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Abstract 

Knowledge of spatial distributions of weight-categorized truck flows in a region is critical to 

the understanding of movements of empty or partially-loaded trucks and devising appropriate 

strategies to reduce empty or partially-loaded truck flows and improve truck utilization efficiency in 

the region. However, such disaggregated information cannot be directly obtained from existing data 

sources and models. In this paper, we propose a compact model for estimating weight-categorized 

truck origin-destination (OD) flows and link-level truck counts by fusing several freight datasets. The 

proposed model minimizes the squared errors between the estimated and observed truck OD flows 

and link volumes considering the flow conservation of trucks and commodity weights. To illustrate 

a real-world application of this model, a case study is conducted to estimate the spatial distribution 

of empty or partially-loaded truck flows into, within, and out of the State of Florida. With the case 

study results, high production- and attraction-zones of empty or partially-loaded truck trips are also 

identified. Such results can potentially inform freight planning and policy decisions to learn spatial 

patterns of empty or partially-loaded backhauling truck flows and devise countermeasures to reduce 

such flows and improve freight transportation efficiency. This is particularly relevant to a terminal 

state such as Florida that has large volumes of back-hauling truck flow. 
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1. Introduction 

Trucks backhauling from areas with a significant imbalance in the consumption and 

production of goods comprises a notable proportion of empty or partially-loaded trucks. According 

to the National Private Truck Council, approximately 25% of the vehicle miles traveled by the private 

trucks in the United States correspond to empty truck movements (White paper on backhaul 

networking, 2007). The empty or partially loaded backhauling trucks cause significant loss to the 

trucking industry in terms of wasted fuel, workforce, time and other resources. Matching loads for at 

least 5% of the empty trucks, which constitute more than 100,000 non-revenue generating trucks, 

could save at least 25 million gallons of diesel fuel (Sheckler et al., 2009). Therefore, the estimation 

of empty or partially loaded truck counts can help inform strategies to reduce empty or partially-

loaded backhauls through balancing trade activities across the region, e.g., development of production 

centers and attraction of imports to the region’s sea ports. 

In the context of estimating the spatial distribution of truck counts, a number of efforts have 

been made to model estimate commodity flows and truck trips. As summarized in Hautzinger (1984), 

there are mainly three models until 1984 including the naı̈ve proportionality model, the formulation 

by Noortman and vanEs (1978), and the one presented in his paper. In the naı̈ve proportionality 

model, truck trips are modeled as a direct function of the commodity flows. However, as discussed 

in Hautzinger (1984), the model is limited especially when there are inconsistencies between 

commodity flows and truck trips. Noortman and van Es (1978) estimate the number of empty trips 

between OD pairs as a function of the commodity flow in the opposing direction, which however 

only considers two types of vehicles (empty and fully-loaded) instead of more detailed multiple 

weight categories. Both models only consider empty trips back to the home base instead of complex 

trip chains. 

In order to formally characterize commercial vehicle trip chain models, Holguin-Veras and 

Thorson (2003a) discuss some practical insights to the challenges involved in modeling the empty 

trips using traditional freight demand models. Although capable of estimating both the empty and 

loaded truck trips, vehicle trip-based models cannot account for the economic characteristics of the 

cargo, which are critical in the decision making, as discussed in Holguin-Veras and Jara-Diaz (1999), 

Roorda et al. (2010), McFadden et al. (1986), Bernardin et al. (2015) and Holguin-Veras (2002). On 
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the other hand, commodity- based models cannot estimate the empty truck counts accurately since 

they ignore the fact that the logistic decisions cannot be directly explained using commodity flows 

when empty trips are prevailing (Holguin-Veras and Thorson, 2003a). Other studies (Holguin-Veras 

and Thorson, 2003a; Holguı́n-Veras and Thorson, 2003b; Holguín-Veras et al., 2010; Jansuwan et 

al., 2017) have attempted to use statistical models where the empty flows were modeled as a function 

of loaded truck counts. Holguín-Veras and Patil (2008), integrate a commodity-based demand model 

based on a gravity model with a statistical model estimating empty trips to develop a freight origin–

destination synthesis that includes both loaded and empty truck trips. Studies based on such statistical 

models would however require extensive data collection efforts such as OD surveys (Mesa-Arango 

et al., 2013), which may not always be feasible in practice. 

These issues can be addressed by integrating distinct datasets by formulating a hybrid 

approach using optimization techniques (Jansuwan et al., 2017). Some of the early works in this area 

are done by Crainic et al. (1993) and Crainic and Laporte (1997). Later, Mesa-Arango et al. (2013) 

formulate an optimization function to minimize the overall system cost while ensuring the truck flow 

conservation for both loaded and empty trips. Additionally, Guelat et al. (1990) and Chow et al. 

(2014) propose a nonlinear inverse optimization technique for the freight assignment at different 

network equilibrium conditions. Besides, four-step models (McNally (2000), Giuliano et al. (2010), 

Agrawal et al. (2018)) are frequently used to estimate freight flows or trip distribution over a 

transportation network. However, they have not considered the weight categories of trucks and 

detailed truck trip-chains. 

There is a considerable array of freight modelling works estimating the truck flows for two 

weight categories, i.e. empty and full truck loads (Kulpa, T., 2014; Middela et al., 2018). This study 

adds to the existing freight literature by exploring into the estimation of truck flows for more than 

two weight categories, such as empty, partially filled and full truck loads. Classifying trucks into 

multiple weight categories provides more detailed and quantitative information of both vehicle 

distributions and commodity distributions over the time space. It potentially enables more flexible 

and versatile strategies of managing and consolidating truck commodities (e.g., consolidating several 

partially filled trucks into fewer truckloads to save empty trips and associated energy consumption 

and costs).  In the model, we propose an optimization procedure to estimate origin-destination (OD) 

matrices of truck counts (OD-level truck counts) and link-level truck counts in several truck weight 

categories. In doing so, this paper proposes and demonstrates an easy-to-use method for integrating 
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various available freight datasets for a region into useful freight data products. The fused datasets 

include link-level truck counts from traffic monitoring and measurement programs such as 

Department of Transportation, OD level truck counts from transportation research institutes, 

commodity flows between OD pairs typically available at a county-level (or similar) resolution in the 

US and other countries, and the path flows for truck counts from the assignment stage in a four-step 

freight demand model. The proposed data fusion approach is used to derive OD-level and link-level 

truck counts in weight categories at a county-level spatial resolution in the State of Florida. 

Furthermore, the study utilizes a spatial disaggregation procedure proposed by Holguín-Veras and 

Patil (2008) to disaggregate the estimated empty truck counts between OD pairs at the county level 

into a finer spatial resolution.  

In the remainder of this paper, Section 2 describes the proposed optimization model for fusing 

alternative freight data to estimate OD-level and link-level truck counts in different weight categories. 

This section also presents a simple method for disaggregating the estimated county-level empty truck 

counts between OD pairs to a finer TAZ (Traffic Analysis Zone) level. Section 3 applies the model 

and the associated disaggregation method to a case study for Florida and presents a comparison of 

the results in different scenarios. Then, we provide the validation of the results against the observed 

data and discuss trends of the estimated empty truck counts in Florida. The final section summarizes 

and concludes the study. 

 

2. Methodology 

This section aims to fuse the observed truck flow data from multiple sources (including 

commodity mass and truck counts from the sampled links and all relevant OD pairs) to produce the 

best estimation of weight-categorized truck flows at different resolutions over the studied region. We 

propose a convex optimization model to estimate the weight-categorized truck counts for the sample 

links and OD pairs that best match the observations from all these sources. The objective function of 

this model is set to minimize the summation of the squared errors between the estimated and the 

observed truck flows for both weight-categorized truck counts and associated commodity masses. 

Flow conservation constraints are applied to ensure the estimated OD flows are consistent with the 

estimated link flows. Proper weight factors are multiplied to each error term to balance the effects of 

the different data sizes and error magnitudes from these multiple data sources. In section 2.1, we fuse 



5 

 

truck travel data from multiple sources to estimate the weight-categorized OD-level and link-level 

truck counts in different truck weight categories. Then, in Section 2.2, we propose a disaggregation 

approach that breaks county-level empty truck counts between OD pairs into relatively finer TAZs 

level.  

 

      2.1 Estimation of truck counts in different weight categories 

The proposed model aims to estimate link-level and OD-level truck counts in several weight 

categories. Required data sets and the proposed non-linear optimization model with its objective 

function and constraints are introduced in this section. For the convenience of readers, the variables 

and parameters in the model are listed in Table 1.  

 

Table 1 Notation used in model formulation 

Notation Description 

𝐴𝑊𝑆 set of links for which truck counts by weight categories are available 

𝐴𝑇 set of links for which only total truck counts are available without  

weight information 

𝐴 set of all links, 𝐴 = 𝐴𝑊𝑆 ⋃𝐴𝑇 

𝑊𝐶  set of OD pairs for which commodity flows by weight are available 

𝑊𝑇  set of OD pairs for which truck counts are available 

𝑊 set of all OD pairs, 𝑊 = 𝑊𝐶 ⋃𝑊𝑇  

𝐴′𝑤 set of links used by trucks traveling between OD pair 𝑤 ∈ 𝑊 

𝑊𝑎  set of OD pairs contributing to the truck count on link 𝑎 ∈ 𝐴 

𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6  optimization weightage factors for different error terms 

ℒ set of weight categories for trucks, ℒ = {1, 2,… , 𝑙, … , 𝐿} 

𝑛𝑙𝑎 number of category 𝑙 trucks passing through link 𝑎 ∈ 𝐴𝑊𝑆 , 𝑙  ∈  ℒ 

�̂�𝑙𝑎 estimated number of category 𝑙 trucks passing through link 𝑎 ∈ 𝐴𝑊𝑆 ,  

  𝑙  ∈  ℒ 

�̅�𝑙
𝑊𝑆 average number of category 𝑙 trucks passing through all links in  

𝐴𝑊𝑆 , 𝑙 ∈ ℒ 
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𝑛𝑎 truck count on link 𝑎 ∈ 𝐴𝑇 

�̂�𝑎 estimated truck count on link 𝑎 ∈ 𝐴𝑇 

�̅�𝐴 average of all truck counts on all links in 𝐴𝑇 

𝑚𝑙𝑎 commodity weight of category 𝑙 trucks passing through link 

𝑎 ∈ 𝐴𝑊𝑆 , 𝑙  ∈  ℒ 

�̂�𝑙𝑎 estimated  commodity  weight of category 𝑙 trucks passing through  

link 𝑎 ∈ 𝐴𝑊𝑆 , 𝑙  ∈  ℒ 

�̅�𝑙
𝑊𝑆  average commodity weight of category 𝑙 trucks passing through all  

links in 𝐴𝑊𝑆 , 𝑙  ∈  ℒ 

𝑚𝑤 commodity weight between OD pair 𝑤  ∈  𝑊𝐶  

�̂�𝑤 estimated commodity weight between OD pair 𝑤  ∈  𝑊𝐶  

�̅�𝐶  average observed commodity weight across all OD pairs in 𝑊𝐶  

𝑛𝑤 truck count between OD pair 𝑤  ∈  𝑊𝑇    

�̂�𝑤 estimated truck count between OD pair 𝑤  ∈  𝑊𝑇    

�̅�𝑊 average truck OD count across all OD pairs in  𝑊𝑇  

𝑃𝑤𝑎 percentage of truck count between OD pair 𝑤 ∈ 𝑊 passing through 

the link 𝑎 ∈  𝐴𝑤 

𝑣1 weight of an empty truck  

𝑣𝑙 average commodity weight carried by a category 𝑙 truck, 𝑙 ∈ ℒ,  

excluding empty truck weight 

𝑣𝑙𝑔 average commodity weight of a truck in  category  𝑙 ,  𝑣𝑙𝑔 = 𝑣𝑙 + 𝑣1, 

 𝑙 ∈ ℒ 

𝑥𝑙𝑎 estimated number of weight-category 𝑙 trucks passing through link 

 𝑎 ∈ 𝐴, 𝑙  ∈  ℒ 

𝑦𝑙𝑤  estimated number of weight-category 𝑙 trucks between OD pair 

 𝑤 ∈ 𝑊, 𝑙  ∈  ℒ 

𝜀𝑙𝑎 error term for weight-category 𝑙 trucks passing through link 

 𝑎 ∈ 𝐴, 𝑙  ∈  ℒ 
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The proposed model considers a freight truck transportation network in a region specified by 

a set of OD pairs 𝑊 and a set of links 𝐴. All trucks are classified into a set of weight categories, 

denoted by ℒ. To serve the purpose of estimating empty truck flows, the simplest ℒ comprises only 

two categories, i.e., an empty-truck category and a loaded truck category. Nonetheless, this study 

allows a greater number of categories in ℒ and a finer weight categorization to increase the accuracy 

of estimation. This study assumes all empty trucks have the same weight, and let 𝑣1 denote the empty 

truck weight. For each weight category 𝑙 ∈ ℒ, let 𝑣𝑙𝑔 and 𝑣𝑙 denote the average commodity weight 

(not including empty truck weight) and the average truck weight (the summation of commodity 

weight 𝑣𝑙𝑔   and empty truck weight 𝑣1 ), respectively. This model aims to estimate (i) weight-

categorized OD-level truck count 𝑦𝑙𝑤  in weight category 𝑙 ∈ ℒ for OD pair 𝑤 ∈ 𝑊  in the study 

region and (ii) weight-categorized link-level truck count 𝑥𝑙𝑎 in weight category 𝑙 ∈ ℒ and link 𝑎 ∈ 𝐴 

in the study region. Estimating variables 𝑥𝑙𝑎 and variables 𝑦𝑙𝑤  in each truck weight categories 𝑙 ∈ ℒ 

in each link 𝑎 ∈ 𝐴   and OD pair 𝑤 ∈ 𝑊  will help planners better design commodity delivery 

operations and help them obtain more information about the accuracy of weight in motion stations. 

To estimate these variables, a variety of observed data are used as inputs to the model. The input data 

is described in the following. 

a. Weight-categorized link-level truck count data: Let 𝐴𝑊𝑆 denote the set of links on which truck 

counts are measured for trucks traveling though these links; for example, through weigh-in-

motion stations (WIM). Let  𝑛𝑙𝑎 denote the truck count for category-𝑙 trucks on link 𝑎 ∈ 𝐴𝑊𝑆 and 

define �̅�𝑙
WS = ∑ 𝑛𝑙𝑎𝑎∈𝐴𝑊𝑆 /|𝐴𝑊𝑆|  as the average observed category-𝑙 truck count across all links 

in 𝐴𝑊𝑆 . Further, we are able to obtain  �̂�𝑙𝑎 = 𝑥𝑙𝑎 as the estimated truck count of category 𝑙 trucks 

on link 𝑎 ∈ 𝐴𝑊𝑆. Such dataset 𝐴𝑊𝑆 are typically available in many regions through the weigh-in-

motion stations located on a number of highways. 

b. Aggregated (or non-weight-categorized) link-level truck count data: Let 𝐴𝑇 denote the set of links 

for which aggregated truck counts are observed (without any weight information). Let  𝑛𝑎 denote 

the total truck count on link 𝑎 ∈ 𝐴𝑇  and define �̅�𝐴 = ∑ 𝑛𝑎𝑎∈𝐴𝑇 /|𝐴𝑇|  as the average observed 

aggregated truck count across all links in 𝐴𝑇. Further, we are able to obtain  �̂�𝑎 = ∑ 𝑥𝑙𝑎𝑙∈ℒ  as the 

estimated aggregated truck count on link 𝑎 ∈ 𝐴𝑇. Such dataset 𝐴𝑇 is typically available in many 

regions through Telemetered Traffic Monitoring Sites (TTMS) or other means of collection traffic 

counts by vehicle class.  
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c. Weight-categorized link-level commodity weight data: This data is associated to the same link set 

𝐴𝑊𝑆 as above. Let 𝑚𝑙𝑎 denote the observed commodity weight of all category 𝑙 trucks on link 

𝑎 ∈ 𝐴𝑊𝑆  and define �̅�𝑙
WS = ∑ 𝑚𝑙𝑎𝑎∈𝐴𝑊𝑆 /|𝐴𝑊𝑆|  as the average observed commodity weight 

across all links in 𝐴𝑊𝑆 . Further, we calculate �̂�𝑙𝑎 =  𝑥𝑙𝑎𝑣𝑙𝑔 as estimated commodity weight of 

category 𝑙 trucks on link 𝑎 ∈ 𝐴𝑊𝑆.  Such dataset 𝐴𝑊𝑆 can be obtained from the same sources as 

the previous weight-categorized link-level truck count data. 

d. OD commodity weight data: Let 𝑊𝐶  denote the set of OD pairs for which commodity weight 

(i.e., the total tonnage of commodity weight from origin to destination by truck) is observed. Let 

𝑚𝑤  denote the observed commodity weight between OD pair 𝑤 ∈ 𝑊𝐶  and define �̅�𝐶 =

∑ 𝑚𝑤𝑤∈𝑊𝐶 /|𝑊𝐶|  as the average observed commodity weight across all OD pairs in 𝑊𝐶 . 

Further, we are able to obtain �̂�𝑤 = ∑ 𝑦𝑙𝑤𝑙∈ℒ 𝑣𝑙 as estimated commodity weight between OD 

pair 𝑤 ∈ 𝑊𝐶 . Such dataset 𝑊𝐶  can be extracted from commodity flow databases provided by 

both public and proprietary agencies (e.g., the Transearch data from IHS Global Insight, Inc.). 

e. OD-level truck count data: Let 𝑊𝑇  denote the set of OD pairs for which OD-level truck counts 

are observed. Let 𝑛𝑤  denote the truck count between OD pair 𝑤 ∈ 𝑊𝑇  and define �̅�𝑊 =

∑ 𝑛𝑤𝑤∈𝑊𝑇 /|𝑊𝑇|  as the average observed truck count across all OD pairs in  𝑊𝑇 . Further, we 

can obtain �̂�𝑤 = ∑ 𝑦𝑙𝑤𝑙∈ℒ  as the estimated truck count between OD pair 𝑤 ∈ 𝑊𝑇 . Such dataset 

𝑊𝑇  can be obtained after the trip distribution and mode choice step in a regional four-step freight 

travel demand. 

f. OD-link assignment percentage data (i.e., path flow data): It is worth noting that a link in set 𝐴 is 

passed by certain paths between certain OD pairs in set 𝑊. With an appropriate OD-to-link 

assignment method, we are able to obtain the percentage of an OD truck count passing through a 

link. We further define 𝐴′𝑤 as the set of links used by truck counts between OD pair 𝑤 ∈ 𝑊.  

Then we denote the percentage of the trucks traveling between OD pair 𝑤 ∈ 𝑊 going through 

link 𝑎 ∈  𝐴𝑤 as 𝑃𝑤𝑎. We assume that truck counts of all weight categories between OD pair 𝑤 

have the same assignment percentage 𝑃𝑤𝑎 on link 𝑎. 

It is important to note that these datasets contain noise and each data set may just contain 

incomplete information. Therefore, to accurately estimate truck counts in multiple weight categories 

on links and between OD pairs, it is necessary to build an estimation model to determine the most 

likely values of the truck counts over the network by fusing all the data sets. Of course, one can still 

use the method even if only a subset of these datasets is available. We will first formulate the 
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constraints that associate estimated weight-categorized link-level truck counts 𝑥 ≔ {𝑥𝑙𝑎}𝑙∈ℒ,𝑎∈𝐴 with 

OD- level truck counts 𝑦 ≔ {𝑦𝑙𝑤}𝑙∈ℒ,𝑤∈𝑊 based on allocation percentages {𝑃𝑤𝑎} as follows. 

∑ 𝑦𝑙𝑤𝑃𝑤𝑎
𝑤∈𝑊

= 𝑥𝑙𝑎 + 𝜀𝑙𝑎 , ∀ 𝑙 ∈ ℒ , 𝑎 ∈ 𝐴
′
𝑤 (1) 

where 𝜀𝑙𝑎 (𝜀𝑙𝑎 ∈ {𝜀𝑙𝑎}𝑙∈ℒ,𝑎∈𝐴.) is an error variable to recognize inconsistencies between the 

two sides of equations due to estimation errors and inconsistencies between OD-level truck counts 

and link-level truck counts. Without the error variable, the optimization problem can be solved but it 

is not able to capture the inconsistency. Models with or without the error variable are tested in case 

study later. 

Now we formulate the optimization objective as the sum squared errors between the observed 

and estimated values of five different terms as well as the sum of squares of the error variable 𝜀𝑙𝑎 as 

the sixth term to minimize the inconsistencies between link-level and OD-level truck counts. 

Specifically, the objective function is shown in Equation (2) below:  

 min 𝑥,𝑦,𝜀 [∑ ∑ 𝐶1(𝑛𝑙𝑎 − 𝑥𝑙𝑎)
2

𝑎∈𝐴𝑊𝑆𝑙∈ℒ

]

⏟                
𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘−𝑙𝑒𝑣𝑒𝑙,𝑤𝑒𝑖𝑔ℎ𝑡−𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝑡𝑟𝑢𝑐𝑘 𝑐𝑜𝑢𝑛𝑡𝑠

 

+ [ ∑ 𝐶2
𝑎 ∈𝐴𝑇

(𝑛𝑎 − ∑𝑥𝑙𝑎
𝑙∈ℒ

)

2

]

⏟                
𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘−𝑙𝑒𝑣𝑒𝑙 𝑡𝑟𝑢𝑐𝑘 𝑐𝑜𝑢𝑛𝑡𝑠 

  

+ [∑ ∑ 𝐶3
𝑎∈𝐴𝑊𝑆𝑙∈ℒ

(𝑚𝑙𝑎 − 𝑥𝑙𝑎𝑣𝑙𝑔)
2
]

⏟                    
𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘−𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑙𝑜𝑤  

 

+ [ ∑ 𝐶4
𝑤∈𝑊𝑐

(𝑚𝑤 − ∑𝑦𝑙𝑤
𝑙∈ℒ

𝑣𝑙)

2

]

⏟                    
𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂𝐷−𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑙𝑜𝑤

 

+ [ ∑ 𝐶5
𝑤∈𝑊𝑇

(𝑛𝑤 − ∑𝑦𝑙𝑤
𝑙∈ℒ

)

2

]

⏟                  
𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂𝐷−𝑙𝑒𝑣𝑒𝑙 𝑡𝑟𝑢𝑐𝑘 𝑐𝑜𝑢𝑛𝑡𝑠

 

 

 

(2) 
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+ [ ∑ 𝐶6
𝑤∈𝑊𝑇

𝜀𝑙𝑎
2 ]

⏟        
𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑘−𝑙𝑒𝑣𝑒𝑙 𝑎𝑛𝑑 𝑂𝐷−𝑙𝑒𝑣𝑒𝑙 𝑡𝑟𝑢𝑐𝑘 𝑐𝑜𝑢𝑛𝑡𝑠

 

 

In the above objective function, the first term represents the sum of squared errors between 

observed and estimated weight-categorized link-level truck counts on link 𝑎 ∈ 𝐴WS. The second term 

represents the sum of squared errors between observed and estimated total truck counts without 

weight categorization on link 𝑎 ∈ 𝐴𝑇. The third term corresponds to a sum of squared differences 

between observed and estimated total commodity weight of all trucks in weight categories passing 

through link a ∈ 𝐴𝑊𝑆 . The fourth term represents the sum of squared errors between OD-level 

observed and estimated commodity weight. The fifth term represents sum of squared errors between 

OD-level observed and estimated truck counts without weight categorization. Finally, the sixth term 

captures inconsistencies between estimated link-level trucks and OD-level truck counts. 

The objective function is subject to constraints (1) and non-negativity constraints on all weight 

categorized truck counts: 𝑥𝑙𝑎 , 𝑦𝑙𝑤 ≥ 0, ∀ 𝑙 ∈ ℒ, 𝑎 ∈ 𝐴, 𝑤 ∈ 𝑊. Note that the above six terms include 

weights 𝐶1  through 𝐶6 to weigh the squared error magnitudes. These terms are determined in the 

following equations to normalize the impact of sample size and data dispersion: 

𝐶1 =  𝑐1 ∑ ∑ (𝑛𝑙𝑎 − �̅�𝑙
𝑊𝑆)2

𝑎∈𝐴𝑊𝑆𝑙∈ℒ

⁄  (3) 

𝐶2 =  𝑐2/ ∑ (𝑛𝑎 − �̅�
𝐴)2

𝑎∈𝐴𝑇

 (4) 

𝐶3 =  𝑐3 ∑ ∑ (𝑚𝑙𝑎 − �̅�𝑙
𝑊𝑆)2

𝑎∈𝐴𝑊𝑆𝑙∈ℒ

⁄  (5) 

𝐶4 =  𝑐4/ ∑ (𝑚𝑤 − �̅� 
𝐶)2

𝑤∈𝑊𝐶

 (6) 

𝐶5 =  𝑐5/ ∑ (𝑛𝑤 − �̅�
𝑊)2

𝑤∈𝑊𝑇

 (7) 

𝐶6 =  𝑐6/ {∑ ∑ (𝑛𝑙𝑎 − �̅�𝑙
𝑊𝑆)2

𝑎∈𝐴𝑊𝑆𝑙∈ℒ

+ ∑ (𝑛𝑎 − �̅�
𝐴)2

𝑎∈𝐴𝑇

} (8) 

The proposed optimization model is a convex nonlinear optimization model that can be 

efficiently solved by commercial solvers including Gurobi.  
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      2.2 Disaggregation of estimated truck counts 

More often than not, the estimated empty truck counts from the above analysis might be 

relatively aggregated and further processes might be needed to disaggregate them into smaller 

geographic areas to suit the needs of specific applications. This section proposes the use of a simple 

disaggregation method based on a model proposed by Holguín-Veras and Patil (2008) for the purpose 

of disaggregating the OD-level empty truck counts from a coarse spatial resolution (e.g., county-

level) to a finer resolution (e.g., TAZ-level).  

In the method, each original OD pair 𝑤 ∈ 𝑊𝑇  are now divided into a number of finer pairs 𝑘, 

where 𝑘 ∈ 𝐾𝑤 and 𝐾𝑤 is set of finer OD pairs in OD pair 𝑤 ∈ 𝑊. Further, we set 𝑏k as estimated 

empty truck counts between OD pair 𝑘 ∈ 𝐾𝑤 and 𝑎𝑘 as the observed empty truck count between OD 

pair 𝑘 ∈ 𝐾𝑤.We define operator ̅  as the opposite direction of an OD pair such that �̅� is an OD pair 

in the opposite direction of OD pair 𝑤 ∈ 𝑊𝑇. In Section 2.1, we are able to obtain 𝑦1�̅� as the empty 

truck count between OD pair �̅� ∈ 𝑊𝑇 . According to the proposed method by Holguín-Veras and 

Patil (2008), we can assume that there is a proportion parameter 𝑝𝑤 that: 

𝑏�̅� = 𝑝𝑤 ∗ 𝑎𝑘, ∀𝑘 ∈ 𝐾𝑤 , ∀𝑤 ∈ 𝑊
𝑇  (9)  

Then the sum of estimated empty truck counts ∑ 𝑏�̅��̅�∈�̅�  should be equal to the estimated 

empty truck counts between OD pair �̅� , 𝒚𝟏�̅�. Therefore, we have 

∑ 𝑏�̅�
�̅�∈𝐾�̅�

= 𝑦1�̅� , ∀𝑤 ∈ 𝑊
𝑇  (10) 

Thus, the estimated empty truck counts in finer OD pairs can be obtained by using Equations 

(9) and (10) and eliminating parameter 𝑝𝑤: 

𝑏�̅� = 𝑦1�̅� ∗
𝑎𝑘

∑ 𝑎𝑘𝑘∈𝐾𝑤

, ∀𝑘 ∈ 𝐾𝑤 , ∀𝑤 ∈ 𝑊
𝑇  

(11)  

3. Florida Case Study 

In this section, we apply the proposed optimization model to a case study for Florida. In 

Section 3.1, the observed truck counts and associated commodity weights obtained from Florida are 

added to parameters in the model. Two sets of truck weight categories and four scenarios with 
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different values of optimization weight coefficients are tested in the case study. Afterwards, in Section 

3.1, we analyzed the goodness of fit of the results for four scenarios and picked the scenarios with the 

best goodness of fit. Further, we showed and analyzed the 45-degree results of the estimated data 

versus the observed data. It is necessary to note that we kept aside the observed data for a number of 

links and OD pairs for validation. The 45-degree results of estimated values versus validation links 

are shown in this section as well. Further, we showed the total empty truck counts from Florida and 

the total empty truck counts to Florida at the county and TAZ levels. The satisfied results for the 

Florida case study provides a numerical example in detail and illustrates a potential application of the 

model in the other states or countries. 

 

      3.1 Data description 

In this section, to apply the model to the case study for Florida, we provide the data description 

of Florida truck counts data and commodity data applied to parameters in the proposed optimization 

model. Settings of truck weight categories and optimization weight coefficients for four scenarios are 

also listed in this section. 

a. Link-level truck counts in weight categories (𝑚𝑙𝑎 and 𝑛𝑙𝑎): Weigh-In-Motion (WIM) data for 

the 2011 year was obtained from the Florida Department of Transportation (FDOT). It 

contains 24.50 million truck records within Florida. 29 WIM stations were operational in 

2011, and some of the stations had the capability to measure the truck weight in both the 

traffic directions. This made up to 53 links corresponding to WIM stations which are available 

for the model estimation and validation. We kept aside 11 links for validation and thus we 

have 42 links in set 𝐴𝑊𝑆  with commodity weight measured. 
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Figure 1 Truck counts on links in WIM sites 

b. Aggregated link-level truck count data (𝑛𝑎): TTMS for the year 2010 provides 353 links 

where truck counts are available for model estimation and validation. In the dataset, we kept 

aside 14 links for validation and 339 links in link set 𝐴𝑇 for model estimation. 
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Figure 2 Truck counts on links in TTMS sites 

c. OD commodity weight data (𝑚𝑤): OD commodity weight data 𝑚𝑤 is obtained from Tran-

search, developed by IHS Global Insight, Inc for the year 2011. The database provides 

Florida-centric data on the commodity weight between 379 zones inside the country with 

commodity flow at the county-level resolution in Florida. This dataset has |𝑊𝐶 | = 17700 

OD pairs with observed commodity weights. 

d. OD-level truck count data (𝑛𝑤): Zanjani et al. used the GPS data for the trucks in the year 

2010 jointly provided by American Transportation Research Institute and Federal Highway 

Administration (FHWA) and the counts from TTMS sites to estimate Florida centric OD-level 

truck counts at both county and statewide TAZ levels (Zanjani et al., 2015). Therefore, we 

have the set of OD pairs for which truck counts are observed 𝑊𝑇  with 11087 OD pairs. 

e. OD-link assignment percentage data (𝑃𝑤𝑎): The percentage of truck counts on the links in 

WIM sites and TTMS sites 𝑃𝑤𝑎 are extracted from the OD-level truck counts estimated from 

ATRI data for the year 2010. The path flows are obtained using the traffic assignment step 

using the Cube software, as described in the OD-level truck counts estimation study by 

Zanjani et al. (2015). 
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f. Empty truck weight: From the WIM data corresponding to the Florida, it was observed that 

the heavy-duty trucks (class 8 and above according to the FHWA trucks classification) 

constitute 80% of the total truck counts. The individual empty weight of tractor and trailer 

varies depending on the manufacturer. According to a survey conducted in 2014 by American 

Transportation Research Institute (ATRI), the majority of fleets operated truck-tractors, and 

the most prevalent trailer types were 53-foot and 28-foot trailers respectively. Using this 

proportion and the information from the manufacturers on the range of weights for truck-

tractor units, the weight of an empty truck can range from 21 kips to 37 kips. So different 

empty weight within the given range were tested, and the optimum value for the empty truck 

𝑣1 = 35𝑘𝑖𝑝𝑠 was chosen to obtain the best prediction. 

g. Optimization parameter settings: In the optimization procedure, we have tried two sets of 

truck-weight categories (set 1 and set 2) and four scenarios with different values of 

optimization weight coefficients  (𝑐1, 𝑐2, 𝑐3 , 𝑐4, 𝑐5, 𝑐6 ), as listed in Table 2 and Table 3, 

respectively. Since truck counts on links and OD pairs are forced to match each other as we 

have Constraint (1) as a connection between truck counts on links and OD pairs, different 

ratio between c1 and c2, c3 or ratio between c4 and c5 will not change the results much, which 

we have tested in the case study. Since the number of OD pairs is much larger than the number 

of links, we set different weightage for OD pairs and links to balance the magnitude 

difference. Since the purpose of assigning different weights is to balance the data noises and 

disproportion between the link data and the OD data instead of those within the link data alone 

or within the OD data alone, c1, c2 and c3 are set at the same values in each scenario, and so 

are c4 and c5.. 

Table 2 Truck-weight categories 

Category no. 
Weight range in kips (kilo pounds) 

Set 1 Set 2 

1 ≤ 35 ≤ 35 

2 35 - 60 35 - 40 

3 > 60 40 - 45 

4 -- 45 - 50 

5 -- 50 - 55 

6 -- 55 - 60 

7 -- > 60 

 

Table 3 Scenarios with different optimization weights 
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Weightage 

coefficients 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

𝑐1 1 10 100 1 

𝑐2 1 10 100 1 

𝑐3 1 10 100 1 

𝑐4 1 1 1 10 

𝑐5 1 1 1 10 

𝑐6 1 10 100 1 

 

In the optimization process, three weight categories are used. They are 0-35 kips, 35-60 kips, 

and 60kips or above. Again, the categorization is based on the weight ranges considering the typically 

empty, partially loaded, and fully loaded trucks. In addition to these broad weight categories, the 

results analyzed for finer categories with 5kip intervals are also considered for the optimization 

procedure, for a better quality of fitting.  

 

      3.2 Results 

This section presents the results from the optimization procedure, in which the truck counts 

with multiple weight categories between the OD pairs are estimated at the county level resolution for 

the state of Florida. The average solution time of the model is 25 sec for three weight categories and 

75sec for seven weight categories. 

In this study, two sets of truck-weight categories in ‘Set 1’ and ‘Set 2’ as given in Table 2 are 

analyzed for the four scenarios given in Table 3. Different empty weight values within the range of 

21 kips to 37 kips are tested in all the 4 scenarios for two truck-weight categories, and an optimal 

value for the empty truck is chosen as 𝑣1 = 28 𝑘𝑖𝑝𝑠 which provides the best prediction. The different 

sets of ‘c’ values as shown in Table 3 are then used for the analysis.  

After we apply the Florida data to the proposed model in Section 2, estimated link-level truck 

count 𝑥𝑙𝑎 and estimated OD-level truck count 𝑦𝑙𝑤  are obtained. Thus, we can calculate the estimated 

value of each parameter as explained in Section 2.  

To compare the results of the four scenarios with two truck-weight categories, we calculate 

the mean absolute error (MAE) to test the difference between the estimated and observed values of a 

parameter in the optimization model. To compare the magnitude of the errors across parameters, we 

further divide the MAE by the mean value of the observed value of the parameter and name it as 
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mean absolute error to mean (MAEM). For example, the MAEM of truck link count 𝑛𝑎, ∀𝑎 ∈ 𝐴𝑇 , is  

∑ |�̂�𝑎−𝑛𝑎|𝑎∈𝐴𝑇

|𝐴𝑇|
⁄

�̅�𝐴
.  

Figure 3 shows the MAEM values in all four scenarios for both sets of truck-weight categories 

with or without considering error term 𝜀𝑙𝑎. Figure 3 (a) and (b) show the MAEM values of parameters 

𝑚𝑙𝑎 , 𝑛𝑙𝑎 , 𝑛𝑎 ,𝑚𝑤 , 𝑛𝑤 in the four scenarios for both sets of truck-weight categories with considering 

error term 𝜀𝑙𝑎 in Equation (1) and Objective function (2). Figure 3 (c) and (d) show the MAEM values 

of parameters 𝑚𝑙𝑎 , 𝑛𝑙𝑎 , 𝑛𝑎 ,𝑚𝑤 , 𝑛𝑤  without considering error term 𝜀𝑙𝑎  in Equations (1) and (2). 

According to the MAEM values, the model in categories in ‘Set 1’ performes better than the model 

with categories in ‘Set 2’. It indicates that the model considering error term 𝜀𝑙𝑎 helps improve the 

model performance. The results show that when the weights associated with links are higher, we 

obtain lower total MAEM despite higher OD-associated MAEM. As the empty truck counts between 

the OD pairs are important for planners, we select categories in ‘Set 1’ and scenario 4 with considering 

error term 𝜀𝑙𝑎 for further analysis. 

Narrowing down the results to each of the parameters, Figure 4 shows the 45-degree result of 

estimated data vs. observed data. It shows the following four comparisons: (1) estimated truck count 

�̂�𝑎 vs. observed truck count 𝑛𝑎 at each link 𝑎 ∈ 𝐴𝑇 in TTM sites; (2) estimated truck weight �̂�𝑙𝑎 vs. 

observed truck weight 𝑚𝑙𝑎 at each link 𝑎 ∈ 𝐴𝑊𝑆 in each category 𝑙 ∈ 𝐿 = {1,2,3} in WIM sites; (3) 

estimated truck count �̂�𝑤  vs. observed truck count 𝑛𝑤  in each OD pair 𝑤 ∈ 𝑊𝑇 ; (4) estimated 

commodity weight �̂�𝑤 vs. observed commodity weight 𝑚𝑤 for each OD pair 𝑤 ∈ 𝑊𝐶 . We see that 

overall, most observed and estimated values are distributed around the 45-degree line within 25% 

error bounds, verifying that the estimates from the proposed model are reasonable. Nonetheless, the 

estimated and observed data do not match each other perfectly, indicating noise and inconsistency 

between different datasets, which again highlights the needs for fusing different data sources to reduce 

noise. Part of the reason for the mismatched data is that truck weight 𝑚𝑙𝑎 and truck count 𝑛𝑙𝑎 in 

category 𝑙 ∈ 𝐿 at link 𝑎 ∈ 𝐴𝑊𝑆  are obtained from databases in year 2011 while other datasets are 

extracted from databases in year 2010.  

Figure 5 uses color coding to differentiate between the WIM data used for optimization and 

that kept aside for validation. In each panel of this figure, the estimated and observed truck counts at 

are presented separately for the WIM sites whose data is used in the optimization and data kept aside 

for validation. Three of these panels (a), (b) and (c) are for the comparison of estimated truck count 
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�̂�𝑙𝑎 and observed truck count 𝑛𝑙𝑎 for 𝑎 ∈ 𝐴𝑊𝑆  at WIM sites for each category in ‘Set 1’. The fourth 

panel (d) makes such comparison for total truck counts in three categories ∑ 𝑛𝑙𝑎𝑙=1,2,3  on link 𝑎 ∈

𝐴𝑊𝑆  at the WIM sites. It is evident from all panels in the figure that the estimated truck counts in all 

three weight categories are close to the observed values (or at least within 25% error) for the 

validation sites. This highlights the efficacy of the optimization procedure used to estimate the truck 

counts by weight category. 
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(a) Three truck-weight-category model with 

error term 𝜀𝑙𝑎 

(b) Seven truck-weight-category model with 

error term 𝜀𝑙𝑎 

 

 

 

 

(c) Three truck-weight-category model without 

error term 𝜀𝑙𝑎 

(d) Seven truck-weight-category model without 

error term 𝜀𝑙𝑎 

Figure 3 MAEM of each type of category for 4 scenarios of optimization weightages with 

error term or without error term 
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(a) Average annual daily truck count on links 

in TTM sites 𝑎 ∈ 𝐴𝑇 

(b) Average annual daily commodity weight in kips 

on links at WIM sites 𝑎 ∈ 𝐴𝑊𝑆 , 𝑙 = 1,2,3 

 

 

 

 

(c) Average annual daily truck count between 

OD pair 𝑤 ∈ 𝑊𝑇  

(d) Average annual daily commodity weight in kips 

between OD pair 𝑤 ∈ 𝑊𝐶  

Figure 4 Observed versus estimated link-level truck counts, OD-level truck counts and OD-

level commodity weights per day 
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(a) Average annual daily truck counts in weight 

category 1 at WIM sites 𝑎 ∈ 𝐴𝑊𝑆 

(b) Average annual daily truck counts in weight 

category 2 at WIM sites 𝑎 ∈ 𝐴𝑊𝑆 

 

 

 

 

(c) Average annual daily truck counts in weight 

category 3 at WIM sites 𝑎 ∈ 𝐴𝑊𝑆 

(d) Average annual daily total truck counts in all 

three categories at WIM sites 𝑎 ∈ 𝐴𝑊𝑆  

Figure 5 Observed versus estimated average annual daily link-level truck counts at WIM sites 

𝑎 ∈ 𝐴𝑊𝑆 

For further analysis, we define 𝑤[1],𝑤[2] as the origin and destination of an OD pair 𝑤 ∈ 𝑊 

separately. Next, we denote the total truck counts from origin O to all destination as trip production 

𝑅𝑂, and the total truck counts from all origin to destination D as attraction 𝑅𝐷. Therefore, by the 

definition of the attraction and production, we are able to obtain 𝑅𝑂 = ∑ 𝑛𝑤𝑤∈𝑊,𝑤[1]=𝑂 , 𝑅𝐷 =
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∑ 𝑛𝑤𝑤∈𝑊,𝑤[2]=𝐷 , ∀𝑤 ∈ 𝑊. Further, we define the set of OD pairs inside Florida as 𝑊𝐹  and the 

counties inside Florida as 𝐶𝐹 so that we can classify attraction and production of each county inside 

Florida. Figure 6 shows the county level trip productions and attractions (excluding intra county 

movements) for trucks moving within Florida and in weight category 1 (truck load ≤ 35 kips), most 

of which are empty trucks. Similarly, Figure 7 shows the county level trip attractions and production 

of category 1 truck counts between counties in Florida and other states in USA. One can use such 

results to identify the areas with high productions and attraction of empty truck counts and design 

appropriate policies to reduce the empty truck flows. 

Figure 8 shows the spatial distribution of empty truck counts (truck weight ≤ 35 kips) from 

the state of Florida to other states in the United States. It is important to know that the link data in 

TTM sites and WIM sites used in the modeling are only in the Florida, thus the truck counts between 

Florida and nearby states are much reliable as compared to the flows between Florida and far away 

states. From Figure 8, it can be observed that a considerable proportion of empty trucks from Florida 

are destined to Alabama and Georgia. A possible explanation could be that the trucks delivering goods 

in Florida and leaving empty while returning may go to Alabama and Georgia to get loads. Traffic 

operators can use such results to identify the specific OD pairs with high empty truck counts, so that 

appropriate strategies may be used to reduce the empty back-hauls. 

Using the methodology described in section 2.2 and information on loaded truck counts at 

Statewide TAZ (SWTAZ) level within Florida from the Transearch data, the estimated OD matrix 

(67×67) of empty truck counts within Florida at Transearch county level are disaggregated into the 

OD matrix of 8518 × 8518 at SWTAZ level. Figure 9 shows the SWTAZ level attractions and 

productions of empty truck trips within Florida.  Such data can help stakeholders visualize empty 

flow patterns in a higher resolution to support decisions made at a finer geographic scale. 
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(a) County level trip attractions 𝑅𝐷 for O𝐷 pair  

 

 

(b) County level trip productions 𝑅𝑂 for 𝑂𝐷 pair  

Figure 6 Estimated county level in-state trip attractions and productions for empty trucks 
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(a) County level trip attractions 𝑅𝐷 of each county 𝐷 

 

(b) County level trip productions 𝑅𝑂 of each county 𝑂 

Figure 7 Estimated county level out-of-state trip attractions and productions for empty trucks 
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Figure 8 Empty truck counts from Florida to other states of United States 
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(a) SWTAZ level trip attractions 𝑅𝐷 of each region 𝐷 in SWTAZ level 

 

(b) SWTAZ level trip productions 𝑅𝑂 of each region 𝑂 in SWTAZ level 

Figure 9 Estimated SWTAZ level trip attractions and productions for empty trucks 
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4. Summary and conclusions 

This paper proposes a nonlinear optimization model to estimate truck counts in different 

weight categories. The optimization model minimizes an objective function with sum of squared 

errors to estimate truck counts in multiple truck-weight categories. And the estimated empty truck 

counts are disaggregated into finer granularity to get better understanding about the empty truck 

flows. The proposed approach is then applied to estimate truck counts on links and OD pairs in 

different weight categories for the State of Florida. A variety of different scenarios are considered to 

derive appropriate weightages for different datasets used in the optimization program. For the final 

set of truck-weight categories and weightage scheme used in the study, a validation exercise was 

undertaken to compare the estimated truck counts and observed truck counts by weight at selected 

locations in the network. The validation results were satisfactory and highlighted the efficacy of the 

proposed method. The estimated OD-level truck counts and link-level truck counts in different 

categories can be used for understanding the spatial distribution of empty truck counts and for 

formulating policies targeting the trade imbalance in the region. 

Recently, a large scale study was conducted by Holguin-Veras et al., (2017) and Holguín-

Veras et al., (2011) to use the commodity flow survey microdata and other establishment data to 

develop freight production models that can be applied to employment data to estimate – at the level 

of establishments and zip codes in the US – the amount of freight produced and the corresponding 

freight trips and related service trips generated. Such an approach to estimating freight production 

and related trip generation can be viewed as a bottom-up approach to estimating freight flows, where 

the total freight production is estimated based on economic relationships and the corresponding 

freight trip generation and service trip generation is estimated based on logistics relationships between 

freight production and trip generation. The resulting trips produced from such models need to be 

further taken through additional modeling procedures to estimate modal and spatial distribution of 

the freight trips. Further, additional data, understanding and models will be needed to estimate spatial 

distribution of freight truck trips by different weight categories, including empty truck trips. Further 

research is necessary to advance the bottom-up approach to use it for estimating the spatial 

distribution of freight truck trips by weight categories. On the other hand, our proposed approach is 

top-down in that it utilizes already estimated spatial distribution of freight flows (e.g., from 

Transearch data) and other data to estimate freight flows by different weight categories (including 

empty freight truck flows). While the bottom-up approach is better than the top-down approach due 
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to the insights it might offer on the factors that influence spatial distribution of truck flows by different 

weight categories, the top-down approach works well (to estimate weight-categorized truck flows) in 

the absence of detailed microdata for gaining such insights. Further, the top-down approach is useful 

to identify current imbalances in empty truck flows that can be used to inform short-term strategies 

to address such imbalances. However, the top-down approach may not be suitable for long-term 

forecasting of truck flows by weight categories. 

While the proposed study provides methods and insights into weight-category-based truck 

flow estimation, it can be improved in several directions for even better accuracy of estimation.  

Firstly, in Section 3.1, OD commodity weight data (𝑚𝑤) is obtained from Transearch for the year 

2011 while the other datasets are collected from the year 2010. This inconsistency might bring errors 

to the results and influence the accuracy. When data in the same year is available, it may further 

improve the estimation results. Next, some datasets may have certain errors and missing records 

during the data collection process. Better data collection and correction techniques may be helpful.  

Besides, although we have tried multiple combinations of terms in the objective function, a systematic 

procedure to determine the optimal combination of the weights is yet to be proposed. A possible 

solution to obtain an optimal combination could be using a bi-level optimization model with the upper 

level determining the optimal combination of weights and the lower level estimating truck counts in 

different truck weight categories. In conclusion, the results can be improved in several ways including 

the use of data on the observed truck counts in neighboring states, extracting data parameters from 

dataset in the same year, omitting bad data in datasets, improvements to the optimization weightage 

factors for different error terms and the inclusion of path flows using observed route choice patterns 

by using GPS data. 
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