trips based 

on higher rates for evening and duration. Finally, the third segment accounts for midday trips.  

   

5.1.2. The segmentation component 

The segmentation component determines the probability that a trip is assigned to one of the three 

segments identified. In our modeling effort, we select the everyday bicyclist segment (for 

members) and the midday trips’ segment (for non-members) as the base for the segmentation 

model.  

 

5.1.2.1.Time and weather variables: 

The negative coefficients for AM, Midday, PM variables indicate a high propensity for trips in 

Evening and Night period for members’ recreational trips segment. The probability of a non-

members’ trip to be in the casual short segment is negatively affected by Midday and PM period 

variables. As expected, the weekend variable has a negative impact on the utility of members’ 

daily commute segment while the same variable has a positive influence for non-members’ 

weekend long segment. Temperature variable exhibits an interesting influence on the segmentation 

process. The reader would note that in New York City the temperature is rarely too high to 

discourage bicycling. For members, higher temperature days encourage trip allocation to everyday 

bicyclist segment i.e. individuals exhibit tendency to use BSS in spite of it being a weekend. For 

non-members, as expected, higher temperature accounts for increased allocation to the weekend 

long segment.  

 



10 

 

5.1.2.2.Origin built environment attributes: 

Trips starting from origins near transit stations are more likely to be assigned to daily commute 

and recreational segments for members while such trips are less likely to be allocated to non-

members weekend long trip segment. Trips originating from stations in areas with higher 

population density are more likely to be members’ recreational trips or non-members’ casual short 

trips. The population density variable has also a negative impact on the utility of members’ daily 

commute and non-members’ weekend long trips’ segments. When the origin station distance to 

CBD increases, as expected we are less likely to see non-members’ casual short trips and more 

likely to have members’ recreational and daily commute trips. The origin station elevation and the 

area of parks near origin station variables also influence trip allocation to the segments.  

 

5.1.2.3.User attributes: 

The age and gender attributes are only available for members and thus are only included in 

members’ model estimation. As expected, younger users are more likely to engage in recreational 

trips while female members are less likely to use BSS for the daily commute. 

 

5.1.3. Destination choice component 

5.1.3.1.Destination bicycle infrastructure attributes: 

The destination choice component quantifies the influence of contributing factors on users’ 

destination station preferences. The station capacity variable does not have a significant impact for 

recreational trips while it has a positive coefficient for the other segments for both members and 

non-members’ models. The results are expected as the large stations are more likely to have 

available docks to return the bicycle, thus they are more likely to be chosen as a destination. The 

number of stations and the capacity of stations within the buffer variables are aimed to capture the 

impact of neighboring stations on destination choice. It must be noted that the overall impact of 

number and capacity of stations in the buffer should be examined since as the number of stations 

in the buffer increases we simultaneously increase the capacity in the buffer. Overall, an increase 

in the number of stations in the buffer results in an increase in destination likelihood for daily 

commute segment. The length of bicycle facilities in the buffer has positive coefficients in two 

segments of non-members model, highlighting the importance of bicycle infrastructure in 

encouraging people to cycle (similar to findings of Faghih-Imani and Eluru, 2016b). The findings 

overall illustrate how based on the segment considered the influence of the exogenous variables 

can vary substantially; thus supporting our hypothesis that allowing for such systematic 

heterogeneity provides increased flexibility. 

 

5.1.3.2.Destination built environment attributes: 

Members in daily commute segment and non-members in midday trips segment are more likely to 

choose destination near transit stations while the impact is negative for weekend long trips. The 

length of railways in buffer variable represents a negative influence for non-members’ weekend 

long trips while for the non-members’ other two segments, it represents an attraction. Stations near 

parks are more likely to be selected by non-members across all segments and less likely to be 

selected by members’ daily commuters. Members’ recreational and everyday bicyclist trips and 
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non-members’ weekend long trips are more likely to be made downhill as indicated by the negative 

coefficient of elevation variable in these segments. The insignificance of the parameter for daily 

commuters is notable. Individuals are unlikely to have a choice in elevation along their commute. 

The negative coefficients of distance to CBD variable for members in everyday bicyclist segment 

and non-members in the casual short segment indicate that those users are more likely to choose 

stations that bring them closer to CBD. On the other hand, non-members in weekend long trips 

segment choose stations that take them farther from CBD.  

Population density variable has negative impacts on the utility of choosing a station in 

members’ daily commute and non-members’ weekend long segments while has a positive impact 

in recreational trips and everyday bicyclist segments. Recreational trips are less likely to be 

destined to stations in high job density area while daily commute and everyday bicyclist trips are 

prone to be destined to a station in high job density area in AM period. Further, in non-members 

casual short segment, the population density variable has a negative coefficient in AM period and 

job density variable has a negative coefficient in PM period clearly indicating an occasional 

commute trend in this segment of non-members trips. Overall, the coefficients for population and 

job density variables in different segments are consistent with findings of earlier studies (see Rixey 

2013; Faghih-Imani et al., 2014; Wang et al., 2015) and support our interpretation of the segments 

estimated.   

 

5.1.3.3.Trip attributes: 

The trip distance is expected to be one of the most significant variables in destination station 

decision-making process of BSS users. In general, it is expected that individuals do not use the 

BSS for very short trips or for very long distance trips. Thus, to better model the distance impact 

on the utility of choosing a station, we distinguish the very short distance and very far distance by 

indicator variables and a continuous variable for distance in between. To do so, we tested various 

thresholds for the trip distance to characterize the short, medium, and long distance trips. At the 

end, we employed indicator variables identifying stations within 750m or farther than 4km of 

origin and a continuous form of distance for the stations within 750m to 4km from the origin. As 

expected, for all segments the coefficients estimated for the network distance variables are 

negative, indicating that the trip distance has a negative impact on the likelihood of choosing a 

station as a destination. We also investigate the interaction of distance variable with gender and 

temperature variables. The results show that when the temperature increases, it is expected that 

users pursue longer trips in daily commute and recreational trips segments. Further, female 

members are more likely to have longer trips in recreational trips and everyday bicyclist segments 

(in agreement with the findings of Faghih-Imani and Eluru 2015). The weekend long trips segment 

of non-members has the lowest magnitude for long distance trips (over 4km). The coefficients of 

distance variables and specifically long distance variable are another indicator in support of our 

behavioral interpretation of segments.  

People are less likely to choose a station that requires them to cross a bridge between 

Manhattan and Brooklyn boroughs except in the non-members midday segment. The result is an 

indication of how a separation (by water) imposes a subtle boundary for activity travel 

participation envelope.   
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5.2. Model Validation 

The performance of the models estimated is evaluated using hold-out samples: 3000 trips by 

members and 3000 trips by non-members. The same data processing exercises and choice set 

generation for estimation samples were undertaken for the validation samples. The utility and the 

probability of choosing a station are computed for 30 stations of choice set for each of the 3000 

trips. We generate several measures to evaluate the prediction performance: a) the predictive log-

likelihood (the log-likelihood for the predicted probabilities of the sample), b) the probability of 

correct prediction (correct prediction is defined as assigning the highest probability to the chosen 

alternative) and c) average probability of the chosen station. We compute these measures for the 

FMMNL model and for the equivalent traditional MNL and MMNL models. Moreover, we 

generate the performance measures for the entire validation sample as well as several sub-samples 

within the validation sample. The validation results are presented in Table 5. 

The predictive log-likelihood for FMMNL models of members and non-members are -

8493.0 and -8535.4 while the corresponding values for the traditional MNL are -8543.9 and -

8705.1, and for MMNL are -8547.0 and -8712.3, respectively (It must be noted that the predictive 

log-likelihood for an equal probability model is -10203.6). Furthermore, the FMMNL models 

perform better than both traditional and MMNL models in all sub-samples except for members’ 

sub-sample of trips that require passing a bridge between Manhattan and Brooklyn. Interestingly, 

the FMMNL models significantly outperform the traditional MNL models in prediction for long 

trips highlighting the importance of capturing the heterogeneity for long distance variable. 

Moreover, comparing to the observed destination choice, the chance of correct destination station 

prediction for members and non-members for FMMNL model is about 14.5 and 17.2, which is 

about 0.5 and 1.2 units higher than the corresponding value for traditional MNL and MMNL 

models, respectively (it must be noted that a prediction without any model to choose a destination 

out of 30 stations has a chance of being correct at about 3.33%). The average of predicted 

probability for the observed destination station is 0.0806 and 0.0846 for FMMNL members and 

non-members models while the corresponding value for MMNL is 0.0803 and 0.0763 and for 

traditional MNL models is 0.0787 and 0.0764, respectively. The validation exercise indicates that 

in addition to having a richer explanatory power, the proposed FMMNL model performs relatively 

well in terms of prediction.  

 

6. CONCLUSION 

There is a rapid growth of bicycle-sharing systems around the world in recent years. This paper 

contributes to research on BSS by examining user behavior at a trip level. Specifically, we study 

the decision process involved in identifying destination locations after picking up the bicycle at a 

BSS station. The assumption that the influence of exogenous variables remains the same for the 

entire spectrum of trips might lead to biased estimation. Thus, in this study, rather than 

homogenizing the entire spectrum of trips we examine the presence of potential segments within 

the trip population. Specifically, by developing a Finite Mixture Multinomial Logit Model 

(FMMNL), we allow for various segments and segment specific destinations choice models to 

enhance our understanding of the destination choice behavior. The proposed approach can account 

for fixed attributes (such as origin variables or temporal and meteorological characteristics) 

through the segmentation component of the model while the traditional MNL model is limited to 

attributes that vary across alternatives within the choice set (destination attributes). We estimate 
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our FMMNL on data from the New York City bicycle-sharing system (CitiBike) for 2014. We 

develop two separate models for members and non-members. 

The optimal number of segments for members’ and non-members’ FMMNL was three 

segments. The comparison of the proposed FMMNL models with corresponding traditional MNL 

models illustrates the superiority of the FMMNL based destination choice models. The results 

indicate the presence of segments within the spectrum of trips thus confirming that better 

understanding of BSS users’ decision process is possible through segmentation of trips. Our 

estimation process identifies three segments of daily commute trips, recreational trips and 

everyday bicyclist trips for members and three segments of weekend long trips, casual short trips, 

and midday trips for non-members. The estimated coefficients in segmentation and destination 

choice components of the FMMNL support our interpretation of the segments computed. Further, 

we validate our proposed FMMNL model with hold-out samples. The validation results indicate 

the superiority of the prediction performance of the FMMNL model compared to the traditional 

MNL model. The use of the FMMNL framework to analyze users’ destination choice process also 

provides richer explanatory power which would be very useful for BSS operators/analysts to better 

understand the individuals’ decision processes in adoption and usage of BSS in order to enhance 

their service offerings. 

The model estimates generated have several applications. For example, the developed 

model will allow BSS operators to examine the impact of travel distance, bicycle infrastructure, 

land use, and built environment on destination preferences of different types of users. The detailed 

specification will allow BSS operators to evaluate the impact of different changes in the system or 

built environment on users’ travel behaviour. Specifically, the BSS operators can differentiate such 

impacts for different segments of trips. The model will also provide guidance on how the expansion 

of the existing bicycle-sharing system will affect the current station demand by providing potential 

destination locations to be used from the newly proposed bicycle stations.  

The study is not without limitations. In traditional transportation demand models, traffic 

analysis zones (TAZs) are considered as destination choices. The aggregation of destination 

location to the TAZ level results in loss of exact destination information. However, within the 

confines of data availability and modelling complexity, this is the accepted norm for destination 

(or even residential and workplace location). In our particular context, given the mode of travel is 

restricted to bicycling, our destination choice models that consider station as the choice are less 

affected by aggregation bias. To elaborate, once the bicycle is returned, customers are likely to 

walk to their actual destination. Thus, for most customers, the destination is very close to the 

station. Hence, our approach of considering the station as the destination is a reasonable 

compromise to reduce model complexity. However, attempts to consider destination choice at finer 

spatial resolution is of value in future efforts. Further, in the dataset, it is not possible to identify 

trips made by the same individual, thus we were not able to account for the panel structure of the 

data. The availability of docks in destination stations and their neighbouring stations can influence 

users’ decisions to choose a station. Future work can use a web crawler to capture snapshot data 

of stations’ state in real-time from the operator website and use that information along with the 

trip dataset in examining destination choice preferences. The endogeneity impact of station 

capacity on destination choice should be examined in future efforts. 
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Table 1 Descriptive Summary 

 Members Dataset Non-Members Dataset 

Continuous Variables Min Max Mean SD Min Max Mean SD 

Trip Distance (km) 0.05 10.32 2.00 1.33 0.05 10.78 2.31 1.39 

Trip Duration (min) 1.02 117.83 11.92 8.44 1.70 119.80 22.95 15.33 

Temperature (°C) -15 33.3 16.35 9.09 -11.1 33.3 19.72 6.94 

Relative Humidity (%) 13 100 56.34 18.06 13 100 54.34 16.72 

Members Age 17.00 90.00 37.99 11.25 - - - - 

Origin Attributes         

Length of Bicycle Facility in 250m Buffer (m) 0 3355.3 1049.92 582.56 0 3355.3 1060.15 588.23 

Length of Railways in 250m Buffer (m) 0 9705.14 77.77 451.30 0 9705.14 124.39 711.48 

Area of Parks in 250m Buffer (m2) 0 95209.9 8634.99 12793.99 0 95209.9 13399.34 18359.73 

Number of Restaurants in 250m Buffer 0 545 63.70 99.87 0 545 53.43 85.17 

Number of CitiBike stations in 250m Buffer 0 4.00 1.29 0.95 0 4.00 1.21 1.02 

Capacity of CitiBike stations in 250m Buffer 0 169.00 48.44 37.85 0 169.00 45.05 39.60 

Station Capacity 3.00 67.00 38.15 10.81 3.00 67.00 37.76 10.81 

Population Density (people per m2 ×1000)  0.01 67.20 26.86 14.78 0.01 67.20 24.00 14.07 

Job Density (jobs per m2 ×1000) 0 432.52 65.67 47.01 0 432.52 62.46 50.49 

Distance to CBD (m) 0 7939.95 2423.91 1369.82 0.00 7939.95 2745.74 1444.26 

Destination Attributes         

Length of Bicycle Facility in 250m Buffer (m) 0 3355.3 1027.08 591.25 0 3355.3 1059.78 589.47 

Length of Railways in 250m Buffer (m) 0 9705.14 86.11 503.56 0 9705.14 121.89 655.38 

Area of Parks in 250m Buffer (m2) 0 95209.9 10186.22 15159.82 0 95209.9 13803.77 18685.06 

Number of Restaurants in 250m Buffer 0 545 54.20 92.11 0 545 52.14 86.54 

Number of CitiBike stations in 250m Buffer 0 4.00 1.24 1.01 0.00 4.00 1.17 1.00 

Capacity of CitiBike stations in 250m Buffer 0 169.00 44.15 38.85 0.00 169.00 43.30 38.60 

Station Capacity 3.00 67.00 34.40 10.79 3.00 67.00 37.52 10.98 

Population Density (people per m2 ×1000)  0.01 67.20 24.90 14.69 0.01 67.20 23.77 13.96 

Job Density (jobs per m2 ×1000) 0 432.52 55.98 53.79 0 432.52 60.23 48.78 

Distance to CBD (m) 0 7728.00 2434.85 1376.65 0.00 7939.95 2763.52 1460.47 

Categorical Variables Percentage Percentage 

Weekends 21.5 46.93 

Transit Station in 250m Buffer of Origin 59.56 55.96 

Transit Station in 250m Buffer of Destination 58.06 55.89 

Female Members 22.7 - 
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Table 2 Summary of Models' Performance 

 Model Log-likelihood 

(LL) 

Number of 

Parameters 

Number of 

Observations 
BIC 

M
em

b
er

s MNL -28451.0 12 10000 57012.5 

MMNL -28421.2 15 10000 56980.6 

FMMNL (2 segments)  -28266.2 38 10000 56882.4 

FMMNL (3 segments)  -28132.6 54 10000 56762.5 

N
o
n

-

m
em

b
er

s 

MNL -29270.4 15 10000 58679.0 

MMNL -29231.4 19 10000 58637.7 

FMMNL (2 segments)  -28770.2 31 10000 57826.0 

FMMNL (3 segments)  -28589.8 45 10000 57594.1 
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Table 3 MNL and MMNL Estimation Results 

 MNL MMNL 

 Members Non-members Members Non-members 

Variables Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 

Destination Bicycle Infrastructure Attributes         
Station Capacity 0.188 16.62 0.224 18.63 0.182 15.10 0.214 17.40 

Standard Deviation - - - - 0.050 1.82 - - 

Number of Other Citibike Station in Buffer - - -0.232 -6.97 - - -0.234 -6.91 

Capacity of Other Citibike Station in Buffer - - 0.002 2.78 - - 0.003 2.90 

Length of Bicycle Facility in Buffer - - 0.074 6.93 - - 0.067 6.09 

Standard Deviation - -   - - 0.152 4.77 

Destination Built Environment Attributes         

Transit Station in Buffer - - -0.088 -3.68 - - -0.061 -2.48 

Area of Parks in Buffer -0.023 -1.81 0.233 26.22 -0.024 -1.88 0.225 23.08 

Standard Deviation - - - - - - 0.052 2.46 

Number of Restaurants in Buffer - - -0.038 -3.34 - - -0.073 -3.77 

Standard Deviation - - - - - - 0.167 5.01 

Elevation - - -0.054 -4.77 - - -0.121 -7.89 

Standard Deviation - - - - - - 0.323 12.81 

Distance to CBD -0.088 -5.59 - - -0.109 -6.40 - - 

Standard Deviation - - - - 0.139 3.55 - - 

Population Density 0.107 6.57 -0.114 -8.29 0.108 6.55 -0.114 -8.23 

Population Density * AM -0.241 -8.65 - - -0.244 -8.67 - - 

Population Density * PM -0.047 -1.92 0.065 2.83 -0.047 -1.92 0.065 2.78 

Job Density -0.093 -5.94 - - -0.097 -6.13 - - 

Job Density * AM 0.331 12.57 0.082 1.94 0.336 12.55 0.095 2.23 

Trip Attributes         

Distance < 750m -1.048 -23.81 -0.408 -8.83 -1.169 -23.79 -0.426 -9.04 

Distance (750m< &<4km) -0.870 -36.52 -0.450 -32.68 -0.946 -33.78 -0.459 -32.76 

Standard Deviation - - - - 0.254 11.08 - - 

Distance (750m< &<4km) *Temperature (*10-2 ◦C) 0.317 2.82 - - 0.317 2.73 - - 

Distance > 4km -3.875 -80.54 -2.991 -58.55 -3.982 -76.55 -3.040 -58.23 

Trip between Manhattan & Brooklyn - - -0.285 -6.45 - - -0.268 -6.01 
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Table 4 Segments Characteristics 

 Members Non-Members 

Mean Values of 

Segmentation Variables 
Segment 1 Segment 2 Segment 3 Segment 1 Segment 2 Segment 3 

Trips Share 39.42% 18.81% 41.78% 17.55% 42.80% 39.65% 

Female 0.12 0.23 0.33 - - - 

Age 40.58 29.16 39.53 - - - 

Temperature (°C) 14.66 17.22 17.55 20.48 19.39 19.72 

Relative Humidity (%) 57.47 51.88 57.28 54.00 54.31 54.51 

AM 0.30 0.00 0.24 0.04 0.09 0.04 

Midday 0.34 0.07 0.38 0.54 0.39 0.56 

PM 0.33 0.31 0.34 0.33 0.32 0.31 

Evening 0.03 0.50 0.03 0.07 0.16 0.07 

Night 0.01 0.12 0.01 0.02 0.04 0.02 

Weekend 0.13 0.25 0.28 0.55 0.44 0.47 

Distance (km) 2.00 1.91 2.03 2.45 2.27 2.28 

Duration (minute) 11.62 11.34 12.46 23.99 21.73 23.79 

Origin Attributes       

Population Density (×100) 2.34 2.97 2.88 2.12 2.75 2.14 

Job Density (×100) 7.23 6.37 6.03 5.62 6.46 6.29 

Area of Parks in Buffer (×100) 0.76 0.77 1 1.59 0.86 1.75 

Transit Station in Buffer 0.62 0.72 0.51 0.34 0.59 0.62 

Distance to CBD (km) 2.67 2.26 2.27 3.13 2.33 3.02 

Destination Attributes       

Population Density (×100) 2.5 3.04 2.71 2.31 2.49 2.29 

Job Density (×100) 7.09 5.67 6.4 5.58 6.23 6.00 

Area of Parks in Buffer (×100) 0.82 0.9 0.87 1.45 1.26 1.48 

Transit Station in Buffer 0.60 0.51 0.59 0.52 0.57 0.57 

Distance to CBD (km) 2.59 2.35 2.33 2.94 2.57 2.89 
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Table 5 Segmentation Component of FMMNL Models 

 

 

  

 

 

Members Model (Everyday bicyclist as base) Non-Members Model (Midday trips as base) 

Daily Commute Recreational Trips Weekend long Trips Casual short 

Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Constant 0.9898 3.329 4.3046 2.244 -0.9516 -4.569 1.1901 4.598 

Temporal and Weather 

Variables 
        

AM - - -25.7896 -2.710 - - - - 

Midday - - -21.0315 -2.821 - - -1.2306 -7.439 

PM - - -14.9275 -2.746 - - -0.7451 -4.252 

Weekend -0.9566 -4.830 - - 0.2772 2.806 - - 

Temperature -3.9635 -4.124 -13.0792 -2.317 1.8192 2.252 -1.8169 -1.960 

Origin Built Environment 

Attributes 
        

Transit Station in Buffer 0.2986 1.926 7.6789 2.715 -0.9368 -8.187 - - 

Population Density -0.2349 -3.184 2.0758 2.310 -0.1696 -2.790 0.3073 4.305 

Station Distance to CBD 0.3318 3.162 1.6478 2.034 - - -0.4512 -5.207 

Elevation 0.1400 2.142 - - -0.3891 -5.818 - - 

Area of Parks in Buffer -0.2012 -2.804 -1.6557 -2.078 - - -0.4179 -6.279 

User Attributes         

Age - - -9.0351 -2.792 - - - - 

Female -1.2716 -4.627 - - - - - - 
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Table 6 Destination Choice Component of FMMNL Models 

Destination Choice Component 

Members Model Non-Members Model 

Daily commute Recreational trips Everyday cyclists Weekend long trips Casual short trips Midday trips 

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 

Destination Bicycle 

Infrastructure Attributes 
            

Station Capacity 0.2271 7.991 - - 0.2124 7.102 0.5406 11.190 0.1506 5.647 0.1821 6.028 

Number of Other Citibike 

Station in Buffer 
0.2055 2.626 - - -0.3636 -4.127 - - - - -0.5433 -6.793 

Capacity of Other Citibike 

Station in Buffer 
-0.0059 -3.092 - - 0.0043 1.919 - - - - 0.0082 4.156 

Length of Bicycle Facility in 

Buffer 
- - - - - - 0.1980 3.860 - - 0.0886 3.366 

Destination Built Environment 

Attributes 
            

Transit Station in Buffer 0.1909 3.623 - - - - -1.2697 -9.451 - - 0.2900 4.640 

Area of Parks in Buffer -0.1288 -3.637 - - 0.0672 2.334 0.1166 2.686 0.0859 3.095 0.4170 17.534 

Number of Restaurants in Buffer - - - - - - -0.1013 -2.842 - - -0.1389 -3.447 

Elevation - - -0.0524 -1.724 -0.0833 -3.277 -1.2394 -13.465 0.0616 2.238 0.1220 4.108 

Distance to CBD - - - - -0.1988 -5.565 0.3247 3.119 -0.2126 -4.905 - - 

Population Density -0.1445 -4.562 0.2475 8.719 0.2144 5.981 -0.5294 -10.565 - - - - 

Population Density * AM - - - - -0.2772 -4.967 - - -0.2065 -3.393 - - 

Population Density * PM - - - - - - - - - - 0.0949 2.035 

Job Density - - -0.1739 -4.988 - - - - - - - - 

Job Density * AM 0.2588 5.487 - - 0.2619 4.878 - - - - - - 

Job Density * PM - - - - -0.1913 -3.567 - - - - - - 

Trip Attributes             

Distance < 750m -1.2162 -9.484 -1.1482 -10.408 -0.9408 -8.418 - - -0.4727 -3.668 -0.9241 -7.483 

Distance (750m< &<4km) -0.8861 -17.987 -1.0841 -15.805 -1.0224 -16.140 - - -0.3770 -10.688 -0.8954 -17.004 

Distance (750m< &<4km) 

*Temperature (*10-2 ◦C) 
1.4139 5.133 1.1675 3.857 - - - - - - - - 

Distance (750m< &<4km) 

*Female 
- - 0.2139 3.404 0.2240 3.808 - - - - - - 

Distance > 4km -5.2758 -14.649 -4.1769 -28.512 -2.7995 -21.564 -0.7352 -6.794 -1.8740 -13.334 -7.6876 -18.828 

Trip between Manhattan & 

Brooklyn 
- - -0.3619 -2.348 -1.2159 -9.260 -3.1396 -8.295 -0.9090 -6.743 1.9612 13.201 
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Table 7 Models Validation Results 

 FMMNL (3 segments) MNL MMNL 

 

Members’ 

Model 

Non-

members’ 

Model 

Members’ 

Model 

Non-

members’ 

Model 

Members’ 

Model 

Non-

members’ 

Model 

Predictive Log-Likelihood       

Overall -8494.0 -8535.4 -8543.9 -8705.1 -8547.0 -8712.3 

AM -1945.8 -594.2 -1953.1 -606.9 -1956.3 -607.9 

Midday -2522.8 -3916.6 -2539.7 -4004.0 -2538.7 -4009.3 

PM -2825.1 -2833.1 -2844.2 -2891.8 -2844.0 -2891.7 

Evening -999.9 -940.9 -1004.4 -951.2 -1005.5 -951.7 

Female -1951.6 -- -1959.3 -- -1960.2 -- 

Trip between Manhattan & 

Brooklyn 
-511.3 -929.8 -466.9 -989.1 -470.4 -986.8 

Distance < 750m -775.7 -702.5 -779.4 -702.5 -775.0 -705.6 

Distance (750m< &<4km) -6503.9 -6412.7 -6506.5 -6512.0 -6520.6 -6512.5 

Distance > 4km -1214.4 -1420.2 -1258.0 -1490.6 -1251.4 -1494.2 

       

Percentage of Correct Prediction 14.47 17.40 13.93 16.23 13.97 16.07 

Average Probability of Predicted 

Chosen Station 
0.0806 0.0846 0.0787 0.0764 0.0803 0.0763 

 


