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ABSTRACT 

Given the burgeoning growth in bikeshare system installations and their growing adoption for 

trip making, it is important to develop modeling frameworks to understand bikeshare demand 

flows in the system. The current study examines two choice dimensions for capturing the 

system level bikeshare system demand: (1) total station level demand and (2) distribution of 

bike flows from an origin station across the network. A linear mixed model is used to estimate 

the first choice and Multiple Discrete Continuous Extreme Value (MDCEV) model is used to 

analyze the latter. The data is drawn from the New York City bikeshare system (CitiBike) for 

six months (January through June, 2017). For our analysis, we examine demand and 

distribution patterns on a weekly basis controlling for a host of independent variables (trip, 

socio-demographics, bicycle infrastructure, land use and built environment, temporal and 

weather). Model validation exercise results revealed that the proposed model performs well for 

low demand destinations. A policy exercise evaluating destination choice behavior 

demonstrated how the impact of distance is compensated by additional bicycling infrastructure 

in the farther locations. The results from the study help bikesharing system planners and 

operators to better evaluate and improve bikeshare systems. 

 

Keywords: Bikesharing system, Station level demand, Flow distributions, Multiple 

alternatives, Linear mixed model, Multiple Discrete Continuous Extreme Value (MDCEV) 

model 
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1. INTRODUCTION 

Transportation field is undergoing a transformative change in response to several technological 

innovations resulting in the emergence and popularity of shared mobility systems such as 

bikesharing (such as CitiBike in New York City), carsharing (such as Zipcar or Car2Go), ride 

sourcing (such as Uber and Lyft), and ride-splitting (such as dynamic carpooling in urban 

regions). In addition to these sharing modes, there are other newly emerging transportation 

modes that are expected to penetrate the existing transportation fleet in the near future such as 

flying car (Eker et al., 2019, 2020), non-motorized modes e.g. electric bicycles and electric 

scooters (Wolf and Seebauer, 2014; Seebauer, 2015), dockless bikeshare (Peters and 

MacKenzie, 2019). Recent Transit Cooperative Research Program (TCRP) report (Feigon and 

Murphy, 2016), highlighted that adoption and usage of these tech-based alternative forms of 

transportation present an unprecedented opportunity to address the existing mobility 

shortcomings in urban regions. In fact, public transit and transportation planning agencies can 

enhance mobility and accessibility in a region by incorporating these shared transportation 

alternatives within their planning frameworks. Among the various shared forms of transport, 

bikesharing is a sustainable and affordable option (particularly in urban core regions) that could 

be an effective and promising solution to the first/last mile problem (Jäppinen et al., 2013). In 

our research, we focus our attention on developing a research framework to contribute to our 

understanding of bikeshare origin-destination (OD) flows.  

About 1000 cities around the world have a bikeshare system in operation or in 

consideration for development (Meddin and DeMaio, 2016). As reported by Richter (2018), 

the number of public use bicycles in the world have nearly quadrupled between 2013 and 2016. 

Further, a recent National Association of City Transportation Officials (NACTO) report 

highlighted that of the 88 million trips made by bikeshare users in the US between 2010-2016, 

28 million were trips in 2016 only (Dey et al., 2018). Given the burgeoning growth in bikeshare 

system installations and their growing adoption for trip making, it is important to develop 

modeling frameworks to understand bikeshare demand flows in the system. An important 

mechanism for enhancing system adoption and usage is the development of current 

performance metrics (see Fishman et al., 2013). As bikesharing is an emerging transportation 

mode, the current approaches being employed for analyzing system usage and performance 

measure are still in their infancy. In this study, we propose an enhanced framework to estimate 

usage dimensions of bikesharing at a system level.  

To be sure, several earlier research efforts have explored approaches to model system 

level usage (Faghih-Imani and Eluru, 2015; Faghih-Imani et al., 2014; Rixey, 2013; Zhao et 

al., 2014). These research studies examine the impact of bicycling infrastructure, land use and 

built environment, public transportation infrastructure, temporal and meteorological attributes 

on bikeshare system usage (defined as station level arrivals and departures). These models can 

be viewed as analogous to the trip generation (production and attraction) models in the 

traditional trip-based modeling approach. While these models provide important insights on 

variables affecting bikeshare usage, they do not provide any information on the system level 

flows between the stations. To elaborate, the approaches provide trip end information without 

the trip distribution relationship. To address this shortcoming, recent research has developed 

destination choice models at an individual trip level (El-Assi et al., 2017; Faghih-Imani and 

Eluru, 2015, 2020). In these studies, for every individual trip the choice of destination given 

the origin station is analyzed using a random utility based approach. The models developed at 

an individual trip level can be employed to obtain aggregate estimates of trip distribution 

(analogous to the gravity model). However, such an aggregation approach is purely a statistical 

construct and lacks behavioral support.  

In the current study, we remedy this drawback, by developing a model framework for 

bikeshare system usage as well as origin destination flows. Towards this end, we characterize 



 

4 

 

system demand as origin level demand (number of trips) and allocate these trips to various 

destination stations (number of trips from an origin to destination) in the system. For the first 

variable, a linear mixed model is developed while the second variable is analyzed using a 

multiple discrete continuous model system that implicitly recognizes that the total arrivals 

across (destination) stations should add up to the total number of trips leaving the origin 

stations. The proposed framework is implemented for the New York City bikeshare system 

(CitiBike). The data drawn for the exercise includes bikeshare trips from January 2017 through 

June 2017 for the CitiBike system.  

The remainder of the paper is organized as follows. Section 2 provides a summary of 

the earlier studies on bikeshare and positions the current study. Data source and descriptive 

analysis together with econometric framework are presented in Section 3. Section 4 presents 

the model estimation results followed by model validation and policy analysis results. Finally, 

Section 7 concludes the paper. 

 

2. EARLIER STUDIES 

The recent growth of bikeshare systems around the world has resulted in a number of research 

efforts examining different aspects of bikeshare systems. These research efforts can be broadly 

categorized into two groups. The first group of studies is focused on understanding user 

behavior (such as reasons for adopting bikeshare) and satisfaction using online surveys or 

questionnaires (see for example Bachand-Marleau et al., 2012; Buck et al., 2013; Fishman et 

al., 2014; Fuller et al., 2011; Schoner and Levinson, 2013; Barbour et al., 2019; Fishman, 2016; 

Lu et al., 2018; Nikitas, 2018; Pal and Zhang, 2017; Caggiani et al., 2019; de Chardon, 2019; 

Nath and Rambha, 2019; Choi and Choi, 2020). These studies aid in formulating policies for 

promoting the bicycle mode as well as for attracting higher usage of the bikeshare systems. 

The second group is comprised of studies conducting quantitative analysis using bikeshare 

usage data. These studies attempt to understand user trip patterns and disentangle different 

factors that affect bikeshare demand. Given the focus of our current study, we restrict ourselves 

to the discussion of the second group of studies only; concentrating on the major research 

dimensions explored, methodological approaches employed, and major research findings from 

these studies.  

The most common research dimensions explored in the previous studies include (a) 

system demand characterized as arrivals and departures from bikeshare stations (Caulfield et 

al., 2017; Faghih-Imani and Eluru, 2016a, b; Faghih-Imani et al., 2014, 2017a; Gebhart and 

Noland, 2014; Hyland et al., 2018; Noland et al., 2016; Rixey, 2013; Rudloff and Lackner, 

2014; Wang et al., 2015; Yufei et al., 2014; Zhang et al., 2017; Kabra et al., 2019; Wang et al., 

2020; Caggiani et al., 2020), (b) rebalancing demand (relocating bikes from overcrowded 

stations to those with shortage of bikes) (Bouveyron et al., 2015; Faghih-Imani et al., 2017b; 

Forma et al., 2015; Fricker and Gast, 2016; Nair et al., 2013; Pfrommer et al., 2014; Raviv et 

al., 2013; Vogel and Mattfeld, 2011; Pal and Zhang, 2017; Dell et al., 2016), and (c) destination 

station choice preferences of bikeshare users (El-Assi et al., 2017; Faghih-Imani and Eluru, 

2015, 2020). The bikeshare systems analyzed are spread across a multitude of urban regions in 

different continents including New York (CitiBike), Montreal (BIXI), Paris (Velib), London 

(Santander Cycle), Chicago (Divvy), Hangzhou (Hangzhou Public Bicycle), Beijing (Beijing 

Public Bicycle), Zhongshan (Zhongshan Public Bike System), Melbourne (Melbourne 

Bikeshare), and Brisbane (CityCycle).  

The data used in the analyses were either directly available in the bikeshare system 

provider website or were downloaded using automated scripts from the website. On the 

methodological front, the most commonly employed analytical approaches include linear 

regression (LR), mixed linear regression, panel ordered logit model, negative binomial count 

model, multinomial logit (MNL) model, mixed multinomial logit model, finite mixture MNL 
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model, and time series models and their variants (Buck et al., 2013; El-Assi et al., 2017; Faghih-

Imani and Eluru, 2015; Faghih-Imani et al., 2014; Gebhart and Noland, 2014; Rixey, 2013; 

Rudloff and Lackner, 2014; Wang et al., 2015; Zhao et al., 2014). In addition to the 

conventional statistical methods, some studies have used machine learning methods and visual 

analytics to examine bikeshare demand, station usage, and other aspects (Hyland et al., 2018; 

Oliveira et al., 2016; Giot & Cherrier, 2014; Ashqar et al., 2017)1. The findings from the station 

demand studies suggest that bikeshare system usage, at a station level, is primarily influenced 

by bikeshare infrastructure (such as number of stations and station capacity), bicycling 

infrastructure (such as presence of bike lanes), land use and built environment (such as 

population density, job density, and points of interest), public transportation infrastructure 

(presence of bus/metro stops), and temporal and meteorological attributes (such as precipitation 

and temperature) (El-Assi et al., 2017; Faghih-Imani and Eluru, 2015, 2016a, b; Faghih-Imani 

et al., 2014; Gebhart and Noland, 2014; Rixey, 2013; Wang et al., 2015). Destination choice 

studies highlight that bikeshare users prefer shorter trips (El-Assi et al., 2017; Faghih-Imani 

and Eluru, 2015) and they make trade-offs on station distance with other conveniences such as 

access to points of interest and stations with larger capacity.  

 

2.1. Current study in context 

From the literature review, it is evident that research on bikeshare systems is growing rapidly. 

However, several research questions remain to be answered. We build on the prior research 

and contribute to the burgeoning literature on bikeshare systems by examining system level 

demand along with its distribution. To elaborate, our emphasis is on understanding bikeshare 

demand at the stations and the flow of these bikes to their corresponding destinations. The 

framework would provide system operators not only an estimate of the system demand at a 

station level but also how these bike trips are distributed across the entire system. We identify 

two choice dimensions: (1) station level demand and (2) how bike flows from an origin station 

are distributed across the network. Station level demand is a continuous variable and can be 

easily analyzed using linear regression models and their advanced variants. On the other hand, 

the second choice variable is quite different. Specifically, for an origin station with a predefined 

demand, the choice process involves identifying the flows to all destination stations in the 

system. There are two major challenges associated with it. First, the destinations for bike flows 

from an origin are likely to involve multiple alternatives (as opposed to a single chosen 

alternative). Second, the potential universal alternative set includes all stations in the bikeshare 

system. The multiple discrete continuous (MDC) frameworks that follow Kuhn-Tucker (KT) 

approaches developed in the literature can be adapted to address this choice dimension. KT 

demand systems have been used in various empirical contexts including outdoor recreational 

demand (Phaneuf et al., 2000; von Haefen, 2004; von Haefen and Phaneuf, 2005), individual 

activity participation and time-use (Bhat, 2005; Nurul Habib and Miller, 2009; Pinjari and 

Bhat, 2010; Pinjari et al., 2009; Rajagopalan et al., 2009), household vehicle ownership and 

usage forecasting (Ahn et al., 2008; Bhat et al., 2009; Fang, 2008), and household budgetary 

allocation (Anowar et al., 2018; Ferdous et al., 2010; Rajagopalan and Srinivasan, 2008). For 

our current analysis, we adopt the methodology proposed by Bhat (2008)2.  

                                                 
1 A number of studies in transportation literature adopted various modeling frameworks to study dependent 

variables with multiple dimensions such as fractional split model in vehicular speed (Bhowmik et al., 2019), 

bivariate or ordered probit model in injury severities and driving behavior (Fountas and Anastasopoulos, 2017; 

Fountas et al, 2018, 2019; Sarwar et al., 2017) 

  
2 The reader would note that fractional split models developed in recent years for several research studies (for 

example see Rahman et al., 2020; Bhowmik et al., 2018; Yasmin and Eluru, 2018 and Yasmin et al., 2016) offer 

an alternative approach to model destination flows. However, given the functional form of these models, in the 

presence of a large number of alternatives – as is the case in our context – the proportion allocated to these 



 

6 

 

 

The data for our analysis is drawn from New York City bikeshare system (CitiBike). 

Six months of bikeshare usage data from January 2017 through June 2017 was downloaded 

from the CitiBike website and rigorously processed to obtain weekly bikeshare usage patterns 

- station level weekly origin demand and the corresponding flow patterns to all destinations 

across the entire bikeshare system. In our case, the second choice dimension has 573 

destination alternatives. To the best of the authors’ knowledge this is the largest number of 

alternatives considered in a KT system in the literature.  

 

3. MATERIAL AND METHODS  

 

3.1. Data  

 

3.1.1. Data source 

New York’s CitiBike system is one of the major public bikeshare systems around the world 

and the largest in the United States. The CitiBike system was launched in May 2013 with 330 

stations and 6,000 bicycles in the lower half of Manhattan and some part of northwest 

Brooklyn. In 2017, the system expanded to 750 stations with 12,000 bicycles. According to 

CitiBike report, the number of annual subscribers were nearly 130,000 on July 2017. The trip 

itinerary dataset (from January 2017 to June 2017) of the CitiBike system is the primary data 

source employed (https://www.citibikenyc.com/system-data) in our study. The dataset 

provides information on start and end time of trips, their origin and destination, geographic 

coordinates of stations (latitude and longitude), travel time or trip duration, user types, and age 

and gender for members’ trips. The trip data was augmented with other sources including: (1) 

built environment attributes derived from New York City open data 

(https://nycopendata.socrata.com); (2) socio-demographic characteristics at the census tract/zip 

code level gathered from US 2010 census data; (3) the weather information corresponding to 

the Central Park station retrieved from the National Climatic Data Center 

(http://www.ncdc.noaa.gov/data-access). 

 

3.1.2. Sample formation   

A series of data cleaning and compilation exercises were undertaken for generating the sample 

data for estimation purposes. First, trips with missing or inconsistent information were 

removed. Second, trips longer than 2 hours in duration (around 0.5% of all trips) were deleted 

considering that the trips longer than 2 hours are not typical bicycle-sharing rides (see Faghih-

Imani and Eluru, 2015 for a similar approach). These trips could also be a result of misplacing 

the bicycle when returning it to the station. Third, trips that had the same origin and destination 

were also eliminated. For trips with the same origin and destination, it is possible that the 

bicycle was not functioning well and hence, the users returned them to the origin station. 

Therefore, we focus on trips that were destined outward only. 

For the given study period (January 2017 to June 2017), the total number of available 

stations in CitiBike system was 644. Initially, we aggregated weekly trip data for each week 

(total 26 weeks) from each origin station to every possible destination station (643). The 

processing of large sample of trip data with other station level variables is substantially time-

consuming and significantly increases the model run times. To obtain a reasonable sample size 

for model estimation, 5 weeks trip data for each origin were randomly selected. In the process, 

we ended up having 70 stations with no trips. So, we eliminated those 70 stations (about 10% 

                                                 
potentially unchosen alternatives could amount to be a significant value. Thus, it might be necessary to adopt an 

additional level of analysis with a binary choice model that determines whether a station is chosen or not and then 

for these chosen alternatives, a proportion is assigned.  

https://www.citibikenyc.com/system-data
https://nycopendata.socrata.com/
http://www.ncdc.noaa.gov/data-access
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trips) from both origin and destination choice set. Finally, we had 574 stations for analysis. The 

location of these stations (574 stations) is presented in Figure 1. We organized the dataset into 

two dimensions for our analysis; 1) For station level demand (aggregating total weekly trip at 

the origin level) and 2) Trip distribution from origin to destination (aggregating weekly trip at 

the O-D pair level). Figure 2 represents the independent and dependent variable data 

compilation procedure.  

 

3.1.3. Independent variable generation 

Several independent variables were generated in our study (see Figure 2). These can be grouped 

into four categories: 1) Trip attribute, 2) Bicycle and transportation infrastructure variables, 3) 

Weather attributes, 4) Temporal attributes and 5) Land use and built environment variables. 

Trip attribute includes the network distance between each origin-destination station pair 

estimated using the shortest path algorithm tool of ArcGIS software. While the actual trip might 

involve a different route, the shortest network distance would be an appropriate indicator of 

the distance traveled. Bicycle and transportation infrastructure attributes include CitiBike 

station attributes, bike route length, and public transit stations. For these attributes a 250-meter 

buffer around each station was created. The 250-meter buffer seems a reasonable walking 

distance based on the distances between CitiBike stations and the dense urban form of New 

York City (Kaufman et al., 2015). The variables created at the buffer level include length of 

bike routes (capturing the effect of availability of bicycle facilities on system usage), length of 

roads (minor and major roads). The number of CitiBike stations and total dock’s capacity 

within 250 meter buffer (excluding the station considered and its capacity) were estimated to 

capture the impact of neighboring stations on cycling trips. Number of subway stations and bus 

stops in the 250 meter buffer were generated to examine the influence of public transit on 

cyclist’s preference of destination station. Weather variables include average temperature, 

relative humidity and precipitation over the week. Several interaction variables were also 

created. Seasonality is the only temporal variable considered. We consider winter (January-

March) and Spring (April-June) as dummy variables. Finally, several land use and built 

environment variables were considered including population density, job density and 

establishment density, the number of facilities (schools, colleges, hospitals), the number of 

point of interests (museums, shopping malls), and the number of restaurants (including coffee 

shops and bars), total area of parks and commercial space (office, industry, retail) within 250 

meter buffer, station elevation, and distance of destination from Times Square. Population 

information was collected from US census 2010 and projected for 2017 at the census tract level. 

Job density data was estimated at the census tract level while establishment density was 

calculated at the zip code level for 2016. Non-motorized vehicle score (average of walk score 

and bike score) and transit score associated with each CitiBike station was considered at the 

census tract level. 

 

3.1.4. Descriptive Analysis 

A descriptive summary of the analysis sample is presented in Table 1. Some salient 

characteristics of the data are as follows. The average dock capacity in the CitiBike system is 

around 33 bicycles and the average network distance between origins and destinations is about 

11 km. On average, 402 trips per week depart from each origin station. In order to better 

understand the trip generation and distribution in the CitiBike system, we generated the total 

number of weekly trips destined to each station from origin. The number of weekly trips 

generated and attracted at each station is presented in Figure 3. In Figure 3, the number of 

weekly trips generated (Figure 3a) and attracted (Figure 3b) to each station is categorized in 

five classes: Very Low (number of weekly trips less than 500), Low (500-1000), Medium 
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(1000-2000), High (2000-5000) and Very High (more than 5000). Overall, the visualization 

provides a brief overview of bicycle flows in NYC using the CitiBike system.  

 

3.2. Econometric framework 

 

3.2.1. Linear mixed model for station level weekly origin demand 

The station level weekly origin demand variable is a continuous value and can be analyzed 

using linear regression models. However, the traditional linear regression model is not 

appropriate for data with multiple repeated observations. In our empirical analysis, we observe 

the weekly demand at the same station for five weeks. Hence, we employ a linear mixed 

modeling approach that builds on the linear regression model while incorporating the influence 

of repeated observations for the same station. The linear mixed model collapses to a simple 

linear regression model in the absence of any station specific effects. 

Let 𝑞 =  1, 2, … , 𝑄 be an index to represent each station (𝑄 = 574), 𝑊 =  1, 2, … , 5  
be an index to represent the various weeks of data compiled for each station. The dependent 

variable (weekly demand) is modeled using a linear regression equation which, in its most 

general form, has the following structure: 

𝑦𝑤𝑞  =  𝛽𝑋𝑤𝑞  +  𝜀𝑤𝑞 (1) 

where 𝑦𝑤𝑞 is the natural logarithm of weekly demand3, 𝑋 is an 𝐿 × 1 column vector of attributes 

and the model coefficients, 𝛽, is an 𝐿 × 1 column vector. 𝛽 includes fixed and random 

parameters considered in the model. The random error term, 𝜀𝑤𝑞, is assumed to be normally 

distributed across the dataset. In our analysis, the repetitions over weeks can result in common 

unobserved factors affecting the dependent variable. While a full covariance matrix can be 

estimated for the unobserved correlations, as we are selecting 5 random weeks from a sample 

of 26 weeks for each station, we decided to employ a simpler covariance structure. The exact 

functional form of the covariance structure assumed is shown below: 

𝛺 = (

𝜎2 + 𝜎1
2 𝜎1 … 𝜎1

𝜎1 𝜎2 + 𝜎1
2 … 𝜎1

⋮ ⋮ ⋱ ⋮
𝜎1 𝜎1 … 𝜎2 + 𝜎1

2

) (2) 

  The covariance structure restricts the covariance across all five records to be the same. 

The parameters estimated in this correlation structure are 𝜎 and 𝜎1 . The parameter 𝜎 represents 

the error variance of 𝜀, 𝜎1 represents the common correlation factor across weekly records. The 

models are estimated in SPSS using the Restricted Maximum Likelihood Approach (REML). 

The REML approach estimates the parameters by computing the likelihood function on a 

transformed dataset. The approach is commonly used for linear mixed models (Harville, 1977). 

 

3.2.2. MDCEV model for destination choice 

We consider the following functional form (Bhat and Eluru, 2010) for modeling destination 

preferences in this paper, based on a generalized variant of the translated Constant Elasticity 

of Substitution (CES) function: 

                                                 
3 The reader would note that the log transformed variable distribution closely matches a normal distribution. The 

transformation is commonly applied for dependent variables with a large range in previous literature (Faghih-

Imani et al., 2014, 2017b, Faghih-Imani and Eluru, 2016b; Rixey et al., 2013). 
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𝑉(𝑥) =  ∑
𝛾

𝛼

𝐼

𝑖=1

 ψ𝑖 {(
𝑥𝑖

𝛾
+ 1)

𝛼

− 1 } (3) 

where 𝑉(𝑥) is a quasi-concave, increasing, and continuously differentiable function with 

respect to the bicycle flows (𝐼x1)-vector (𝑥𝑖 ≥ 0 for all 𝑖), and 𝜓𝑖 associated with destination 

station 𝑖. 𝜓𝑖 represents the baseline preference level (𝜓𝑖> 0 for all 𝑖), 𝛾 is a translation 

parameter (𝛾 should be greater than zero) which enables corner solutions while simultaneously 

influencing satiation and 𝛼 influences satiation (𝛼 ≤ 1).  

The KT approach employs a direct stochastic specification by assuming the function 

𝑉(𝑥) to be random over the population. A multiplicative random element is introduced to the 

baseline preference level for each good (in our case destination) as follows: 

ψ (𝑧𝑖𝑤, 𝜖𝑖𝑤) = exp (𝛿𝑧𝑖𝑤 + 𝜖𝑖𝑤) (4) 

where 𝑧𝑖𝑤 is a set of attributes characterizing destination station 𝑖 during week w, 𝛿 corresponds 

to a column vector of coefficients, and 𝜖𝑖𝑤 captures idiosyncratic (unobserved) characteristics 

that impact the baseline preference for destination stations. The overall function from Equation 

(3) then takes the following form: 

𝑉(𝑥) =  ∑
𝛾

𝛼

𝐼

𝑖=1

 exp (𝛿𝑧𝑖𝑤 + 𝜖𝑖𝑤) {(
𝑥𝑖

𝛾
+ 1)

𝛼

− 1 } (5) 

Following (Bhat, 2005, 2008), consider a generalized extreme value distribution for 𝜖𝑖𝑤 

and assume that 𝜖𝑖𝑤 is independent of 𝑧𝑖𝑤 (𝑖 = 1,2, … , 𝐼). The 𝜖𝑖𝑤’s are also assumed to be 

independently distributed across alternatives with a scale parameter normalized to 1. Due to 

the common role of 𝛾 and 𝛼, it is very challenging to identify both 𝛾 and 𝛼 in empirical 

application (see (Bhat, 2008) for detailed discussion). Hence, either 𝛾 or 𝛼 parameter is 

estimated. When the 𝛼 - profile is used, the function simplifies to: 

𝑉(𝑥) =  ∑
1

𝛼

𝐼

𝑖=1

 exp (𝛿𝑧𝑖 + 𝜖𝑖){(𝑥𝑖 + 1)𝛼 − 1 } (6) 

When the 𝛾 - profile is used, the function simplifies to: 

𝑉(𝑥) =  ∑ 𝛾

𝐼

𝑖=1

exp(𝛿𝑧𝑖 + 𝜖𝑖) 𝑙𝑛 (
𝑥𝑖

𝛾
+ 1) (7) 

In this study, 𝛾 - profile is used. Finally, the probability that an origin station has flows to the 

first 𝑀 destination stations 𝑀 ≥ 1 is: 

𝑃(𝑒1
∗, 𝑒2

∗, 𝑒3
∗, … , 𝑒𝑀

∗ , 0,0, … ,0) = [∑ 𝑑𝑛

𝑀

𝑛=1

] [∑
1

𝑑𝑛

𝑀

𝑛=1

] [
∏ 𝑒𝑉𝑛𝑀

𝑛=1

(∏ 𝑒𝑉𝑖𝐾
𝑚=1 )𝑀

] (𝑀 − 1)! (8) 
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where (∑ 𝑑𝑛
𝑀
𝑛=1 ) (∑ 1

𝑑𝑛
⁄𝑀

𝑛=1 ) is defined as Jacobian form for the case of equal unit prices 

across goods (Bhat, 2008) where, 𝑑𝑛 = (
1−𝛼

𝑒𝑛
∗ +𝛾

).  

Unlike the traditional MDCEV model, in our context, the number of alternatives is 

substantially larger. Hence, we resort to estimating a generic parameter for each exogenous 

variable across alternatives (analogous to how multinomial logit based location choice models 

are estimated with a single utility equation).  

 

4. ESTIMATION RESULTS 

In this section, estimation results from the two models are discussed – bikeshare demand model 

if followed by the trip distribution model results at destination level. The reader must note that 

we used same scaled parameter as presented in Table 1. 

 

4.1. Trip demand model  

 

4.1.1. Model fit measures 

 

The empirical analysis began with estimating a simple linear regression model. This served as 

the benchmark for evaluating the model of the linear mixed model. The Log-likelihood ratio 

(LR) test statistic comparing these models was found to be 2015.0 which was higher than any 

corresponding chi-square value for 2 degrees of freedom (𝜎 and 𝜎1 ). Based on the LR test 

statistic, we can conclude that the linear mixed model outperforms the simple linear regression 

model and offers satisfactory fit for the station level demand4. Therefore, in the following 

section, we discuss the results from this model. 

 

4.1.2. Results 

The linear mixed model estimation results are presented in Table 2.  

 

Bicycle infrastructure and transportation attributes  

Higher number of trips are likely to be generated from stations with higher capacity than lower 

capacity stations. Riders are willing to make more trips from stations well served by bicycle 

facilities such as bicycle lanes presumably because presence of bike lanes increases the 

accessibility of the station (see Buck and Buehler, 2012 for similar results). Overall, the results 

highlight the importance of station capacity and existing bicycle infrastructure on bikeshare 

demand. As expected, proximity of stations to subway stations positively impacts origin bike 

demand. This is plausible since bikeshare potentially serves as a last mile connection for some 

public transit users (similar results in Nair et al., 2013). 

 

Temporal attributes  

There is a negative relationship between winter season and total weekly bicycle departures 

from a station compared to spring season. The finding is in line with the findings reported in 

the literature – cold weather and snow are major deterrent to cycling trips, particularly in the 

North Eastern part of the US (Pucher et al., 2011).  

 

Land use and built environment attributes  

                                                 
4 The reader would note that due to inherent structure of the linear mixed models, traditional goodness of fit 

measures such as R2 are not readily applicable and require more involved approaches to computing the measure 

(see Nakagawa and Schielzeth, 2013 for more details).  
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Increased job density within the station buffer encourages increased bikeshare trips (see Rixey, 

2013; Wang et al., 2015 for similar results). The result highlights the likely use of bicycle 

sharing systems for daily commute trips. Location of station in walk and bike friendly 

neighborhoods also drives bikeshare demand. Proximity of stations to different facilities 

(schools, colleges, hospitals, office) and recreational locations (point of interests such as Times 

Square, museums, amusement parks, shopping malls) increases station demand. Distance from 

Time Square is negatively associated with bikeshare flows.  

 

Random parameters 

We tested for the presence of random effects for several variables. In our estimation, only one 

variable offered a significant estimate. Specifically, unobserved heterogeneity of the impact of 

length of bicycle lanes is significant highlighting that the value associated varies substantially 

across destinations.   

 

Correlation parameters  

The correlation parameters are statistically significant highlighting the role of common 

unobserved factors influencing the origin stations.  

 

4.2. Destination choice model 

 

4.2.1. Model fit measures 

The final log-likelihood values for destination choice MDCEV model and equal probability 

MDCEV model are -1376961.379 and -1540196.38 respectively. The log-likelihood ratio (LR) 

test-statistic of comparison between the final model and the equal probability model is 

326470.002. The LR test-statistic value is significantly higher than the corresponding chi-

square value for 20 additional degrees of freedom. Based on these values, we can see that the 

MDCEV destination choice model offers a reasonable fit.  

 

4.2.2. Results 

The best fit model results of destination choice are presented in Table 3.  

 

Trip attributes  

In the current research context, a negative coefficient was obtained for network distance of O-

D pair. Intuitively, destinations further away are less appealing for cyclists. We also tried 

interaction of winter season with distance in the model. As expected, during cold weather the 

traveling further distance is more burdensome for bikeshare users. 

 

Socio-demographic attributes 

Among socio-demographics, destination population, job and employment density variables 

significantly affect preferences for the destination. Stations located in census tracts with higher 

population density are more likely to be chosen as destination stations (see Faghih-Imani and 

Eluru, 2015, 2020; Rixey, 2013; Wang et al., 2015 for similar results). Similarly, job and 

establishment density also impact station choice positively. The result probably highlights that 

bicycle-sharing systems are likely to be used for daily commute trips (see Faghih-Imani et al., 

2017a for similar result).  

 

Bicycle infrastructure and Transportation attributes  

Stations with larger dock capacity are more likely to be chosen (similar results in El-Assi et al., 

2017; Faghih-Imani and Eluru, 2015, 2020). An increase in the length of bicycle route within 

the 250-meter buffer of a destination station results in an increased likelihood of the station 
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being chosen as destination (similar to findings of El-Assi et al., 2017; Faghih-Imani and Eluru, 

2015, 2016b, 2020) while a contrasting result (albeit with lower magnitude) is obtained for 

street length variable.  

Literature suggests that in addition to their own attributes, neighboring station attributes 

also affect destination choice behavior. In our study, the number of stations and total dock 

capacity in the station buffer offer interesting results. The result is quite similar to what has 

been reported in earlier single discrete model (see Faghih-Imani and Eluru, 2015, 2020 for 

similar results). The positive impact associated with the number of neighboring stations on 

likelihood of choosing a station as destination is about 12 times larger than the negative impact 

of capacity of neighboring stations in the buffer. Hence, as long as the average capacity addition 

per station is under 12, neighboring stations increase demand. On the other hand, when larger 

stations exist in the 250 m buffer, they increase competition and reduce demand for the 

destination station. As the number of subway and bus stations in the buffer increases, we 

observe increased preference for that destination. 

 

Land use and built environment attributes  

Intuitively, increased transit accessibility within the station buffer increases the station’s 

likelihood of being chosen as destination. As expected, stations located in neighborhoods with 

high walk and bike accessibility – represented by higher non-motorized vehicle score - are 

preferred by cyclists. Cyclists prefer amenities around stations as indicated by the positive 

impact of number of restaurants and cafes in the vicinity of destination station. The CitiBike 

stations in the vicinity of parks are also more likely to be chosen. Individuals are likely to 

choose destination stations in a location with more facilities (such as museums, schools, 

colleges, university, hospitals). Visitors choose stations that bring them closer to Times Square 

as highlighted by negative coefficient of destination station distance to Times Square. Another 

important land use attributes that plays a significant role in choosing destination station is 

elevation of that station. People are less inclined to choose stations with steep slope for their 

trip. The presence of commercial area in the vicinity of destination station also increases the 

proclivity for the destination.  

 

Satiation parameter  

As discussed earlier in the methodology section, the translation parameter 𝛾 captures the extent 

of decrease in marginal preference across different destination stations. The translation 

parameter 𝛾 is statistically significant at 95% level of significance, thereby implying that there 

are clear satiation effects in destination choice as distance of destination from Times Square 

increases. To elaborate, as the destination moves further away from Times Square, the satiation 

impacts are higher indicating fewer trips will be made to the destination. 

 

5. VALIDATION ANALYSIS RESULTS 

For validation purpose, a hold-out sample was prepared following the same procedure used to 

extract the estimation sample. We randomly chose 5 weeks of data from the rest 21 weeks (a 

total of 26 weeks of data was available). The same approach of choice set generation for 

estimation sample is exercised for validation sample (574 origins x 5 weeks x 573 destinations). 

The difference in the log-likelihood for the predicted and equal probability model is 48118 

units clearly highlighting the enhanced fit of the proposed model.  

To further highlight the applicability of estimated model for predicting destination 

choice conditional on the origin, we estimated destined trips from each origin for each week at 

disaggregate level. Note that, zero trips to any destination for a week was also considered. For 

the performance evaluation, we compute the correctly classified predicted trips for each O-D 

pair for each week. The reader would note that for about 73% trips the prediction was correctly 
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classified (see Figure 4). Specifically, 78% of zero trips from an origin to all possible 

destinations in each week was classified correctly while the corresponding number of non-zero 

trips is 33%. The result indicates that predicted model performs better in case of destination 

stations with zero trips. Also, correct prediction was observed to be higher for the origin 

stations which have higher number of chosen alternative destinations (more than 70) (see 

Figure 5). The result makes intuitive sense. In cases where the number of destinations is fewer 

(say <=30), the MDCEV allocation has to find a few alternatives from the universal set thus 

increasing potential scope for error.  

 

6. POLICY ILLUSTRATION 

To highlight the applicability of the proposed model system, we conducted two policy analysis 

exercises: (1) an innovative policy illustration and (2) estimation of elasticity effects. For the 

first exercise, we predicted changes in destination preferences with changes in bicycle 

infrastructure. Specifically, we increased the bike street length by 50% within the 250m buffer 

of the destination stations, compute the corresponding utility associated with choosing 

destinations, and demonstrate how the top 10 percentile of preferred destination stations alter 

in response to the change. For illustration purposes, we present the results for a randomly 

selected origin station (Station 3016) for a random week (see Figure 6). Figure 6 presents the 

preferred destinations in the top ten percentile, before (6a) and after (6b) increase. The results 

indicate that with increase in bike infrastructure, current preferred stations at the periphery are 

replaced with newer stations that are outside the base periphery (near lower Manhattan). The 

result is a manifestation of how the impact of distance on destination choice is compensated by 

additional bicycling infrastructure in the farther locations. While increasing bicycle 

infrastructure by 50% is far from straight forward, the analysis is an illustration of how the 

proposed model can be employed for policy analysis.  

 For the second exercise, elasticity effects computation considering changes in baseline 

preference function was used to evaluate the impact of exogenous variables on destination 

station choice. The elasticity effects are computed by evaluating the percentage change in 

baseline preference of an alternative in response to increasing the value of exogenous variables 

from best fit model by 10%, 25% and 50% respectively. The computed elasticities are 

presented in Figure 7. Based on elasticity effects results in Figure 7, following observations 

can be made. First, the elasticity estimate for station’s capacity variable indicates that 

destination preference improves by 6.4, 16.80 and 36.62% in response to 10, 25 and 50% 

increase in station capacity respectively. Second, rank order of the top three significant variable 

in terms of changes for the preference without considering the sign of the impact include 

station’s capacity, network distance and job density. Third, network distance between O-D can 

be considered as a proxy for travel time. Improving station connectivity by providing bicycle 

facilities can offer positive impetus to bike demand and flows. Overall, the elasticity analysis 

results provide an illustration on how the proposed model can be applied to determine the 

critical factors affecting bikeshare destination preferences. 

 

7. CONCLUSION AND FUTURE RESEARCH 

Given the burgeoning growth in bikeshare system installations and their growing adoption for 

trip making, it is important to develop modeling frameworks to understand bikeshare demand 

flows at the system level. The emergence of shared mobility options has changed the overall 

landscape of travel behavior in many metropolitan areas. However, current state-of-practice 

and travel demand models are not equipped to accurately examine the effects of these services. 

Developing more accurate and policy sensitive models, requires understanding the 

fundamentals of decision-making processes toward these new modes of travel. The current 

study proposes a model framework for investigating bikeshare system usage as along with the 
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origin-destination flows. We identify two choice dimensions: (1) station level demand and (2) 

how bike flows from an origin station are distributed across the network. A linear mixed model 

is considered for modeling weekly origin station demand while a multiple discrete continuous 

extreme value model (MDCEV) is employed to analyze flows from origin to multiple 

destinations.  

The data for our analysis is drawn from New York City bikeshare system (CitiBike) for 

six months from January through June, 2017. For our analysis, we examine demand and 

distribution patterns on a weekly basis. A host of exogenous variables including trip attributes, 

socio-demographic attributes, bicycle infrastructure attributes, land use and built environment, 

temporal and weather attributes are considered. The model estimation results provide intuitive 

findings for both station level demand and destination choice behavior. Several attributes like 

job density, number of facilities and recreational points, transit and bike accessibility, dock 

capacity, bike length in vicinity, and census tract level variables (such as population density, 

job density, and establishment density) increase the preferences for a destination while distance 

to Times Square, and winter season decrease the likelihood of choosing a destination. In 

addition to model estimation, a model validation effort was conducted using a hold out sample. 

The data fit relative to the equal probability MDCEV model highlighted the significant 

improvement in data fit for the estimated model. Finally, we employed our MDCEV model for 

prediction to compute the demand for destination stations across the system. We estimated the 

number of trips at the disaggregate level for each O-D pair by week and computed the number 

of correctly classified trips based on our predictions. The prediction exercise illustrated the 

reasonable performance of the proposed model.  To further augment the policy analysis, elasticity 

effects were computed by evaluating the percentage change in destination preferences in response 

to increasing the value of exogenous variables by 10%, 25% and 50% respectively. Based on the 

exercise, the top three significant variables in magnitude include station’s capacity, network 

distance and job density.  

 To be sure, this paper is not without limitations. Given the large number of alternatives, 

the model run times were substantially long affecting number of specifications we can test. In 

our analysis, unobserved effects arising from repetitions in the MDCEV model were not 

captured. Another potential avenue for future research is the consideration of sampling for 

MDCEV models (similar to sampling in MNL models). 
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Figure 1 NYC’s bicycle-sharing system (CitiBike)
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Figure 2 Data formation flow chart

Weather Variables 
 Temperature 

 Humidity 

 Precipitation 

Source: National Climatic Data Center  

 

Weekly Trip 

Aggregated at Origin 

Level  

Randomly Chosen 5 Weeks from 26 Weeks  

Trip Demand Model 

Bike Share Ridership Data 
 Start/End Time 

 Start/End Station 

 Station Location 

 Travel Time 

 User ID 

 Membership 

 Station Attributes 

Source: Citi Bike, NYC 

Socio-demographic Variables  
 Population Density (CT Level) 

 Employment Density (CT Level) 

 Establishment Density (Zip Code 

Level) 

Source: US Census Bureau 

Land Use and Built Environment 

Variables 
 Facilities 

 Point of Interests 

 Number of Restaurants 

 Park Area 

 Commercial Space 

 Elevation 

 Walk/Bike Score 

 Transit Score 

 Distance to Time Square 

Source: NYC Open Data and Google Maps 

 

Bicycle and Transportation 

Infrastructure Variables 
 Bike Route Length 

 Street Length 

 Dock’s Capacity 

 Number of Neighbor Stations 

 Capacity of Neighbor Stations 

 Number of Subway Stations 

 Number of Bus Stops 

Source: NYC Open Data and Google Maps 

Temporal Variable 
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(a) Trip generation at origin stations (b) Trip attraction at destination stations 

Figure 3 Bicycle-sharing trips in NYC’s CitiBike system 
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Figure 4 Prediction measure of bicycle-sharing trips in NYC’s CitiBike system 
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Figure 5 Variations of prediction measure of bicycle-sharing trips with chosen alternative stations
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(a) Top ten percentile destination stations before increase (b) Top ten percentile destination stations after increase 

Figure 6 Top ten percentile destination stations 
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Figure 7 Elasticity effects considering utility changes 
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Table 1 Descriptive summary of sample characteristics 

Continuous Variables Min Max Mean 
Std. 

Deviation 

Dependent Variable 

Trip Demand 

Total Trip (Weekly per Origin) 1.00 3726.00 402.17 390.06 

Destination Choice 

Alternative Destination Chosen 1.00 354.00 111.69 65.79 

Total Trip (Weekly O-D Pair) 1.00 175.00 3.60 5.15 

Independent Variables 

Trip Attributes 

Network Distance (m) (x 10-5) 0.05 0.41 0.14 0.08 

Bicycle Infrastructure and Transportation Attributes  

Length of Bicycle Facility in 250m Buffer (m x 10-4) 0.00 0.91 0.24 0.17 

Length of Street in 250m Buffer (m x 10-4) 0.14 0.84 0.38 0.10 

Station Capacity (x 10-2) 0.07 0.67 0.32 0.10 

Number of Neighboring Station in 250m Buffer (x10-1) 0.00 0.50 0.11 0.10 

Capacity of Neighboring Station in 250m Buffer (x10-3) 0.00 0.27 0.04 0.04 

Number of Subway Stations in 250m Buffer (x10-1) 0.00 0.70 0.06 0.09 

Number of Bus Stops in 250m Buffer (x10-1) 0.00 1.10 0.22 0.22 

Weather Attributes 

Temperature (°F) 19 84 50.06 13.56 

Precipitation (in) 0 3.02 0.16 0.44 

Humidity (%) 26 98 61.44 17.5 

Land Use and Built Environment Attributes 

Population Density (People per m2 x 10-4) 0.00 0.87 0.26 0.17 

Job Density (Number of Jobs per Person) 0.00 0.90 0.66 0.17 

Number of Establishment (per m2x 10-4) 0.00 1.20 0.09 0.14 

Walk Score (x10-2) 0.69 1.00 0.97 0.05 

Transit Score (x10-2) 0.61 1.00 0.96 0.07 

Bike Score (x10-2) 0.45 0.95 0.85 0.09 

Number of Facilities in 250m Buffer (x10-3) 0.00 0.16 0.03 0.02 

Number of Recreational Facilities in 250m Buffer (x10-3) 0.00 0.002 0.08 0.30 

Number of Restaurants in 250m Buffer (x 10-3) 0.00 0.55 0.04 0.08 

Number of Sidewalk café in 250m Buffer (x10-3) 0.00 0.14 0.02 0.02 

Area of Parks in 250m Buffer (m2 x 10-6) 0.00 0.18 0.09 0.05 

Commercial Area in 250m Buffer (m2 x 10-6) 0.00 0.55 0.26 0.14 

Elevation (m x10-3) 0.00 0.16 0.04 0.03 

Distance to Times Square (m x 10-3) 0.58 1.32 0.52 0.28 

Categorical Variables 

Temporal Attributes Percentage 

Winter 48.90 

Spring 51.10 
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Table 2 Linear mixed model results 

 

Parameter Estimates t-stats 

Intercept (x 10-3) -0.949 -6.914 

Bicycle Infrastructure and Transportation Attributes   

Station's Capacity (x 10-2) .370 6.474 

Number of Subway Stations in 250m Buffer (x10-1) 0.341 3.308 

Length of Bicycle Facility in 250m Buffer (m x 10-4) 0.288 4.525 

          Standard Deviation (m x 10-4) 0.158 2.891 

Temporal Attributes 

Season: Winter (Base: Spring) -0.268 -41.847 

Land Use and Built Environment Attributes 

Job Density  0.180 3.166 

Non-motorized vehicle score (x10-2) 1.423 9.982 

Number of Facilities and Recreational Point in 250m Buffer (x 10-3) 1.316 4.453 

Distance to Times Square (m x 10-5) -5.886 -14.170 

Correlation Parameters 

𝜎 0.247 33.875 

𝜎1 0.314 7.923 

Restricted Log-Likelihood  -1863.186 

Number of Observations 574 
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Table 3 MDCEV model results 

Parameter Estimates t-stats 

Trip Attributes 

Network Distance (m x 10-5) -0.132 -275.023 

Network Distance x Winter (m x 10-5) -0.806 -10.509 

Socio-demographic Attributes 

Population Density (People per m2 x 10-4) 0.106 7.928 

Job Density (Number of Jobs per Person) 0.592 36.649 

Establishment Density (per m2x 10-4) 0.170 13.306 

Bicycle Infrastructure and Transportation Attributes 

Station's Capacity 1.621 51.437 

Length of Bicycle Facility in 250m Buffer (m x 10-4) 0.586 54.288 

Length of Street in 250m Buffer (m x 10-4) -0.042 -2.758 

Number of Neighboring Stations in 250m Buffer (x10-1) 0.319 4.895 

Capacity of Neighboring Stations in 250m Buffer (x10-3) -2.702 -15.370 

Number of Subway Stations and Bus Stops in 250m Buffer 0.076 9.023 

Land Use and Built Environment Attributes 

Transit Score (x10-2) 1.780 39.039 

Non-motorized vehicle score (x10-2) 5.088 104.465 

Number of Restaurants and sidewalk cafe in 250m Buffer 0.231 11.962 

Park Area in 250m Buffer (m2 x 10-6) 0.135 3.467 

Number of Facilities in 250m Buffer (x10-3) 3.318 35.678 

Number of Recreational Facilities in 250m Buffer (x10-3) 1.245 15.281 

Distance to Times Square (m x 10-5) -16.636 -168.059 

Elevation (m x10-3) -4.675 -49.331 

Commercia Area in 250m Buffer (m2 x 10-6) 0.195 9.853 

Satiation Parameters 

Distance to Times Square (m x 10-5) 7.723 143.405 

Log-Likelihood at Convergence -1376961.379 

Number of Observations 2870 

 

 


