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Abstract 

The study develops a comprehensive and statistically valid framework to study the impact of new 

public transportation infrastructure (SunRail commuter train) on existing public transit 

infrastructure (Lynx bus) in the Orlando metropolitan region. The data for the study is drawn from 

bus ridership information for six quadrimesters (4-month time periods) - 3 prior to SunRail started 

operation and 3 after SunRail began operations - allowing us to study time varying effects of 

SunRail system on bus ridership. The current research formulates and estimates an innovative joint 

panel grouped ordered response model structure for the ridership analysis. To measure the impact 

of commuter rail on stop level bus ridership (defined as boarding and alighting), the model system 

controls for a host of independent variables including stop level attributes, transportation 

infrastructure variables, transit infrastructure variables, land use and built environment attributes 

and demographic and socioeconomic variables. The proposed model also accommodates for 

common unobserved factors affecting boarding and alighting as well as repeated ridership 

measures for each stop. The elasticity analysis undertaken to predict potential ridership into the 

near future highlights a worrisome trend of reducing transit ridership.  

 

Key Words: Bus ridership; Grouped ordered response model; Boarding; Alighting; Headway  
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1 INTRODUCTION 

 

The over-reliance on the automobile mode in North American cities in the latter half of the 20th 

century has resulted in significant reduction in the public transportation mode share (Santos et al. 

2011). The consequences of the increased dependence on automobile mode are evident; in 2014, 

traffic congestion has resulted in a loss of about 6.9 billion hours and 3.1 billion gallons of fuel 

amounting to a cumulative cost of nearly 160 billion dollars (Santos et al. 2011; Schrank et al. 

2015). Furthermore, the increased private vehicle travel contributes to increasing air pollution and 

greenhouse gas (GHG) emissions - a matter receiving substantial attention given the significant 

impact on health and safety of future generations (Woodcock et al. 2009). Policy makers are 

considering several alternatives to counter the negative externalities of this personal vehicle 

dependence. The development of an efficient multi-modal public transportation system is often the 

most considered solution. Many urban regions, across different parts of North America, are 

considering investments in public transportation alternatives such as bus, light rail, commuter rail, 

and metro (see TP 2016 for public transportation projects under construction or consideration).  

An important part of the decision process for motivating policy makers to consider 

infrastructure spending (for new public transportation infrastructure or expansion of existing 

public transportation infrastructure) is evidence-based research on the performance of the newly 

added systems. The evaluation of the impact of public transit infrastructure spending is far from 

straight forward. The research evaluation should encompass several dimensions of the influence 

of new public transit investments such as improved transit accessibility, real estate values, 

increased ridership for existing transit systems, improved active transportation in the region, 

enhanced safety, potential reduction in automobile ownership and usage. The evaluation will 

provide a performance review of the new investment while also providing guidelines on how to 

further improve the system. The exercise might also provide valuable insights for other urban 

regions considering such investments.  

While developing research methodology for analyzing all the aforementioned dimensions 

is beyond the scope of our paper, our focus is on contributing to transit literature by examining the 

impact of new transit investments (such as an addition of commuter rail to an urban region) on 

existing transit infrastructure (such as the traditional bus service already present in the urban 

region). The process of evaluating the impact of new investments on existing public transit requires 

a comprehensive analysis of the before and after measure of public transit usage in the region. The 

main objective of the proposed research effort is to develop a framework to study the impact of 

new public transportation infrastructure (such as commuter rail) on existing public transit 

infrastructure (such as bus). Specifically, the current research effort contributes to transit literature 

by evaluating the influence of a recently inaugurated commuter rail system on traditional bus 

service demand. We examine the before and after impact of “SunRail” commuter rail system in 

the Orlando metropolitan region on the “Lynx” bus system.  

In this context, existing modeling approaches for analyzing bus ridership and their 

interaction with independent variables are not directly transferable to examine how ridership is 

impacted by the addition of commuter rail. There are several challenges in this respect. First, any 

analysis of the value of new investments should consider adequate data before and after the system 

operation. Second, the econometric model developed should consider how to accommodate for the 

impact of commuter rail on the bus system. Specifically, the exact variables and their functional 

forms to be considered in the ridership models to represent the impact of such additions to the 

existing system. Third, the econometric models should recognize that the ridership information is 

considered for the same transit stops over time (i.e. presence of repeated measures) while 
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controlling for various independent variables (such as transit infrastructure and built environment 

variables). 

The proposed research addresses these aforementioned challenges. The data for the study 

is drawn from bus ridership information for six quadrimesters (4-month time periods) - 3 prior to 

SunRail introduction and 3 after SunRail operations began - allowing us to study time varying 

effects of SunRail system on bus ridership. To accommodate for the impact of SunRail, several 

variables and functional forms are developed. These include identifying transit stops “influenced” 

by SunRail. We define “influenced” in multiple forms including system level effect, stops close to 

SunRail stations, and stops on bus routes that intersect with SunRail stations (and the distance of 

the stop on the route from SunRail station). We also consider time elapsed since SunRail operation 

started, to capture any time varying influence. Finally, in terms of methodology, the current 

research formulates and estimates an innovative joint panel grouped ordered response model 

structure for the ridership analysis. The grouped response framework improves the state-of-the-art 

in modeling ordered dependent variables by obviating the need for estimating threshold parameters 

(Yasmin and Eluru 2018). Thus, the grouped response model can offer a true non-linear variant of 

the linear regression model structure (same number of model parameters as linear regression). In 

addition, the model framework recognizes the presence of 6 boarding and alighting records across 

different time periods considered for each stop by considering joint panel model structure that 

accommodates for the presence of unobserved effects at the stop level. To the best of the author’s 

knowledge, the proposed econometric model structure is the first application of joint panel 

structure based on the grouped ordered response framework, not only in the transportation 

literature but also in the econometrics literature. 

The remainder of the paper is organized as follows: Section 2 provides a review of relevant 

literature and position our study in context. Section 3 provides the details of the econometric model 

frameworks used in the analysis. In section 4, the study area and empirical analysis of the data are 

described. The model estimation results are presented in Section 5. Section 6 concludes the paper.  

 

2 LITERATURE REVIEW  
 

Examining the performance and/or the impact of public transportation systems is a burgeoning 

area of research. Of particular relevance to our research is earlier work examining transit ridership. 

While there have been few studies that explore transit ridership from a national or regional 

perspective (see for example Taylor et al. 2009; Saidi et al. 2017), a large number of studies 

examine transit ridership focussing on a specific urban region. The research on ridership can be 

broadly classified based on the public transit mode under consideration along two streams: (1) rail 

and metro ridership and (2) bus ridership1.  

The first stream of studies on rail and metro ridership examined the influence of station 

characteristics, transit service attributes, and urban sociodemographic patterns and built 

environment. A number of studies that examined station choice dimension observed that station 

attributes including parking space availability and bicycle standing areas, amenities and train 

frequency, vehicle ownership patterns affect station choice (Chakour and Eluru 2014; Debrezion, 

Pels, and Rietveld 2007, 2009; Fan et al. 2015; Wardman and Whelan 1999). In a study evaluating 

                                                 
1 The reader would note that the focus of our research is on stop level ridership – an aggregation of individual travel 

responses to introduction of a new commuter rail system. For a review of studies on individual travel behavior 

responses to introduction of new transit systems or changes to existing infrastructure (such as tolls, express lanes, bus 

rapid transit systems) the reader is referred to Bhat and Sardesai (2006) and Abulibdeh and Zaidan (2018). 
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rail ridership in Atlanta, Brown and Thompson (Brown and Thompson 2008) observed that 

employment decentralisation was responsible for drop in ridership. Transit Oriented Development 

(TOD) that comprises of dense commercial developments is expected to affect ridership positively 

(Lavery and Kanaroglou 2012; Shoup 2008; Sung and Oh 2011; Dong 2016). Population and job 

density variables are likely to positively influence ridership (Cervero and Guerra 2011). Studies 

exploring ridership at metro stations found that retail, service and government land use, 

accessibility by bus, presence of transfer terminals, walkability in the vicinity of stations are 

positively correlated with ridership (Chan and Miranda-Moreno 2013; Gutiérrez 2001; Gutiérrez 

et al. 2011; Lin and Shin 2008).  

The second stream of studies, closely related to the effort of current study, examine the 

impact of built environment and urban form at the stop level on bus ridership. The transit ridership 

variables considered include daily ridership computed as sum of boardings and alightings at a stop 

level (Ryan and Frank 2009), daily boardings (Banerjee et al. 2005; Chu and Chu 2004; Estupiñán 

and Rodríguez 2008; Johnson 2003; Pulugurtha and Agurla 2012), time period specific boarding’s 

and alighting’s (Chakour and Eluru 2016). The methodologies employed for the analysis range 

from simple linear or log-linear regression models, geographically weighted negative binomial 

count models, composite likelihood based ordered regression models. Major independent variables 

identified to affect transit ridership include land use, urban form and sociodemographic 

characteristics in the vicinity of the stop, walkability measures, real-time bus schedules, passenger 

satisfaction, transportation system attributes, transit system operational attributes and unobserved 

factors that simultaneously affect boardings and alightings (Banerjee et al. 2005; Chakour and 

Eluru 2016; Chu and Chu 2004; Dill et al. 2013; Estupiñán and Rodríguez 2008; Johnson 2003; 

Machado et al. 2018; Pulugurtha and Agurla 2012; Tang and Thakuriah 2012).  

 

2.1 Contributions of the Current Study 

 

While several research efforts have explored the influence of a host of independent variables on 

transit ridership, it is evident from the literature review that no earlier research effort has examined 

the impact of new transit investment on existing transit demand. Of course, the authors recognize 

that data availability was a major impediment for the analysis. At the same time, there is also no 

guidance on how to consider the interactions between commuter rail and bus transit. Further, the 

earlier research studies on ridership have heavily focussed on linear or log-linear regression 

approaches (with some exceptions). These approaches impose an implicit structure on the impact 

of independent variables. Chakour and Eluru (2016) in their recent research relaxed this 

assumption by estimating a flexible non-linear specification in the form of an ordered regression 

model. While the approach is definitely less restrictive relative to linear or log-linear models, it 

adds an additional burden for model estimation with the need to estimate threshold parameters. 

The number of threshold parameters depends on the number of alternatives (one less than the 

number of alternatives to be precise). Further, in the standard ordered logit model (or the random 

parameters ordered logit), the error term is implicitly assumed to follow a standard logistic 

distribution (or standard normal distribution in ordered probit). More recently, Yasmin and Eluru 

(2018) proposed a grouped response ordered logit model that obviates the need to estimate 

thresholds by relating the propensity directly to the observed values. The proposed model also 

allows for parameterization of variance of the unobserved component. Further, Laman et al. (2018) 

developed a trivariate copula model based on the grouped ordered response approach in examining 

various components of incident duration.  
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The current research effort contributes to the transit demand analysis literature 

methodologically and empirically by building on the grouped ordered response structure proposed 

in Yasmin and Eluru (2018). In our proposed approach, the first contribution is to reduce the 

computational burden by avoiding the estimation of thresholds by recognizing that the thresholds 

of bus ridership are observed and the propensity can be tied to the observed thresholds while 

relaxing the standard normal or logistic assumption for the variance. Thus, irrespective of the 

number of ridership categories generated there is no additional parameter burden. In fact, the 

approach allows us to estimate exactly the same number of parameters as in the linear or log-linear 

regression approaches2. The model also allows for alternative specific effects in the model 

structure. A typical assumption in the ordered logit models is the assumption that any independent 

variable has a monotonic impact on latent propensity. However, it is possible that the same variable 

can have a non-monotonic effect i.e. alternative specific impacts. Several research efforts have 

highlighted this in the ordered model structures proposing the generalized ordered logit model (or 

partial proportional odds model) (see Eluru and Yasmin 2015; Yasmin and Eluru 2013; Wang and 

Abdel-Aty 2008). In our study, following Yasmin and Eluru (2018), we also accommodate for 

alternative specific effects. Finally, in the proposed approach we allow for common unobserved 

effects across multiple dependent variables. In a random parameter ordered variable, the impact of 

unobserved factors is only considered for one dependent variable. In our study, we allow it to vary 

across multiple dependent variables (boarding and alighting) and multiple time periods (6 time 

periods). Thus, we develop a repeated measures model with multiple dependent variables. To be 

sure, the models developed in Yasmin and Eluru (2018) and Laman et al. (2018) are based on the 

cross-sectional data i.e. no panel effects (or repeated effects) were considered. The reader would 

note that the panel joint grouped response structure proposed in our paper is the first application 

of this methodology in the transportation literature as well as the econometrics literature in 

general.Empirically, the current research effort makes the following contributions to transit 

literature. First, by employing data on stop level ridership (weekday boarding and alighting) for 

three quadrimesters before and after commuter rail installation in a large metropolitan area, the 

current research effort makes a unique empirical contribution identifying the commuter rail impact 

while controlling for all other factors affecting ridership. We contribute to transit ridership 

literature by defining various approaches to incorporate the impact of the new transit system 

addition (commuter rail) on existing transit system (bus) in the bus ridership model.  In addition 

to accommodating for commuter rail variables, the model system also controls for a host of 

independent variables including stop level attributes, transportation infrastructure variables, transit 

infrastructure variables, land use and built environment attributes and demographic and 

socioeconomic variables. 

 

3 ECONOMETRIC METHODLOGY 

 

Let q (q = 1, 2,…, Q) be an index to represent bus stops, let t (t = 1, 2, 3,…, T) represent the 

different time periods and j (j = 1, 2, 3,…, J = 13) be an index to represent the average weekday 

boardings or alightings data. We consider thirteen categories for ridership analysis and these 

                                                 
2 To be sure, a previous research effort has considered the application of a simpler grouped response model. Eluru et 

al. (2009) have employed the grouped response structure without any alternative specific effects and a different 

structure of unobserved heterogeneity for residential tenure duration analysis. The unobserved heterogeneity 

considered in the paper does not include factors affecting multiple ordered dependent variables. Furthermore, the study 

does not explicitly provide details of the advantages of the framework. 
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categories are: Bin 1 = ≤5; Bin 2 = 5-10; Bin 3 = 10-20, Bin 4 = 20-30, Bin 5 = 30-40, Bin 6 = 40-

50, Bin 7 = 50-60, Bin 8 = 60-70, Bin 9 = 70-80, Bin 10 = 80-90, Bin 11 = 90-100, Bin 12 = 100-

120 and Bin 13= >120. The frequency of these 13 categories is provided in Table 1. Then, the 

equation system for modeling boarding and alighting jointly may be written as follows: 

𝐵𝑞𝑡
∗  = (𝛼′ + 𝛾𝑞

′)𝑥𝑞𝑡 + (𝜌𝑗
′)𝑧𝑞𝑗𝑡 + (𝜂′

𝑞
)𝑦𝑞𝑡 + 𝜀𝑞𝑡, 𝐵𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝐵𝑞𝑡

∗ ≤ 𝜓𝑗  (1)  

𝐴𝑞𝑡
∗  = (𝛽′ + 𝛿𝑞

′ )𝑥𝑞𝑡 + (𝜏𝑗
′)𝑧𝑞𝑗𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡 + 𝜉𝑞𝑡, 𝐴𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝐴𝑞𝑡

∗ ≤ 𝜓𝑗 (2)  

In equation 1, 𝐵𝑞𝑡
∗  is the latent (continuous) propensity for stop level boardings of stop q 

for the tth time period. This latent propensity 𝐵𝑞𝑡
∗  is mapped to the actual grouped ridership category 

j by the 𝜓 thresholds, in the usual ordered-response modeling framework. In our case, we consider 

J = 13 and thus the 𝜓 values are as follows: -∞, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, and 

+∞. 𝑥𝑞𝑡 is a matrix of attributes that influence the boardings and alightings (including the constant); 

𝛼 is the corresponding vector of mean coefficients and 𝛾𝑞 is a vector of coefficients representing 

the impact of unobserved factors moderating the influence of corresponding element of 𝑥𝑞𝑡. 

Further 𝑧𝑞𝑗𝑡 is a vector of attributes specific to stop 𝑞 and ridership category alternative 𝑗 and 𝜌𝑗 

is the vector of corresponding ridership category-specific coefficients.  𝜀𝑞𝑡 is an idiosyncratic 

random error term assumed independently logistic distributed across choice stops and choice 

occasions with variance 𝜆𝐵
2 .  

In equation 2, 𝐴𝑞𝑡
∗  is the latent (continuous) propensity for stop level alightings of stop q 

for the tth time period. This latent propensity 𝐴𝑞𝑡
∗  is mapped to the actual grouped ridership category 

j by the 𝜓 thresholds, similar to boardings. 𝛽 is the corresponding vector of mean coefficients and 

𝛿𝑞is a vector of coefficients representing the impact of unobserved factors moderating the 

influence of corresponding element of 𝑥𝑞𝑡. Further 𝑧𝑞𝑗𝑡 is a vector of attributes specific to stop 𝑞 

and ridership category alternative 𝑗 and 𝜏𝑗 is the vector of corresponding Ridership category-

specific coefficients. 𝜉𝑞𝑡 is an idiosyncratic random error term assumed independently logistic 

distributed across choice stops and choice occasions with variance 𝜆𝐴
2. The variance vectors for 

boarding’s and alighting’s are parameterized as a function of independent variables as follows: 

𝜆𝐵 = exp (𝜃′𝑧𝑞𝑡) and: 𝜆𝐴 = exp (𝜗′𝑧𝑞𝑡). The parameterization allows for the variance to be 

different across the bus stops accommodating for heteroscedasticity.  

𝜂𝑞 represents the vector of coefficients representing the impact of stop level common 

unobserved factors that jointly influence boardings and alightings. The ′ ± ′ sign indicates the 

potential impact could be either positive or negative. A positive sign implies that unobserved 

factors that increase the propensity for boarding for a given reason will also increase the propensity 

for alighting, while a negative sign suggests that unobserved individual factors that increase the 

propensity for boarding will decrease the propensity for alighting. In our empirical context, we 

expect the relationship to be positive. To complete the model structure of the Equations (1) and 

(2), it is necessary to define the structure for the unobserved vectors 𝛾𝑞 , 𝛿𝑞 and 𝜂𝑞. In this paper, 

we assume that the three vectors are independent realizations from normal distributions as follows: 

𝛾𝑞𝑚 ~𝑁(0, 𝜎𝑚
2 ) 𝛿𝑞𝑚~𝑁(0, 𝜈𝑚

2 )and 𝜂𝑞𝑚 ~𝑁(0, 𝜚𝑚
2 ). 
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With these assumptions, the probability expressions for the ridership category may be 

derived. Conditional on 𝛾𝑞𝑚, 𝛿𝑞𝑚 and 𝜂𝑞𝑚, the probability for stop q to have boarding and alighting 

in category j in the tth time period is given by: 

𝑃(𝐵𝑞𝑡)|𝛾, 𝜂 =  Λ [
𝜓𝑗−((𝛼′+𝛾𝑞

′)𝑥𝑞𝑡+(𝜌𝑗
′)𝑧𝑞𝑗𝑡+(𝜂′

𝑞)𝑦𝑞𝑡)

𝜆𝐵
] −  Λ

[
𝜓𝑗−1−((𝛼′+𝛾𝑞

′)𝑥𝑞𝑡+(𝜌𝑗
′)𝑧𝑞𝑗𝑡+(𝜂′

𝑞)𝑦𝑞𝑡+)

𝜆𝐵
]  

(3)  

𝑃(𝐴𝑞𝑡)|𝛿, 𝜂 =  Λ

[
 
 
 
 𝜓𝑗 − ((𝛽

′
+ 𝛿𝑞

′
)𝑥𝑞𝑡 + (𝜏𝑗

′)𝑧𝑞𝑗𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐵

]
 
 
 
 

−  Λ

[
 
 
 
 𝜓𝑗−1 − ((𝛽

′
+ 𝛿𝑞

′
)𝑥𝑞𝑡 + (𝜏𝑗

′)𝑧𝑞𝑗𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐵

]
 
 
 
 

 

(4)  

where Λ (.) is the cumulative standard logistic distribution.  

The complete set of parameters to be estimated in the joint model system of Equations (3) 

and (4) are 𝛼, 𝛽, 𝜌, 𝜏, 𝜃 and 𝜗 vectors and the following standard error terms: 𝜎𝑚 , 𝜈𝑚  and 𝜚𝑚. Let 

Ω  represent a vector that includes all the standard error parameters to be estimated. Given these 

assumptions the joint likelihood for stop level boarding and alighting is provided as follows  

𝐿𝑞|Ω =  ∏ ∏ (𝑃(𝐵𝑞𝑡)|𝛾, 𝜂)
𝑑𝑏𝑗𝑡

(𝑃(𝐴𝑞𝑡)|𝛿, 𝜂)
𝑑𝑎𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1
 (5)  

where 𝑑𝑏𝑗𝑡 and 𝑑𝑎𝑗𝑡 are dummy variables taking a value of 1 if stop q has ridership within the jth   

category for the tth time period and 0 otherwise. Finally, the unconditional likelihood function may 

be computed for stop q as: 

𝐿𝑞 = ∫ (𝐿𝑞|Ω)𝑑Ω
Ω

 

 

(6)  

The log-likelihood function is given by 

Ln(L) =  ∑ ln 𝐿𝑞

𝑄

𝑞=1
 

 

(7)  

The likelihood function in Equation (7) involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in Ω. We apply Quasi-Monte Carlo simulation 
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techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function (See Bhat 

2001; Yasmin and Eluru 2013 for more details). The likelihood functions are programmed in Gauss 

(Aptech 2016).  

 

4 EMPIRICAL ANALYSIS 

 

The major focus of the proposed research effort is to evaluate the influence of the recently 

inaugurated commuter rail system “SunRail” in Orlando on bus ridership while controlling for 

host of other independent variables. Orlando is one of the most populous cities of Florida. Orlando 

is a typical American city in the south with the following transportation mode share: automobile 

(85.7%), public transit (1.0%), walk (9.2%) and bike (1.2%). The main public transit system 

serving the Orlando metropolitan region is the Lynx transit system. Lynx system serves the 

population of about 1.8 million in Orange, Seminole, Osceola and Polk County covering 2,500 

square miles. The system has 77 daily routes offering about 105,682 rides on weekdays. SunRail, 

a commuter rail system has been introduced in the city on May 1, 2014. During the study period 

after May 2014, SunRail system had a 31 miles long line with 12 active stations that connected 

Volusia county and Orange county (SunRail service has been expanded from April 2016). The 

system served an average of 3,800 passengers on weekdays in 2015. Figure 1 represents the study 

area along with Lynx bus route, bus stop, Sunrail line and Sunrail station locations.  

For the purpose of our analysis, stop level average weekday boarding and alighting 

ridership data for 6 quadrimester time periods are considered. These include the following 6-time 

period: May through August 2013, September through December 2013, January through April 

2014, May through August 2014, September through December 2014, January through April 2015. 

The ridership information was processed for all the 6 time periods and analyzed to ensure data 

availability and accuracy. The resulting data provided ridership information for 3,745 stops across 

the 6 time periods. The ridership data was augmented with stop level headway, route length as 

well as route to stop correspondence for Lynx across the 6-time periods. We consider thirteen 

categories for ridership analysis and these categories are: Bin 1 = ≤5; Bin 2 = 5-10; Bin 3 = 10-20, 

Bin 4 = 20-30, Bin 5 = 30-40, Bin 6 = 40-50, Bin 7 = 50-60, Bin 8 = 60-70, Bin 9 = 70-80, Bin 10 

= 80-90, Bin 11 = 90-100, Bin 12 = 100-120 and Bin 13= >120. A summary of the system level 

ridership (boarding and alighting) are provided in Table 2. The average weekday boarding 

(alighting) across the 6-time periods range from 71,006 (71,029) to 77,940 (76,725).  

We have considered several variables related to SunRail. First, we considered a temporal 

SunRail indicator variable for the six time periods as (0,0,0,0,1,2); each quadrimester data has been 

defined by the introduction of SunRail. Second, we generated a SunRail effect variable (Yes/No), 

that identifies bus stops that are affected by SunRail. While there might be a system level effect, 

it is more realistic to consider the impact of SunRail on stop level ridership based on connectivity 

as well as proximity from different SunRail stations. For this purpose, we identified specific bus 

routes that intersect or pass through the SunRail system. Of the 77 bus routes operated by Lynx, 

we found that 60 routes are within the SunRail influence zone (i.e. pass through SunRail). These 

routes account for 3,321 out of the 3,745 stops considered in our analysis. Third, we generated 

station specific distance based measures such as squared distance between SunRail station and the 

bus stop or stops affected by a particular station (through intersection of bus route and SunRail 

station).The rest of the independent variable information was generated based on multiple sources 

including 2010 US census data, 2009-2013 American Community Survey, Florida Geographic 

Data Library, and Florida Department of Transportation (FDOT) databases. The independent 
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variables considered for the empirical analysis can broadly be categorized as stop level attributes, 

transportation infrastructure characteristics, built environment attributes, demographic and 

socioeconomic characteristics, temporal effects and SunRail effects. Stop level attributes include 

headway, number of bus stops in a buffer around stops. Transportation infrastructure 

characteristics include bus route, side walk and rail road lengths in a buffer around stops. Built 

environment attributes include land use mix3 in a buffer around stops and distance of stop from 

central business district (CBD). Demographic and socioeconomic characteristics include number 

of population aged 17 and less, number of population with education at some college level, number 

of population with education at bachelor level, number of households with low income level and 

number of owned households by residents. The demographic and socioeconomic characteristics 

are generated at the census tract level. In terms of Temporal effect, we introduced a variable called 

“time elapsed” which is the time difference between the most recent quarters from the base quarter 

(May through August 2013) considered in the current study context. In our case, for the 6 

quadrimesters, the variable takes the following values: 0, 1, 2, 3, 4 and 5. Finally the SunRail effect 

for each station includes variables representing the SunRail station influenced stops and SunRail 

operation period. Several buffer sizes - 800m, 600m, 400m, and 200m - around the bus stop were 

employed for variable generation. A summary of the independent variables generated is provided 

in Table 3. For the sake of brevity, the presentation was restricted to variables found to be 

significant in the final specified model.  

 

5 MODEL ESTIMATION RESULTS 

 

5.1 Model Specification and Overall Measures of Fit 
 

The empirical analysis involves estimation of different models: 1) independent grouped ordered 

logit (IGOL) models for boarding and alighting, 2) joint panel mixed grouped ordered logit 

(JPMGOL) model for boarding and alighting without correlation parameterization, and 3) joint 

panel mixed grouped ordered logit model for boarding and alighting with correlation 

parameterization (JPMGOLc). The independent models were estimated to establish a benchmark 

for comparison. Prior to discussing the estimation results, we compare the performance of these 

models in this section. As the three models are nested within each other, we employ a likelihood 

ratio (LR) test to determine the best model between independent and joint models. The LR test 

statistic is computed as LR = 2 (LLUR - LLR) where LLUR and LLR represents the log-likelihood of 

the unrestricted model and restricted model, respectively. If the LR statistic computed is greater 

than the corresponding chi-square value at a particular level of significance the unrestricted model 

is considered to be superior to the restricted model. The number of degrees of freedom used for 

the chi-square evaluation are determined based on the difference in the number of parameters in 

the two models.  

The log-likelihood values at convergence for the models estimated are as follows: (1) IGOL 

(with 30 parameters) is -65,230.750, (2) JPMGOL (with 37 parameters) is -44,234.747 and (3) 

JPMGOLc (with 38 parameters) is -44,232.650.  The LR test statistic for comparison between 

JPMGOLc and JPMGOL is 4.2 (> corresponding chi-square value at the 95% level) and between 

JPMGOLc and IGOL is 42000 (> corresponding chi-square value at any level of significance). 

                                                 
3 Land use mix = [

−∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-use, 𝑝 is the proportion of the developed land area 

devoted to a specific land-use, 𝑁  is the number of land-use categories within 1mile buffer of the roadway segment. 
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The LR test computation clearly highlights the superior performance of the JPMGOLc model 

relative to the other two models. 

 

5.2 Variable Effects 
 

The final specification of the model development was based on removing the statistically 

insignificant variables in a systematic process based on statistical significance (95% significance 

level). The specification process was also guided by prior research and parsimony considerations. 

In estimating the models, several functional forms and variable specifications were explored. The 

functional form that provided the best result was used for the final model specifications. For 

variables in various buffer sizes, each variable for a buffer size was systematically introduced 

(starting from 800m to 200m buffer size) and the buffer variable that offered the best fit was 

considered in the final specification. In presenting the effects of independent variables, we will 

restrict ourselves to the discussion of the JPMGOLc model. The model estimates for boarding, 

alighting and joint effects are presented in Table 4. The variable results across different 

independent variable categories are presented below. 

 

5.2.1 Stop Level Attributes 

 

As is expected, headway at the stop level has a significant influence on ridership. We observe that 

with increasing headway, boarding and alighting are likely to reduce. The result highlights how 

transit frequency directly affects ridership. The results for number of Lynx bus stops in the 800m 

buffer indicates that the presence of more number of bus stops in an 800m buffer contributes to 

reduced ridership. The result is in contradiction to earlier work (see Chakour and Eluru 2016). The 

result is perhaps indicating competition across the stops for the same ridership population. 

 

5.2.2 Transportation Infrastructure Characteristics 

 

Transportation infrastructure offered quite complex effects on total ridership. Bus route length in 

the buffer has a positive impact on ridership for both boarding and alighting. Interestingly, the 

influence of buffer size is slightly different for boarding and alighting. The bus route length in the 

600 m buffer offered the best fit for boarding whereas the corresponding buffer for alighting was 

800 m. The results clearly demonstrate that increasing route length (an indication of higher transit 

accessibility) is correlated with higher ridership. A similar positive impact is observed for side 

walk length variables. On the other hand, increasing rail length in the buffer around a stop is related 

to lower boarding and alighting ridership. The rail length in the 600 m buffer offered the best 

results for alighting and corresponding buffer size for boarding is 400m. The presence of higher 

rail road length is a surrogate for the land use in the vicinity.  

 

5.2.3 Built Environment Attributes 

 

Built environment variable estimates indicate significant influence on bus ridership at the stop 

level. Land use mix variables in different buffer size near bus stop significantly increased the 

boarding and alighting ridership in Orlando. The impact of land use mix is observed for the 400 m 

buffer for boarding and the 800 m buffer for alighting. The distance from the CBD variable 

highlights how in Orlando region, ridership reduces as the distance from CBD increases. 
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5.2.4 Demographic and Socioeconomic Characteristics 

 

The demographic and socioeconomic variables based on census tract of the bus stop significantly 

affect the bus ridership in Orlando. The presence of larger share of young population (age 17 and 

below) contributes to increased level of boarding and alighting. The presence of higher proportion 

of education level at college and bachelor level reduces ridership. Education at college level effect 

is significant in the boarding component only. Overall, the effect of education on ridership perhaps 

is a reflection of higher economic status of the census tracts with higher share of such individuals. 

The increased presence of low income population is likely to be positively associated with bus 

ridership, as is expected. On the other hand, increased share of household ownership has a negative 

influence on public transit ridership, presumably also reflecting the higher economic wealth and 

more private auto inclination for this group of population.  

 

5.2.5 Temporal and SunRail Effects 

 

The major objective of the paper was to study the influence of SunRail system on bus ridership 

while also controlling for all other attributes. The variable for SunRail impact is present only for 

three time-periods. As described earlier, we considered several variables related to SunRail. 

However, no system level impacts were statistically significant. The interactions of SunRail 

influenced stops and SunRail operation period are found to be significant for two stations – Church 

Street and AMTRAK SunRail stations.  The Church Street Sunrail station positively affected the 

alighting ridership but negatively affected boarding ridership. The AMTRAK SunRail station 

influenced stops are likely to have higher boarding with no perceivable impact on alighting. 

Finally, the overall temporal variable repenting the time trend of ridership indicates an overall 

reduction in bus alightings with no impact on boarding. Overall, the results are not as encouraging 

as is expected of a new commuter rail addition. From our analysis, it appears that the bus ridership 

is marginally affected by SunRail addition in the region.  

 

5.2.6 Alternative Specific Effects 

 

In the grouped ordered specification of the joint model, we also estimate alternative specific 

constants for categories considered across different ridership components. It is worthwhile to 

mention here that it is possible to estimate group-specific effects for each group considered across 

different components. However, in our joint model specifications, we estimate group-specific 

effects if it improves data fit. The results of these group specific effects are presented in second 

row panel of Table 4. With respect to boarding and alighting, group-specific components are 

estimated for category 1 (ridership ≤5) and category 2 (ridership 6-10), respectively. Adding more 

group-specific components did not improve the data fit further in the current study context and 

hence are not included in our final joint model specifications. These parameters are similar to 

constants in discrete choice models and do not really have a substantive interpretation.  

 

5.2.7 Scale Parameter 

 

As indicated earlier, in the JPMGOLc model specification, we introduce scale parameters both in 

the boarding and alighting components to reflect the variance of the unobserved portion for each 

group. From Table 4, in the second to last row panel, we can see that the scale parameters are 
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significant for both the dimensions. The result confirms the presence of heteroscedasticity across 

stops highlighting the appropriateness of the proposed model structure.  

 

5.2.8 Correlation Effects 

 

The estimation results of the correlation effects are presented in last row panel of Table 4. We can 

see that the dependence effects are significant. Further, from the estimated results we can see that 

the dependencies are characterized by additional exogenous variables. This provides support to 

our hypothesis that the dependency structure is not the same across the observations. The various 

exogenous variables that contribute to the dependency include temporal effect and headway. The 

parameters represent common correlation between boarding and alighting. As shown in Equation 

2 of Section 3, the correlation between the two components could be either positive or negative. 

In our analysis, we found the positive sign to offer better fit for common correlation. Overall, the 

results clearly support our hypothesis that common unobserved factors influence the two 

components. After accommodating for common unobserved heterogeneity, no random parameters 

(γ and δ) were found to be significant in our model.  

 

6 POLICY ANALYSIS 

 

In order to highlight the effect of various attributes over time on boarding and alighting ridership, 

an elasticity analysis is also conducted (see Eluru and Bhat 2007 for a discussion on the 

methodology for computing elasticities). We investigate the change in ridership, due to the change 

in selected independent variables. Specifically, we compute the change in ridership (both boarding 

and alighting) for change in headway, sidewalk length, route length, low income population 

percentage, CBD distance from bus stop, Young population percentage and temporal ID for the 

thirteen ridership categorise considered. The total boardings and alightings are calculated for all 

the above categories for the percentage changes of those independent variables considered. The 

results for the elasticity analysis are presented in Table 5. The reader would note that we present 

the ridership changes across the ridership categories considered in the model estimation process. 

These results by category can be translated into simple ridership numbers in a straightforward 

manner (if needed).  

Several observations can be made from the results presented in Table 5. First, headways, 

sidewalk length, CBD distance from bus stop and route length are the most important variables in 

terms of high ridership categories. These results indicate that ridership is more sensitive to transit 

attributes and endorse the need to invest in improving transit infrastructure and service in order to 

encourage transit usage. Second, the effect of higher percentage of low income population further 

indicates that reduced accessibility to private automobile increases more transit usage. Finally, and 

most importantly, with time the results indicate a reduction in the overall ridership numbers, a 

worrisome trend for the transit system. Based on our findings to increase the ridership, services 

related to public transit (improvement of headway and route length increasing) should be 

considered.  

 

7 CONCLUSION 

 

In this study, we examined the impact of new transit investments (such as an addition of commuter 

rail to an urban region) on an existing public transit system (such as the traditional bus service 

already present in the urban region). Specifically, the study developed a comprehensive and 
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statistically valid framework in studying the impact of new public transportation infrastructure 

(such as commuter rail, “SunRail”) on existing public transit infrastructure (such as bus, “Lynx”) 

in the Orlando metropolitan region. The data for the study is drawn from bus ridership information 

for six quadrimesters - 3 prior to installation of SunRail and 3 after installation of SunRail - 

allowing us to study time varying effects of SunRail system on ridership. To measure the impact 

of commuter rail on stop level bus ridership the model system controlled for a host of independent 

variables including stop level attributes, transportation infrastructure variables, transit 

infrastructure variables, land use and built environment attributes, demographic and 

socioeconomic variables. The ridership categorised considered at each stop were: Bin 1 = ≤5; Bin 

2 = 5-10; Bin 3 = 10-20, Bin 4 = 20-30, Bin 5 = 30-40, Bin 6 = 40-50, Bin 7 = 50-60, Bin 8 = 60-

70, Bin 9 = 70-80, Bin 10 = 80-90, Bin 11 = 90-100, Bin 12 = 100-120 and Bin 13= >120. 

The study formulated and estimated an innovative grouped ordered response model 

structure for the ridership analysis. The proposed model accommodates for common unobserved 

factors affecting boarding and alighting as well as repeated measures for each stop. The empirical 

analysis involved estimation of three different models: 1) independent grouped ordered logit 

(IGOL) models for boarding and alighting, 2) joint panel mixed grouped ordered logit (JPMGOL) 

model for boarding and alighting without correlation parameterization, and 3) joint panel mixed 

grouped ordered logit model for boarding and alighting with correlation parameterization 

(JPMGOLc). The comparison exercise based on information criterion clearly highlights the 

superiority of the joint model with the correlation parameterization in terms of data fit compared 

to independent model. Two variables representing the impact of interactions representing station 

specific SunRail influenced stops and SunRail operation period were found to have marginal 

impact on bus ridership. In our research, in order to highlight the effect of various attributes over 

time on boarding and alighting ridership, an elasticity analysis was also presented. We investigated 

the change in ridership due to the change in selected independent variables. The elasticity analysis 

highlights a worrisome trend of reducing transit ridership with time. Significant investments in 

transit infrastructure can arrest this trend.  

The findings offer significant utility to transit planners and agencies not only in Orlando but 

also for similar cities across the country. The models developed for Lynx bus ridership can be 

utilized for predicting ridership for project expansions and/or modification. For instance, Lynx 

agency can employ the transit ridership models to evaluate ridership changes with addition or 

modification of transit routes in Orlando region. Major recommendations from our research for 

transit agencies include: (1) increasing bus frequency for high ridership stops, (2) addition of bus 

shelters, (3) redesign routes to match with land use patterns, and (4) enhance the spatial and 

temporal connectivity between SunRail and Lynx systems. The model results would be suitable 

for similar cities where there is an opportunity for increasing ridership.  

To be sure, the research is not without the limitations. The proposed research methodology 

develops a demand forecasting system for bus systems with explicit guidance on various 

specifications to incorporate the influence of commuter rail system. However, the proposed system 

does not explicitly consider the two-way interaction between bus and rail systems. The availability 

of high-resolution data on macroeconomic characteristics such as employment rate, gas prices over 

the various time periods of analysis might be beneficial for improving the model specification. It 

would also be interesting to examine the influence of spatial effect across different bus stops in 

future research efforts. Finally, there exists a possibility that stop level headway is actually 

influenced by expected ridership. Hence, in future research efforts it might be appropriate to 

consider headway as an endogenous variable in modeling ridership.  
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Figure 1 Public Transit System (LYNX and SUNRAIL) of Orlando 
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Table 1 Frequency of the 13 ridership categories for boarding and alighting4 

Ridership 

Category 

(Bin) 

Frequency Percent Cumulative Percent 

Boarding Alighting Boarding Alighting Boarding Alighting 

1 10694 10251 51.0 48.9 51.0 48.9 

2 3642 3706 17.4 17.7 68.4 66.6 

3 2955 3123 14.1 14.9 82.5 81.4 

4 1168 1340 5.6 6.4 88.0 87.8 

5 641 700 3.1 3.3 91.1 91.2 

6 433 483 2.1 2.3 93.1 93.5 

7 305 293 1.5 1.4 94.6 94.9 

8 226 195 1.1 .9 95.7 95.8 

9 174 172 .8 .8 96.5 96.6 

10 115 113 .5 .5 97.1 97.2 

11 78 77 .4 .4 97.4 97.5 

12 144 120 .7 .6 98.1 98.1 

13 395 397 1.9 1.9 100 100.0 

 

 

  

                                                 
4 The reader should note that while we have alternatives with very small percentage, as we do not estimate alternative 

effects for these categories there is no impact on model estimation stability.  
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Table 2 Summary Statistics of Lynx Bus Ridership (August 2013 to April 2015)

Time-

period 
Quarter Name 

Boarding Alighting 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

1 August-13 22.30 160.51 21.95 152.86 

2 December-13 20.88 151.85 20.61 143.49 

3 April-14 20.54 157.83 20.32 151.89 

4 August-14 21.51 162.01 21.38 154.30 

5 December-14 20.32 151.18 20.39 146.65 

6 April-15 20.65 156.02 20.52 149.57 
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Table 3 Descriptive Statistics of Independent Variables 

Variable Name Variable Description Minimum Maximum Mean 

Stop Level Attributes         

Headway  Headway in minutes 1.11 60.00 37.63 

No of Bus stop in a          

800 m buffer (Number of bus stops in 800m buffer)/10 0.10 9.30 1.79 

Transportation Infrastructure Characteristics 

Bus route Length in a Bus route length in kilometers       

600 m buffer (Bus route length in 600 m buffer)/10 0.11 6.06 0.51 

400 m buffer (Bus route length in 400 m buffer)/10 0.05 4.17 0.27 

Side walk length in a Side walk length in kilometers    

800 m buffer   0.00 13.27 3.16 

Secondary highway length in a Secondary highway length in kilometers       

800 m buffer Secondary highway length in 800 m buffer / Total road length in 800 m 

buffer 
0.00 1.00 0.34 

Rail road length in a Rail road length in kilometers       

800 m buffer   0.00 6.04 0.31 

Local road length in a Local road length in kilometers       

800 m buffer Local road length in 800 m buffer / Total road length in 800 m buffer 0.00 1.00 0.65 

Built Environment Attributes  

Residential area in a Residential area in square kilometers       

800 m buffer Residential area in 800 m buffer / Total area in 800m buffer 0.00 1.00 0.32 

600 m buffer Residential area in 600 m buffer / Total area in 600m buffer 0.00 1.00 0.31 

Central Business area distance (km) (Central Business area distance)/10 0.00 5.06 1.18 

Demographic and Socioeconomic Characteristics  

Age 65 and up (People age 65 and up)/Census Area -6.36 3.23 -1.07 

Education level - 9 to 12 grade Education level 9 to 12 grade / Census Area -8.04 2.41 -1.50 

Low Income Category (<30k) Low income People (<30k)/Census Area -8.55 2.85 -0.77 

Vehicle Ownership - No vehicle Vehicle Ownership - No Vehicle / Census Area -8.55 1.58 -2.11 

Household ownership Household Ownership / Census Area -6.87 3.36 -0.53 

Temporal and SunRail Effects 

Church Streets SunRail station 

influenced stops*SunRail operation 

period 

Interaction term of SunRail influenced bus stops for Church Streets 

station and SunRail operation period 
0.00 1.00 0.18 

AMTRAK SunRail station 

influenced stops*SunRail operation 

period 

Interaction term of SunRail influenced bus stops for AMTRAK station 

and SunRail operation period 
0.00 1.00 0.06 
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Table 4 Panel Joint Group Ordered Logit Model Results 

Variable Name 
Boarding Alighting 

Estimates t-stat Estimates t-stat 

Constant -8.062 -4.634 -6.779 -4.828 

Stop Level Attributes     

Headway  -1.015 -48.520 -0.710 -40.330 

No of Bus stop in a      

800 m buffer -9.051 -21.032 -7.810 -19.086 

Transportation Infrastructure Characteristics 

Bus route Length in a     

800 m buffer --- --- 9.91 26.995 

600 m buffer 16.479 26.689 --- --- 

Side walk length in a     

800 m buffer 4.645 23.496 3.518 19.328 

Rail road length in a     

600 m buffer --- --- -7.044 -11.654 

400 m buffer -17.429 -14.379 --- --- 

Built environment Attributes     

Land Use mix area in a     

800 m buffer --- --- 22.357 11.985 

400 m buffer 14.110 7.969 --- --- 

Central Business area distance (km) -13.849 -27.009 -9.696 -21.332 

Demographic and socioeconomic Characteristics  

Age up to 17 10.816 17.363 8.256 14.462 

Education at some college level -4.771 -12.647 --- --- 

Education bachelor -7.822 -18.026 -6.722 -17.780 

Low income (<30K) 7.720 12.399 4.717 8.141 

HH Ownership -5.733 -10.349 -6.160 -12.325 

Temporal and SunRail Effects 

Church streets SunRail station influenced 

stops*SunRail operation period 

and before after of SunRail 

-4.098 -4.543 0.963 2.301 

AMTRAK SunRail station influenced  

stops*SunRail operation period 
3.605 3.391 

--- --- 

Temporal ID (0,1,2,3,4,5) --- --- -0.466 -6.005 

Alternative Specific Effects 

Constant – Alternative 1 (≤5 ridership) 50.755 106.590 28.919 74.165 

Constant – Alternative 2 (6-10 ridership) 24.148 67.405 13.248 42.599 

Scale Parameter 

Constant 3.211 565.330 1.672 218.060 

Correlation Effects 

Variable Name Estimates t-stat 

Constant 55.137 133.697 

Temporal ID (0,1,2,3,4,5) 1.945 28.823 

Headway 0.400 40.647 
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Table 5 Elasticity Analysis 

Boarding 

Categories 
Bins 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Headway                        

10% Decrease -4.21% 1.42% 3.10% 4.06% 4.44% 4.80% 5.14% 5.46% 5.75% 6.03% 6.29% 6.62% 7.30% 

25% Decrease -9.59% 3.19% 8.19% 11.40% 12.74% 14.05% 15.33% 16.57% 17.76% 18.92% 20.02% 21.49% 24.82% 

Sidewalk at 800 m buffer                        

10% Increase -1.52% 0.07% 0.98% 1.62% 1.90% 2.18% 2.46% 2.74% 3.03% 3.33% 3.62% 4.01% 5.15% 

25% Increase -3.77% 3.98% 4.72% 5.46% 6.21% 6.99% 7.80% 8.64% 9.49% 10.68% 14.30% -3.77% 3.98% 

Route Length at 600m 

buffer 
                       

10% increase -0.84% 0.00% 0.51% 0.89% 1.06% 1.23% 1.40% 1.59% 1.79% 2.00% 2.21% 2.49% 3.66% 

25% increase -2.08% -0.03% 1.24% 2.21% 2.65% 3.08% 3.53% 4.01% 4.52% 5.07% 5.64% 6.46% 9.89% 

Low Income population              

10% increase -0.61% 0.21% 0.49% 0.69% 0.78% 0.88% 0.98% 1.07% 1.15% 1.23% 1.28% 1.33% 1.35% 

25% increase -1.52% 0.47% 1.20% 1.73% 1.98% 2.25% 2.51% 2.76% 3.00% 3.20% 3.37% 3.52% 3.60% 

CBD from bus stop              

10% Decrease -1.69% 0.60% 1.37% 1.82% 2.01% 2.18% 2.36% 2.54% 2.71% 2.88% 3.04% 3.21% 3.56% 

25% Decrease -4.09% 1.41% 3.48% 4.78% 5.31% 5.83% 6.34% 6.86% 7.38% 7.90% 8.38% 8.97% 10.11% 

Young population (Age 0 to 

17 years old) 
                       

10% increase 0.32% -0.11% -0.26% -0.36% -0.41% -0.48% -0.54% -0.62% -0.69% -0.75% -0.78% -0.78% -0.63% 

25% increase 0.81% -0.38% -0.68% -0.88% -0.98% -1.10% -1.22% -1.36% -1.49% -1.59% -1.64% -1.57% -1.12% 

Alighting 

Categories 
Bins 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Headway              

10% Decrease -3.59% 0.88% 2.64% 3.04% 3.35% 3.98% 3.84% 5.03% 6.20% 6.00% 5.53% 6.63% 7.26% 
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25% Decrease -8.25% 1.83% 6.50% 8.87% 9.36% 10.81% 11.69% 13.66% 19.35% 18.97% 18.27% 20.35% 25.20% 

Sidewalk at 800 m buffer              

10% Increase -1.47% 0.08% 0.80% 0.98% 1.85% 1.90% 2.08% 2.37% 3.46% 3.88% 3.79% 4.18% 5.26% 

25% Increase -3.64% -0.05% 2.09% 2.11% 4.69% 4.83% 5.28% 5.72% 8.82% 10.30% 10.77% 10.81% 15.06% 

Route Length at 800m 

buffer 
             

10% increase -1.11% -0.04% 0.50% 0.81% 1.28% 1.48% 1.75% 1.68% 2.81% 3.93% 3.36% 3.20% 4.69% 

25% increase -2.70% -0.29% 1.25% 2.06% 3.56% 3.18% 4.21% 4.94% 7.07% 8.87% 10.10% 9.54% 13.12% 

Low Income population              

10% increase -0.47% 0.21% 0.31% 0.40% 0.34% 0.43% 0.88% 0.81% 1.26% 1.42% 1.05% 0.90% 0.93% 

25% increase -1.17% 0.45% 0.77% 0.98% 1.02% 0.91% 2.15% 2.09% 3.20% 3.85% 2.54% 2.26% 2.48% 

CBD from bus stop              

10% Decrease -1.46% 0.35% 1.17% 1.35% 1.54% 2.01% 1.86% 2.23% 2.46% 2.56% 2.88% 3.83% 3.00% 

25% Decrease -3.53% 0.76% 2.89% 3.67% 3.87% 5.15% 5.20% 6.01% 6.91% 6.42% 7.72% 10.93% 8.56% 

Young population (Age 0 to 

17 years old)              

10% increase 0.30% -0.11% -0.20% -0.35% 0.03% -0.25% -0.91% -0.38% -0.92% -1.20% -1.17% -0.69% -0.24% 

25% increase 0.78% -0.48% -0.60% -0.65% 0.33% -1.00% -2.26% -0.91% -1.43% -2.26% -2.80% -1.94% 0.13% 

Temporal ID               

2016 (6,7,8,9,10,11) 3.53% -0.94% -2.58% -3.57% -3.91% -4.48% -4.76% -6.92% -8.99% -7.80% -8.21% -9.77% -10.11% 

2017 (9,10,11,12,13,14) 3.42% -0.95% -2.65% -3.68% -4.07% -4.67% -4.95% -7.40% -9.78% -8.36% -8.83% -10.75% -11.21% 

Note: Bin 1 = ≤5; Bin 2 = 5-10; Bin 3 = 10-20, Bin 4 = 20-30, Bin 5 = 30-40, Bin 6 = 40-50, Bin 7 = 50-60, Bin 8 = 60-70, Bin 9 = 70-80, Bin 10 = 80-90, Bin 11 = 90-100, 

Bin 12 = 100-120 and Bin 13= >120 ridership in each stop 

 

 

 

 

 

 


