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Abstract 

 

The study contributes to literature on bicycle safety by building on the traditional count regression 

models to investigate factors affecting bicycle crashes at the Traffic Analysis Zone (TAZ) level. 

TAZ is a traffic related geographic entity which is most frequently used as spatial unit for 

macroscopic crash risk analysis. In conventional count models, the impact of exogenous factors is 

restricted to be the same across the entire region. However, it is possible that the influence of 

exogenous factors might vary across different TAZs. To accommodate for the potential variation 

in the impact of exogenous factors we formulate latent segmentation based count models. 

Specifically, we formulate and estimate latent segmentation based Poisson (LP) and latent 

segmentation based Negative Binomial (LNB) models to study bicycle crash counts. In our latent 

segmentation approach, we allow for more than two segments and also consider a large set of 

variables in segmentation and segment specific models. The formulated models are estimated using 

bicycle-motor vehicle crash data from the Island of Montreal and City of Toronto for the years 

2006 through 2010. The TAZ level variables considered in our analysis include accessibility 

measures, exposure measures, sociodemographic characteristics, socioeconomic characteristics, 

road network characteristics and built environment. A policy analysis is also conducted to illustrate 

the applicability of the proposed model for planning purposes. This macro-level research would 

assist decision makers, transportation officials and community planners to make informed 

decisions to proactively improve bicycle safety – a prerequisite to promoting a culture of active 

transportation. 

 

Key words: bicycle crashes, population heterogeneity, latent segmentation Poisson model, latent 

segmentation Negative Binomial model 
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1. BACKGROUND  

 

Active forms of transportation such as walking and bicycling have the lowest carbon footprint on 

the environment and improve the physical health of pedestrians and bicyclists. With growing 

concern of worsening global climate change and increasing obesity among adults in developed 

countries, it is hardly surprising that transportation decision makers are proactively encouraging 

the adoption of active forms of transportation for short distance trips. For instance, bicycling, as a 

transport mode, is experiencing increased patronage and support in most Canadian cities where 

personal automobiles are the most common mode of transportation. In fact, between 1996 and 

2006, a 42% increase in the number of daily bike commuters was observed in Canada (Pucher et 

al., 2011). 

However, transportation safety concerns related to active transportation users form one of 

the biggest impediments to their adoption as a preferred alternative to private vehicle use for shorter 

trips. Earlier research reveals that the likelihood of being involved in a collision increases as the 

number of cyclists on the road increases (Wei and Lovegrove, 2013). Also, the risk of being injured 

in a collision while cycling could be about seven times higher than a motorist (Reynolds et al., 

2009). Thus, traffic crashes and the consequent injury and fatality remain a detriment for cycling, 

leading to low bicycle mode share, specifically in North American communities (Wei and 

Lovegrove, 2013). Any effort to reduce the social burden of these crashes and encourage people to 

use bicycle for their daily short trips would necessitate the implementation of policies that enhance 

safety for bicyclists. An important tool to identify the critical factors affecting occurrence of bicycle 

crashes is the application of planning level crash prediction models.  

 

1.1 Earlier Research  

 

Traffic crashes aggregated at a certain planning scale, for any given time interval, are non-negative 

integer valued events. Naturally, these integer counts are examined employing count regression 

approaches. The traditional Poisson regression and Negative Binomial (NB) models have been the 

workhorses in examining the crash count events in safety literature. A number of research efforts 

have examined transportation (vehicle, pedestrian and bicyclist) related crash frequency (see Lord 

and Mannering (2010) for a detailed review). These studies have been conducted for different 

modes  vehicle (automobiles and motorbikes), pedestrian and bicycle and for different scales - 

micro (such as intersection and segment) and macro-level (such as traffic analysis zone, county, 

census tract). It is beyond the scope of the paper to review all the research on transportation crash 

frequency (for example see Brüde and Larsson, 1993; Turner et al., 2006; Loo and Tsui, 2010; 

Carter and Council, 2007; Jung et al., 2014; Dong et al., 2014 for micro-level studies). In our paper, 

we focus on studies examining crashes at the planning/macro-level.  

A summary of earlier studies investigating crash frequency at a macro-level is presented in 

Table 1. The information provided in the table includes the methodological approach employed, 

the spatial aggregation level considered and the variable categories considered in the analysis from 

six variable categories  accessibility measures, exposure measures, sociodemographic 

characteristics, socioeconomic characteristics, road network characteristics and built environment. 

The following observations can be made from the table. First, the most prevalent spatial unit 

considered at the macro-level analysis is Traffic Analysis Zone (TAZ1). Second, NB model is the 

                                                           
1 TAZ is a traffic related geographic entity delineated by state and/or local transportation officials. The geographic unit 

is used for recording traffic-related data (for instance journey-to-work, place of work records) and are most widely 
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most frequently used statistical technique for examining crashes at the aggregate level. Third, very 

few studies (5 out of 33) explored bicycle crash frequency at the planning level. Fourth, none of 

the studies have employed latent segmentation based approach in examining crash frequency at 

macro-level. 

With respect to macro-level bicycle crash frequency, the overall findings from earlier 

research efforts are usually consistent. The most commonly identified variables that contribute to 

the increase in bicycle crash risk include: (1) accessibility measures such as transit accessibility 

and number of bus stops, (2) exposure measures such as households with no cars, population 

density and total bicycle commuters, (3) sociodemographic characteristics such as proportion of 

young population and African population, (4) socioeconomic characteristics such as low-income 

population and per capita expenditure on alcohol, (5) road network characteristics such as street 

connectivity, total number of intersections and total on-street bike lanes and (6) built environment 

characteristics such as neighborhood compactness, higher mix of land use and proximity to 

academic buildings. 

 

1.2 Current Study in Context 
 

The overview of earlier literature indicates that, in recent years, examining crash frequency at the 

macro-level has seen a revival of interest among safety researchers. However, there is paucity of 

research focusing on macro-level bicycle crashes. Therefore, it is important to investigate zonal 

level bicycle crashes to identify critical factors and propose implications to facilitate proactive 

safety-conscious planning. A critical component in the process of identifying the contributing risk 

factors is the application of appropriate econometric models. As indicated in Table 1, the most 

prevalent formulation to study macroscopic crash frequency is the NB model. NB model allows 

for overdispersion and thus provides a natural enhancement over the traditional Poisson model and 

is easy to estimate with a closed form structure to accommodate for unobserved heterogeneity. 

However, NB model (and Poisson model) typically restricts the impact of exogenous variables to 

be same across the entire population of crash events – population homogeneity assumption. But, 

the impact of control variables on bicycle crash frequency might vary across TAZs based on 

different attributes. Ignoring such heterogeneous impact of variables might result in incorrect 

coefficient estimates.  

To account for systematic heterogeneity, researchers have employed a clustering technique 

(Karlaftis et al., 1998). In this approach, target groups are divided in to different clusters based on 

a multivariate set of factors and separate models are estimated for each cluster. However, the 

approach requires allocating data records exclusively to a particular cluster, and does not consider 

the possible effects of unobserved factors that may moderate the impact of observed exogenous 

variables. Additionally, this approach might result in very few records in some clusters resulting 

in loss of estimation efficiency. An alternative approach to accommodate for population 

heterogeneity is to employ random parameter count models (Ukkusuri et al., 2011). However, in 

this approach the focus is on incorporating unobserved heterogeneity through the error term which 

necessitates extensive amount of simulation for model estimation while also not considering for 

observed heterogeneity. 

                                                           
used for conventional transportation planning. The size of a zone varies and the layout of the zonal system is usually 

defined based on the similarities in socioeconomic and/or land use conditions. TAZ is the most frequently used as 

spatial unit for macroscopic crash risk analysis (Abdel-Aty et al., 2013), and hence TAZ is considered as the aggregate 

unit of analysis in the current study context.   
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A possible work around to accommodate for population heterogeneity is the application of 

latent segmentation based approach (or sometimes also referred to as finite mixture model). In this 

approach TAZs are allocated probabilistically to different segments and a segment specific model 

is estimated for each segment. Such an endogenous segmentation scheme is appealing for many 

reasons: First, each segment is allowed to be identified with a multivariate set of exogenous 

variables, while also limiting the total number of segments to a number that is much lower than 

what would be implied by a full combinatorial scheme of the multivariate set of exogenous 

variables. Second, the probabilistic assignment to segments explicitly acknowledges the role 

played by unobserved factors in moderating the impact of observed exogenous variables. Finally, 

this approach is semiparametric and hence, there is no need to specify a distributional assumption 

for the coefficients as is required in random parameter models (Greene and Hensher, 2003; Yasmin 

et al., 2014). 

To be sure, the latent segmentation approach has been employed recently in safety literature 

for examining traffic crash count events at micro-level (Park et al., 2010; Park and Lord, 2009; Zou 

et al., 2014). However, the role of such population heterogeneity, in the context of macro-level 

crash count models has not been investigated in the existing literature. The microscopic models 

were developed with either a fixed weight parameter or segmentation model with a very small 

number of parameters (in the segmentation and segment specific models) were estimated citing 

model estimation complexity challenges. Further, earlier micro-level studies restricted the number 

of segments to two without any model selection exercise. The current study enhances the 

methodology from earlier finite mixture based count models in two ways: (1) we consider a large 

set of exogenous variables in the segmentation and segment specific models, and (2) we estimate 

more than two segments of latent segmentation and provide a clear framework for model selection2.  

In summary, the current study makes a threefold contribution to literature on crash 

frequency in general and bicycle crash safety in particular. First, the study formulates and estimates 

latent segmentation based count models that accommodates for population heterogeneity. The 

current paper is the first effort in safety literature for examining crash count events where a latent 

segmentation model that is completely generic is estimated. We allow for a flexible segment 

membership function and test for the presence of multiple segments in the model estimation. In the 

current study context, we demonstrated the application by employing data for bicycle crash count 

events of two urban regions. It is worthwhile to mention here that, such a generalized approach can 

also be implemented for examining crash count events for other road users, such as motor vehicles 

and pedestrians as well. Second, the count models are estimated at the TAZ level employing a 

comprehensive set of exogenous variables by using data from two different cities of Canada: 

Montreal and Toronto.  Examining bicycle crash count data and evaluation of validation across two 

datasets would allow us to illustrate the importance of incorporating population heterogeneity in 

identifying critical factors contributing to macro-level bicycle crash count events for different 

urban regions. Finally, based on the model results we identify important exogenous variables that 

influence bicycle crash counts. 

 The rest of the paper is organized as follows. Section 2 provides details of the econometric 

model frameworks used in the analysis. In Section 3, the study areas and data are described, 

respectively. The model estimation results are presented in Section 4. Elasticity effects, spatial 

representation and potential policy implications are discussed in Section 5. Section 6 concludes the 

paper. 

                                                           
2 The framework proposed in our analysis has been employed for discrete outcome - ordered or unordered - analysis 

earlier (see Bhat, 1997; Eluru et al., 2012, Yasmin et al., 2014). 
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2. ECONOMETRIC FRAMEWORK 

 

In the latent segmentation based approach, bicycle crash count records for TAZs are 

probabilistically assigned to 𝑠 relatively homogenous (but latent to the analyst) segments based on 

various explanatory variables. Within each segment, the effects of exogenous variables on the 

number of crashes occurring across the TAZ over a given period of time are fixed in the segment. 

Hence, the latent segmentation based model consists of two components: (1) assignment 

component and (2) segment specific count model component. The general structure for all latent 

segmentation based count models involves specifying these two components. For the ease of 

presentation, we describe the general mathematical structure first and then identify the different 

modeling structures for various models in the subsequent discussion. 

Let us assume that 𝑠 be the index for segments (𝑠 = 1, 2,3, … , 𝑆), 𝑖 be the index for TAZ 

(𝑖 = 1,2,3, … , 𝑁) and 𝑦𝑖 be the index for crashes occurring over a period of time in a TAZ 𝑖. The 

assignments of TAZ to different segments are modeled as a function of a column vector of 

exogenous variable by using the random utility based multinomial logit model (see Wedel et al., 

1993; Bago d'Uva, 2006; Eluru et al., 2012; Yasmin et al., 2014 for similar formulation) as: 

𝑃𝑖𝑠 =
𝑒𝑥𝑝[𝜷𝑠𝒙𝑠]

∑ 𝑒𝑥𝑝[𝜷𝑠𝒙𝑠]𝑆
𝑠=1

 (1)  

where, 𝑃𝑖𝑠 is the probability of TAZ 𝑖 to be assigned to segment 𝑠, 𝒙𝑠 is a vector of attributes and 

𝜷𝑠 is a conformable parameter vector to be estimated. The assignment process is the same for all 

latent class models. 

Within any latent segmentation approach, the unconditional probability of 𝑦𝑖 can be given 

as: 

𝑃𝑖(𝑦𝑖) = ∑(𝑃𝑖(𝑦𝑖|𝑠)) × (𝑃𝑖𝑠)

𝑆

𝑠=1

 (2)  

where 𝑃𝑖(𝑦𝑖|𝑠) corresponds to the probability of count 𝑦𝑖 in segment s. The exact probability 

function for 𝑃𝑖(𝑦𝑖|𝑠) depends on the count model chosen for the segment specific model. In our 

research effort, we have considered Poisson and NB approach in specifying 𝑃𝑖(𝑦𝑖|𝑠). 

The probability distribution for Poisson is given by: 

𝑃𝑖𝑠(𝑦𝑖|𝑠) =
𝑒−𝜇𝑖𝑠(𝜇𝑖𝑠)𝑦𝑖

𝑦𝑖!
, 𝜇𝑖𝑠 > 0 (3)  

where 𝜇𝑖𝑠 is the expected number of crashes occurring in TAZ 𝑖 over a given period of time in 

segment 𝑠. We can express 𝜇𝑖𝑠 as a function of explanatory variable (𝒛𝑖) by using a log-link 

function as: 𝜇𝑖𝑠 = 𝐸(𝑦𝑖|𝒛𝑖) = 𝑒𝑥𝑝(𝜹𝑠𝒛𝑖), where 𝜹𝑠 is a vector of parameters to be estimated 

specific to segment 𝑠. However, one of the most restrictive assumptions of Poisson regression, 

often being violated, is that the conditional mean is equal to the conditional variance of the 

dependent variable.  
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The variance assumption of Poisson regression is relaxed in NB by adding a Gamma 

distributed disturbance term to Poisson distributed count data (Jang, 2005). Given the above setup, 

the NB probability expression for 𝑦𝑖 conditional on belonging to segment 𝑠 can be written as: 

𝑃𝑖𝑠(𝑦𝑖|𝑠) =  
Γ(𝑦𝑖+𝛼𝑠

−1)

Γ(𝑦𝑖 + 1)Γ(𝛼𝑠
−1)

(
1

1 + 𝛼𝑠𝜇𝑖𝑠
)

1
𝛼𝑠

(1 −
1

1 + 𝛼𝑠𝜇𝑖𝑠
)

𝑦𝑖

 (4)  

where, Γ(∙) is the Gamma function and 𝛼𝑠 is the NB dispersion parameter specific to segment 𝑠.  

Finally, the log-likelihood function for the latent segmentation based count model can be 

written as: 

𝐿𝐿 = ∑ 𝑙𝑜𝑔 (∑(𝑃𝑖(𝑦𝑖|𝑠)) × (𝑃𝑖𝑠)

𝑆

𝑠=1

)

𝑁

𝑖=1

 (5)  

Substitution of 𝑃𝑖(𝑦𝑖|𝑠) by Equations 3 and 4 into Equation 5 results in latent segmentation 

based Poisson (LP) and latent segmentation based NB (LNB) models, respectively. The parameters 

to be estimated in the model of Equation 5 are: 𝜷𝑠 and 𝑆 for each latent segmentation based model 

along with 𝛿𝑠 for LP model and 𝛼𝑠 and 𝛿𝑖𝑠 for LNB models. The parameters are estimated using 

maximum likelihood approaches. The model estimation is achieved through the log-likelihood 

functions programmed in Gauss. In the application of these models, determining the appropriate 

number of segments is a critical issue with respect to interpretation and inferences. Therefore, we 

estimate these models with increasing numbers of segments (𝑠 = 2, 3 , 4, … . , 𝑆) until an addition 

of a segment does not add value to the model in terms of data fit and model interpretation.  

It is important to mention here that the estimation of latent segmentation based models 

using quasi-Newton routines can be computationally unstable (see Bhat, 1997 for more discussion). 

There may exist multiple local optimal solutions in such models with non-linear in parameters’ 

specification. Therefore, the estimation of such models requires employing good starting values 

for obtaining the global optimum in maximum likelihood estimation. To deal with the issue of local 

optima, we have estimated latent segmentation based models with multiple starting parameters and 

chose the model with best likelihood. The estimation results were stable with different starting 

values (Sobhani et al., 2013 for related discussion on latent segmentation model estimation).  

 

3. DATA 

 

3.1 Study Areas 

 

Our study areas include: (1) the Island of Montreal associated with 837 TAZs with a population of 

about 1.8 million and covers an area of approximately 499 km2 and (2) the City of Toronto 

associated with 672 TAZs with a population of about 2.6 million and covers an area of 

approximately 630 km2 (Statistics Canada, 2011). Montreal is an old city and is characterized by a 

heterogeneous built environment with a dense old city near the original port. The transportation 

system of the city is characterized by a highly developed highway system, as well as transit system 

that includes a heavy-rail metro, commuter trains and an extensive bus network. Montreal has more 
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than 430 km of bicycle facilities where the mode share for bicycle mode is 2.4% (Pucher et al., 

2011). On the other hand, Toronto has one of the most extensive public transit systems in North 

America and the transit network includes bus, subway and streetcar system. The city has 1.7% of 

mode share for cycling with approximately 11 km of bike lanes/paths per 100,000 population 

(Pucher et al., 2011). Both these cities are home to a thriving bike culture and are investing 

substantially in enhancing existing bicycle infrastructure and building additional bicycling 

infrastructure to encourage more bicycle usage (Pucher, 2005). Therefore, given this change in 

encouraging more people to travel by bicycle, it is important to identify the factors contributing to 

bicycle-motor vehicle crashes at the planning level to make cycling safer and a more attractive 

mode of transportation.    

 

3.2 Data Description 

 

This study is focused on bicycle-motor vehicle crash data at the zonal level. Data for our empirical 

analysis are sourced from the two most populous cities in Canada, Montreal and Toronto, for the 

year 2006 through 2010. The datasets for Montreal and Toronto are downloaded from the 

newspaper data archives of Montreal Gazette (http://www.montrealgazette.com/) and The Globe 

and Mail (http://www.theglobeandmail.com/), respectively. The datasets were obtained by the 

newspapers from the official crash databases maintained by the Societé d'assurance automobile du 

Québec (SAAQ) for Montreal and the City of Toronto’s Traffic Safety Unit for Toronto. The 

geocoded crash data are aggregated at the level of TAZ for each year for both cities. For the five 

years, Montreal has a record of 4,185 bicycle crashes with an average of 0.73 crashes (ranging 

from 0 to 28 crashes) per year per TAZ. On the other hand, the city of Toronto has an average of 

1.63 crashes (ranging from 0 to 23) per year per TAZ with a total record of 5,475 bicycle crashes 

for the five years period.   

In addition to the crash databases, the explanatory attributes considered in the empirical 

study are also aggregated at the TAZ level. For the empirical analysis, we selected variables that 

can be grouped into six broad categories3: accessibility measures, exposure measures, 

sociodemographic characteristics, socioeconomic characteristics, road network characteristics and 

built environment. For both cities, these data are extracted from the Geographic information system 

(GIS) data archive of Transportation Research at McGill (TRAM) of McGill University, Canada 

(http://tram.mcgill.ca/)4.  

For Montreal, accessibility measures considered include number of bus stops and bus route 

length; exposure measures considered include transit commuters, walk commuters, other mode 

commuters, male bike commuters, female bike commuters, number of vehicles and length of bike 

lanes; sociodemographic characteristics considered include dependence (defined as proportion of 

                                                           
3 The explanatory variables are considered by reviewing previous macro-level bicycle crash count studies. A list of the 

variables identified from those studies are as follows: total population, number of households, length of different 

(major, arterial, local) roadways, average vehicle age, population of different age groups, vehicle miles travelled, 

number of commuters by different modes, number of population from different races, households without vehicles, 

truck percentages, number of signals, number of lanes, urban /rural zone indicator, employed/unemployed residents, 

median households income, number of households with retired persons, park density, bus route density, sidewalk 

density, sidewalk coverage, number of recent immigrants, hospital beds and female lone parent families. 
4 Exposure measures, sociodemographic characteristics, socioeconomic characteristics data are mainly compiled by 

TRAM from 2011 National Household Survey of Canada. Accessibility measures and land use including road network 

data are generally compiled from 2010 Société de transport de Montréal (STM) for Montreal, 2010 Toronto Transit 

Commission (TTC) for Toronto, and 2011 general land use file for both cities available from TRAM. 

http://www.montrealgazette.com/
http://www.theglobeandmail.com/
http://tram.mcgill.ca/
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youth and elderly relative to working adults), non-permanent residents, African population, Asian 

population, European population and population with diploma degree; socioeconomic 

characteristics considered include population without income, commuting time, median 

commuting time and median TAZ income; road network characteristics considered include number 

of dead-ends, number of one-way link, number of intersections and length of highway; and finally 

built environment considered include number of bars, lot coverage, number of schools, distance 

from central business district (CBD), land use mix5 and presence of university. For Toronto. 

accessibility measures considered include number of bus stops and number of metro stops; 

exposure measures considered include number of private cars, household density, length of bike 

route and total TAZ area; sociodemographic characteristics considered include population less than 

25 years old; socioeconomic characteristics considered include number of employed person and 

average TAZ income; road network characteristics considered include number of intersections and 

length of local road; and finally built environment considered include distance from CBD and land 

use mix. 

Table 2 offers a summary of the sample characteristics of the exogenous factors in the 

estimation dataset. To conserve on space, we present the sample characteristics only for the 

Montreal Island. Table 2 represents the definition of variables considered for final model estimation 

along with the zonal minimum, maximum and average values of continuous variables and 

percentages of indicator variables for Montreal. The final specification of the model development 

was based on removing the statistically insignificant variables in a systematic process based on 

statistical significance (90% significance level). The specification process was also guided by prior 

research and parsimony considerations. In estimating the models, several functional forms and 

variable specifications are explored. The functional form that provided the best result is used for 

the final model specifications and, in Table 2, the variable definitions are presented based on these 

final functional form of variables. 

 

4. EMPIRICAL ANALYSIS 

 

4.1 Model Selection 

 

The empirical analysis of bicycle crash frequency involves the estimation of four models: (1) 

Poisson, (2) Negative Binomial (NB), (3) Latent Segmentation based Poisson (LP) and, (4) Latent 

Segmentation based Negative Binomial (LNB) model. Prior to discussing the estimation results, 

we compare the performance of these models in this section. The model comparisons are 

undertaken in two stages. First, we determine the appropriate number of latent segments for the 

estimated latent segmentation based count models. Second, we compare the unsegmented models 

with the more general latent segmentation based count models in order to assess the importance of 

accounting for heterogeneity in estimating zonal level crash frequency models.  

 

                                                           

5 Land use mix is defined as: [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where k is the category of land-use, 𝑝𝑘 is the proportion of the 

developed land area devoted to a specific land-use k, N  is the number of land-use categories in a TAZ. In our study, 

five land use types were considered including residential, commercial, industrial, government and institutional, and 

park facilities. Institutional land use refers to land uses that cater to community’s social and educational needs (schools, 

town hall, police station) while park facilities refer to land used for recreational or entertainment purposes. The value 

of this index ranges from zero to one - zero (no mix) corresponds to a homogenous area characterized by single land 

use type and one to a perfectly heterogeneous mix). 
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Determining the Appropriate Number of Latent Segments 

 

The estimation of the latent segmentation based model involves probabilistic assignment of TAZs 

into a given number of segments (𝑆) based on the available exogenous variables. Determining the 

appropriate number of segments in estimating these models is a critical issue with respect to 

interpretation and inferences. Among different traditionally used information criterion (IC) 

(Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), adjusted BIC), BIC 

imposes substantially higher penalty on over-fitting and is the most commonly used IC for 

identifying the appropriate number of classes for latent segmentation based analysis (Nylund et al., 

2007). Therefore, we estimated LP and LNB models with increasing numbers of segments (𝑆 =

2, 3, 4, . . ) and computed the BIC values for each of these models. The BIC for a given empirical 

model is equal to: 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (6)  

where 𝐿𝐿 is the log likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 is the 

number of observations. The model with the lower BIC is the preferred model.  

The calculated BIC values for both the island of Montreal and the city of Toronto are 

presented in the first row panel of Table 3 along with the log-likelihood at convergence for all the 

estimated latent segmentation based models. For Montreal, from Table 3 we can see that LP III has 

a lower BIC than LP II model. However, the expected mean crash (sample share) of one of the 

segments of LP III model is 121.01 (3.82%) whereas the observed mean crash of the sample is 

0.73. Thus, we can recognize that LP III model does not satisfy the behavioral interpretation in 

terms of resulting expected number of bicycle-motor vehicle crashes for Montreal. Hence, we only 

consider the LP II model as plausible. Overall, LNB II has a lower BIC, hence we have selected 

LNB with two segments as the preferred model among all estimated latent segmentation based 

models for Montreal. For Toronto, after extensively testing for four segments in LP and LNB 

approaches we found that the models collapse to the three segment LP and LNB models, 

respectively. Among all estimated latent segmentation based models LNB III model provides 

superior fit based on BIC measures. Thus, we selected LNB with three segments as the preferred 

model for Toronto. 

 

Comparing the Unsegmented and Segmented Models 

 

To compare the performance of estimated Poisson, NB and the best fitted LP and LNB models, 

BIC measure is used. The BIC values are computed as shown in Equation 6. The computed BIC 

values are presented in the second row panel of Table 3. The comparison exercise clearly highlights 

the superiority of the LNB model in terms of data fit compared to all the other models for Montreal 

(LNB II) as well as for Toronto (LNB III). This comparison exercise suggests that bicycle crash 

count events for Montreal and Toronto are better characterized by the NB model with heterogeneity 

across different TAZs. 

 

4.2 Estimation Results 
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In explaining the effect of exogenous variables, we will restrict ourselves to the discussion of the 

LNB II model for Montreal6. For simplicity, we will refer LNB II model as LNB model in the 

following sections. Table 5 presents the estimation results of the LNB model. Following Bhat 

(1997), we first present an intuitive discussion of the segmentation component followed by the 

discussion of segmentation component parameters and crash frequency component parameters 

specific to segment 1 and 2 of LNB model for Montreal. 

 

Characterizing the Segments in the LNB Model 

 

To delve into the segmentation characteristics, the model estimates are used to generate information 

on: 1) sample share across the two segments, and 2) expected mean of crash count events within 

each segment. These estimates are presented in the first row panel of Table 4. From the estimates, 

it is evident that the probability of TAZs being assigned to segment 2 is substantially higher than 

the probability of being assigned to segment 1 (0.61 versus 0.39). Further, the expected number of 

bicycle-motor vehicle crash events conditional on their belonging to a particular segment offer 

contrasting results indicating that the two segments exhibit distinct crash risk profiles in the current 

research context. From Table 4, it is clear that expected mean of crash count events for TAZs 

assigned to segment 1 is much higher than the observed sample mean (1.24 versus 0.73) while 

mean of crash count events for TAZs assigned to segment 2 is lower than the observed sample 

mean (0.41 versus 0.73). Thus, we may label segment 1 as the “high risk segment” and segment 2 

as the “low risk segment”. 

The latent segmentation component determines the overall prevalence of each segment, as 

well as the probability of a TAZ being assigned to one of the two latent segments based on 

explanatory variables. In our empirical analysis, the explanatory variables that affect the allocation 

of TAZs to segments include length of bike lane, length of highway, distance from CBD, land use 

mix and number of intersections. Further, to illustrate the characteristics of each segment, we 

compute the mean values of variables in the segmentation components (see Bhat (1997) for details 

on computing these means). The results are presented in the second row panel of Table 4 along 

with the overall sample shares of these variables. The differences in the mean values of the 

segmentation variables indicate that the variables representing number of intersections and distance 

from CBD and kilometers of designated bike lane offer the most substantial differences across the 

two segments. Based on these estimates (means and differences in the mean values), we can argue 

that zones within segment 1 are more likely to be characterized by higher number of intersections 

near urban core with lower bike lane facility length, while segment 2 is more likely to consist of 

zones away from urban core with fewer intersections and more designated bike lanes. The 

characteristics of these segment specific variables are presented in the following section. 

 

Segment Membership Component 

 

The results in Table 5 provide the effects of these control variables, using the high risk segment 

(segment 1) as the base segment. Thus, a positive (negative) sign for a variable in the segmentation 

component indicates that TAZs with the variable characteristics are more (less) likely to be 

assigned to the low risk segment relative to the high risk segment. The positive sign on the constant 

                                                           
6 The results for Toronto are presented in the Appendix (Table A and B). Specifically, Appendix A has details of the 

segment membership for the Toronto region while Appendix B provides model estimation results for the Toronto 

region.  
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term does not have any substantive interpretation, and simply reflects the larger size of the low risk 

segment compared to the high risk segment. 

From the estimation results of segment membership components, we can observe that TAZs 

with more kilometers of designated bike lane length are more likely to be assigned to low risk 

segment. The result associated with highway length reflects that an increase in total kilometer 

length in highway increases the likelihood of assigning TAZs to lower risk segment.  

The possibility of being allocated to low risk segment increases with increasing distance 

from CBD to the TAZ. The TAZs with higher land use mix are less likely to be assigned to the low 

risk segment. The result while seeming counter-intuitive is also a reflection of increased bicycling 

exposure. An increase in total number of intersections in a TAZ decreases the likelihood of 

assigning the TAZ to the lower risk segment.  

 

Crash Risk Component: High Risk Segment (Segment 1) 

 

The bicycle crash risk component within the high risk segment (segment 1) is discussed in this 

section by variable groups. A positive (negative) sign for a variable in the crash count component 

of Table 5 indicates that an increase in the variable is likely to result in more (less) bicycle-motor 

vehicle crashes. 

 

Accessibility measures: With respect to the accessibility measures, none of the variables are found 

to affect bicycle crash risk in the high risk segment.  

 

Exposure measures: In the high risk segment, the results for the number of commuters based on 

different commute modes reveal that TAZs with higher number of transit and walk commuters, 

proxies for bicycle activities, increase the likelihood of bicycle-motor vehicle collisions. The result 

associated with other mode (taxi, motorcycle, paratransit) commuters reflects lower probability of 

bicycle crash risk with higher number of other mode commuters. As found in previous studies (Kim 

et al., 2010), our study also found that more vehicles within a TAZ leads to higher probability of 

bicycle crashes. The reader would note that if more detailed information on destination of the 

commuter is available it will allow us to enhance the model results.  

 

Sociodemographic characteristics: In terms of sociodemographic characteristics, dependence 

variable (defined as proportion of youth and elderly relative to working adults) reveals a lower 

probability of bicycle-motor vehicle crash risk for higher values of the variable. Increased number 

of African population in zones are positively associated with increased number of bicycle crashes. 

The estimation results also indicate that the TAZ with greater number of European people are likely 

to experience less bicycle crashes.   

 

Socioeconomic characteristics: The only socioeconomic characteristic influencing bicycle crash 

risk for the high risk segment is the zonal level median income. Crashes are positively associated 

with medium zonal median income relative to zone of low and high median income.  

 

Road network characteristics: For segment 1, none of the variables within road network 

characteristics are found to significantly influence bicycle crash risk in the current study context. 

 

Built environment: The result associated with lot coverage, a proxy for neighborhood compactness, 

reflects that an increase in lot coverage increases the likelihood of bicycle crash risk. We also found 
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that presence of university has a positive correlation with bicycle crash risk. Surprisingly, crashes 

are negatively associated with higher number of schools in a zone. 

 

Crash Risk Component: Low Risk Segment (Segment 2) 

 

The crash risk component within the low risk segment (segment two) is discussed in this section. 

The LNB model corresponding to low risk segment provides variable impacts that are significantly 

different, in magnitude as well as in sign (for a few variables), from the impacts observed for the 

control variables in high risk segment.  

 

Accessibility measures:  Société de transport de Montréal (STM) bus stops and STM bus route 

length are two of the accessibility measures that significantly influence bicycle crash risk for the 

low risk segment. An increase in the number of STM bus stops increases the likelihood of bicycle-

motor vehicle crashes at the TAZ level. Our analysis also shows that TAZs with more STM bus 

routes are likely to be positively correlated with higher bicycle crash risk.  

 

Exposure measures: In segment two, increased presence of transit and walk commuters are 

associated with higher bicycle crash risk as in segment one but the magnitude of the impact is more 

pronounced in the second segment. As expected, bicycle crash risk is also found to be higher for 

the TAZs with more male and female cyclist commuters. However, within the two cyclist 

commuter categories, the male category has a larger impact relative to female cyclist category. 

 

Sociodemographic characteristics: In terms of sociodemographic characteristics, the estimation 

results indicate that the TAZs with higher number of Asians are likely to experience lower number 

of bicycle crashes while zones with higher number of non-permanent residents are likely to 

experience more bicycle crashes. Our study also shows that more people with diploma degree 

within a TAZ leads to lower probability of bicycle crashes. 

 

Socioeconomic characteristics: Several socioeconomic characteristics considered are found to be 

significant determinants of bicycle-motor vehicle crash risk. For the low risk segment, increased 

bicycle-motor vehicle collision is found to be associated with greater number of population without 

income at the zonal level. As in segment one, medium level median zonal income in segment two 

(with lower impact) is also positively correlated with bicycle crash risk relative to low and high 

level median income.  

The impact of median travel time to work is also investigated. Median commuting time less 

than 11 minutes is likely to result in a lower probability of bicycle-motor vehicle crash risk 

compared to zones with median commuting time ≥ 11 minutes. Higher number of commuters 

commuting between 7:00 am - 9:00 am and after 9:00 am are associated with lower bicycle crash 

risk. 

 

Road network characteristics: With respect to road network characteristics, the model estimation 

result indicates an expected negative correlation of more dead-ends with bicycle-motor vehicle 

crashes (see Kim et al., 2010 for similar result). An increase in total number of one-way links in a 

TAZ increases the likelihood of bicycle crash risk.  

 

Built environment: With regards to built environment, the results reveal that bicycle crashes are 

positively associated with higher number of bars in the neighborhood. In segment 2, presence of 
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university indicator variable has negative impact on bicycle crash risk. Further, the results of the 

LNB reveal that the presence of more schools in a TAZ is positively associated with bicycle crash 

risk. The effects of both the presence of university and number of schools variables are strikingly 

different in the low risk segment compared to the impacts of these variables in the high risk 

segment. The different impacts in the two segments for these variables highlight how the same 

variable can have distinct influence on crash risk based on the segment to which the zone is 

allocated. 

 

4.3 Predictive Performance Evaluation 

 

In an effort to assess the predictive performance of the estimated models, computation of several 

in-sample goodness-of-fit measures are also carried out. In doing so, performance of LNB model 

is compared with the predictive performance of NB model for verifying the improvement of 

incorporating population heterogeneity in estimating macro-level bicycle-motor vehicle crash 

count models. To evaluate the in-sample predictive performance of NB and LNB models, we 

employ three different fit measures: mean prediction bias (MPB), mean absolute deviation (MAD) 

and mean squared prediction error (MSPE). MPB represents the magnitude and direction of 

average bias in model prediction. The model with the lower MPB provides better prediction of the 

observed data and is computed as: 

𝑀𝑃𝐵 =  
∑ (�̂�

𝑖
− 𝑦

𝑖
)𝑛

𝑖=1

𝑛
  (7)  

where, �̂�𝑖 and 𝑦𝑖 are the predicted and observed, number of crashes occurring over a period of time 

in a TAZ 𝑖 (𝑖 be the index for TAZ (𝑖 = 1,2,3, … , 𝑁)) and 𝑛 is the number of TAZs, respectively. 

On the other hand, MAD describes average misprediction of the estimated models. The model with 

lower MAD value closer to zero provides better average predictions of observed data. MAD is 

defined as: 

𝑀𝐴𝐷 =  
∑ |�̂�

𝑖
− 𝑦

𝑖
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𝑖=1

𝑛
  (8)  

Finally, MSPE quantifies the error associated with model predictions and is defined as: 

𝑀𝑆𝑃𝐸 =  
∑ (�̂�

𝑖
− 𝑦

𝑖
)

2𝑛
𝑖=1

𝑛
  (9)  

The smaller the MSPE, the better the model predicts the observed data.  

Table 6 presents the values for the three measures for NB and LNB models for Montreal 

and Toronto. The resulting fit measures for comparing the predictive performance clearly indicate 

that LNB model offers superior fit compared to NB model for Montreal as well as for Toronto. 

These prediction results further confirm the benefit of accommodating population heterogeneity in 

modeling bicycle crash counts at a TAZ level. 
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5. POLICY ANALYSIS 

 

5.1 Elasticity Effects 

 

The parameter effects of exogenous variables in Table 5 do not directly provide the magnitude of 

the effects on zonal level bicycle crash counts. For this purpose, we compute aggregate level 

“elasticity effects” of exogenous variables having positive impacts in either of the segments of the 

estimated LNB model for the Island of Montreal. We investigate the effect as the percentage change 

in the expected total zonal bicycle crash counts per year due to the change in exogenous variable 

for the overall sample as well as for each segment separately to emphasize policy repercussions 

based on most critical contributory factors. The computed elasticities are presented in Table 7 (see 

Eluru and Bhat (2007) for a discussion on the methodology for computing elasticities). The 

corresponding segment level elasticities (column 2 and 3 of Table 7) represent the aggregate 

percentage change of each segment contributing to overall percentage change in bicycle-motor 

vehicle crash counts at zonal level. Further, the overall sample elasticity (column 4 of Table 7) are 

calculated as the summation of segment level elasticities. In calculating the expected percentage 

change of crash counts, we increase the value of continuous variable by 10% for each TAZ. The 

numbers in the Table 7 may be interpreted as the percentage change in the expected total zonal 

bicycle crash counts per year due to the change in exogenous variable. For instance, the elasticity 

effects for Transit commuters for In-Sample data indicates that, the expected mean crashes will 

increase by 34.819% with an increase in 10% of transit commuters. 

The following observations can be made based on the elasticity effects presented in Table 

7. First, the most significant variable in terms of increase in the expected number of bicycle-motor 

vehicle crash counts include: presence of university, transit commuters, medium median TAZ 

income, number of vehicles and walk commuters. Second, the results in Table 7 indicate that there 

are considerable differences in the elasticity effects across two segments, which illustrate the 

importance of allowing for population heterogeneity in examining aggregate level bicycle-motor 

vehicle crash counts. Third, it is interesting to note that TAZs belonging to segment 1 have higher 

elasticities for variables related to presence of university, number of vehicles and medium median 

TAZ income. On the other hand, TAZs belonging to segment 2 have higher elasticities for variables 

such as transit commuters, population without income and STM bus stops. Finally, the elasticity 

analysis assists in providing a clear picture of attribute impacts on zonal level bicycle crash counts. 

The elasticity analysis conducted provides an illustration on how the proposed model can be 

applied to determine the critical factors contributing to increase in bicycle crash counts. 

 

5.2 Spatial Distribution 

 

The model findings have important implications in terms of countermeasures for zonal level 

bicycle safety planning. Specifically, the findings can be used to identify targeted countermeasures 

for the TAZs with greater number of bicycle crashes. To illustrate the spatial distribution of bicycle-

motor vehicle crash frequency, we present the predicted per year crash counts across different 

TAZs from LNB model for Montreal in Figure 1. From the spatial crash distribution we can see 

that bicycle-motor vehicle crashes are dispersed throughout the island with evidence of clustering 

for high crash zones. Also we can see that risk of getting involved in bicycle-motor vehicle crashes 

is higher in most of the zones near CBD. This spatial illustration can easily be used to prioritize 

TAZs based on which the safety treatment can be implemented for the most significant contributory 

factors (as presented in Table 7) in enhancing bicycle safety features of these high crash risk zones. 
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The calculated predictions have also important implications in developing proactive safety-

conscious planning tools for improving overall bicycle safety at zonal level. For instance, proactive 

safety planning decision tools can be identified to address most important contributory factors of 

bicycle-motor vehicle crash counts based on allocation of TAZs to different segments. The spatial 

distribution of TAZs to segment 1 (high risk) for LNB model is presented in Figure 2. This map 

can easily be used to identify TAZ specific proactive safety management strategies reflecting the 

allocation of zones to different segments. The development of such spatial profiles will allow 

planners to identify high risk zones for screening and treatment purposes. 

 

6. CONCLUSIONS 

 

This paper formulates and estimates econometric models by building on the traditional count 

regression models to investigate factors affecting bicycling crashes at the Traffic Analysis Zone 

(TAZ) level for two Canadian cities – Montreal and Toronto. To accommodate for the potential 

variation in the impact of exogenous factors we formulated latent segmentation based count 

models. The entire set of alternative modeling approaches considered for this investigation include: 

Poisson, Negative Binomial (NB), Latent Segmentation based Poisson (LP) and Latent 

Segmentation based Negative Binomial (LNB) model. For the empirical analysis we selected 

bicycle-motor vehicle crash datasets from the Island of Montreal and from the City of Toronto for 

the years 2006 through 2010. The models were estimated using a comprehensive set of exogenous 

variables - accessibility measures, exposure measures, sociodemographic characteristics, 

socioeconomic characteristics, road network characteristics and built environment. The 

comparison of the estimated latent segmentation based models, based on information criterion 

metrics, highlighted the superiority of the LNB model with two segments for Montreal and LNB 

model with three segments for Toronto in terms of data fit compared to the other estimated models. 

According to our results, the impacts of exogenous variables among different segments were 

different (for some variables) in magnitude as well as in sign for both cities. 

In an effort to further assess the predictive performance of the estimated models, 

computation of several in-sample goodness-of-fit measures were also carried out. We employed 

three different fit measures: mean prediction bias (MPB), mean absolute deviation (MAD) and 

mean squared prediction error (MSPE). The resulting fit measures for comparing the predictive 

performance of estimated models clearly indicated that LNB offer superior fit compared to NB 

model for Montreal and Toronto. These prediction results further confirmed the benefit of 

accommodating population heterogeneity in modeling bicycle crash counts at a TAZ level. The 

model estimates were also augmented by conducting policy analysis including elasticity analysis 

along with a spatial representation of model outcomes for the overall sample as well as for each 

segment separately to emphasize policy repercussions based on most critical contributory factors. 

The policy analysis conducted provided an illustration on how the proposed model can be applied 

to determine the critical factors contributing to increase in bicycle crash counts. 

The variable effects obtained from our models have important implications in terms of 

enforcement, engineering and educational strategies. In terms of engineering measures, bicycle 

facilities that separate cyclists from motor vehicle and increase visibility of cyclists to motorists 

(for instance: bike box at intersections, special bike turn lanes, removable barrier between bicycle 

and motor vehicle flows or reallocating space from motor vehicle to bicycles) should be provided 

in the vicinity of universities. Moreover, traffic calming measures have potential to reduce bicycle-

motor vehicle collisions both in transit- and auto-oriented neighborhoods. With respect to 

education, our results endorse public awareness efforts and education campaigns specifically for 
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economically deprived areas. Rigorous traffic education for safe cycling are also needed for both 

non-motorists and motorists of zones with medium median TAZ income and TAZs with more 

transit and walk commuters. Besides, stricter enforcement of traffic regulations for motorists and 

non-motorists near universities are needed for cyclists’ safety in these areas.  

From our analysis, it is evident that analysts should explore the estimation of latent 

segmentation models for crash frequency analysis. To be sure, the study is not without limitations. 

In our research effort, we explored factors contributing to bicycle-motor vehicle crash frequency 

at zonal level. However, in our analysis, we have not considered spatial correlation among adjacent 

zones in examining the critical factors. It will be an interesting exercise to model the impact of 

spatial effects on segment specific crash count models. It would be a methodologically challenging 

exercise to consider spatial correlation within a latent segmentation model structure for crash 

frequency analysis. Further, we develop a macro-level analysis framework that explore bicycle 

crashes from a macro-perspective. A finer resolution micro-level analysis would complement our 

proposed approach in accommodating the effects for bicyclist exposure, locational attributes of 

crashes (intersection, mid-block etc.) and bicycle infrastructure in examining bicycle safety.  

Finally, it would be interesting to examine the influence of bicycle sharing systems that have been 

in operation in Montreal and Toronto in future research efforts.  
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FIGURE 1 Spatial Distribution of Expected Bicycle-Motor Vehicle Crash Frequency for 

LNB model for Montreal Island 
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FIGURE 2 Spatial Distribution of TAZs to be assigned to Segment 1 (High Risk) for LNB 

model for Montreal Island 
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TABLE 1 Summary of Existing Macro-Level Crash Frequency Studies 
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Noland and 

Quddus 

(2004a) 

Negative binomial 
Pedestrian 

Bicyclist 

Standard 

statistical 

regions 

Fatal/Serious 

injury crashes, 

Slight injury 

crashes 

--- Yes Yes Yes Yes --- 

Wier et al. 

(2009) 

Ordinary least square 

regression 
Pedestrian crash Census tract Injury crashes --- Yes Yes Yes Yes Yes 

Ukkusuri et 

al. (2012) 

Negative binomial, 

Negative binomial 

with heterogeneity in 

dispersion parameter, 

Zero-inflated negative 

binomial 

Pedestrian crash Census tract Total crashes Yes Yes Yes Yes Yes Yes 

Lee et al. 

(2015) 

Multivariate Poisson 

lognormal conditional 

autoregressive model 

Motor vehicle, 

bicycle and 

pedestrian crashes 

Traffic 

analysis zone 
Total crashes  Yes Yes Yes Yes  

Wei and 

Lovegrove 

(2013) 

Negative binomial Bicycle crash 
Traffic 

analysis zone 
Total crashes Yes Yes Yes Yes Yes Yes 

Siddiqui et al. 

(2012) 

Negative binomial, 

Bayesian log-normal 

model 

Pedestrian and 

bicycle crash 

Traffic 

analysis zone 

Total pedestrian 

crashes, Total 

bicycle crashes 

--- Yes Yes Yes Yes Yes 

Cho et al. 

(2009) 
Path analysis 

Pedestrian and 

bicycle crash 

Community 

analysis zones 
Total crashes Yes Yes --- --- Yes Yes 

MacNab 

(2004) 

Bayesian spatial and 

ecological regression 

model 

Young (Age 0-25) 

pedestrian and 

Bicyclist crash 

Local health 

areas 
Injury crashes --- Yes --- Yes Yes Yes 

Noland (2003) 
Random Effect 

negative binomial 
Crash State 

Fatal crashes, 

Injury crashes 
--- Yes Yes Yes Yes --- 
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Noland and 

Quddus 

(2004b) 

Negative binomial  Crash  County 
Total crashes, 

Fatal crashes  
--- Yes Yes Yes Yes --- 

Karlaftis et al. 

(1998) 

Cluster analysis, 

Negative binomial  
Aged driver crash  

Total crashes, 

Urban crashes, 

Rural crashes 

--- Yes --- Yes Yes --- 

Huang et al. 

(2010) 
Bayesian spatial model Crash  County 

Total crashes, 

Severe crashes 
--- Yes Yes Yes Yes --- 

Amoros et al. 

(2003) 
Negative binomial Crash County 

Total crashes, 

Fatal crashes 
--- --- --- --- Yes --- 

Ukkusuri et 

al. (2011) 

Random parameter 

negative binomial 
Pedestrian crash Census tract Total crashes Yes Yes Yes --- Yes Yes 

Cottrill et al. 

(2010) 

Poisson Regression 

with heterogeneity 
Pedestrian crash Census Tract Total crashes Yes Yes Yes Yes Yes Yes 

Quddus 

(2008) 

Negative Binomial,  

Spatial autoregressive 

model, Bayesian 

hierarchical model 

Motorized vehicle 

crash, Non-

motorized vehicle 

crash, Pedestrian 

crash 

Census ward 

Fatal crashes, 

Serious injury 

crashes, Slight 

Injury crashes 

--- Yes Yes --- Yes --- 

Naderan and 

Shahi (2010) 
Negative binomial Crash  

Traffic 

analysis zone 

Total crashes, 

PDO crashes, 

Injury crashes, 

Fatal crashes 

--- Yes --- --- --- --- 

Ng et al. 

(2002) 

Cluster analysis, 

Negative Binomial 
Crash  

Traffic 

analysis zone 

Total crashes, 

Fatal crashes, 

Pedestrian crashes 

--- --- --- --- --- Yes 

Abdel-Aty et 

al. (2011) 
Negative binomial Crash  

Traffic 

analysis zone 

Total crashes, 

Severe crashes, 

Peak hour crashes, 

Pedestrian and 

Bicycle crashes  

--- Yes --- --- Yes --- 

Aguero-

Valverde and 

Jovanis 

(2006) 

Full Bayes  

hierarchical model 
Crash  County  

Fatal crashes, 

Injury crashes  
--- Yes Yes Yes --- --- 

Stamatiadis 

and Puccini 

2000 

Quasi induced 

exposure method 

Single vehicle crash 

Multi vehicle Crash  
State  Fatal crashes --- Yes Yes Yes --- --- 

Noland (2003) Negative binomial Crash  State 
Fatal injury 

crashes 
--- Yes Yes Yes Yes --- 
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LaScala et al. 

(2000) 

Spatial autocorrelation 

corrected regression  
Pedestrian crash Census tract Injury crashes --- --- Yes Yes Yes Yes 

Abdel-Aty et 

al. (2013) 
Poisson-lognormal  

Crash 

Pedestrian crash 

Traffic 

analysis zones 

Block groups 

Census 

tracts 

Total crashes, 

Severe crashes, 

Pedestrian crashes 

--- Yes Yes Yes Yes --- 

Levine et al. 

(1995) 
Spatial  lag Crash  Census block Total crashes --- Yes --- Yes Yes --- 

Lee et al. 

(2014) 

Bayesian Poisson 

Lognormal 
Crash  

Traffic 

analysis zone 

Traffic safety 

analysis zone 

Total crashes, 

Severe crashes 
--- Yes Yes  Yes --- 

Li et al. 

(2013) 

Geographically 

Weighted Poisson 

Regression 

Crash  County  Fatal crashes --- Yes Yes Yes Yes --- 

Noland and 

Quddus  

(2004c) 

Negative binomial Crash  Census wards 

Fatal crashes, 

Serious injury 

crashes, Slight 

injury crashes 

--- Yes Yes Yes Yes Yes 

De Guevara et 

al. (2004) 

Simultaneous negative 

binomial  
Crash  

Traffic 

analysis zone 

Fatal crashes, 

Injury crashes, 

PDO crashes 

Yes Yes Yes Yes Yes Yes 

Hadayeghi et 

al. (2003) 

Negative binomial 

Geographically 

weighted regression 

Crash  Traffic zone  
Total crashes, 

Severe crashes 
--- Yes Yes Yes Yes --- 

Moeinaddini 

et al. (2014) 
Negative binomial Crash   City  

Fatalities per 

million inhabitants 
--- --- --- --- Yes --- 

Hadayeghi et 

al. (2007) 
Negative binomial Crash  

Traffic 

analysis zone 

Total crashes, 

Severe crashes 
Yes Yes Yes Yes Yes Yes 

Hadayeghi et 

al. (2010a) 

Geographically 

Weighted Poisson 

Regression, Full 

Bayesian 

Semiparametric 

Additive 

Crash 
Traffic 

analysis zone 

Total crashes, 

Severe crashes 
Yes Yes Yes Yes Yes Yes 

Hadayeghi et 

al. (2010b) 

Geographically 

Weighted Poisson 

Regression 

Crash 
Traffic 

analysis zone 

Total crashes, 

Severe crashes 
Yes Yes Yes Yes Yes Yes 
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TABLE 2 Sample Statistics for Montreal Island 

 

Variables Name Definition 
Zonal 

Minimum Maximum Average 

Dependent variable     

Crashes per year per TAZ Total number of crashes per year per TAZ 0.000 28.000 0.819 

Accessibility measures      

STM bus stops Ln(Total Société de transport de Montréal (STM) bus stops in TAZ) 0.000 10.697 7.816 

STM bus route length 
Ln(Total Société de transport de Montréal (STM) bus line kilometer 

in TAZ) 
0.000 4.127 1.980 

Exposure measures      

Transit commuters Ln(Total transit commuters in TAZ) -2.567 7.444 5.913 

Walk commuters Ln(Total walk commuters in TAZ) -2.005 7.069 4.416 

Other mode commuters 
Ln(Total other mode (taxi, motorcycle, paratransit) commuters in 

TAZ) 
-5.412 4.605 1.356 

Male bike commuters Ln(Total male bike commuters in TAZ) -4.616 5.273 1.877 

Female bike commuters Ln(Total female bike commuters in TAZ) -4.079 5.298 0.943 

Number of vehicles Ln(Total number of vehicles in TAZ) 0.432 8.991 6.390 

Length of bike lane Ln(Total length of designated bike lane kilometer on road in TAZ) -8.580 1.491 -0.136 

Sociodemographic characteristics   

Dependence 
Ratio of youth (19 years or younger) and elderly (65 years or more) to 

working age persons 
0.000 1.557 0.547 

Non-permanent resident Ln(Total non-permanent resident in TAZ) -4.375 7.682 3.592 

African population Ln(Total African resident in TAZ) -0.991 8.145 5.267 

Asian population Ln(Total Asian resident in TAZ) -2.186 8.693 5.577 

European population Ln(Total European resident in TAZ) -3.053 8.255 5.843 

Population with diploma degree Ln(Total population with diploma degree in TAZ) -3.935 7.204 5.163 

Socioeconomic characteristics   

Population without income Ln(Total population without income in TAZ) -3.523 6.142 4.629 
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Commuters commuting between 

7:00 am and 9:00 am 

Ln(Total commuters of TAZ commuting between 7:00 am and 9:00 

am) 
-0.913 7.844 6.565 

Commuters commuting after 9:00 

am 
Ln(Total commuters of TAZ commuting between 7:00 after 9:00 am) -1.954 6.856 5.544 

Road network characteristics 

Number of dead-ends Ln(total number of dead-ends in TAZ) 0.000 3.367 0.477 

Number of one-way link Ln(total number of one-way link in TAZ) 0.000 4.920 2.801 

Number of intersections Ln(total number of intersection in TAZ) 0.000 5.746 3.061 

Length of highway Ln(total length of highway kilometer in TAZ) -6.465 2.757 -0.109 

Built environment      

Number of bars Ln(total number of bars in TAZ) 0.000 3.045 0.130 

Lot Coverage Building foot print area of TAZ/Total area of TAZ 0.000 0.583 0.169 

Number of school Number of schools in TAZ 0.000 5.000 0.661 

Distance from CBD Ln(distance from CBD to the TAZ (kilometer)) -2.083 3.516 1.892 

Land use mix 

 Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-use, 

𝑝 is the proportion of the developed land area devoted to a specific 

land-use, 𝑁  is the number of land-use categories in a TAZ 

0.000 0.999 0.494 

Variables 
Sample Share 

Frequency (Percentage) 

Median TAZ income 

Low  (<$40,000)  1565 (37.395) 

Medium ($40,000-$80,000)  460 (10.992) 

High (≥$80,000)  2160(51.613) 

Median commuting time      

Less than 11 minutes  135(3.20) 

Equal and more than 11 minutes 4050(96.8) 

Presence of university     

Presence of university building 295 (7.00) 

No university buildings are present 3890 (93.0) 
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TABLE 3 Measures for Model Selection 

 

Determining the Appropriate Number of Latent Segments 

Cities Montreal Toronto 

Number of 

cases 
4185 3360 

Models 
Number of 

parameters 

Log-likelihood  

at Convergence 
BIC 

Number of 

parameters 

Log-likelihood  

at Convergence 
BIC 

LP II 39 -4382.91 9091.05 23 -4813.44 9813.62 

LP III 46 -4281.80 8947.20 32 -4764.61 9789.05 

LNB II 40 -4253.84 8841.26 24 -4797.67 9790.23 

LNB III 50 -4226.98 8870.91 30 -4759.51 9762.61 

Comparing the Unsegmented and Segmented Models 

Models 
Number of 

parameters 

Log-likelihood  

at Convergence 
BIC 

Number of 

parameters 

Log-likelihood  

at Convergence 
BIC 

Poisson 31 -4993.30 10245.10 14 -4941.82 9997.32 

NB 24 -4345.20 8890.55 13 -4832.49 9770.53 

LNB 40 -4253.84 8841.26 30 -4759.51 9762.61 

NB = Negative Binomial, LP II = Latent Segmentation based Poisson with two segments, LP III = Latent Segmentation based Poisson with three segments, LNB II 

= Latent Segmentation based Negative Binomial with two segments, LNB III = Latent Segmentation based Negative Binomial with three segments, BIC = Bayesian 

Information Criterion.
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TABLE 4 Segment Characteristics and Mean Values of Segmentation Variables for LNB 

model for Montreal Island 

 

Components 
Segments 

Segment 1 Segment 2 

Sample shares 0.390 0.610 

Observed mean of crash events 0.730 

Expected mean of segment level crash events 1.240 0.407 

Mean Values of Segmentation Component Variables in Each Segment 

Variable Names* Overall Sample Segment 1 Segment 2 

Length of bike lane -0.136 -0.315 -0.021 

Length of highway -0.109 -0.189 -0.058 

Distance from CBD 1.893 1.708 2.011 

Land use mix 0.494 0.564 0.450 

Number of intersections 3.061 3.523 2.767 

* Variable definitions are presented in Table 2 
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TABLE 5 LNB Estimates for Montreal Island 

 

Segment Components 

Variable Names* 
Segment 1 Segment 2 

Estimate t-stat Estimate t-stat 

Constant -- -- 6.361 5.690 

Length of bike lane -- -- 0.767 2.680 

Length of highway -- -- 0.493 2.833 

Distance from CBD -- -- 1.490 5.521 

Land use mix -- -- -2.439 -3.659 

Number of intersections -- -- -2.240 -6.300 

Crash Count Component 

Constants -5.693 -9.143 -1.546 -1.638 

Accessibility measures     

STM bus stops -- -- 0.292 2.800 

STM bus route length -- -- 0.233 2.680 

Exposure measures     

Transit commuters 0.305 3.459 1.198 5.093 

Walk commuters 0.136 2.209 0.355 3.318 

Other mode commuters -0.157 -5.588 -- -- 

Male bike commuters -- -- 0.153 3.298 

Female bike commuters -- -- 0.094 2.343 

Number of vehicles 0.648 8.584 -- -- 

Sociodemographic characteristics     

Dependence -0.797 -2.916 -- -- 

Non-permanent resident -- -- 0.190 3.475 

African population 0.091 1.992 -- -- 

Asian population -- -- -0.085 -1.778 

European population -0.214 -2.983 -- -- 

Population with diploma degree -- -- -0.193 -2.556 

Socioeconomic characteristics     

Population without income -- -- 0.414 4.032 

Median TAZ income (Base: Low and High income) 

Medium  0.509 4.998 0.301 2.323 

Median commuting time (Base: Equal and more than 11 minutes) 

Less than 11 minutes -- -- -2.802 -2.902 

Commuters commuting between 7:00 

am and 9:00 am 
-- -- -1.523 -6.979 

Commuters commuting after 9:00 am -- -- -0.577 -2.263 
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Road network characteristics    

Number of dead-ends -- -- -0.429 -3.259 

Number of one-way link -- -- 0.206 2.781 

Built environment     

Number of bars -- -- 0.452 3.952 

Lot-coverage 1.878 2.709 -- -- 

Presence of university building in TAZ (Base: No university buildings are present) 

Presence of university building 0.835 5.033 -0.440 -1.839 

Number of school -0.166 -2.785 0.166 2.616 

Dispersion parameter 0.836 1.645 
* Variable definitions are presented in Table 2 
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TABLE 6 Predictive Performance Evaluation 

 

Measures of fit 
Montreal Toronto 

NB LNB NB LNB 

MPB 0.010 0.002 0.012 0.006 

MAD 1.159 0.827 1.107 1.073 

MSPE 2.486 2.382 2.859 2.608 

MPB = Mean prediction bias, MAD = Mean absolute deviation, MSPE = Mean squared prediction error, NB = 

Negative Binomial, LNBI = Latent Segmentation based Negative Binomial model 
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TABLE 7 Elasticity Effects for LNB model for Montreal Island 

 

Variable Names* Segment 1 Segment 2 In-Sample 

STM bus stops 0.000 4.4924 4.492 

STM bus route length 0.000 1.383 1.383 

Transit commuters 10.764 24.055 34.819 

Walk commuters 3.485 4.033 7.518 

Male bike commuters 0.000 0.922 0.922 

Female bike commuters 0.000 0.364 0.364 

Number of vehicles 28.625 0.000 28.625 

Non-permanent resident 0.000 1.870 1.870 

African population 2.700 0.000 2.700 

Population without income 0.000 4.669 4.669 

Medium Median TAZ income 25.820 6.652 32.472 

Number of one-way link 0.000 1.379 1.379 

Number of bars 0.000 0.325 0.325 

Lot-coverage 1.823 0.000 1.823 

Presence of university 62.091 -8.011 54.081 

Number of schools -7.902 3.928 -3.974 
* Variable definitions are presented in Table 2 
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APPENDIX A Segment Characteristics and Mean Values of Segmentation Variables for LNB model for the City of Toronto 

Components 
Segments  

Segment 1 Segment 2  

Sample shares 0.127 0.229 0.644 

Observed mean of crash events 1.629 

Expected mean of segment level crash events 0.363 2.500 1.231 

Mean Values of Segmentation Component Variables in Each Segment  

Variable Overall Sample Segment 1 Segment 2 Segment 3 

Ln(total number of intersection in TAZ) 3.430 2.585 3.896 3.431 

Ln(total area of TAZ in Hectare) 4.401 4.905 4.106 4.406 

Ln(total length of local road kilometer in TAZ) 1.364 1.313 1.257 1.412 

Land use mix 0.448 0.261 0.558 0.446 

Ln(Total length of bike route kilometer in TAZ) 2.131 0.990 2.127 2.357 

Ln(Number of households in TAZ per hectare) 2.442 0.431 2.674 2.755 
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APPENDIX B LNB Estimates for the City of Toronto 

Segment Components 

Variable 
Segment 1 Segment 2 Segment 3 

Estimate t-stat Estimate t-stat Estimate t-stat 

Constant -- -- 3.745 0.888 5.678 1.240 

Ln(total number of intersection in TAZ) -- -- 9.907 5.095 2.783 2.447 

Ln(total area of TAZ in Hectare) -- -- -7.417 -4.252 -4.025 -2.730 

Ln(total length of local road kilometer in TAZ) -- -- -3.013 -4.119 -2.391 -3.497 

Land use mix -- -- 4.669 3.425 -- -- 

Ln(Total length of bike route kilometer in TAZ) -- -- -- -- 2.905 2.141 

Ln(Number of households in TAZ per hectare) -- -- -- -- 2.110 4.496 

Crash Count Component 

Constants -3.700 -7.190 0.033 0.098 -3.450 -11.321 

Accessibility measures       

Ln(Total number of bus stops in TAZ) 1.141 7.851 0.249 4.574 0.468 10.455 

Total number of metro stops in TAZ -- -- 0.148 3.383 -- -- 

Exposure measures       

Ln(Total number of private cars in TAZ) -1.709 -4.720 -1.116 -13.573 -1.310 -18.156 

Sociodemographic characteristics       

Ln(Total population less than 25 year old in TAZ) -- -- -0.700 -9.089 -- -- 

Socioeconomic characteristics       

Ln(Total number of employed person in TAZ) 1.429 4.028 2.247 21.011 1.481 18.874 

Ln(Average TAZ income) -- -- -0.369 -9.705 -- -- 

Built environment       

Ln(Distance of TAZ from CBD in kilometer) -- -- -0.170 -2.966 -- -- 

Dispersion parameter 0.354 1.643 0.066 3.082 0.187 4.986 

 


