
 

 

Stochastic Frontier Estimation of Budgets for Kuhn-Tucker Demand Systems: Application 

to Activity Time-use Analysis 
 

 

Abdul Rawoof Pinjari* 

Department of Civil & Environmental Engineering 

University of South Florida, ENB 118 

4202 E. Fowler Ave., Tampa, Fl 33620 

Tel: (813) 974-9671; Fax: (813) 974-2957; Email: apinjari@usf.edu 

 

Bertho Augustin 

Department of Civil & Environmental Engineering 

University of South Florida  

4202 E. Fowler Ave., Tampa, Fl 33620 

Tel: (239) 285-3669; Fax: (813) 974-2957; Email: bertho@mail.usf.edu 

 

Vijayaraghavan Sivaraman 

Airsage, Inc. 

1330 Spring Street NW, Suite 400 

Atlanta, GA 30309  

Tel: (678) 399-6984; Email: vsivaraman@airsage.com  

 

Ahmadreza Faghih Imani 

Department of Civil Engineering & Applied Mechanics 

McGill University 

Tel: (514) 398-6823, Fax: (514) 398-7361; Email: seyed.faghihimani@mail.mcgill.ca 

 

Naveen Eluru 

Department of Civil, Environmental and Construction Engineering 

University of Central Florida 

Tel: 1-407-823-4815, Fax: 1-407-823-3315, Email: naveen.eluru@ucf.edu 

 

Ram M. Pendyala 

Georgia Institute of Technology, School of Civil and Environmental Engineering 

Mason Building, 790 Atlantic Drive, Atlanta, GA 30332-0355  

Phone: 404-385-3754, Fax: 404-894-2278, Email: ram.pendyala@ce.gatech.edu 

 

* Corresponding author 

 

 

mailto:apinjari@usf.edu
mailto:vsivaraman@airsage.com
mailto:seyed.faghihimani@mail.mcgill.ca
mailto:naveen.eluru@ucf.edu
mailto:ram.pendyala@ce.gatech.edu


1 
 

 

ABSTRACT 

We propose a stochastic frontier approach to estimate budgets for the multiple discrete-

continuous extreme value (MDCEV) model. The approach is useful when the underlying time 

and/or money budgets driving a choice situation are unobserved, but the expenditures on the 

choice alternatives of interest are observed. Several MDCEV applications hitherto used the 

observed total expenditure on the choice alternatives as the budget to model expenditure 

allocation among choice alternatives. This does not allow for increases or decreases in the total 

expenditure due to changes in choice alternative-specific attributes, but only allows a 

reallocation of the observed total expenditure among different alternatives. The stochastic 

frontier approach helps address this issue by invoking the notion that consumers operate under 

latent budgets that can be conceived (and modeled) as the maximum possible expenditure they 

are willing to incur. The proposed method is applied to analyze the daily out-of-home activity 

participation and time-use patterns in a survey sample of non-working adults in Florida. First, a 

stochastic frontier regression is performed on the observed out-of-home activity time expenditure 

(OH-ATE) to estimate the unobserved out-of-home activity time frontier (OH-ATF). The 

estimated frontier is interpreted as a subjective limit or maximum possible time individuals can 

allocate to out-of-home activities and used as the time budget governing out-of-home time-use 

choices in an MDCEV model. The efficacy of this approach is compared with other approaches 

for estimating time budgets for the MDCEV model, including: (a) a log-linear regression on the 

total observed expenditure for out-of-home activities, and (b) arbitrarily assumed, constant time 

budgets for all individuals in the sample. A comparison of predictive accuracy in time-use 

patterns suggests that the stochastic frontier and log-linear regression approaches perform better 

than arbitrary assumptions on time budgets. Between the stochastic frontier and log-linear 

regression approaches, the former results in slightly better predictions of activity participation 

rates while the latter results in slightly better predictions of activity durations. A comparison of 

policy simulations demonstrates that the stochastic frontier approach allows for the total out-of-

home activity time expenditure to either expand or shrink due to changes in alternative-specific 

attributes. The log-linear regression approach allows for changes in total time expenditure due to 

changes in decision-maker attributes, but not due to changes in alternative-specific attributes.  
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1 INTRODUCTION 

Numerous consumer choices are characterized by “multiple discreteness” where consumers can 

potentially choose multiple alternatives from a set of discrete alternatives available to them. 

Along with such discrete-choice decisions of which alternative(s) to choose, consumers typically 

make continuous-quantity decisions on how much of each chosen alternative to consume. Such 

multiple discrete-continuous (MDC) choices are being increasingly recognized and analyzed in a 

variety of social sciences, including transportation, economics, and marketing.  

  A variety of approaches have been used to model MDC choices. Among these, an 

increasingly popular approach is based on the classical microeconomic consumer theory of 

utility maximization. Specifically, consumers are assumed to optimize a direct utility function 

( )U t  over a set of non-negative consumption quantities 
1

( , ..., , ..., )
k K

t t tt  subject to a budget 

constraint, as below: 

Max ( )U t such that 
1

K

k k

k

p t y



  and 0 1, 2 , ...,
k

t k K  
     

(1) 

In the above Equation, ( )U t  is a quasi-concave, increasing, and continuously differentiable 

utility function of the consumption quantities, ( 1, 2 , ..., )
k

p k K  are unit prices for all goods, and 

y is a budget for total expenditure. A particularly attractive approach for deriving the demand 

functions from the utility maximization problem in Equation (1), due to Hanemann (1978) and 

Wales and Woodland (1983), is based on the application of Karush-Kuhn-Tucker (KT) 

conditions of optimality with respect to the consumption quantities. When the utility function is 

assumed to be randomly distributed over the population, the KT conditions become randomly 

distributed and form the basis for deriving the probability expressions for consumption patterns. 

Due to the central role played by the KT conditions, this approach is called the KT demand 

systems approach (or KT approach, in short). 

Over the past decade, the KT approach has received significant attention for the analysis 

of MDC choices in a variety of fields, including environmental economics (von Haefen and 

Phaneuf, 2005), marketing (Kim et al., 2002), and transportation. In the transportation field, the 

multiple discrete-continuous extreme value (MDCEV) model formulated by Bhat (2005, 2008) 

has lead to an increased use of the KT approach for analyzing a variety of choices, including 

individuals’ activity participation and time-use (Habib and Miller, 2008; Pinjari et al., 2009; 

Chikaraishi et al., 2010; Eluru et al., 2010; Spissu et al., 2011; Sikder and Pinjari, 2014), 
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household vehicle ownership and usage (Ahn et al., 2008; Jaggi et al., 2011; Sobhani et al., 2013; 

Faghih-Imani et al., 2014), recreational/leisure travel choices (von Haefen and Phaneuf, 2005; 

Van Nostrand et al., 2013), energy consumption choices, and builders’ land-development choices 

(Farooq et al., 2013; Kaza et al., 2010). Thanks to these advances, KT-based MDC models are 

being increasingly used in empirical research and have begun to be employed in operational 

travel forecasting models (Bhat et al., 2013a). On the methodological front, recent literature in 

this area has started to enhance the basic formulation in Equation (1) along three specific 

directions: (a) toward more flexible, non-additively separable utility functions that accommodate 

rich substitution and complementarity patterns in consumption (Bhat et al., 2013b), (b) toward 

more flexible stochastic specifications for the random utility functions (Pinjari and Bhat, 2010; 

Pinjari, 2011; Bhat et al., 2013c), and (c) toward greater flexibility in the specification of the 

constraints faced by the consumer (Castro et al., 2012).  

1.1 Gaps in Research  

Despite the methodological advances and many empirical applications, one particular issue 

related to the budget constraint has yet to be resolved. Specifically, almost all KT model 

formulations in the literature, including the MDCEV model, assume that the available budget for 

total expenditure, i.e. y  in Equation (1), is fixed for each individual (or for each choice 

occasion, if repeated choice data is available). Given the fixed budget, any changes in the 

decision-maker characteristics, choice alternative attributes, or the choice environment can only 

lead to a reallocation of the budget among different choice alternatives. The formulation itself 

does not allow either an increase or a decrease in the total available budget. Consider, for 

example, the context of households’ vehicle holdings and utilization. In most applications of the 

KT approach for this context (Bhat et al., 2009, Ahn et al., 2008), a total annual mileage budget 

is assumed to be available for each household. This mileage budget is obtained exogenously for 

use in the KT model, which simply allocates the given total mileage among different vehicle 

types. Therefore, any changes in household characteristics, vehicle attributes (e.g., prices and 

fuel economy) and gasoline prices can only lead to a reallocation of the given mileage budget 

among the different vehicle types without allowance for either an increase or a decrease in the 

total mileage. Similarly, in the context of individuals’ out-of-home activity participation and 

time-use, most applications of the KT approach consider an exogenously available total time 



4 
 

 

budget that is allocated among different activity type alternatives. The KT model itself does not 

allow either an increase or decrease in the total time expended in the activities of interest. 

It is worth noting that the fixed budget assumption is not a theoretical/conceptual flaw of 

the consumer’s utility maximization formulation per se. Classical microeconomics typically 

considered the consumption of broad consumption categories such as food, housing, and 

clothing. In such situations, all consumption categories potentially can be considered in the 

model while considering natural constraints such as total income for the budget. Similarly, 

several time-use analysis applications can use natural constraints individuals face as their time 

budgets (e.g., 24 hours in a day). However, many choice situations of interest involve the 

analysis of a specific broad category of consumption, with elemental consumption alternatives 

within that broad category, as opposed to all possible consumption categories that can possibly 

exhaust naturally available time and/or money budgets. For example, in a marketing context 

involving consumer purchases of a food product (say, yogurt), one can observe the different 

brands chosen by a consumer along with the consumption amount of (and expenditure on) each 

brand, but cannot observe the maximum amount of expenditure the consumer is willing to 

allocate to the product. It is unreasonable to assume that the consumer would consider his/her 

entire income as the budget for the choice occasion.  

The above issue has been addressed in two different ways in the literature, as discussed 

briefly here (see Chintagunta and Nair, 2010; and von Haefen, 2010). The first option is to 

consider a two-stage budgeting process by invoking the assumptions of separability of 

preferences across a limited number of broad consumption categories and homothetic 

preferences within each broad category. The first stage involves allocation between the broad 

consumption categories while the second stage involves allocation among the elemental 

alternatives within the broad category of interest. The elemental alternatives in the broad 

consumption category of interest are called inside goods. The second option is to consider a 

Hicksian composite commodity (or multiple Hicksian commodities, one for each broad 

consumption category) that bundles all consumption alternatives that are not of interest to the 

analyst into a single outside good (or multiple outside goods, one for each broad consumption 

category). The assumption made here is Hicksian separability, where the prices of all elementary 

alternatives within the outside good vary proportionally and do not influence the choice and 
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expenditure allocation among the inside goods (see Deaton and Muellbauer, 1980). The analyst 

then models the expenditure allocation among all inside goods along with the outside good.  

Many empirical studies use variants of the above two approaches either informally or 

formally with well-articulated assumptions. For instance, one can informally mimic the two-

stage budgeting process by modeling the total expenditure on a specific set of choice alternatives 

of interest to the analyst in the first stage. The natural instinct may be to use linear (or log-linear) 

regression to model the total expenditure in the first stage. Subsequently, the second stage 

allocates the total expenditure among the different choice alternatives of interest. This approach 

is straightforward and also allows the total expenditure (in the first-stage regression) to depend 

on the characteristics of the choice-maker and the choice environment. The problem, however, is 

that the first-stage regression cannot incorporate the characteristics of choice alternatives in a 

straight forward fashion. Therefore, changes in the attributes of choice alternatives, such as price 

change of a single alternative, will only lead to reallocation of the total expenditure among 

choice alternatives without allowing for the possibility that the overall expenditure itself could 

increase or decrease. This is considered as a drawback in using the MDCEV approach for 

modeling vehicle holdings and usage (Fang, 2008) and for many other applications. Besides, 

from an intuitive standpoint, the observed expenditures may not necessarily represent the budget 

for consumption. It is more likely that a greater amount of underlying budget governs the 

expenditure patterns, which the consumers may or may not expend completely. 

1.2 Current Research 

This paper proposes the use of a stochastic frontier approach to estimate budgets for KT demand 

systems. Stochastic frontier models have been widely used in firm-production economics 

(Aigner et al, 1977; Kumbhakar and Lovell, 2000) for identifying the maximum possible 

production capacity (i.e., production frontier) as a function of various inputs. While the actual 

production levels and the inputs to the production can be observed, a latent production frontier is 

assumed to exist. Such a production frontier is the maximum possible production that can be 

achieved given the inputs.  

In travel behavior research, the stochastic frontier approach has been used to analyze: (1) 

the time-space prism constraints that people face (Kitamura et al., 2000), and (2) the maximum 

amount of time that people are willing to allocate to travel in a day (Banerjee et al., 2007). In the 

former case, while the departure times and arrival times at fixed activities (such as work) are 
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observed in the survey data, the latest possible arrival time or the earliest possible departure time 

are unobserved and therefore modeled as stochastic frontiers. In the latter case, while the daily 

total travel time can be measured, an unobserved Travel Time Frontier (TTF) is assumed to exist 

that represents the maximum possible travel time an individual is willing to undertake in a day.  

Analogous to the above examples, in many consumer choice situations, especially in 

time-use situations, one can conceive of latent time and/or money frontiers that govern choice 

making. Such frontiers can be viewed as the limit, or maximum amount of expenditure the 

individuals are willing to incur, or the expenditure budget available for consumption. We invoke 

this notion to use stochastic frontier models for estimating the budgets for consumption. 

Following the two-stage budgeting approach discussed earlier, the estimated budgets can be used 

for subsequent analysis of choices and allocations to different choice alternatives of interest. The 

same assumptions discussed earlier, such as weak separability of preferences, are needed here. 

However, an advantage of using the stochastic frontier approach over the traditional regression 

models (to estimate budgets) is that the frontier, by definition, is greater than the observed total 

expenditure. Therefore, the budget estimated using the stochastic frontier approach provides a 

“buffer” for the actual total expenditure to increase or decrease. This can be easily 

accommodated in the second stage consumption analysis (using KT models) by designating an 

outside good that represents the difference between the frontier and the actual expenditure on all 

the inside goods (i.e., choice alternatives of interest to the analyst). Given the frontier as the 

budget, if the attributes of the choice alternatives change, the second stage consumption analysis 

allows for the total expenditure on the inside alternatives to change (either increase or decrease). 

Specifically, within the limit set by the frontier, the outside good can either supply the additional 

resources (time/money) needed for inside goods or store the unspent resources. The theoretical 

basis of the notion of stochastic frontiers combined with the advantage just discussed makes the 

approach attractive for estimating the latent budgets for KT demand analysis.  

 As a proof of concept, we apply the proposed approach to analyze the daily out-of-home 

activity participation and time-use patterns in a survey sample of non-working adults in Florida. 

Specifically, we use the notion of an out-of-home activity time frontier (OH-ATF) that represents 

the maximum amount of time that an individual is willing to allocate to out-of-home (OH) 

activities in a day. First, a stochastic frontier regression is performed on the observed total out-

of-home activity time expenditure to estimate the unobserved out-of-home activity time frontier 
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(OH-ATF). The estimated frontier is viewed as a subjective limit or maximum possible time 

individuals can allocate to OH activities and used to inform time budgets for a subsequent 

MDCEV model of activity time-use. Policy simulations are conducted to demonstrate the value 

of the proposed method in allowing the total out-of-home activity time expenditure to either 

expand or shrink within the limit of the frontier implied by the stochastic frontier model. 

 The efficacy of the proposed approach is compared with several other approaches to 

estimate budgets for the MDCEV model. Altogether, the following approaches are tested:  

1. The stochastic frontier regression model for the total OH activity time frontier (OH-ATF), 

2. A log-linear regression model to predict the total OH-activity time expenditure (OH-ATE),  

3. Various assumptions on the time budget, without necessarily estimating it as a function of 

individuals’ demographic characteristics. These include:  

(3a) An arbitrarily assumed time budget of 875 minutes for every individual, which is equal  

        to the total maximum observed OH-ATE in the sample plus 1 minute, and 

(3b) An arbitrarily assumed time budget of 918 minutes for every individual, which is equal     

       to 24 hrs minus an average of 8.7 hours of sleep time for non-workers (obtained from the  

       2009 American Time-use Survey), 

(3c) An arbitrarily assumed time budget of 1000 minutes for every individual,  

(3d) 24 hrs (1440 minutes) as the total time budget for every individual in the sample, and 

(3e) 24 hrs minus observed in-home activity duration. 

In the above approaches, the budget estimated using the log-linear regression approach is an 

estimate of the OH-activity time expenditure (OH-ATE), all of which is utilized for out-of-home 

activities. This is unlike the OH-ATF estimated using stochastic frontier regression, where the 

OH-ATF is by design greater than OH-ATE and therefore allows the specification of an outside 

good representing a portion of the frontier not spent in OH activities. As indicated earlier, the 

outside good allows for the total OH-ATE to increase or decrease due to changes in alternative-

specific attributes. The other approaches listed above (3a to 3e) specify an arbitrary budget 

amount greater than the observed OH-ATEs.1 Therefore, similar to the stochastic frontier 

approach, the analyst can specify an outside good in the time-use model to represent the 

                                                           
1 Among the approaches 3a through 3e, all approaches except 3e assume an equal amount of budget across all individuals, while 

3e allows the budget to be different across individuals depending on the differences in their in-home activities. While the 

approach 3e (i.e., utilizing 24 hrs minus in-home duration as the budget) does allow for different budgets across different 

individuals, it does not recognize the variation as a result of systematic demographic heterogeneity. 
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difference between the arbitrary budget and the total OH-ATE. The outside good, in turn, allows 

for the total OH-ATE to increase or decrease due to changes in alternative-specific attributes. 

  To compare the above-described approaches, seven different MDCEV models are 

estimated utilizing the time budgets estimated (or assumed) using the different approaches listed 

above – one MDCEV model for each approach. Subsequently, the time-use predictions from all 

the different MDCEV models are compared. The comparison is conducted both in terms of 

prediction accuracy against observed time-use patterns and the reasonableness of predicted 

changes in time-use patterns due to changes in alternative-specific variables. 

 Before moving forward with the analysis, it is worth noting a specific difference between 

the log-linear regression and stochastic frontier regression approaches to estimating budgets for 

the MDCEV model. Both the approaches allow for changes in time budgets due to changes in 

decision-maker characteristics and choice-environment attributes; i.e., log-linear regression 

allows changes in OH-ATE and stochastic frontier regression allows changes in OH-ATF. 

However, the stochastic frontier approach offers more flexibility when changes in alternative-

specific attributes are considered. Such attributes could be attributes of the choice alternatives 

(e.g., prices per unit consumption) or choice environment attributes that influence the 

consumption of specific choice alternatives (e.g., accessibility to recreational land that might 

enter the MDCEV utility function for recreational activities). It is difficult, if not impossible, to 

include such attributes in the budget equations directly; i.e., in the log-linear or stochastic 

frontier regression equations. As a result, the time budgets (i.e., the OH-ATEs) estimated using 

log-linear regression remain the same between the base-case and the policy-case. The 

implication is that changes in alternative-specific attributes lead to a mere reallocation of the 

budget between different choice alternatives in the MDCEV model without allowing for the 

budget to increase or decrease. While the time budgets (i.e., the OH-ATFs) estimated using the 

stochastic frontier regression also do not change due to changes in alternative-specific attributes, 

as discussed earlier the ability to designate an outside good offers the flexibility for the total time 

expenditure on the inside goods (i.e., OH-ATE) to change.   

The rest of the paper is organized as follows. Section 2 provides an overview of the 

stochastic frontier modeling methodology and the MDCEV model, in the current empirical 

context of OH activity time-use. Section 3 describes the Florida sample of the National 
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Household Travel Survey (NHTS) data used for the empirical analysis. Section 4 presents the 

empirical results and Section 5 concludes the paper.  

 

2 METHODOLOGY 

2.1 Stochastic Frontier Model for Out-of-home Activity Time Frontier 

In the stochastic frontier approach used in this is paper, the out-of-home activity time budget 

available to (or perceived by) an individual is assumed to be latent, and therefore called out-of-

home activity time frontier (OH-ATF). While survey data provide measurements of actual out-

of-home activity time expenditures (OH-ATE), they do not provide information about the upper 

bound of time people are willing to spend on activities out of home. The stochastic frontier 

modeling methodology is employed to model such an unobserved limit people perceive. 

Following Banerjee et al. (2007), consider the notation below: 

Ti = the observed total daily OH-ATE for person i, 

τi = the unobserved OH-AFT for person i, 

vi = a normally distributed random component specific to person i,  

ui = a non-negative random component assumed to follow a half-normal distribution, 

Xi = a vector of observable individual characteristics,   

β = a vector of coefficients of Xi, 

)(
iii

u  . 

Let 
i

  be a log-normally distributed unobserved OH-ATF of an individual i, while 
i

T  is a 

log-normally distributed observed OH-ATE of the individual. Both these variables are assumed 

to be log-normally distributed to recognize the positive skew in the distribution of observed OH-

ATE and to ensure positive predictions. 
i

  of an individual is assumed to be a function of his/her 

demographic, attitudinal, and built environment characteristics, as: 

 ln ( ) '
i i i

  β X         (2) 

The unobserved OH-ATF can be related to the observed OH activity time expenditure Ti as: 

ln ( ) ln ( )
i i i

T u          (3) 

Note that since ui is non-negative, the observed OH-ATE is by design less than the OH-ATF.   

Combining Equations (2) and (3) results in the following regression Equation:   
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ln ( ) ' '
i i i i i i

T u     β X β X       (4) 

In the above equation, the expression '
i i

β X  may be considered as representative of the 

location of the unobserved frontier for ln(Ti) with a random component 
i

 . Consistent with the 

formulation of the stochastic frontier model (Aigner et al, 1977), a half-normal distribution (with 

variance 2

u
 ) is assumed for ui and a normal distribution (with mean 0 and variance 2

v
 ) is 

assumed for 
i

 . These two error components are assumed to be independent of one another to 

derive the probability density function of ( )
i i i

u   as: 












i

i
i

i
h 










 ;

2
exp)}(1{

2

2
)(

2

2

   (5) 

where, u
ii

u
222

)var(    , and 





 u . The ratio, λ, is an indicator of the relative 

variability of the sources of error in the model, namely vi, which represents the variability among 

persons, and ui, which represents the portion of the OH activity time frontier that remains 

unexpended (Aigner et al, 1977). The log likelihood function for the sample of observations is 

given by:  

  
1

ln

n

i

i

L L h 



 
          (6) 

Maximum likelihood estimation of the above function yields consistent estimates of the 

unknown parameters, , 
u

  and 
v

 . 

From Equation (2), one can write OH-ATF as as:  ex p '
i i i

  β X . Using this 

expression, once can compute the expected value of OH-ATF for individual i as:  

   
2

e x p ' e x p '
2

v

i i i i
E E


 

 
      

 

β X β X     (7) 

The expected OH-ATF may be used as the time budget in the second-stage analysis of activity 

participation and time-use.  

2.2 MDCEV Model Structure for Out-of-Home Time-Use Analysis 

The time-use model estimated in this study is based on Bhat’s (2008) linear expenditure system 

(LES) utility form for the MDCEV model:  
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1

( ) ln 1

K

ik

i ik ik

k ik

t
U  



 
  

 
t       (8) 

In the above function,
 

( )
i

U t  is the total utility derived by an individual i from his/her daily out-

of-home activity participation and time-use. Individuals are assumed to choose their time-use 

patterns (i.e., which activities to participate in and how much time to allocate) to maximize ( )U t  

subject to a linear budget constraint on the available time for OH activity participation. The 

specification of this constraint depends on the approach used for the total available time budget. 

As discussed earlier, we tested three different approaches, as discussed next. 

The first approach is the stochastic frontier approach, where the OH activity time frontier 

(
i

 ) is used as the budget; i.e., the linear constraint then becomes
1  to  

ik i

k K

t 



 . In this paper, we 

use the expected value of OH-ATF as an estimate for 
i

 , resulting in  
1  to  

ik i

k K

t E 



  as the 

actual budget constraint used in the time-use model. The second approach is to simply use the 

total activity time expenditure (Ti), which is observed in the data for model estimation purposes 

and can be estimated via a log-linear regression model for prediction purposes. In this case, the 

budget constraint would be
1  to  

ik i

k K

t T



 , where Ti  is the total OH ATE. The third approach is to 

specify an arbitrarily assumed budget amount (greater than the observed OH-ATEs in the 

sample) on the right side of the budget constraint (i.e., approaches 3a to 3e discussed earlier).  

In the above formulation, when the stochastic frontier approach is used to determine the 

budget, the first choice alternative (k = 1) in the utility function is designated as the outside good 

that represents the difference between the OH activity time frontier and the observed activity 

time expenditure (i.e., 
1 i i

t T  ), while the other alternatives (k = 2,3,…,K) are the inside goods 

representing different OH activities. Similarly, when an arbitrarily assumed budget (greater than 

the observed OH-ATEs) is used, the outside good represents the difference between the budget 

and the OH-ATE. On the other hand, when the OH-ATE (Ti ) is itself used as the budget, there is 

no outside good in the formulation. 

In the utility function, 
ik

 , labelled the baseline marginal utility of individual i for 

alternative k, is the marginal utility of time allocation to activity k at the point of zero time 

allocation. Between two choice alternatives, the alternative with greater baseline marginal utility 
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is more likely to be chosen. In addition, 
ik

  influences the amount of time allocated to 

alternative k, since a greater 
ik

  value implies a greater marginal utility of time allocation. 
ik


 

allows corner solutions (i.e., the possibility of not choosing an alternative) and differential 

satiation effects (diminishing marginal utility with increasing consumption) for different activity 

types. Specifically, when all else is same, an alternative with a greater value of 
ik

  will have a 

slower rate of satiation and therefore a greater amount of time allocation. 

The influence of observed and unobserved individual characteristics and built 

environment measures are accommodated as 
1 1

exp( ), exp ( ' ),
k k k

     θ z  and 

ex p ( );
k k

  δ w  where, 
k

z  and 
k

w  are vectors of observed socio-demographic and activity-

travel environment measures influencing the choice of and time allocation to activity k, θ  and δ  

are corresponding parameter vectors, and 
k

  (k=1,2,…,K) is the random error term in the sub-

utility of activity type k. Assuming that the random error terms 
k

  (k=1,2,…,K) follow the 

independent and identically distributed (iid) standard Gumbel distribution leads to a simple 

probability expression (see Bhat, 2005) that can be used in the familiar maximum likelihood 

routine to estimate the unknown parameters in θ   and δ . 

 

3   DATA 

The time-use data used in this paper comes from the Florida add-on of the US National 

Household Travel Survey (NHTS). The empirical focus is on adult non-workers’ out-of-home 

(OH) activity time-use on weekdays. The travel information collected in the survey was used to 

determine daily time allocation to eight OH activities – shopping, personal business, 

social/recreation, active recreation, medical visits, eat out, pickup/drop-off, and other activities. 

 Table 1 provides descriptive information on the estimation sample used in this analysis. 

The sample comprises 6,218 individuals who participated in at least one out-of-home activity on 

the survey-day. Only the interesting characteristics of the sample are discussed here for brevity. 

A large portion of the sample comprises elderly; partly due to a large share of elderly in Florida’s 

population and also due to a skew in the response rates of different age groups to the survey. The 

dominant share of elderly in the sample is perhaps a reason for a greater share of females (than 

males), a higher than typical proportion of smaller size households, larger share of households 
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without children and those with no workers, and predominantly urban residential locations. A 

large share of the sample is Caucasian, able to drive, and owns at least one vehicle in the 

household. Several other demographic variables reported in the table are relevant to the models 

estimated in this paper. 

We compared the demographic characteristics presented in the table (specifically, age, 

gender, and race) with the state level non-worker population demographics obtained from the 

American Community Survey (ACS) (ACS estimates are not shown in the table). The 

comparison revealed that the current data sample has an overrepresentation of elderly individuals 

(perhaps due to differences in the response rates of individuals from different age groups to the 

survey). In addition, the proportion of Caucasians is higher in the sample than that from the ACS 

data. The gender distribution in the data was similar to that from the ACS data. While the data 

sample may not be fully representative of the non-worker population in the state, the empirical 

analysis presented in this paper can still serve as a proof of concept; of course, the empirical 

results must be used in caution in the context of policy discussions. 

In addition to the demographic variables, a variety of different residential land-use 

characteristics were considered for explaining activity participation and time allocation 

decisions.  These include housing and employment density measures, dummy variables for urban 

and rural areas, accessibility measures, activity opportunity variables (such as employment of 

different types within buffers of 0.25 miles, 0.5 miles, and 1 miles around the household), 

transportation network variables (such as roadway miles per square mile, number of intersections 

per square mile, and number of cul-de-sacs per square mile around the household). Of all these 

variables, the descriptive statistics of those that appear in the empirical model specifications are 

reported in Table 1. As can be observed, only the accessibility (to recreational land) variable 

shows a considerably higher variation (i.e., standard deviation) than its sample mean. The other 

two variables – employment within 1 mile buffer of household and number of cul-de-sacs within 

a quarter mile of the household – have a slightly higher standard deviation than their respective 

sample mean values. The empirical distributions (histograms) of these variables in the sample 

(not reported in the paper) look akin to an exponential distribution, beginning with large 

proportions of small values and ending with small proportions of large values. A higher 

proportion of the data concentrated around smaller values is a reason for a small variation of 



14 
 

 

land-use characteristics in the data. Such small variations in the data will have a bearing on 

estimating the effects of land-use characteristics on activity participation and time allocation. 

The last part of the table presents the OH activity participation and time-use statistics 

observed in the sample. On average, individuals in the sample spent around two-and-half hours 

on OH activities. Majority of them participated in shopping activities, followed by personal 

business, social/recreation, eat out, medical, active recreation, pickup/drop-off, and other 

activities. Note that the percentages of participation in different activities add up to more than 

100, because a majority of individuals participate in multiple activities. On average, individuals 

in the sample participated in 2.6 OH activities; 32% participated in two activities and 36% 

participated in at least 3 activities. This calls for the use of the multiple-discrete choice modeling 

approach for modeling time-use. In terms of time allocation, those who participate in social 

recreation do so for an average of 2 hours. The average time allocation to shopping, personal 

business, active recreation, eat out, or medical activities ranges from 45 minutes to an hour, 

while that for pickup/drop-off and other activities is around 15 minutes.  

While not reported in the tables, some useful patterns observed in the data and relevant to 

the modeling results presented later are: (a) greater proportion of females participate in shopping 

and social/recreation activities and for larger durations, (b) older people participate more in 

medical activities while younger people participate more in social/recreational activities, (c) 

those with a driver’s license are likely to do more out of home activities, especially pickup/drop-

off, (d) those with children undertake more pickup/drop-off activities, and (e) higher income 

individuals participate more in social and active recreation and eat out activities. In summary, the 

sample shows reasonable time allocation patterns that are typical of the non-working population 

in Florida. 

 

4   EMPIRICAL RESULTS 

4.1 Stochastic Frontier Model of Out-of-Home Activity Time Frontier (OH-ATF) 

Table 2 presents the results of the stochastic frontier model for OH-ATFs. Interestingly, female 

non-workers are found to have larger OH ATFs than male non-workers in Florida. Upon closer 

examination, this result can be traced to larger participation of females in shopping and 

social/recreation activities that tend to be of larger duration. As expected, the frontier is larger for 

people of younger age groups and for those who have driver licenses. Blacks seem to have larger 
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frontiers than Whites and others; see Banerjee et al. (2007) for a similar finding. Internet use is 

positively associated with OH-ATF. People from single person households, high income 

households, and zero-worker households tend to have larger OH-ATFs; presumably because of 

the greater need for social interaction for single-person households, greater amount of money 

among higher income households to buy home maintenance services and free-up time for OH 

activity (as well as greater affordability to consume OH activities), and lower time-constraints of 

zero-worker households. People living in urban locations have larger OH-ATFs than those in 

rural locations, perhaps due to a greater presence of OH activity opportunities in urban locations. 

Mondays are associated with smaller perceived frontiers for OH non-worker activity, possibly 

due to pronounced OH activity pursued over the weekend just before Monday and also due to the 

effect of Monday being the first work day of the week. Several other demographic variables were 

explored but turned non-influential in the final model. These include education status, vehicle 

ownership, presence of children, and own/rent house. This may be because the income effects in 

the model act as surrogate for many of these variables. Several land-use and built-environment 

variables, except an indicator for urban/rural location of the household residence, also turned out 

statistically non-influential in the model. 

 The stochastic frontier model estimates can be used to estimate the expected OH-ATF 

(see Eq. 7) for each individual in the survey sample to generate a distribution of expected ATFs. 

The average value of the expected ATF in the estimation sample is 400 minutes (6.5 hours), 

whereas the average total OH time expenditure is 152 minutes (about 2.5 hours), suggesting that 

people are utilizing close to 40% of their perceived time budgets for OH activity. Of course, the 

percentage utilization varies significantly with greater utilization for those with larger observed 

OH activity expenditures and smaller utilization for those with smaller observed expenditures. 

 The goodness of fit of the stochastic frontier model may be evaluated using a log-

likelihood ratio test to assess how well the demographic and land-use explanatory variables in 

the model explain the variation in OH-ATFs over a constant only model that doesn’t include any 

of these explanatory variables. The log-likelihood value for the constant only model is -8739.99 

and that of the final empirical specification with 12 demographic and land-use explanatory 

variables is -8675.99. The log-likelihood ratio between the two models is 128, which is far 

greater than the critical chi-square value of 26.217 for 12 degrees of freedom at a 99% 
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confidence level. This suggests the importance of the demographic and land-use variables 

included in the model to explain variations in OH-ATFs. 

Note that the goodness of fit of the empirical model might further be improved using 

additional variables describing transportation level of service (i.e., how easy is it to travel for OH 

activities) and individuals’ attitudes towards OH activities. Such variables were not available in 

the empirical data from NHTS. When we explored the influence of other variables (that were 

available in the data) such as educational attainment of the individuals and residential land-use 

variables such as accessibility to recreational sites and employment within a mile buffer of the 

household, we did not find a statistically significant influence of those variables. Further work is 

necessary to identify the influence of additional demographic, land-use, and transportation level 

of service variables on OH-ATFs. 

 It is worth noting here that the log-linear regression model (on the observed OH-ATEs) 

provided similar substantive interpretations of the impacts of individual and household 

demographic variables on OH-ATEs, albeit with different parameter estimates. Therefore those 

results are not discussed exclusively here.  

4.2 Out-of-home Activity Time-use Model Results 

We estimated seven different MDCEV models of time-use with different assumptions discussed 

earlier on time budgets. Overall, the parameters estimates from all the models were found to be 

intuitive and consistent in interpretation with each other and previous studies. For brevity, this 

section presents (in Table 3) and discusses only the results of the model in which the expected 

OH-ATFs (estimated using the stochastic frontier approach) were used as the time budgets. Note 

that the statistical significance of parameter estimates was determined at 80% confidence level, 

because of the small data sample.   

 The baseline utility parameters suggest that females are more likely (than males) to 

participate in shopping and pickup/drop-off activities but less likely to participate in active 

recreation, albeit the influence is not statistically significant even at 80% confidence level.2 With 

increasing age, social/recreational activities and pickup/drop-off activities reduce, while medical 

visits increase. As expected, licensed drivers are more likely to participate in all OH activities 

                                                           
2 The female variable was retained in the baseline utility (with a p-value slightly below 80% confidence level) 

because, as discussed later, this variable appears in the satiation function with a statistically significant coefficient. 

Without including the female variable in the baseline utility function, the influence of the same variable would be 

overestimated in the satiation function.  



17 
 

 

(i.e., they are likely to use a large proportion of their frontiers) and even more so for 

pickup/drop-off activities. Reflecting cultural differences, Whites are more likely to eat out than 

those from other races while those born in the US are more likely to eat, socialize and recreate 

out-of-home than immigrants. Individuals with a higher education attainment are more likely to 

undertake personal business (e.g., buy professional services) and active recreation. Those from 

households with children and households with more workers show lower participation in 

shopping and personal business but do more pickup/drop-off activities. Income shows a positive 

association with social/recreational activities, active recreation, and eating out; however, the 

income differences are not significant even at 80% confidence level. Several land-use variables 

were attempted to be included in the model but only a few turned out marginally significant, 

perhaps because of a small variation of land-use characteristics across the sample. Among these, 

accessibility to recreational land seems to encourage social recreation as well as active 

recreation; employment density (measured by # jobs within a mile of the household) and # cul-

de-sacs within a quarter mile buffer (a surrogate for smaller amount of through traffic) are 

positively associated with active recreation. It remains to be seen, as explored later using policy 

simulations, if these variables have a practically significant influence on time-use. Finally, 

Monday is associated with smaller rates of social recreation and eat-out activities while Fridays 

attract higher rates of social recreation, albeit the influence of Fridays is not statistically 

significant at 80% confidence level. Note that the baseline utility function for unspent time 

alternative (i.e., the outside good) does not have any observed explanatory variables in it, as the 

alternative was chosen as the base alternative for parameter identification in the utility functions 

of OH alternatives. 

 The satiation function parameters influence the continuous choice component; i.e., the 

amount of time allocation to each activity. The relative magnitudes of the satiation function 

constants are largely consistent with that of the observed durations for different activities. For 

example, social recreational activities have a high satiation constant suggesting they are more 

likely to be pursued for longer durations. The unspent time alternative has the largest satiation 

constant reflecting that large proportions of the perceived OH-activity time frontiers in the 

sample are unspent. Females tend to allocate more time to shopping and social recreation but less 

time to active recreation, if they participate in these activities. People from middle age group 

tend to spend less time in social/recreation, while educational attainment is associated with larger 
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time in active recreation. Mondays tend to have smaller time allocations for eating out, while 

Fridays are associated with larger time allocations to social/recreation and eating out. Finally, 

accessibility to recreational land has a positive, but statistically insignificant (at 80% confidence 

level) influence on the time allocation to social/recreation and active recreation. 

 The log-likelihood value for the MDCEV model with only constants (i.e., with no 

observed socio-demographic and land-use variables in the utility specification) is -105505. The 

log-likelihood value at convergence for the final model specification presented here with an 

additional 49 estimated parameters is -105087. The log-likelihood ratio index between these two 

values is 835.38, which is larger than the critical chi-square value with 49 degrees of freedom at 

any reasonable level of significance. This suggests the importance of the demographic and land-

use variables included in the model to explain the observed variation in the time-use choices.    

4.3 Predictive Accuracy Assessments on the Estimation Sample 

This section presents a comparison of in-sample predictive accuracy assessments for the different 

MDCEV models estimated in this study based on different assumptions for OH activity time 

budgets. All predictions with the MDCEV model were undertaken using the procedures 

proposed by Pinjari and Bhat (2011), using 100 sets of Halton draws to cover the error 

distributions for each individual in the data.  

Table 4 presents the results. Specifically, the observed and predicted activity participation 

rates are presented in the top part of the table, while the observed and predicted activity durations 

are presented in the bottom part. The predicted participation rates for each activity were 

computed as the proportion of the instances the activity was predicted with a positive time 

allocation across all 100 sets of random draws for all individuals. The predicted average duration 

for an activity was computed as the average of the predicted duration across all random draws for 

all individuals with a positive time allocation. In the rows labeled “mean absolute error”, an 

overall measure of error in the aggregate predictions is reported. This measure is an average, 

across different activities, of the absolute difference between observed aggregate values and the 

corresponding aggregate predictions. Several interesting observations can be made from these 

results. First, the MDCEV models that use budgets from the stochastic frontier model or the log-

linear regression model exhibit a greater aggregate-level predictive accuracy than other MDCEV 

models. This is presumably because the budgets used for both the models are heterogeneous 

across individuals (based on their demographic characteristics), whereas other approaches do not 
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systematically capture heterogeneity in the available time budgets across individuals. These 

results suggest the importance of capturing demographic heterogeneity in the available time 

budgets across different individuals for a better prediction of the daily activity participation and 

time-allocations by the MDCEV time-use model. Second, between the stochastic frontier and 

log-linear regression approaches, quality of the aggregate predictions is similar; albeit the 

predicted activity participation rates for the stochastic frontier approach are slightly better, while 

the predicted activity durations for the log-linear regression approach are slightly better. Third, 

the predictive accuracy does not seem to differ significantly by the amount of total budget 

assumed if a constant amount is used as the budget for every individual in the sample. 

Specifically, the predictions were very similar between the models that assumed an equal amount 

of budget across all individuals – 875 minutes, 918 minutes, 1000 minutes, or 24 hours – albeit 

there seems to be deterioration in the predictions as the assumed budget amount increases.  

4.4 Predictive Accuracy Assessments on a Holdout Sample 

The predictive accuracy assessments presented in the previous section were not on a holdout 

sample. In this section we present predictive accuracy assessment on a holdout sample. To do so, 

we split the entire data sample (of 6,218 individuals) into an estimation sample of 5,218 

individuals and a validation sample (i.e., holdout sample) of 1,000 individuals. Both, first-stage, 

time budget models (stochastic frontier and log-linear regression models) and second-stage, time 

use models were estimated using the sample of 5,218 individuals. The parameter estimates 

obtained from the estimation sample of 5,218 individuals were used to predict the time 

allocations in the holdout sample of 1,000 individuals. To conserve space, these model 

estimation results (i.e., those from 5,218 individuals) are not reported in the paper, but available 

from the authors. The predictive assessment results on the hold-out sample are presented in 

Table 5, in a similar format as that in Table 4. Very similar to the results in Table 4, and as 

discussed in the previous section, the MDCEV model predictions using time budgets from log-

linear regression and stochastic frontier regression approaches outperform those from other 

approaches. Between the log-linear regression and stochastic frontier regression approaches, the 

predicted activity participation rates for the stochastic frontier approach are slightly better, 

whereas the predicted activity durations for the log-linear regression approach are slightly better.  

To further examine prediction accuracy in the context of the activity durations (i.e., the 

continuous choice component), Figure 1 presents the distributions of observed and predicted 
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distributions of activity durations for different MDCEV models in the form of box plots. To 

conserve space, the box plots are provided for six out of eight OH activities modeled in this 

paper. One can observe from this figure that the predictions from the log-linear regression and 

stochastic frontier regression approaches match better with the observed distributions than 

predictions from arbitrarily assumed budgets. Between log-linear regression and stochastic 

frontier regression approaches, the former approach appears to perform slightly better for most 

activities. The stochastic frontier regression shows a greater tendency to overestimate the activity 

durations. This is expected because the log-linear regression approach restricts the time budget to 

only the time allocated to OH activities of interest, whereas the stochastic frontier approach 

allows an unspent part in the time budget. Given a larger amount of time budget available from 

the stochastic frontier approach, the predicted time allocations to OH activities are likely to be 

overestimated. The important point to note, however, as demonstrated in the next section, is that 

the unspent alternative offers a way for the total OH activity time expenditure to expand or 

shrink due to changes in alternative specific variables.  

4.5 Comparison of Policy Simulations 

This section presents the predictions of a hypothetical policy scenario using the different 

MDCEV models estimated in this study based on different approaches for time budgets.3 The 

policy scenario considered in this exercise is doubling of accessibility to recreational land-use. 

To simulate the effects of this hypothetical policy, in the first step, time budgets were estimated 

for both the base-case and the policy-case (i.e., before-policy and after-policy, respectively).4 

However, since the corresponding variable – accessibility to recreational land – does not appear 

in either the log-linear regression or the stochastic frontier regression equations, the estimated 

time budgets do not differ between the base-case and the policy-case. Similarly, the time-budget 

remains the same between the base-case and the policy-case when an arbitrarily assumed 

deterministic time-budget is used (i.e., approaches 3a to 3e in Section 1). In the second step, the 

time budgets from the first step were used as budgets for the corresponding MDCEV time-use 

models (along with the MDCEV parameter estimates) to simulate out-of-home time-use patterns 

                                                           
3 The policy simulations were conducted on a full estimation sample of 6,218 individuals using the parameter 

estimates obtained from this sample. 
4 For the log-linear regression and stochastic frontier regression approaches, the time budgets were estimated by simply taking 

the expected value of the corresponding regression equations. For other approaches where deterministic amounts of time budgets 

were assumed for all individuals in the sample (i.e., approaches 3a to 3e in Section 1), those same assumptions were used for 

prediction as well. 
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in the base-case and policy-case. Subsequently, the policy effect was quantified as two different 

measures of differences in time-use patterns between the policy-case and base-case: (1) The 

percentage of individuals for whom the time allocation to different activities changed by more 

than a minute5, and (2) The average change in time allocation for whom the time allocation 

changed by more than a minute. Table 6 reports these measures for the different 

approaches/assumptions used in the study for estimating time budgets. Specifically, in each row 

(i.e., for each approach used to estimate time-budget) for each column (i.e., for an activity type), 

the % number represents the percentage of individuals for whom the time allocated to the 

corresponding activity changed by more than a minute. The number in the parenthesis adjacent 

to the % figure is the average change in time allocation (in minutes) for whom the time 

allocation to that activity changed by more than a minute. Several observations can be made 

from this table, as discussed next.  

First, across all approaches for arriving at time budgets, consistent with the MDCEV 

model parameter estimates, increasing accessibility to recreational land-use has increased the 

time allocation to OH social and active recreational activities. For example, with the stochastic 

frontier approach for time budgets, doubling accessibility to recreational land lead to an 

increased time allocation (by more than a minute) for 3% individuals in social recreation 

activities and for 2.2% individuals in active recreation activities. Among these individuals, on 

average, the time spent in social recreation increased by 21 minutes and that in active recreation 

increased by 25 minutes, respectively. 

Second, upon examining where the additional time for social and recreational activities 

comes from, the MDCEV model based on the log-linear regression approach for time budgets 

differs considerably from the other MDCEV models. Specifically, using estimated OH-ATEs 

from the log-linear regression as budgets leads to a simple reallocation of the time (i.e., the 

estimated OH-ATE) between different activity types. That is, all of the increase in time 

allocation to social and recreational activities must come from a decrease in the time allocation 

to other activities. This is a reason why the predicted increases in the social and recreational 

activity participation rates are the smallest (and for a smaller percentage of individuals) for the 

log-linear regression approach. On the other hand, the stochastic frontier approach provides a 

                                                           
5 We report only those for whom the time allocation changed by more than a minute (and the average change in time allocation 

only for those individuals) as opposed to all individuals for whom the time allocation changed. This helps in avoiding the 

consideration of instances when changes in time allocation are negligible (i.e., less than a minute). 
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“buffer” in the form of an unspent time alternative from where the additional time for social and 

active recreational pursuits can be drawn. Therefore, the increase in the time allocation to social 

and active recreational activities comes partly from a reduction in the “unspent time” and partly 

from other OH activities. This reflects an overall increase in the total OH activity expenditure 

(OH-ATE) than a mere reallocation of the base-case OH-ATE. Such an increase in the total OH-

ATE can be measured by the decrease in the time allocated for the “unspent time” alternative; for 

example, an average of 21 minutes for the stochastic frontier approach. Intuitively speaking, it is 

reasonable to expect that an increase in accessibility to recreational land would lead to an 

increase in social and active recreation activity and there by an overall increase in OH activity 

time among non-workers, as opposed to a mere reallocation of time across different OH 

activities. This demonstrates the value of the stochastic frontier approach in allowing more 

reasonable effects of changes in alternative-specific explanatory variables in the MDCEV model. 

Third, similar to the stochastic frontier approach, other approaches that assume an 

arbitrary budget greater than observed OH-ATEs also allow a “buffer” alternative. In fact, the 

policy forecasts from all these approaches are similar to (albeit slightly higher than) those from 

the stochastic frontier approach. But recall that their base-case predictions (against observed 

time-use patterns) were inferior compared to the stochastic frontier approach. Therefore, it might 

be better to use the stochastic frontier approach than making arbitrary assumptions on the time 

budgets. 

 

5 SUMMARY AND CONCLUSIONS 

This paper presents a stochastic frontier approach to estimate budgets for the multiple discrete-

continuous extreme value (MDCEV) model. The approach is useful when the underlying time 

and/or money budgets driving a choice situation are unobserved, but only the expenditures on the 

choice alternatives of interest are observed. Most MDCEV applications hitherto used the 

observed total expenditure on the choice alternatives as the budget to model the pattern of 

expenditure allocation among different choice alternatives. This does not allow the possibility 

that changes in choice alternative attributes can lead to changes in the total expenditure, but only 

allows a reallocation of the observed total expenditure among the choice alternatives. The 

stochastic frontier approach resolves this issue by invoking the notion that consumers operate 

under latent budgets that can be conceived (and modeled) as the maximum possible expenditure 
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they are willing to incur. The estimated stochastic frontier, or the subjective limit, or the 

maximum amount of expenditure consumers are willing to allocate can be used as the budget in 

the MDCEV model. Since the frontier is by design larger than the observed total expenditure, the 

MDCEV model needs to include an outside alternative along with all the choice alternatives of 

interest to the analyst. The outside alternative represents the difference between the frontier (i.e., 

the budget) and the total expenditure on the choice alternatives of interest. The presence of this 

outside alternative allows for the total expenditure on the inside alternatives to increase or 

decrease as a result of changes in decision-maker characteristics, choice environment attributes, 

and, more importantly, the choice alternative attributes.    

As a proof of concept, the proposed approach is applied to analyze the daily out-of-home 

activity participation and time-use patterns in a survey sample of non-working adults in Florida. 

Specifically, we use the notion of an out-of-home activity time frontier (OH-ATF) that 

represents the maximum amount of time that an individual is willing to allocate to out-of-home 

(OH) activities in a day. First, a stochastic frontier regression is performed on the observed total 

out-of-home activity time expenditure (OH-ATE) to estimate the unobserved out-of-home 

activity time frontier (OH-ATF). The estimated frontier is viewed as a subjective limit or 

maximum possible time individuals are willing to allocate to out-of-home activities and used to 

inform time budgets for a subsequent MDCEV model of activity time-use. The efficacy of the 

proposed approach is compared with the following other approaches to estimate budgets for the 

MDCEV model: 

(a) Using total OH-activity time expenditure (OH-ATE), estimated via log-linear regression, as 

the time budget, and 

(b) Various assumptions on the time budget, without necessarily estimating it as a function of 

individual’s demographic and built environment characteristics. 

The comparisons were based on predictive accuracy (on both the estimation sample and a 

holdout sample) and reasonableness in the results of hypothetical scenario simulations of 

changes in land-use. The overall findings from this empirical exercise are summarized below. 

 Employing time budgets obtained from the stochastic frontier approach (to estimate OH-

ATF) and the log-linear regression approach (to estimate the OH-ATE) provide better 

predictions of OH activity and time-use patterns from the subsequent MDCEV models, than 

employing arbitrarily assumed time budgets. This is presumably because the former 
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approaches allow for the time budgets to vary systematically based on individual’s 

demographic characteristics, while the latter approaches assume an arbitrary budget that does 

not allow demographic variation in the budgets. 

 Between the log-linear regression and stochastic frontier regression approaches, the predicted 

activity participation rates for the stochastic frontier approach were relatively better, while 

the predicted activity durations for the log-linear regression approach were relatively better. 

Using the latter approach resulted in a slightly greater tendency to overestimate activity 

durations. 

 While both the stochastic frontier and the log-linear regression approaches provided similar 

prediction performance (at the aggregate level), the former approach allows for the total OH 

activity time expenditure to increase or decrease due to changes in alternative-specific 

variables. On the other hand, using time budgets from the log-linear regression approach lead 

to a mere reallocation of time between the different OH activities without increasing the total 

time allocated for OH activities. This is an important advantage of the stochastic frontier 

approach over the traditional log-linear regression approach to estimating activity time 

budgets. 

 When arbitrarily assumed time budgets were considered, the predictive accuracy and policy 

simulation outcomes (in terms of the changes in OH time allocation patterns) did not differ 

significantly between the different assumptions as long as an equal time budget was assumed 

for all individuals. 

 Overall, the empirical results demonstrate the value of the proposed stochastic frontier 

approach to estimating unobserved budgets for the MDCEV models. While the current empirical 

application is in the context of time-use, the proposed approach is applicable to estimate budgets 

for many empirical applications involving MDC choice analysis, including household vehicle 

holding and usage, long-distance vacation time and money budgets, and market basket analysis. 

However, the current empirical analysis should be viewed as only a proof of concept. Additional 

empirical analyses with a variety of different empirical contexts and data sets will be beneficial 

(see, for example, Augustin et al., 2015 for an assessment in the context of household vehicle 

holding and usage). Finally, since many land-use variable effects on time-use were not 

significant in the current empirical analysis, it will be interesting to conduct empirical analyses in 
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different geographical contexts with a greater variation in land-use characteristics or with 

empirical data gathered from a variety of different urban development patterns.  
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TABLE 1. Descriptive Statistics of the Estimation Sample 

Person Characteristics Household Characteristics 

Sample Size 6,218 Sample Size 4,766 

Age    Household Size   

   18 - 24 years 1.40%   1 Person  24.60% 

   25 – 64 years 33.80%   2 Person 55.80% 

   65+ years 64.70%   3+ Person 19.60% 

Gender 
 

Annual Income   

   Male  42.80%    < $ 25 K 29.00% 

   Female 57.20%    $ 25 K -  $50 K  33.20% 

  
   $ 51 K -  $75 K 15.30% 

       > $ 75K  22.60% 

Race    Number of Workers   

   White  90.30%    0 Workers  69.50% 

   African American  5.30%    1  Worker 26.50% 

   Other    4.4.%    2+  Workers 5.00% 

Education Level   Number of Drivers   

   High School or less 40.80%    0 Drivers  2.90% 

   Some College 28.40%    1  Driver 31.80% 

   Bachelor/Higher 30.80%    2   Drivers 56.40% 

       3+  Drivers 8.90% 

Driver Status    Number of Children   

   Driver  91.70%    0 Children  90.10% 

   Not a Driver 8.30%    1 Child 5.00% 

       2+ Children 4.90% 

Internet Use    Residential Land-Use Variables   

   Almost Everyday  46.30%    Accessibility to recreational land in 5mile buffer Mean = 1.94 (St. dev = 6.88) 

   Several Times in a week 10.30%    # Employments within 1 mile buffer of HH Mean = 32.75 (St. dev = 47.38) 

   Sometimes (once in a week or in a month) 6.40%    # Cul-de-sacs within 0.25 mile buffer of HH Mean = 4.55 (St. dev = 5.08) 

   Never 37.00%    Residential area type is urban (not rural) 78.90% 

Persons’ Daily Out-of-Home Activity Participation  and Time-Use Characteristics 

  
Total observed OH 

Activity Duration 
Shopping 

Personal 

Business 

Social/ 

Recreational 

Active 

Recreation 
Medical Eat Out 

Pick-Up/ 

Drop Off 
Other 

% Participation 100 63.3 39.1 37.6 26.3 29.9 32.5 20.1 7.7 

Average daily activity duration 

in minutes (St. dev in 

parenthesis) 

152.8 (120.9) 54.6 (50.6) 49.6 (57.3) 124.1 (102.6) 52.7 (81.8) 60.1 (70.0) 47.9 (42.3) 15.3 (23.9) 20.8 (43.2) 

Notes: Reported activity durations are averages among those who participated in the activity. Numbers in the parentheses are standard deviations (for residential land-use and for 

activity duration variables).  



30 
 

 

 

 

 

 

TABLE 2. Parameter Estimates of Out-of-Home Activity Time Frontier (OH-ATF) Model 

Variables Coefficients (t-stats) 

Constant 6.03(138.28) 

Female  0.08(3.97) 

Young age; 18-29 years (mid age is base) 0.11(1.89) 

Old age; >75 years (mid age is base) -0.08(-3.48) 

Black (white and others are base) 0.09(2.12) 

Licensed to drive 0.12(3.46) 

Uses internet at least once a week (no use is base) 0.08(3.48) 

Single person household 0.19(4.96) 

Low income < 25K/annum (medium income is base) -0.07(-2.92) 

High income >75K/annum (medium income is base) 0.05(2.00) 

Zero-worker household 0.07(2.73) 

Urban residential location (rural is base) 0.04(1.87) 

Monday (Tuesday - Friday is base) -0.09(-3.74) 

ˆ
u

  1.7164 (84.97) 

ˆ
v

  0.2851 (23.37) 

Log-likelihood at constants -8739.99 

Log-likelihood at convergence -8675.99 

No. of parameters estimated 15 

Note: For all parameter estimated in this table, the t-statistic value corresponds to at least 90% confidence interval. 
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TABLE 3. Parameter Estimates of MDCEV Out-of-Home Activity Time-Use Model with Budgets from the Stochastic Frontier Approach 

 
Unspent Time Shopping  Personal Business Social  Rec. Active Rec. Medical Eat Out Pickup /Drop Other 

Baseline Utility Variables                                                                             

Constants - -1.03(-14.67) -1.87(-26.23) -2.10(-21.00) -2.57(-31.11) -2.39(-26.65) -2.91(-23.32) -2.92(-17.16) -3.74(-48.29) 

Female (Male is base) -      0.05(1.24)** - -     -0.11(-2.08) - - 0.09(1.59)* -  

Age <30 years (30-54 is base) - - - 0.59(4.82) - - - - - 

Age 55-64 years - - - - - 0.10(1.21)** - -0.30(-3.17) - 

Age 65-74 years  - - - - - 0.14(1.78)* - -0.43(-4.60) - 

Age >= 75 years - - - -0.07(-1.33)* - 0.32(4.15) - -0.60(-6.17) - 

White (Non-white is base) - - - - - - 0.39(4.09) - - 

Driver (Non-driver is base) - - - - - - - 0.48(3.33) - 

Driver (All OH activities) - 0.28(4.72) 0.28(4.72) 0.28(4.72) 0.28(4.72) 0.28(4.72) 0.28(4.72) 0.28(4.72) 0.28(4.72) 

Some College (< college is base) - - 0.16(2.96) - - - - - - 

Bachelors degree or more - - 0.25(4.74) - 0.28(4.87) - - - - 

Born in US (others is base) - - - 0.11(1.63)* - - 0.30(3.86) - - 

# Children aged 0-5 years - -0.12(-1.80) -0.23(-2.68) - - - - 0.38(5.29) - 

# Children aged 6-15 years - - - - - - - 0.46(9.01) - 

Total number of workers - -0.04(-1.25)** - - - - - 0.16(3.20) - 

Income 25- 50 K  - - - 0.06(1.12)** - - 0.24(3.74) - - 

Income 50-75 K - - - 0.06(1.12)** 0.21(2.84) - 0.28(3.65) - - 

Income >75 K - - - 0.06(1.12)** 0.41(6.47) - 0.45(6.51) - - 

Accessibility to recreational land - - - 0.0059(1.84) 0.0052(1.45)* - - - - 

# Employments (1 mile buffer)           - - - - 0.0009(1.96) - - - - 

# Cul-de-sacs (0.25 mile buffer) - - - - 0.007(1.29)* - - - - 

Monday (Tue.-Thurs.is base) - - - -0.14(-2.35) - - -0.21(-3.22) - - 

Friday (Tue.-Thurs.is base) - - - 0.06(1.11)** - - - - - 

Satiation Function Variables                                                                        

Constants 4.66(109.28) 2.83(63.91) 3.01(86.02) 4.42(88.96) 1.60(15.88) 3.27(76.43) 3.14(63.06) 1.45(30.21) 2.22(30.58) 

Female (Male is base) - 0.24(4.14) - 0.12(2.02) -0.13(-1.33)* - - - - 

30-54 years(<30 & >55 years-base) -   -0.27(-2.52)      

Some College (< college is base) 

Bachelors degree or more 

 
- 

- 

 

- 
- 

- 
- 

- 
- 

0.45(3.66) 
0.76(6.46) 

- 
- 

- 
- 

- 
- 

- 
- 

Monday (Tue.-Thurs. is base) 

Friday  

- 

- 

- 

- 

- 

- 

- 

0.12(1.22)* 

- 

- 

- 

- 

-0.19(-1.76) 

0.25(2.57) 

- 

- 

- 

- 

Accessibility to recreational land - - - 0.005(0.91)** 0.023(3.39) - - - - 

Model goodness-of-fit Log-likelihood at constants = -105505; Log-likelihood for the final specification = -105087.31; Total no of parameters estimated = 66 (17 of these parameters are constants). 

Notes: t-statistics are reported in parentheses. **t-statistic value is for less than 80%  confidence interval.  * t-statistic value is for 80%  to 90% confidence interval.  For all other parameters, the t-

statistic value is for at least 90% confidence interval. 
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TABLE 4. In-Sample Predictive Performance of MDCEV Time-use Models with Different Approaches for Time Budgets 

  Observed and predicted activity participation rates 

 
Observed 

Log-linear 

Regression 

Stochastic 

Frontier 

Budget = 875 

min. 

Budget = 918 

min. 

Budget = 1000 

min. 

Budget = 1440 min. 

(24 hrs.)    

Budget = 24hrs-in 

home duration 

Shopping 63.3% 67.1% 58.0% 56.0% 55.9% 55.7% 55.4% 53.7% 

Personal Business 39.1% 45.9% 37.3% 35.9% 35.9% 35.9% 35.9% 34.2% 

Social Recreation 37.6% 43.4% 34.7% 33.6% 33.5% 33.5% 33.4% 31.8% 

Active Recreation 26.3% 27.8% 23.3% 22.5% 22.5% 22.5% 22.6% 21.1% 

Medical 29.9% 32.1% 26.6% 25.5% 25.5% 25.5% 25.6% 24.0% 

Eat Out 32.5% 35.9% 29.5% 28.4% 28.4% 28.4% 28.5% 27.0% 

Pickup /Drop-off 20.1% 22.3% 18.4% 17.7% 17.7% 17.7% 17.9% 16.7% 

Other Activities 7.7% 8.1% 6.8% 6.5% 6.5% 6.5% 6.6% 6.0% 

Mean Absolute Error -  3.28 2.74 3.80 3.83 3.86 3.83 5.25 

  Observed and predicted average activity durations (minutes) for those who participated in the activity 

Shopping 54.6 65.0 78.7 92.7 93.9 96.4 107.7 86.7 

Personal Business 49.6 50.8 64.2 76.0 76.9 78.8 87.5 71.7 

Social Recreation 124.1 87.8 131.8 160.7 162.9 167.5 189.2 150.0 

Active Recreation 52.7 26.4 30.5 35.0 35.3 35.9 38.8 33.0 

Medical 60.1 53.2 68.4 81.0 82.1 84.0 92.7 76.4 

Eat Out 47.9 49.6 66.8 78.6 79.4 81.4 89.9 73.8 

Pickup /Drop-off 15.3 16.2 20.4 22.9 23.1 23.5 25.2 21.6 

Other Activities 20.8 24.6 30.1 34.8 35.1 35.8 39.2 33.6 

Mean Absolute Error -  10.93 13.78 24.00 24.80 26.48 34.13 20.1 
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TABLE 5. Out-of-Sample Predictive Performance of MDCEV Time-use Models with Different Approaches for Time Budgets 

  Observed and predicted activity participation rates 

 
Observed 

Log-Linear 

regression 

Stochastic 

frontier 

Budget= 875 

minutes 

Budget= 918 

minutes 

Budget = 

1000 minutes 

Budget = 1440 

minutes (24 hrs.) 

Budget= 24hrs-in 

home duration 

Shopping 64.40% 69.61% 57.91% 55.58% 55.47% 55.31% 55.07% 53.49% 

Personal Business 37.30% 49.10% 37.32% 36.03% 36.02% 35.98% 36.10% 34.07% 

Social Recreation 35.70% 47.23% 35.16% 33.81% 33.82% 33.80% 33.88% 31.92% 

Active Recreation 25.50% 29.74% 22.88% 22.06% 21.99% 21.99% 22.31% 20.81% 

Medical 30.00% 34.37% 26.13% 25.25% 25.25% 25.18% 25.24% 23.33% 

Eat Out 31.80% 38.60% 29.27% 28.05% 28.04% 27.95% 28.16% 26.43% 

Pickup /Drop-off 20.20% 23.94% 17.96% 17.19% 17.21% 17.13% 17.29% 15.92% 

Other Activities 8.20% 8.85% 6.67% 6.46% 6.44% 6.43% 6.50% 5.86% 

Mean Absolute Error 
 

6.04 2.48 3.58 3.61 3.67 3.57 5.16 

  Observed and predicted average activity durations (minutes) for those who participated in the activity  

Shopping 53.46 74.66 78.87 93.63 94.80 97.22 108.26 86.48 

Personal Business 51.08 57.04 64.21 75.62 76.45 78.29 86.55 71.64 

Social Recreation 118.53 102.75 131.34 160.81 162.81 167.36 188.63 149.23 

Active Recreation 55.91 28.82 30.48 34.62 35.00 35.64 38.24 32.77 

Medical 62.36 59.46 69.55 81.87 82.72 84.83 93.90 77.84 

Eat Out 44.67 56.08 67.75 80.32 81.17 83.31 91.82 74.50 

Pickup /Drop-off 14.80 16.54 19.83 22.15 22.27 22.67 24.05 21.26 

Other Activities 25.66 25.68 29.23 34.59 35.05 35.87 39.32 33.59 

Mean Absolute Error 
 

10.76 14.46 24.96 25.70 27.41 34.95 20.89 
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TABLE 6. Simulated Land-use Impacts on Out-of-Home Time-use Patterns for MDCEV Models with Different Approaches for Time 

Budgets 

MDCEV model  

with budget from… 

Unspent 

Time Shopping 

Personal 

Business 

Social 

Recreation 

Active 

Recreation Medical Eat Out 

Pickup 

/Drop-off Other 

Log-linear Regression -- -2.5% (-9) -1.7% (-8) 2.2% (13) 2.1% (18) -1.1% (-9) -1.3% (-8) -0.6% (-4) -0.2% (-4) 

Stochastic Frontier Regression -3.6% (-21) -1.9% (-7) -1.3% (-7) 3.0% (21) 2.2% (25) -0.9% (-8) -1.1% (-7) -0.3% (-4) -0.2% (-4) 

Budget = 875 minutes -4.8% (-24) -1.7% (-7) -1.1% (-6) 3.9% (21) 2.3% (28) -0.8% (-7) -0.9% (-7) -0.2% (-5) -0.1% (-4) 

Budget = 918 minutes -4.9% (-24) -1.6% (-7) -1.1% (-6) 4.0% (21) 2.3% (28) -0.8% (-7) -0.9% (-7) -0.2% (-5) -0.1% (-4) 

Budget = 1000 minutes -5.1% (-24) -1.6% (-7) -1.0% (-6) 4.1% (21) 2.4% (29) 0.8%  (-7) -0.9% (-7) -0.2% (-5) -0.1% (-5) 

24hrs-in home duration -4.3% (-21) -1.6% (-7) -1.0% (-6) 3.4% (21) 2.2% (27) -0.8% (-7) -0.8% (-7) -0.2% (-5) -0.1% (-4) 

Note: In each cell, the % number indicates the % of individuals for whom the time allocated to an activity increased or decreased by more than a minute. A 

positive (negative) number indicates the % of individuals for whom the time allocated to the corresponding activity increased (decreased) by more than a minute. 

The numbers in the parentheses indicate the average change in the time allocated (minutes) for whom a change occurred in the time allocation to this activity by 

more than a minute. A positive number indicates an increase in the time allocation while a negative number indicates a decrease in the time allocation. For 

example, with time budgets estimated using log-linear regression, the MDCEV model predicts that doubling accessibility to recreational land leads to a decrease 

in the time allocated to shopping by more than a minute for 2.5% of the individuals in the sample. And the average decrease in time allocation to shopping 

activity for these same individuals is 9 minutes. 
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Figure 1. Observed and Predicted Activity Durations from MDCEV Models with Different Approaches for Time Budgets 
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