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Abstract 

Mixed Generalized Ordered Response (MGOR) models, that allow random heterogeneity 

in thresholds, are widely used to model ordered outcomes such as accident injury severity. This 

study highlights a potential limitation of these models, as applied in most empirical research, that 

the variances of the random thresholds are implicitly assumed to be in a non-decreasing order. 

This restriction is unnecessary and can lead to difficulty in estimation of random parameters in 

higher order thresholds. In this study, we investigate the use of negative correlations between 

random parameters as a variance reduction technique to relax the property of non-decreasing 

variances of thresholds in MGOR models. To this end, a simulation-based approach was used 

(where multiple datasets were simulated assuming a known negative correlation structure between 

the true parameters), and two models were estimated on each dataset – one allowing correlations 

between random parameters and the other not allowing such correlations. Allowing negative 

correlations helped relax the non-decreasing variance property of MGOR models. However, 

maximum simulated likelihood estimation of parameters on data with correlations occasionally 

encountered model convergence and parameter identification issues. Comparison of the models 

that did converge suggests that ignoring correlations leads to an estimation of fewer random 

parameters in the higher order thresholds and results in bias and/or loss of precision for a few 

parameter estimates. However, ignoring correlations leads to an adjustment of other parameter 

estimates such that overall likelihood values, predicted percentage shares, and the marginal effects 

are similar to those from the models with correlations.   

 

Keywords: generalized ordered response models, random thresholds, variance reduction, 
negative correlation, parameter identification  
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1. Introduction  

Ordered outcomes, such as those encountered in accident-injury severity (no injury, injury, 

fatality), measurements of satisfaction (highly dissatisfied, dissatisfied, neutral, satisfied, highly 

satisfied), measurements of levels of agreement or disagreement (strongly disagree, disagree, 

neutral, agree, strongly agree), and so on, are often modeled using ordered response models. These 

models have a potential advantage over unordered response models, such as the multinomial logit 

model and its variants, because ordered models recognize the inherent ordinal pattern of outcome 

responses. Standard ordered response models are based on an underlying continuous latent 

propensity function that is assumed to be a function of observed explanatory variables and an 

unobserved random component (Aitchison and Silvey, 1957; McKelvey and Zavoina, 1975; 

Washington et al., 2011). The latent propensity function is mapped to observed outcomes using a 

set of thresholds that are increasing in order. The major drawback associated with this standard 

ordered response (SOR) model is that it assumes the thresholds to be same for all individuals, 

which might not be appropriate in all applications.  

To overcome this threshold restriction in the standard ordered response models, Maddala 

(1986) and Ierza (1985) proposed a generalized-thresholds version of the ordered response model 

where the thresholds were expressed as a linear function of explanatory variables. As an extension 

to this model structure, Srinivasan (2002) expressed the thresholds as correlated random variables 

with their mean as a linear function of observed explanatory variables. However, this linear 

specification of thresholds does not ensure the increasing order of thresholds and might result in 

negative probabilities (Greene and Hensher 2010a). To address this issue, Eluru et al. (2008) and 

Greene and Hensher (2010b) used a nonlinear specification for thresholds where each threshold 

was obtained by adding a non-negative term to the preceding threshold, so that the ordering of 
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thresholds was ensured. The non-negative term was specified as an exponential function of a linear 

function of explanatory variables. Researchers have termed this generalized-thresholds version as 

the generalized ordered response model. To avoid confusion with the model names used in the 

literature, we term the linear-thresholds specification models as the ordered mixed response 

(OMR) model and the nonlinear-thresholds specification generalized ordered response (GOR) 

model. With regard to the GOR model, to account for heterogeneity in the parameter estimates due 

to unobserved factors, researchers have considered random parameters in both the propensity 

function and the thresholds. This model structure is referred to as the mixed generalized ordered 

response (MGOR) model by Eluru et al. (2008) and hierarchical ordered probit (HOPIT) model 

by Greene and Hensher (2010a). We use the term “MGOR” hereafter to avoid confusion with the 

model names. It is worth noting here that the random parameters in the thresholds are typically 

assumed to follow distributions with an unbounded support, such as the normal distribution. 

Due to the flexibility offered by generalized ordered response (GOR) and mixed 

generalized ordered response (MGOR) models relative to the standard ordered response (SOR) 

model, many researchers (Yasmin et al. 2015a, 2015b; Forbes and Habib 2015; Fountas and 

Anastasopoulos 2017) have used these models in various contexts. Chiou et al. (2013) proposed a 

bivariate generalized ordered probit model and used it to model accident-injury severities in two-

vehicle crashes. Castro et al. (2013) developed spatial random parameters generalized ordered 

probit model to accommodate the spatial dependencies in the accident-injury severity levels. 

Yasmin et al. (2014) proposed a latent segmentation based generalized ordered logit model 

assuming the presence of different latent groups of observations. Table 1 summarizes various 
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studies that have used the GOR family of models in the context of modeling traffic accident injury 

severity outcomes1.  

Despite the above-discussed evolution of the MGOR family of models, to the best of our 

knowledge, all implementations of the MGOR models to date impose an implicit restriction on the 

order of variances of thresholds. Specifically, as discussed earlier, the thresholds in ordered 

response models must be in an increasing order, which is ensured in MGOR models by specifying 

a higher order threshold as a sum of its preceding threshold and a non-negative random term that 

is typically in the form of an exponential function. Such a hierarchical specification of thresholds 

with random parameters leads to the restriction that the variances of thresholds are also in a non-

decreasing order. However, this restriction is not necessary and can potentially lead to difficulty 

in the estimation of random parameters in higher order thresholds (more later).  

To be sure, the MGOR model structure, in its very general form, does allow the analyst to 

relax the non-decreasing order of threshold variances. This can be done in at least two ways. The 

first approach is to allow negative correlations between the random parameters of different 

thresholds. Since a higher order threshold is specified as a sum of two terms (its preceding 

threshold with random parameters and an exponential term with random parameters), negative 

correlation between the two terms allows for the overall variance of the higher order threshold to 

be lower than the variance of its preceding threshold. The second approach is to use truncated 

distributions for thresholds, where the distribution of a higher order threshold is left-truncated by 

the distribution of its preceding threshold. Between these two approaches, the former is easier to 

                                                 
1 Mannering et al. (2016), provide a general discussion of unobserved heterogeneity in accident injury-severity 
modeling. Apart from the accident injury-severity modeling, there are other research areas (sociology, psychology 
and economics) that have used OMR and MGOR model structures (Pudney and Shields, 2000; Boes and Winkelmann, 
2006; Greene et al., 2008; Baba, 2009; Mentzakis and Moro, 2009; Boes and Winkelmann, 2010; Stanley et al., 2011; 
Greene et al., 2014; and Shabanpour et al., 2017).  
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implement. The latter approach is a non-trivial2 modification of the MGOR structure, albeit it is a 

fruitful avenue for future research. Even in the context of the former approach, we are not aware 

of studies in the literature that explored correlated random parameters in MGOR models.  

The intent of the current paper is to highlight the above-discussed implicit assumption 

made by most implementations of MGOR models that the thresholds follow a non-decreasing 

order of variances. In addition, the paper explores the use of negative correlations as a variance 

reduction technique for relaxing the non-decreasing variances restriction in the MGOR family of 

models. We explore these variance and correlation issues through a simulation experiment. 

Specifically, we simulate ordinal outcome datasets with known negative correlation structures 

among an underlying true set of random parameters in threshold functions. For each of the 

simulated datasets, two models were estimated; one allowing correlations between random 

parameters and the other not allowing such correlations. The impact of ignoring correlations is 

then evaluated by comparing the two models using various evaluation criteria to assess the efficacy 

of introducing negative correlations as a variance reduction technique in the thresholds of MGOR 

models. 

The remainder of our paper is structured as follows. Section 2 presents the model structure 

of SOR and MGOR models. Section 3 provides a simple, mathematical proof for the non-

decreasing order of variance of thresholds in the absence of correlation between random 

parameters in thresholds. In addition, this section presents a hypothetical scenario to explain how 

such a restriction (due to ignoring correlations) can potentially lead to difficulties in estimating 

random parameters in higher order thresholds. Section 4 describes the methodology (simulation 

                                                 
2 The left truncation point of the distribution for a higher order threshold is another random variable (given by the 
distribution of the preceding threshold), as opposed to a deterministic value. Therefore, deriving an MGOR model 
structure with randomly truncated threshold distributions is a non-trivial extension and beyond the scope of this 
paper.  
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experiments) adopted to evaluate correlations as a variance reduction technique in the thresholds 

of MGORL models. Section 5 presents the results and findings. Section 6 concludes the study.  

 

2. Model structure 

In this section, we present the basic model structures for the standard ordered response 

model (SOR) and the mixed generalized ordered response model (MGOR). 

 

2.1 Standard ordered response model (SOR) 

Let n (1, 2, 3...N) denote each observation and k (1, 2, 3...K) denote ordered outcomes. The 

latent propensity function yn
* for observation n is expressed as 

𝑦௡
∗ =  𝜷𝑿௡ +  𝜀௡ (1) 

where 𝑿௡ is a vector of explanatory variables that influence 𝑦௡
∗, β is a corresponding vector of 

estimable parameters, and εn is an unobserved random term which is assumed to follow a known 

probability distribution. Observed ordinal outcome 𝑦௡ is then defined by the latent propensity 

function 𝑦௡
∗ using a set of threshold parameters as follows: 

𝑦௡ = 𝑘, 𝑖𝑓 𝛹௞ିଵ < 𝑦௡
∗ < 𝛹௞ (2) 

where 𝛹௞ିଵ and 𝛹௞ are a pair of estimable thresholds associated with kth ordered outcome. All the 

thresholds are restricted to be in an increasing order, and the lower most and upper most thresholds 

are assumed to be negative infinity and positive infinity (−∞ < 𝛹ଵ < 𝛹ଶ < ⋯ < 𝛹௄ିଵ < ∞), 

respectively (this is assuming that the latent propensity function yn
* follows an unbounded 

distribution). For identification reasons, either the constant in the propensity function or any one 

of the thresholds must be fixed to zero. In this exposition, the constant in the propensity function 
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is fixed to zero, and all the K-1 thresholds are parameters to be estimated. The log-likelihood 

(𝐿𝐿௡௞) for observation 𝑛 facing kth ordered outcome is: 

𝐿𝐿௡௞ = 𝑃𝑟(𝑦௡ = 𝑘 | 𝑿௡) =  𝛤[𝛹௞ − 𝜷𝑿௡] −  𝛤[𝛹௞ିଵ − 𝜷𝑿௡] (3) 

where 𝛤[∙] is the cumulative distribution function of the random error term εn.  

 

2.2 Mixed generalized ordered response (MGOR) model 

The MGOR model structure is an extension of the SOR model structure with the thresholds 

parameterized as a function of explanatory variables, and the inherent ordering of the thresholds 

is ensured using a nonlinear specification for thresholds where each threshold is specified by 

adding a non-negative term to the preceding threshold. Moreover, to account for unobserved 

heterogeneity in the parameter estimates across observations, random parameters are included in 

the propensity function and the threshold functions as shown in Eq. (4), (5), and (6). 

𝑦௡
∗ = 𝜷𝑿௡ + 𝜸௡𝒀௡ + 𝜀௡ (4) 

𝛹௡௞ =  𝜶௞𝑼௡௞ + 𝜽௡௞𝑽௡௞, if k = 1 (5) 

𝛹௡௞ =  𝛹௡,௞ିଵ + 𝑒𝑥𝑝(𝜶௞𝑼௡௞ + 𝜽௡௞𝑽௡௞) , ∀ 𝑘 > 1  (6) 

where Xn and Yn are vectors of exogenous variables in the propensity function, β is a vector of 

fixed parameters and 𝜸௡ is a vector of random parameters in the propensity function. Similarly, 

Unk and Vnk are vectors of exogenous variables, 𝜶௞ and 𝜽௡௞ are vectors of fixed and random 

parameters, respectively, in the kth threshold. For identification reasons, and without loss of 

generality, all the parameters in the first threshold except a constant are set to zero ( 𝛹୬ଵ =  𝛼ଵ).  

As discussed earlier, the hierarchical specification of thresholds in Eq. (6), where a higher 

order threshold (Ψ୬୩) is specified as a sum of its preceding threshold (Ψ୬,୩ିଵ) plus a non-negative 

random term, ex p(𝛂୩𝐔୬୩ + 𝛉୬୩𝐕୬୩), ensures that the thresholds are in an increasing order.  
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The random parameters vectors 𝜸௡ and 𝜽௡, where 𝜽௡ is obtained by stacking the 𝜽௡௞ 

vectors across all k, are realizations from multivariate distributions 𝑓(𝜸) and 𝑓(𝜽). The log-

likelihood (𝐿𝐿௡௞) for observation n facing kth ordered outcome is written as, 

𝐿𝐿௡௞ =  ∫ ∫ 𝛤[(𝛹௡௞|𝜽) − (𝜷𝑿௡|𝜸)] −  𝛤ൣ(𝛹௡,௞ିଵห𝜽൯ − (𝜷𝑿௡|𝜸)]𝑓(𝜽)𝑓(𝜸)𝑑(𝜽)𝑑(𝜸)
𝜽𝜸

 (7) 

Note that 𝑓(𝜸) and 𝑓(𝜽) are multivariate distributions. Therefore, the structure of the MGOR 

model allows for correlations among the random parameters, in the latent propensity function as 

well as in the threshold functions. However, it is a common practice in empirical research to ignore 

such correlations; as indicated earlier, we are not aware of empirical studies that explored 

correlations between random parameters in the threshold functions of ordered response models.  

 

3. Non-decreasing order of variances of thresholds in MGOR models with uncorrelated 

random parameters  

In this section, we prove the non-decreasing order of variances of thresholds in MGOR 

models with uncorrelated random parameters and demonstrate, through a hypothetical example, 

how such restriction might lead to difficulties in estimating random parameters in higher order 

thresholds.  

 

3.1 The order of variance of thresholds 

Let 𝑉𝐴𝑅(∙) and 𝐸(∙) represent the variance and the expected value of a random variable, 

respectively, and let 𝐶𝑂𝑉(∙) represent the covariance between any two random variables. 

Thresholds and non-negative terms are random in the presence of random parameters and the 

variance of a threshold 𝛹௡௞  is expressed as 𝑉𝐴𝑅(𝛹௡௞) = 𝑉𝐴𝑅൫𝛹௡,௞ିଵ൯ + 𝑉𝐴𝑅(Δ௡௞) +

2𝐶𝑂𝑉൫𝛹௡,௞ିଵ, Δ௡௞൯, where Δ௡௞ is a non-negative term that is added to 𝛹௡,௞ିଵ to obtain 𝛹௡௞. As 
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can be observed in Eq. (6), the non-negative term Δ௡௞  is  exp(𝛂୩𝐔୬୩ + 𝛉୬୩𝐕୬୩). If the correlations 

between the random parameters in 𝛹௡,௞ିଵ and Δ௡௞ are ignored or restricted to zero, the covariance 

term, 𝐶𝑂𝑉(𝛹௡,௞ିଵ, Δ௡௞), becomes zero and forces the variance of each threshold to be either 

greater than or equal3 to the variance of the preceding threshold. On the other hand, a negative 

correlation between the random parameters in 𝛹௡,௞ିଵ and Δ௡௞ allows for a possibility that 

𝑉𝐴𝑅(𝛹௡௞) < 𝑉𝐴𝑅൫𝛹௡,௞ିଵ൯, depending on the level of correlation between the random parameters 

and the magnitude of the deterministic components. 

Considering normally distributed random parameters, which are generally employed in 

empirical research involving MGOR models, the thresholds can be viewed as a sum of multiple 

log-normally distributed random variables.4 Following the notation used in section 2.2, the 

expressions for the variance of first three thresholds with normally distributed random parameters 

can be written as shown below (see Appendix A for a detailed derivation).   

𝑉𝐴𝑅(𝛹௡ଵ) = 0, 

𝑉𝐴𝑅(𝛹௡ଶ) = 𝑉𝐴𝑅(exp (𝜶ଶ𝑼௡ଶ + 𝜽௡ଶ𝑽௡ଶ)),     (8) 

𝑉𝐴𝑅(𝛹௡ଷ) = 𝑉𝐴𝑅(exp(𝜶ଶ𝑼௡ଶ + 𝜽௡ଶ𝑽௡ଶ)) +  𝑉𝐴𝑅(exp(𝜶ଷ𝑼௡ଷ + 𝜽௡ଷ𝑽௡ଷ)) + 𝐶௡ଶଷ, 

where 𝐶௡ଶଷ = exp ቂ𝜶ଶ𝑼௡ଶ  + 𝜶ଷ𝑼௡ଷ + 𝐸(𝜽௡ଶ𝑽௡ଶ  + 𝜽௡ଷ𝑽௡ଷ)  +  
௏஺ோ(𝜽೙మ𝑽೙మ)ା௏஺ோ(𝜽೙య𝑽೙య)

ଶ
ቃ ×

ൣexp൫𝐶𝑂𝑉(𝜽௡ଶ𝑽௡ଶ, 𝜽௡ଷ𝑽௡ଷ)൯ − 1൧.  

If the random parameters are uncorrelated, the covariance term 𝐶𝑂𝑉(𝜽௡ଶ𝑽௡ଶ, 𝜽௡ଷ𝑽௡ଷ) is 

equal to zero, which implies that 𝐶௡ଶଷ = 0 and 𝑉𝐴𝑅(𝛹௡ଷ) = 𝑉𝐴𝑅(𝛹௡ଶ) +  𝑉𝐴𝑅(exp(𝜶ଷ𝑼௡ଷ +

                                                 
3 The variances would be equal when the non-negative term Δ௡௞  does not have random parameters. For example, 
when an empirical specification does not yield statistically significant random parameters in Δ௡௞ . 
4 This is assuming that the first threshold, which is not an exponential function, is not a random parameter (for 
identification reasons). However, if the first threshold is a normally distributed random parameter (with other 
normalization restrictions for identification), then the subsequent thresholds will become a sum of normal distribution 
and lognormal distributions.  
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 𝜽௡ଷ𝑽௡ଷ)). Therefore, in the presence of uncorrelated random parameters in the thresholds, the 

variance of thresholds are restricted to be in a non-decreasing order for a given observation. But 

there is no need for imposing such a restriction on the order of variance of thresholds. For example, 

in the ordered response model (with the linear specification for thresholds and with correlation 

between the random parameters in thresholds) estimated by Srinivasan (2002), the variances of the 

estimated thresholds do not follow any order.  

This inherent restriction on the variance of thresholds can be relaxed by allowing 

correlations between random parameters in thresholds, which indeed makes the covariance 

term 𝐶𝑂𝑉(𝜽௡ଶ𝑽௡ଶ, 𝜽௡ଷ𝑽௡ଷ) ≠ 0. Depending on the sign and level of correlation between the 

random parameters, and the magnitude of the deterministic component in the thresholds, the 

variance of a threshold can be less than the variance of the preceding threshold. Specifically, 

negative correlations allow for the possibility of non-decreasing order in the variances of the 

thresholds. Although we derived these expressions for normally-distributed random parameters, 

the above-discussed restriction on the order of variance of the thresholds will occur with the other 

parametric distributions as well when correlations are not allowed.  

 

3.2 Potential issues with estimation of random parameters in thresholds 

Due to the hierarchical specification of thresholds in the MGOR model, observed variables 

and their coefficients (along with the random components) entering the threshold function of a 

lower order threshold (say, the kth threshold) also enter the threshold functions of all higher order 

thresholds (greater than kth thresholds). Therefore, an independent variable entering kth threshold 

function influences the probabilities of the corresponding kth order outcome as well as potentially 

all higher order outcome responses.  
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For example, let us consider the injury severity of motorcycle crashes on freeways. Let the 

outcome injury severity levels be no injury, non-incapacitating injury, incapacitating injury, and 

fatal injury and the corresponding thresholds are 𝛹ଵ௡, 𝛹ଶ௡, and 𝛹ଷ௡. Define a variable 𝑃𝐶௡ for 

protective clothing, which is equal to one if the motorcyclist wore protective clothing during the 

crash, and zero otherwise (protective clothing may include jacket, gloves, heavy pants, boots, knee 

pads and elbow guards). Let the threshold specifications be as  𝛹ଵ = 𝛼ଵ, 𝛹ଶ௡ = 𝛼ଵ +  exp(𝛼ଶ +

𝜃ଶ𝑃𝐶௡) and 𝛹ଷ௡ = 𝛼ଵ + exp൫𝛼ଶ + 𝜃ଶ(𝑃𝐶௡)൯ + exp(𝛼ଷ) , where, 𝛼ଵ, 𝛼ଶ,  and 𝛼ଷ  are fixed 

constants and 𝜃ଶ is a positive fixed parameter on protective clothing indicator variable entering 

directly only in the second threshold5. Figure 1a shows the position of thresholds for two groups 

of individuals: (a) who wore a protective clothing during the crash and (b) who did not wear it 

during the crash. In the case when 𝑃𝐶௡  enters only the second threshold (𝛹ଶ௡) and takes the value 

1, the second and third thresholds move to the right by x (= exp(𝛼ଶ + 𝜃ଶ) − exp(𝛼ଶ))  on the 

propensity scale, resulting in an increase in the probability of non-incapacitating injury and 

decrease in the probability of fatal injury (while all the independent variables and parameters in 

the propensity function remains same). 

In reality, however, wearing protective clothing during a high impact crash, such as those 

likely to occur on freeways, will likely reduce the injury severity level from incapacitating injury 

to non-incapacitating injury, but may have little influence on reducing higher injury-severity levels 

(fatal injury level in our case). See, for example, Erdogan et al. (2013) for a supporting finding 

that wearing protective clothing protects from soft tissue injuries but not from severe fractures. To 

incorporate such differential effect of protective clothing on incapacitating and fatal injury levels, 

the 𝑃𝐶௡ variable should enter directly into the Δ௡௞ term of the third threshold as well (along with 

                                                 
5 Note that the protective clothing variable enters the third threshold through the second threshold but not directly.  
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its entry through the second threshold), but with a negative coefficient, that is, when the third 

threshold is specified as 𝛹ଷ௡ = exp൫𝛼ଶ + 𝜃ଶ(𝑃𝐶௡)൯ + exp൫𝛼ଷ + 𝜃ଷ(𝑃𝐶௡)൯, where 𝜃ଷ < 0. With 

such specification, when 𝑃𝐶௡ takes the value 1, the second term of 𝛹ଷ௡ shrinks by -y 

(= exp(𝛼ଷ + 𝜃ଷ) − exp(𝛼ଷ)) making the overall shift in the third threshold equal to x - y (as 

shown in figure 1b). That is, a rightward shift of 𝛹ଷ௡ through a positive coefficient (𝜃ଶ) will be 

counteracted by a leftward shift through a negative coefficient (𝜃ଷ). Naturally, the higher is the 

value of 𝜃ଶ, the lower should be the value of 𝜃ଷ (a negative number of larger magnitude) for 

counteracting the influence of 𝜃ଶ on 𝛹ଷ௡.  

Now, let us extend this discussion when we have random parameters on PCn. Let the 

parameter estimates of PCn in second and third thresholds be represented by two random 

parameters 𝜃ଶ௡ and 𝜃ଷ௡, respectively. Analogous to the discussion above, a negative dependency 

can be allowed between 𝜃ଶ௡ and 𝜃ଷ௡ through a negative correlation between the two random 

parameters. Ignoring such dependency (or negative correlation), as discussed earlier, imposes that 

the variance of 𝛹ଷ௡ is greater than that of 𝛹ଶ௡. Since variability in the influence of unobserved 

influences on the third threshold need not always be greater than that on the second threshold, 

ignoring negative correlation between 𝜃ଶ௡ and 𝜃ଷ௡ might make it difficult to estimate a statistically 

significant variance parameter for 𝜃ଷ௡. In other words, the above-discussed restriction might make 

it difficult to estimate statistically significant random parameters in higher order thresholds, simply 

because random parameters from lower order thresholds would simply carry forward to higher 

order thresholds.  

As evident from the literature reviewed in Table 1, Eluru et al. (2008), Yasmin et al. 

(2015a) and Xin et al. (2017) tried to estimate random parameters in the thresholds without 

allowing correlations between them. However, perhaps due in part to the above-mentioned 
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reasons, they were unable to find statistically significant random parameters in thresholds. 

Therefore, ideally, the model structure should not restrict an order on the variances of thresholds 

while specifying and testing the model. 

 

4. Experimental design 

To evaluate the efficacy of introducing negative correlations as a variance reduction 

technique in the thresholds of MGOR models, we simulated motorcycle crash datasets with known 

negative correlation structures among an underlying true set of random parameters in threshold 

functions. While one may use a real data to evaluate the technique, it is difficult to control for the 

unobserved internal relationships which might exist between the independent variables and injury 

outcomes. In order to avoid such issues, a simulation-based approach is used in this study. For 

each of the simulated datasets, we estimated two models – one allowing correlations between 

random parameters and the other not allowing correlations. The impact of ignoring correlations 

was then evaluated by comparing the two models using various evaluation criteria. 

The outcome injury severity levels in the simulated datasets were no injury, non-

incapacitating injury, incapacitating injury, and fatal injury. We assumed that three explanatory 

variables – age of motorcyclist, male indicator (1 if a motorcyclist is male, zero otherwise), and 

intersection indicator (1 if a crash occurred at an intersection, zero otherwise) – influence the latent 

injury risk propensity of a motorcyclist. Specifically, the latent propensity function is specified as: 

 𝑦௡
∗ = (𝛽ଵ × 𝑎𝑔𝑒௡) + (𝛽ଶ × 𝑚𝑎𝑙𝑒௡) + (𝛽ଷ  ×  𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛௡) + 𝜀௡   (9) 

where 𝛽ଵ, 𝛽ଶ, 𝛽ଷ are the parameters and 𝜀௡ is the random component of the propensity function.   

To simulate data with the above propensity function, values for the age variable were drawn 

from a truncated normal distribution with mean 40 years, standard deviation 15 years, and 16 years 
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and 75 years as the left and right truncation limits, respectively. Values for the indicator variables 

were drawn from Bernoulli distributions with mean 0.5. Values for the error term 𝜀௡ in the 

propensity function were drawn from a standard logistic distribution. 

 

4.1 Threshold scenarios 

We simulated five different scenarios for the thresholds, as summarized in Table 2. The 

second column of the table specifies the propensity function and the threshold functions used, 

including the parameter values assumed, in each scenario. The parameter of the age variable in the 

propensity function is assumed to be positive considering that the older people tend to be 

susceptible to a higher injury severity levels relative to younger people (Savolainen and Mannering 

2007). Literature suggests that males tend to sustain a lower injury severities relative to females 

and therefore a negative parameter is selected for the male indicator variable (Quddus et al. 2002; 

Rifaat et al. 2012). Similarly, a negative parameter is considered for the intersection indicator 

variable assuming that the crashes occurring at intersections tend to be less severe due to driver 

caution and other factors (Savolainen and Mannering 2007).  

As can be observed from the second column of Table 2, scenarios S1, S2, S3, and S5 

simulated threshold functions based on the example discussed in Section 3.2. Specifically, 

thresholds were assumed to depend on whether a motorcyclist was wearing a protective clothing 

or not, using an indicator variable (PCn) that was equal to 1 if the motorcyclist was wearing a 

protective clothing when the crash happened (zero otherwise). This indicator variable was assumed 

to be Bernoulli distributed with mean 0.5. Random parameters were allowed on the protective-

clothing indicator variable in the second and third thresholds while keeping the first threshold fixed 

(to 𝛼ଵ), as in Equation (10) below: 
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𝛹ଵ =  𝛼ଵ, 

𝛹ଶ௡ = 𝛼ଵ +  exp(𝛼ଶ +  𝜃ଶ௡  × 𝑃𝐶௡),       (10) 

𝛹ଷ௡ = 𝛼ଵ +  exp(𝛼ଶ +  𝜃ଶ௡  ×  𝑃𝐶௡) + exp (𝛼ଷ + 𝜃ଷ௡  × 𝑃𝐶௡). 

The random parameters 𝜃ଶ௡ and 𝜃ଷ௡ in all the four scenarios (S1, S2, S3, and S5) were simulated 

from two normal distributions 𝑁(𝜃ଶ, 𝜎ଶ) and 𝑁(𝜃ଷ, 𝜎ଷ) with a correlation level of 𝜌ଶଷ (which was 

assumed to be −0.7).  

In the fourth scenario (S4), however, correlated random parameters were introduced on 

constants in the first and second thresholds (with a correlation parameter 𝜌ଵଶ = −0.7)6, while 

keeping the coefficients of the protective clothing variable to be fixed, as shown in Equation (11) 

below. 

𝛹ଵ௡ =  𝛼ଵ௡, 

𝛹ଶ௡ = 𝛼ଵ௡ +  exp(𝛼ଶ௡ + 𝜃ଶ × 𝑃𝐶௡),       (11) 

𝛹ଷ௡ = 𝛼ଵ௡ +  exp(𝛼ଶ௡ + 𝜃ଶ ×  𝑃𝐶௡) + exp (𝛼ଷ + 𝜃ଷ × 𝑃𝐶௡). 

Note from Table 2 that scenario S1 simulated a high percentage (50.3%) of fatal crashes 

(although empirical contexts with such a high percentage of fatal crashes are rare), S2 simulated a 

low percentage (6.6%) of fatal crashes, S3 simulated approximately equal shares for all injury-

severity levels, S4 simulated a low percentage (7.6%) of fatal crashes, and S5 simulated a high 

percentage of fatal crashes. This allows us to examine the above-discussed issues in different data 

generation settings as defined by the percentage of different ordered outcomes. For the first four 

scenarios (S1, S2, S3, and S4), a sample size of 5,000 motorcyclists was generated from the 

assumed distributions for 𝑎𝑔𝑒௡, 𝑚𝑎𝑙𝑒௡, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛௡, and 𝑃𝐶௡ variables. For the fifth scenario 

                                                 
6 With regard to the equation 8, the variance of higher threshold can be less than the variance of higher threshold 
only when there is a negative covariance between those thresholds. We considered a higher negative correlation 
value of -0.7 to achieve a higher negative covariance and make the variance reduction technique possible. Other 
correlation values of -0.5 and -0.9 were tried in the experimental design and found to produce similar findings. 
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(S5), the S1 scenario was simply repeated by increasing the sample size of motorcyclists from 

5,000 to 10,000. This was done to evaluate the influence of sample size, while keeping all else 

same.  

In each of the five scenarios, the outcome injury-severity level for each observation was 

obtained by mapping the propensity function with the thresholds as shown in Eq. (2). For each of 

the five scenarios, the data generation process was repeated 100 times to obtain 100 different 

datasets by drawing different values for the random components (𝜀௡ and random parameters) from 

their corresponding distributions. 

For each of the 100 datasets in each of the five scenarios, two MGORL models were 

estimated (a total of 100×5×2=1,000 MGORL model estimations). In the first model, correlation 

was allowed (estimated) between random parameters in the thresholds. In the second model, the 

correlation term was fixed to zero. To examine the recovery of random parameters and negative 

correlations in the thresholds, under different severity scenarios, propensity function and 

thresholds specifications are forced to be the same as the ones considered during the data 

simulation process. All models were estimated using the maximum simulated likelihood (MSL) 

approach with 400 Halton draws to simulate the distribution of random parameters (Bhat, 2003). 

Model estimations were carried out using codes written in the Gauss matrix programming language 

for the MGORL model with correlated random parameters. 

 

4.2 Model performance metrics  

To evaluate the performance of MGORL models estimated with and without correlated 

random parameters (on simulated data with correlations), the following criteria were considered: 
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a. The Log-likelihood improvement in the MGORL model after allowing correlated random 

parameters in thresholds was evaluated using a likelihood ratio test. Here, a model without 

correlation was a restricted version of a model with correlation, and the number of restrictions 

was equal to the difference in the number of parameter estimates in both the models. Chi-square 

value (𝜒ଶ) which is equal to −2×[𝐿𝐿௠௪௢௖ − 𝐿𝐿௠௪௖] was computed for each dataset and was 

then compared with the critical chi-square value for a given number of   restrictions at 95% 

confidence level.   

b. The Absolute Percentage Bias (APB) for each parameter was calculated as the absolute 

percentage difference of the mean parameter estimate from the true parameter value. The mean 

estimate of each parameter was the average of all estimates across 100 datasets. This metric is 

a measure of accuracy of parameter estimates, expressed as given below:  

𝐴𝑃𝐵 = ቚ
௠௘௔௡ ௘௦௧௜௠௔௧௘ି௧௥௨௘ ௩௔௟௨௘

௧௥௨௘ ௩௔௟௨௘
ቚ  × 100      (12) 

c. The Finite Sample Standard Error (FSSE) for a given parameter was calculated as the 

standard deviation of that estimated parameters across 100 datasets. FSSE for a parameter may 

be interpreted as the empirical standard error of its estimate in finite samples. Comparison of 

this metric for each parameter in the two models (model with correlation and model without 

correlation) was used to assess the loss/gain in the precision of parameter estimate when the 

correlation between random parameters was allowed. 

d. The Coverage Probability (CP) for each parameter was calculated using the formula: 𝐶𝑃 =

 1 𝑁ൗ ∑ 𝐼ൣ𝛽መ௑
௡ −  𝑡ఈ × 𝑠𝑒൫𝛽መ௑

௡൯  ≤  𝛽௑  ≤  𝛽መ௑
௡ +  𝑡ఈ × 𝑠𝑒൫𝛽መ௑

௡൯ ൧ே
௡ୀଵ , where N is the total number 

of datasets (100), 𝛽መ௑
௡ is the estimated parameter for a dataset 𝑛, 𝛽௑ is the true parameter value, 

𝑠𝑒൫𝛽መ௑
௡൯ is the asymptotic standard error of 𝛽መ௑

௡, and 𝐼[∙] is an indicator function which takes a 

value 1 if the condition inside the bracket satisfies, otherwise equals to zero, and 𝑡ఈ is the t-
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statistic value for a given confidence level (1 −  𝛼) × 100. The confidence interval in this 

study was set to 95%. If the computed coverage probability is less than the nominal coverage 

probability (0.95), it suggests that the confidence intervals of the estimated parameter do not 

provide sufficient empirical coverage of the true parameter.  

e. Predicted percentage shares were calculated for each injury-severity level using the 

estimated parameters from each dataset and were averaged across all datasets. The predicted 

percentage shares for both the models (model with correlation and model without correlation) 

were compared to each other to understand the impact of ignoring correlations on the predicted 

aggregate shares.   

f. The marginal effects were calculated to understand the effect of each variable on the 

outcome response for the model with correlation and the model without correlation. For a 

continuous variable, marginal effects were calculated as the average change in the probability 

of injury severity levels for all individuals with a unit increase in the variable of interest from 

its current value. Marginal effects for an indicator variable were computed using the procedure 

presented by Eluru and Bhat (2007).  

 

4.3 Additional scenarios 

Apart from the five scenarios discussed in Section 4.1, additional scenarios were simulated. 

Recall that all the indicator variables (such as gender) were simulated as Bernoulli distributed with 

mean 0.5. However, the simulated data may not always represent the actual data. Therefore, 

scenario S1 was repeated with a gender split of 68% males 32% females, as observed in the 

motorcycle crashes reported in the 2016 crash data by Fatality Analysis Reporting System (FARS), 

keeping all other variables same. Such a scenario is labelled S6. The overall findings from this 



 
 

18 
 

scenario aligned with those from scenario S1 suggesting that the inferences from this study are 

applicable for simulated data based on real-world scenarios. Therefore, we retained the mean value 

of 0.5 for all the indicators in all other simulations. 

To check the influence of number of draws on model estimation, we repeated scenario S1 

by increasing the number of Halton draws from 400 to 1000 and the new scenario is termed S7. 

Results suggested that there is no notable change in the evaluation metrics, marginal effects, or 

percentage shares after increasing the number of Halton draws. Therefore, we used 400 Halton 

draws for all other estimations in this study. 

Scenario S1 was repeated with a smaller sample size of 1000 (and labelled scenario S8). It 

was found that there is a decrease in the consistency of predictions with a decrease in the sample 

size. Moreover, there is a reduction in the consistency (and increase in the APB and FSSE) of 

parameter estimates with a decrease in the sample size. However, the comparison of models with 

and without correlation suggested that the new findings with regard to the evaluation of the 

variance-reduction technique are consistent with the S1’s findings. Therefore, the results and 

findings of the scenario with a smaller sample size are not discussed further in the paper. 

We repeated the scenario S4 with a higher proportion (43%) of fatal injuries and the new 

scenario is termed as S9. Table 1 contains the number of datasets with converged models and 

significantly improved log-likelihood for S9. Table 2, Table 3 and Figure 1 contains the evaluation 

metrics, marginal effects and predicted percentage shares respectively for S9. Similar to S4, S9 

results suggest that the model with correlations is superior to that of a model without correlations 

in retrieving the parameter estimates in higher order thresholds. Moreover, there is no notable 

change in the evaluation metrics, marginal effects and percentage shares for S4 even after 

increasing the percentage of fatal crashes in the data. 
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Note that the results from the additional scenarios S6, S7, S8, and S9 are not reported in 

the paper to conserve space. Only the results from scenarios S1 through S5 are reported on the 

next section, because the overall findings from the additional scenarios are similar to those from 

the first set of scenarios. 

 

5. Results 

This section presents the results and findings of the simulation experiments to evaluate the 

efficacy of negative correlations as a variance reduction technique in threshold functions of 

MGORL models.  

 

5.1 Order of variance in MGORL models with negatively correlated random parameters in 

thresholds 

We examined the order of threshold variances in simulated MGORL data with and without 

correlated random parameters. Since scenarios S1, S2, S3, and S5 include random parameters on 

a binary variable (PCn) entering the threshold functions, the thresholds are random only when the 

PCn variable takes a value of 1. Therefore, in all these four scenarios, random parameters kick in 

only for 50% of the cases where the PCn variable takes a value of 1. For all these cases, as discussed 

in Section 3, variances of the second and third thresholds (𝜓௡ଶ and 𝜓௡ଷ) in the data without 

correlated random thresholds were in an increasing order, with the variance of 𝜓௡ଶ as 5.94 and 

that of 𝜓௡ଷ as 8.14. This order reversed in data with correlated random thresholds, with the 

variance of 𝜓௡ଶ as 5.94 and that of 𝜓௡ଷ as 5.02, demonstrating the use of negative correlations for 

relaxing the assumption of non-decreasing variances. In the scenario S4, since random parameters 

are associated with the constants of the threshold functions, the thresholds are random for all cases 
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in any of the 100 datasets. Therefore, introducing a negative correlation of -0.7 rendered the order 

of thresholds to be decreasing for all cases.  

 

5.2 Estimation issues of MGORL models with negatively correlated random parameters in 

thresholds 

During the estimation of MGORL models with correlated random thresholds (on the 

simulated data with correlated random thresholds), we encountered non-convergence issues for at   

least 10% of the datasets in each scenario. More specifically, the number of simulated datasets (out 

of 100) for which the MGORL models with correlated random thresholds converged in each 

scenario are reported in Table 3 (second column). For the remaining datasets in each scenario, the 

non-convergence issues arose due to the occurrence of maximum value for the log-likelihood (𝐿𝐿) 

function at the boundary value (-1) of the correlation term, which was not a stationary point to 

satisfy the convergence criterion.  

To examine this issue, we plotted the 𝐿𝐿 function profiles of un-converged models (in 

scenario S2) with respect to the correlation term while fixing the other parameter estimates. Figure 

2 shows the variation of the 𝐿𝐿 function with respect to the correlation term for each of the 14 

datasets on which the models did not converge in scenario S2. It can be observed that the 𝐿𝐿 

function is monotonic in the range of the correlation term (-1 to +1). The maximum value of the 

log-likelihood function for all 14 profiles in Figure 2 is at the correlation level of -1 where the 𝐿𝐿 

function is not stationary.  

Interestingly, by changing the starting values of the parameters to be estimated, 

convergence was achieved for 3 out of the 14 datasets mentioned above, with correlation values 

different from -1. However, although the parameter estimates (including those of the correlation 
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parameter) obtained from both the converged and the corresponding un-converged models were 

different, the final 𝐿𝐿 values were not different between the converged models and the 

corresponding un-converged models at boundary values. This suggests a flat 𝐿𝐿 function profile, 

potentially due to identification problems in models with correlated random parameters in 

thresholds. Besides, the parameter estimates for the correlation term and the standard deviation of 

the second random parameter (𝜎ଷ, the random parameter in the higher threshold function) had high 

standard errors in some converged models, which again points to issues of parameter 

identifiability. Note also that for some of the converged models, the Hessian matrix could not be 

inverted at the final parameter estimates, and the t-statistics could not be computed using the 

sandwich estimator. So, the t-statistics were computed using the cross products of the first order     

derivatives. For subsequent analysis, we ignored the un-converged models and computed the 

evaluation measures only for the converged models in each scenario. 

Interestingly, when we estimated models without correlation between random parameters 

in thresholds (again on simulated data with correlated random parameters), the standard deviation 

of the random parameter in the higher order random threshold (third threshold in S1, S2, S3, and 

S5 and second threshold in S4) was statistically insignificant at 95% confidence interval in almost 

all datasets for all five scenarios. This suggests difficulty in estimating random parameters in 

higher order thresholds of MGORL models, as discussed in Section 3.2. Therefore, the 

insignificant random parameter was replaced with a fixed parameter, and the model was re-

estimated with only one random parameter, instead of two correlated random parameters7. 

                                                 
7 Even in the model with correlated random parameters in second, third, and fourth scenarios, standard deviation of 

the second random parameter turned out to be statistically insignificant in at least 50% of the datasets. This could be 
due to the flat nature of the log-likelihood function and lower t-statistics resulting from the calculation of covariance 
matrix for the parameter estimates using the first order derivatives instead of using the sandwich estimator. 
Removing the insignificant random parameters in the model with correlation, and re-estimating the model, 
eliminates the need for the correlation term. We elected to keep the insignificant random parameter in the model and 
retain the correlation term to keep the results as general as possible.  
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5.3 Data fit of MGORL models with negatively correlated random parameters in thresholds vis-

à-vis those without correlated random parameters 

For each dataset on which we could estimate a model with correlated random parameters 

without facing convergence issues (see column 3 of Table 3), a likelihood ratio test was conducted 

between the model without correlation and the model with correlation. This likelihood ratio test 

was associated with two degrees of freedom, since both the standard deviation of the random 

parameter in the higher order threshold and the correlation term were constrained to zero in the 

model without correlated random parameters. The results of the likelihood ratio tests are shown in 

Table 3 (last column) in the form of the number of datasets which show a statistically significant 

improvement in log-likelihood when correlated random thresholds were allowed. Interestingly, 

allowing correlated random parameters did not yield a significant improvement in data fit in a 

majority of the datasets in all five scenarios. Note also that increasing the sample size from 5,000 

(in S1) to 10,000 (in S5) did not substantially change the results. 

 

5.4 Recovery of parameters 

Table 4 reports, for all the five scenarios, the metrics of parameter recovery from the 

maximum simulated likelihood estimation technique for both the models (the model with 

correlated random parameters8 and the model without correlated random parameters). Recall that 

these metrics (APB, FSSE, and CP) have already been defined in Section 4. 

                                                 
8 For models with correlated random parameters, we ignored the un-converged models and computed the evaluation 
metrics only for the converged models in each scenario. 
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Comparing the metrics between scenario S5 and scenario S1, it can be observed that 

increasing the sample size did not change the APB, FSSE and CP values drastically for any of the 

parameters.  

Comparison of mean estimates and APB values between the two models for scenarios S1, 

S2, S3, and S5 indicate that ignoring correlations lead to a greater rightward bias in the parameter 

estimate of the protective clothing variable in the third threshold. In scenario S4, ignoring 

correlations between random parameters resulted in a greater rightward bias in the estimates of 

mean values of constants for all three thresholds as well the standard deviations of random 

parameters. Further, coefficients of the gender and intersection dummy variables in the propensity 

function became biased to the left, where as the coefficient of the age variable became biased to 

the right. 

In the context of precision (FSSE values) in parameter estimates, allowing or ignoring 

correlations did not have much influence in scenarios S1, S2, S3, and S5, except for the coefficient 

of the protective clothing variable in the third threshold. Although the parameter estimates in a 

model with correlation are typically expected to have better precision, probably due to the issues 

faced during estimation, the precision of parameters for the protective clothing variable was worse 

when correlations were allowed. In Scenario S4, parameters with greater bias were associated with 

greater FSSE values, particularly for the mean and standard deviation estimates of the first random 

threshold. In the context of the coverage probability (CP) values, there were not much differences 

between models with correlation and models without correlation. 

It is important not to get carried away by the above reported loss in accuracy and/or 

precision of parameter estimates in models without correlation. This is because a single parameter 

estimate does not offer much interpretation by itself in ordered response models. That is, it is 
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difficult to use an individual parameter estimate to assess the change in probability of an outcome 

response when the corresponding independent variable changes. It is the combination of all 

parameters in the propensity and the threshold functions that determine outcome probabilities. 

Therefore, in the next section, we compare the predicted percentage shares and marginal effects 

between the model with correlation and the model without correlation.   

 

5.5 Predicted percentage shares and marginal effects 

Figure 3 shows comparisons of predicted percentage shares for different injury severity 

levels by models with and without correlated random parameters for all the five scenarios. It can 

be observed that the predicted percentage shares by the model with correlated random parameters 

and the model without correlation are close in scenarios S1, S2, S3, and S5 but differ slightly for 

scenario S4. Also, there is no discernible difference between the predictions in scenarios S1 and 

S5, which have different sample sizes but control for all other factors.  

In scenario S4, the model without correlated random parameters slightly overestimates the 

share of non-incapacitating injuries and underestimates the share of incapacitating injuries (when 

compared to the model with correlated random parameters). To further examine the differences 

between the two models in scenario S4, we computed the root mean square error (RMSE) between 

predicted and actual shares for each injury severity level (for all datasets with converged models) 

and then averaged across all injury severity levels. The average RMSE values were 1.675 and 

1.574 for the model with correlations and model without correlations, respectively. While these 

RMSE values are close to each other, it is interesting to note that the model without correlation 

has a slightly lower RMSE than the model with correlation.  

Table 5 compares the marginal effects of each variable on different injury severity levels 

for the two models (the model with correlated random parameters and the model without correlated 
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random parameters). For scenarios S1, S2, S3, and S5, the marginal effects of all the variables 

except the protective clothing (on which random parameters were estimated) are almost same for 

the two models. Even for the protective clothing variable, the marginal effects are not substantially 

different. In S4, the marginal effects of protective clothing variable differ slightly (but not 

drastically) for the incapacitating, non-incapacitating and fatal injuries.  

Bringing together the findings in this section with those in the previous section, it appears 

that when correlations are ignored between random parameters in thresholds, the estimates of other 

parameters are adjusted in such a way that the marginal effects and predicted percentage shares 

are similar to those when correlation is considered.  

 

6. Summary and conclusions 

This study highlights a potential limitation of MGOR models, as applied in most empirical 

research, that the variances of the random thresholds are implicitly assumed to be in a non-

decreasing order. This restriction is not necessary and likely causes difficulty in estimating random 

parameters in higher order thresholds. To relax this restriction, we evaluated the use of negative 

correlations between the random parameters as a variance reduction technique. To do so, a 

simulation-based approach was used, where five different MGOR data scenarios were simulated 

with 100 datasets in each scenario using a known correlation structure between the random 

parameters. Two MGOR models were estimated on each simulated dataset – one allowing 

correlations between random parameters and the other not allowing correlations – and the 

performance of these two models was evaluated using various evaluation criteria. 

Allowing negative correlations helped relax the non-decreasing variance property of 

MGOR models. However, when negative correlations were considered between random 
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parameters in thresholds, convergence issues and parameter identification problems were 

encountered. In addition, for a considerable number of simulated datasets, the correlation 

parameter estimate was associated with a high standard error. All these issues suggest the difficulty 

of the maximum simulated likelihood estimation and inference method for MGOR models with 

correlated random parameters in thresholds. 

Comparison of the models that did converge suggests that ignoring correlations leads to an 

estimation of fewer random parameters in higher order thresholds and results in bias and/or loss 

of precision for a few parameter estimates. However, when the converged models with correlated 

random parameters were compared with the corresponding models without correlations, we did 

not observe significant benefits of accounting for correlations. Neither did the data fit (as measured 

by likelihood ratio test) improve significantly nor did the predicted shares of different severity 

levels or the marginal effects differ substantially from those of the models that ignored 

correlations. In our experimental setup (in all five different scenarios), ignoring correlations lead 

to an adjustment of other parameter estimates such that overall likelihood values, predicted 

percentage shares, and the marginal effects were similar to those from the models with correlations. 

This again suggests potential identifiability issues of MGOR models with correlated random 

parameters in thresholds. 

In summary, the technique of using negative correlation as a variance reduction technique 

was not effective in our experimental setup, in part due to convergence and identification issues 

associated with estimating MGORL models that have correlated parameters in thresholds. 

Therefore, more research is needed for an advanced model structure that can relax the assumption 

on the order of variance of thresholds in MGOR models (see Paleti and Pinjari, 2018). A relevant 

question in this context is whether (and to what extent) such assumption is an egregious restriction 
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to be concerned with. Finally, the issues explored with regard to the MGOR models in this paper 

add to the discussion of using ordered versus unordered models in the analysis of accident-injury 

data. Specifically, the tradeoff between the high-degree of model flexibility that an unordered 

model analysis can provide (such as the standard mixed logit and its various extensions) versus 

that ability to account for the ordering of alternatives that an ordered response model allows (see 

Eluru, 2013; Yasmin and Eluru 2013; Mannering and Bhat 2014).  
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Appendix A 

Computation of variance of thresholds in MGOR models 

Let VAR(.), COV(.) and E(.) represent the variance, covariance and expected value of random 

variables. Let the first 3 thresholds be 

𝛹௡ଵ = 0, 

𝛹௡ଶ = exp (𝜶ଶ𝑼௡ଶ +  𝜽௡ଶ𝑽௡ଶ), 

𝛹௡ଷ = exp(𝜶ଶ𝑼௡ଶ +  𝜽௡ଶ𝑽௡ଶ) +  exp(𝜶ଷ𝑼௡ଷ + 𝜽௡ଷ𝑽௡ଷ), 

In the presence of normally distributed random parameters, variance of the third threshold is 

𝑉𝐴𝑅(𝛹௡ଷ) = 𝑉𝐴𝑅(exp(𝜶ଶ𝑼௡ଶ + 𝜽௡ଶ𝑽௡ଶ)) + 𝑉𝐴𝑅(exp(𝜶ଷ𝑼௡ଷ +  𝜽௡ଷ𝑽௡ଷ)) + 𝐶ଶଷ, 

where, 

𝐶ଶଷ = 2𝐶𝑂𝑉(exp(𝜶ଶ𝑼௡ଶ + 𝜃௡ଶ𝑽௡ଶ) , exp(𝜶ଷ𝑼௡ଷ +  𝜽௡ଷ𝑽௡ଷ))  

= 2[𝐸(exp(𝜶ଶ𝑼௡ଶ +  𝜽௡ଶ𝑽௡ଶ) ×  exp(𝜶ଷ𝑼௡ଷ + 𝜽௡ଷ𝑽௡ଷ))] − 𝐸(exp(𝜶ଶ𝑼௡ଶ + 𝜽௡ଶ𝑽௡ଶ)) 

    × 𝐸[exp(𝜶ଷ𝑼௡ଷ + 𝜽௡ଷ𝑽௡ଷ)] 

= 2 × exp(𝜶ଶ𝑼௡ଶ + 𝜶ଷ𝑼௡ଷ) [𝐸(exp(𝜽௡ଶ𝑽௡ଶ  +  𝜽௡ଷ𝑽௡ଷ)) − 𝐸(exp (𝜽௡ଶ𝑽௡ଶ) ×

𝐸(exp (𝜽௡ଷ𝑽௡ଷ))] 

If the mean and variance of normally distributed random variable X are 𝜇 and 𝜎ଶ, then the 

expected value of exp(X) is exp (𝜇 +  
ఙమ

ଶ
). 

Therefore,                                                                                                                      

𝐶ଶଷ =  2 exp൫𝜶ଶ𝑼௡ଶ +  𝜶ଷ𝑼௡ଷ + 𝐸(𝜽௡ଶ𝑽௡ଶ  +  𝜽௡ଷ𝑽௡ଷ)൯ × 

൤exp(
𝑉𝐴𝑅(𝜽௡ଶ𝑽௡ଶ  +  𝜽௡ଷ𝑽௡ଷ)

2
) − exp (

𝑉𝐴𝑅(𝜽௡ଶ𝑽௡ଶ)  +  𝑉(𝜽௡ଷ𝑽௡ଷ)

2
)൨ 

=   2 exp(𝜶ଶ𝑼௡ଶ +  𝜶ଷ𝑼௡ଷ + 𝐸(𝜽௡ଶ𝑽௡ଶ  +  𝜽௡ଷ𝑉௡ଷ) +
(௏௔௥(𝜽೙మ𝑽೙మ) ା ௏௔௥(𝜽೙య𝑽೙య)

ଶ
) × 

[exp(𝐶𝑂𝑉(𝜽௡ଶ𝑽௡ଶ, 𝜽௡ଷ𝑽௡ଷ))  − 1] 
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Table 1: Summary of empirical studies that used generalized ordered response models in accident research. 

Study 
Abbreviation(s) of 

considered 
model(s) 

Ordered outcome 
response 

representation 

Estimation of random parameters (RP) Major findings/ contributions from 
methodological stand point Propensity function Thresholds 

Srinivasan (2002) Standard Ordered 
Response Logit 
(SORL) and 
Ordered Mixed 
Logit (OML) 

Traffic crash injury 
severity – four 
category variable 

• Propensity function 
specification did not allow for 
the estimation of RP. 

• Each threshold in the OML model was 
expressed as a linear function of 
explanatory variables, and RP with 
correlations between them were allowed 
over the constants. 

• All the correlated random parameters 
were found to be statistically significant. 

• Interestingly, the variances of thresholds 
were 0.013, 0.937, and 0.0026 and did not 
follow any order. 

• OML model provided a better fit for the 
observed crash data than SORL model. 

• Prediction capability of OML model was 
significantly better than the SORL model. 

Eluru et al. 
(2008) 

SORL and Mixed 
Generalized 
Ordered Response 
Logit (MGORL) 

Pedestrian and 
bicyclist injury 
severity - four 
category variable 

• Propensity function 
specification allowed for the 
estimation of RP in MGORL 
model. 

• No RP were found to be 
statistically significant. 

• Threshold specification allowed for the 
estimation of RP in MGORL model. 

• No RP were found to be statistically 
significant. 

• SORL model estimation resulted in 
inconsistent estimates for several 
variables. 

• MGORL model provided better statistical 
fit over SORL model. 

Clifton et al. 
(2009) 

Ordered Mixed 
Probit (OMP) 

Pedestrian injury 
severity - three 
category variable 

• Propensity function 
specification did not allow for 
the estimation of RP. 

• Threshold specification did not allow for 
the estimation of RP. 

• Incorporating built environment 
characteristics and environmental 
conditions significantly improved the 
explanatory power of OMP model. 

Chiou et al. 
(2013) 

Bivariate 
Generalized 
Ordered Response 
Probit (BGORP) 
and Bivariate 
Standard Ordered 
Response Probit 
(BSORP) 

Injury severity of 
the drivers in a two 
vehicle crash - four 
category variable 

• Propensity function 
specification did not allow for 
the estimation of RP. 

• Threshold specification did not allow for 
the estimation of RP. 
 

• BGORP model performed significantly 
better than the BSORP model in terms of 
goodness-of-fit indices. 

• BGORP model had better prediction 
accuracy than the BSORP model.  

Castro et al. 
(2013) 

Spatial Random 
Parameters 
Generalized 
Ordered Response 
Probit (SRP-GORP) 
and Standard 
Ordered Response 
Probit (SORP) 

Injury severity of 
highway crashes - 
four category 
variable 

• Propensity function 
specification allowed for the 
estimation of RP in SRP-GORP 
model. 

• No RP were found to be 
statistically significant. 

• Threshold specification did not allow for 
the estimation of random parameters. 
 

• SRP-GORP model provided statistically 
better data fit than the Standard Ordered 
Response Probit (SORP). 

• Predicted shares of different injury 
severity levels from SRP-GORP model 
were closer to the actual shares as 
compared to SORP. 
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Table 1: (Continued) Summary of empirical studies that used generalized ordered response models in accident research. 

Study 
Abbreviation(s) of 

considered model(s) 

Ordered outcome 
response 

representation 

Estimation of random parameters (RP) Major findings/ contributions from 
methodological stand point Propensity function Thresholds 

Eluru (2013) GORL, SORL, and 
Multinomial Logit 
(MNL) 

Four alternatives 
ordered variable 

• Propensity function 
specification did not allow for the 
estimation of RP. 

• Threshold specification did not allow for 
the estimation of RP. 

• SORL model was found to be restrictive 
as compared to MNL model for analyzing 
an ordered response outcome.  

• GORL model can act as a true ordered 
equivalent of MNL model. 

• Irrespective of aggregate shares, GORL 
model performed well as compared to the 
MNL model. 

Yasmin and Eluru 
(2013) 

SORL, GORL, 
MGORL, MNL, 
Nested Logit (NL), 
and Mixed 
Multinomial Logit 
(MMNL) 

Passenger vehicle 
injury severity - 
four category 
variable 

• Propensity function 
specification allowed for the 
estimation of RP in MGORL 
model. 

• Three random parameters were 
found to be statistically 
significant, and corresponding 
variables were  

1. Restrained system use – 
Unrestrained (base: restrained) 
2. Airbag deployment – deployed 
(base: not deployed) 
3. Collision location: Intersection 
(base: non-intersection). 

• Threshold specification allowed for the 
estimation of random parameters in 
MGORL model. 

• Two random parameters were found to 
be statistically significant and were in the 
thresholds demarcating 

1. second and third injury severity levels 

a. Vehicle rolled over  

2. third and fourth injury severity levels 

a. Collision with stationary object (base: 
another moving object). 

 

• Elasticities obtained using the under-
reported sample were incorrect in both the 
MGORL and MMNL models. 

• Both the MMNL and MGORL models 
had similar prediction results at the 
aggregate and disaggregate levels. 

Yasmin et al. 
(2014) 

SORL, GORL, and 
Latent Segmentation 
based Standard 
Ordered Response 
Logit (LS-SORL) 

Pedestrian injury 
severity - three 
category variable 

• Propensity function 
specification did not allow for the 
estimation of RP. 

• Threshold specification did not allow for 
the estimation of random parameters. 

• GORL and LS-SORL models provided 
better data fit as compared to the SORL 
model. 

• Also, LS-SORL model provided better 
data fit than GORL. 

• In the model validation, GORL model 
performed marginally better than LS-
SORL. 
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Table 1: (Continued) Summary of empirical studies that used generalized ordered response models in accident research. 

Study 
Abbreviation(s) of 

considered model(s) 

Ordered outcome 
response 

representation 

Estimation of random parameters (RP) Major findings/ contributions from 
methodological stand point Propensity function Thresholds 

Yasmin et al. 
(2014) 

Latent Segmentation based 
Generalized Ordered 
Response Logit(LS-
GORL) and LS-SORL 

Driver injury 
severity – three 
category variable 

• Propensity function specification 
did not allow the estimation of RP. 

• Threshold specification did not allow for 
the estimation of RP. 

• At an aggregate level, LS-GORL model 
performed well as compared to LS-SORL 
on validation sample. 

Hosseinpour 
et al. ( 2014) 

Random Effects Ordered 
Mixed Probit (REOMP), 
Ordered Mixed Probit 
(OMP) and SORP 

Head on crash 
severity injury 
severity - four 
category variable 

• Propensity function specification 
in REOMP model allowed for the 
estimation of random effects 
parameter on the constant and was 
found to be statistically significant. 

• Threshold specification did not allow for 
the estimation of random parameters. 

• REOMP model was found to be 
statistically better than the OMP and 
SORP models in terms of data fit. 

Habib and 
Forbes (2014) 

OMP with Non-Linear 
Thresholds 
specification9(OMPNLT) 
and SORP 

Bicyclist injury 
severity - five 
category variable 

• Propensity function specification 
did not allow for the estimation of 
RP. 

• Threshold specification did not allow for 
the estimation of random parameters. 

• OMPNLT model with neighborhood and 
land use characteristics was found to be 
statistically better than OMPNLT model 
without such characteristics and SORP 
model.  

Yasmin et al. 
(2015a) 

Mixed Generalized 
Ordered Logit Response 
Model (MGORL) 

Severity of fatal 
injury - seven 
category variable 
obtained using the 
survival time in a 
fatal crash    

• Propensity function specification 
allowed for the estimation of RP. 

• Two random parameters were 
found to be statistically significant, 
and corresponding variables were  

1. Previous record of other harmful 
motor vehicle convictions 

2. Speed limit above 50 mph (base: 
speed limit < 26mph). 

• Threshold specification allowed for the 
estimation of random parameters. 

• No random parameters were found to be 
statistically significant. 

• Endogeneity on the outcome variable 
due to emergency medical service (EMS) 
response time variable was addressed 
using a 2 stage model comprising 
MGORL for the fatality timeline and 
regression equation for the EMS response 
time. 

Yasmin et al. 
(2015b)  

Generalized Ordered 
Response Logit Model 
(GORL) 

Passenger vehicle 
driver injury 
severity - eleven 
category variable 

• Propensity function specification 
did not allow for the estimation of 
RP. 

 

• Threshold specification did not allow for 
the estimation of random parameters. 

• A simple approach was developed to 
combine information from Fatality 
Analysis Reporting System (FARS) data 
and Generalized Estimates System (GES) 
data.  

Forbes and 
Habib (2015) 

OMPNLT and SORP Pedestrian injury 
severity - five 
category variable 

• Propensity function specification 
did not allow for the estimation of 
RP. 

• Threshold specification did not allow for 
the estimation of random parameters. 

• OMPNLT model performed well as 
compared to SORP model in terms of 
model fit. 

  

                                                 
9 Similar to ordered mixed response model structure, each threshold is expressed as an exponential function of linear function of covariates.  
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Table 1: (Continued) Summary of empirical studies that used generalized ordered response models in accident research. 

Study 
Abbreviation(s) of 

considered model(s) 

Ordered outcome 
response 

representation 

Estimation of random parameters (RP) Major findings/ contributions from 
methodological stand point Propensity function Thresholds 

Fountas and 
Anastasopoulos 
(2017) 

Mixed Generalized 
Ordered Response Probit 
(MGORP), Generalized 
Ordered Response Probit 
(GORP), SORP, and 
Random Parameters 
SORP (RPSORP) 

Single vehicle 
crash injury 
severity - four 
category variable 

• Propensity function specification allowed 
for the estimation of RP in MGORP and 
RPSORP models. 
• Seven random parameters were found to 
be statistically significant in both MGORP 
and RPSORP models, and corresponding 
indicator variables were  

1. Presence of  vertical curve with the curve 
length greater than 400 feet 
2. Average annual daily traffic per lane 
greater than 8500 vehicles. 
3. Driving under the influence of alcohol or 
drugs 
4. Vehicle crashed due to out of control 
5. Vehicle exceeded a reasonable safe level 
or speed limit 
6. Vehicle was travelling straight at the 
time of crash 
7. Pedestrian was involved in the crash. 

• Threshold specification allowed for 
the estimation of random parameters 
on the constants in the thresholds in 
MGORP model. 
•  Both constants in the thresholds 
were statistically significant at 95% 
confidence level. 

• MGORP model was found to be 
statistically better than the GORP, SORP, 
and RPSORP models in terms of data fit. 
• MGORP models had better forecasting 
accuracy as compared to its model 
counterparts.  

Anarkooli et al. 
(2017) 

REOMP, OMP, Random 
Effects Ordered 
Response Probit 
(REORP), SORP,  MNL, 
and MMNL 

Single vehicle 
rollover crash 
severity - three 
category variable 

• Propensity function specification allowed 
for the estimation of random effects 
parameter on the constant in REOMP 
model and was found to be statistically 
significant. 

• Threshold specification did not 
allow for the estimation of random 
parameters. 

• REOMP model was found to be 
statistically better than the OMP, REORP, 
SORP, MNL and MMNL models in terms 
of model fit. 

Zou et al. 
(2017) 

SRP-GORP and 
RPSORP 

Single-vehicle and 
multi-vehicle truck 
crash injury 
severity - four 
category variable 

• Propensity function specification allowed 
for the estimation of RP in both SRP-GORP 
and RPSORP models. 
  
• One random parameter was found to be 
statistically significant in RPSORP model 
for single vehicle crash severity and 
corresponding variable is 
 

1. Truck registered weight. 

• Threshold specification did not 
allow for the estimation of random 
parameters. 

• Spatial dependency and temporal effects 
have significant effect on the single 
vehicle and multi-vehicle truck crash 
severity.  
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Table 1: (Continued) Summary of empirical studies that used generalized ordered response models in accident research. 

Study 
Abbreviation(s) of 

considered model(s) 

Ordered outcome 
response 

representation 

Estimation of random parameters (RP) Major findings/ contributions from 
methodological stand point Propensity function Thresholds 

Xin et al. 
(2017) 

MGORP with 
Heterogeneity in Means 
and Variances 
(MGORPHMV), 
MGORP, GORP and 
ORP 

Pedestrian injury 
severity - four 
category variable 

• Propensity function specification allowed 
for the estimation of RP in MGORPHMV 
and MGORP models. 

• Two random parameters were found to be 
statistically significant in both 
MGORPHMV and MGORP models, and 
corresponding variables were 
 

1. Elderly pedestrian indicator 
2. Very elderly pedestrian indicator. 
 

• Moreover, the random parameter on 
elderly pedestrian indicator had significant 
heterogeneity in both means and variance. 
 

• Threshold specification allowed for 
the estimation of random parameters 
in both MGORPHMV and MGORP 
models. 

• No random parameters were found 
to be statistically significant. 

• The order of statistical superiority (high 
to low) of models in terms of data fit is 
MGORPHMV, MGORP, GORP and ORP 
model.  
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Table 2: Summary of different scenariosa simulated for motorcyclist injury severity. 

Scenario 
numberb Scenario detail 

Scenario 
description 

Sample 
size 

Average percentage shares across simulated datasets 
No 

injury 
Non-incapacitating 

injury 
Incapacitating 

injury 
Fatal 
injury 

S1 

𝑦௡
∗ = 0.1 × 𝑎𝑔𝑒௡ − 0.3 × 𝑚𝑎𝑙𝑒௡ − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛௡ + 𝜀௡ 

𝛹ଵ௡ = 0.2 
𝛹ଶ௡ = 0.2 + exp(0.25 + 𝜃௡ଶ × 𝑃𝐶௡) 
𝛹ଷ௡ = 0.2 + exp(0.25 + 𝜃௡ଶ ×  𝑃𝐶௡) + exp(0.75 + 𝜃௡ଷ × 𝑃𝐶௡) 
𝜃௡ଶ = 𝑁(0.5, 0.75), 𝜃௡ଷ = 𝑁(−0.5, 0.75), and 𝜌ଶଷ = −0.7 

Greater share for 
higher ordered 
outcome 

5,000 4.4 18.2 27.1 50.3 

S2 

𝑦௡
∗ = 0.1 × 𝑎𝑔𝑒௡ − 0.3 × 𝑚𝑎𝑙𝑒௡ − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛௡ + 𝜀௡ 

𝛹ଵ௡ = 3.5 
𝛹ଶ௡ = 3.5 + exp(0.25 + 𝜃௡ଶ × 𝑃𝐶௡) 
𝛹ଷ௡ = 3.5 + exp(0.25 + 𝜃௡ଶ ×  𝑃𝐶௡) + exp(0.75 + 𝜃௡ଷ × 𝑃𝐶௡) 
𝜃௡ଶ = 𝑁(0.5, 0.75), 𝜃௡ଷ = 𝑁(−0.5, 0.75), and 𝜌ଶଷ = −0.7 

Greater share for 
lower ordered 
outcome 

5,000 48.2 27.4 17.8 6.6 

S3 

𝑦௡
∗ = 0.1 × 𝑎𝑔𝑒௡ − 0.3 × 𝑚𝑎𝑙𝑒௡ − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛௡ + 𝜀௡ 

𝛹ଵ௡ = 2.1 
𝛹ଶ௡ = 2.1 + exp(0.06 + 𝜃௡ଶ × 𝑃𝐶௡) 
𝛹ଷ௡ = 2.1 + exp(0.06 + 𝜃௡ଶ ×  𝑃𝐶௡) + exp(0.56 + 𝜃௡ଷ × 𝑃𝐶௡) 
𝜃௡ଶ = 𝑁(0.5, 0.75), 𝜃௡ଷ = 𝑁(−0.5, 0.75), and 𝜌ଶଷ = −0.7 

Approximately 
equal shares for 
all outcomes 

5,000 24.7 25.9 24.8 24.6 

S4 

𝑦௡
∗ = 0.1 × 𝑎𝑔𝑒௡ − 0.3 × 𝑚𝑎𝑙𝑒௡ − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛௡ + 𝜀௡ 

𝛹ଵ௡ = 𝛼1𝑛 
𝛹ଶ௡ = 𝛼1𝑛 + exp(𝛼2𝑛 + 0.5 × 𝑃𝐶௡) 
𝛹ଷ௡ = 𝛼1𝑛 + exp(𝛼2𝑛 + 0.5 ×  𝑃𝐶௡) + exp(0.75 − 0.5 × 𝑃𝐶௡) 
𝛼ଵ௡ = 𝑁(3.5, 1.75), 𝛼ଶ௡ = 𝑁(0.25, 0.75), and 𝜌ଵଶ = −0.7 

Greater share for 
lower ordered 
outcome 

5,000 48.2 28.4 15.8 7.6 

S5 

𝑦௡
∗ = 0.1 × 𝑎𝑔𝑒௡ − 0.3 × 𝑚𝑎𝑙𝑒௡ − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛௡ + 𝜀௡ 

𝛹ଵ௡ = 0.2 
𝛹ଶ௡ = 0.2 + exp(0.25 + 𝜃௡ଶ × 𝑃𝐶௡) 
𝛹ଷ௡ = 0.2 + exp(0.25 + 𝜃௡ଶ ×  𝑃𝐶௡) + exp(0.75 + 𝜃௡ଷ × 𝑃𝐶௡) 
𝜃௡ଶ = 𝑁(0.5, 0.75), 𝜃௡ଷ = 𝑁(−0.5, 0.75), and 𝜌ଶଷ = −0.7 

Greater share for 
higher ordered 
outcome 

10,000 4.4 18.2 27.1 50.3 

a For each of the five scenarios, a total of 100 datasets were simulated.  
b See text for complete scenario-number definitions.  
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Table 3: Summary of results from simulation experiments. 

Scenario numbera Scenario description 
Number of datasets with 

converged models 

Number of datasets with 
significantly improved log-

likelihoodb 

S1 Greater share for higher 
ordered outcome 

91 6 

S2 Greater share for lower 
ordered outcome 

86 4 

S3 Approximately equal 
shares for all outcomes 

94 3 

S4 Greater share for lower 
ordered outcome 

82 0 

a See text for complete scenario-number definitions.  
b A likelihood ratio test was carried out between the models with and without correlation between the random 

parameters at 95% confidence level, with 2 degrees of freedom. 
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Table 4: Evaluation of estimated parameters in the presence and absence of correlations between random parameters.a 

Parameters 
Performance 
metricsb 

Scenario-S1 Scenario-S2 Scenario-S3 Scenario-S4 Scenario-S5 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

Propensity 
function 

Age 

True value 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Mean 
estimate 

0.1 0.101 0.1 0.1 0.1 0.1 0.112 0.28 0.1 0.101 

APB 0 1 0 0 0 0 12 180 0 1 

FSSE 0.004 0.004 0.002 0.002 0.003 0.003 0.053 0.549 0.003 0.003 

CP 0.967 0.912 0.976 0.988 0.957 0.936 0.931 1 0.966 0.933 

Gender 

True value -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 

Mean 
estimate 

-0.312 -0.313 -0.31 -0.309 -0.308 -0.308 -0.345 -0.774 -0.309 -0.311 

APB 4 4.33 3.33 3 2.67 2.67 15 158 3 3.67 

FSSE 0.065 0.066 0.057 0.055 0.059 0.059 0.193 1.219 0.046 0.047 

CP 0.978 0.978 0.964 0.952 0.947 0.957 0.958 1 0.944 0.944 

Intersection 
indicator 

True value -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 

Mean 
estimate 

-0.756 -0.758 -0.751 -0.749 -0.761 -0.76 -0.846 -2.122 -0.752 -0.755 

APB 0.8 1.07 0.13 0.13 1.47 1.33 12.8 182.93 0.27 0.67 

FSSE 0.067 0.067 0.05 0.05 0.054 0.053 0.397 4.219 0.045 0.045 

CP 0.967 0.978 0.988 0.988 0.957 0.947 0.972 1 0.978 0.966 

First 
threshold 

Constant 

True value 0.2 0.2 3.5 3.5 2.1 2.1 
3.5 

 (1.75) 
3.5  

(1.75) 
0.2 0.2 

Mean 
estimate 

0.191 0.183 3.512 3.504 2.09 2.086 
3.904 

(2.028) 
9.846 

(6.016) 
0.193 0.179 

APB 4.5 8.5 0.34 0.11 0.48 0.67 
11.54 

(15.89) 
181.31 

(243.77) 
3.5 10.5 

FSSE 0.132 0.129 0.108 0.106 0.104 0.104 
1.811 

(1.454) 
19.53 

(13.01) 
0.104 0.102 

CP 0.934 0.956 0.976 0.964 0.968 0.957 
0.944 

(0.958) 
1 

(1) 
0.933 0.944 

a Values in parentheses represent the standard deviation of random parameters. 
b APB = Absolute Percentage Bias; FSSE = Finite Sample Standard Error; CP = Coverage Probability. 
c Parameter estimates are statistically insignificant (in at least 50% of datasets) at 95% confidence level. 
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Table 4: (Continued) Evaluation of estimated parameters in the presence and absence of correlations between random parameters.a 

Parameters 
Performance 
metricsb 

Scenario-S1 Scenario-S2 Scenario-S3 Scenario-S4 Scenario-S5 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

Second 
threshold 
 

Constant 

True value 0.25 0.25 0.25 0.25 0.06 0.06 0.25 (0.75) 0.25(0.75) 0.25 0.25 

Mean 
estimate 

0.247 0.247 0.255 0.254 0.071 0.07 
0.277 
(0.78)c 1.053 (-) 0.251 0.251 

APB 1.2 1.2 2 1.6 18.33 16.67 10.8 (4) 321.2 (-) 0.4 0.4 

FSSE 0.055 0.055 0.037 0.037 0.039 0.038 
0.375 

(1.605) 
1.147 (-) 0.038 0.038 

CP 0.945 0.945 0.94 0.929 0.968 0.968 
0.986 

(0.856) 
1 (-) 0.978 0.978 

Protective 
clothing 

True value 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 0.5 0.5 (0.75) 0.5 (0.75) 

Mean 
estimate 

0.487 (0.77) 0.488 (0.77) 0.503 (0.79) 0.502 (0.77) 0.486 (0.77) 0.488 (0.77) 0.526 0.437 0.495 (0.75) 0.494 (0.75) 

APB 2.6 (3.2) 2.4 (2.93) 0.6 (5.33) 0.4 (2.8) 2.8 (3.07) 2.4 (2.4) 5.2 12.6 1 (0.53) 1.2 (0.67) 

FSSE 0.07 (0.082) 0.069 (0.08) 0.06 (0.197) 0.06 (0.189) 0.05 (0.096) 0.05 (0.093) 0.12 0.075 0.05 (0.061) 0.05 (0.062) 

CP 0.96 (0.989) 0.96 (0.978) 0.94 (0.952) 0.94 (0.94) 0.97 (0.989) 0.97 (0.979) 0.875 0.653 0.97 (0.955) 0.98 (0.944) 

Third 
threshold 
 
 

Constant 

True value 0.75 0.75 0.75 0.75 0.56 0.56 0.75 0.75 0.75 0.75 

Mean 
estimate 

0.755 0.755 0.756 0.755 0.561 0.561 0.807 1.282 0.753 0.754 

APB 0.67 0.67 0.8 0.67 0.18 0.18 7.6 70.93 0.4 0.53 

FSSE 0.029 0.029 0.038 0.038 0.03 0.03 0.298 0.958 0.022 0.022 

CP 0.967 0.967 0.976 0.976 0.957 0.957 0.917 1 0.966 0.978 

Protective 
clothing 

True value -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5 -0.5 -0.5(0.75) -0.5(0.75) 

Mean 
estimate 

-0.53 
(0.78) 

-0.175 
(-) 

-0.43c 
(0.85)c 

-0.17 
(-) 

-0.48c 
(0.75)c 

-0.17 
(-) -0.501 -0.514 

-0.42c 
(0.56)c 

-0.18 
(-) 

APB 5.2 (4.13) 65 (-) 14.2 (12.8) 66.2 (-) 3 (0.27) 65.6 (-) 0.2 2.8 15 (24.93) 64.2 (-) 

FSSE 0.19 (0.30) 0.33 (-) 0.17 (0.25) 0.341 (-) 0.124 (0.18) 0.337 (-) 0.083 0.083 0.19 (0.41) 0.328 (-) 

CP 0.956 (0.98) 0.978 (-) 1 (1) 0.94 (-) 1 (1) 0.979 (-) 0.903 1 0.843 (0.86) 0.944 (-) 
a Values in parentheses represent the standard deviation of random parameters. 
b APB = Absolute Percentage Bias; FSSE = Finite Sample Standard Error; CP = Coverage Probability. 
c Parameter estimates are statistically insignificant (in at least 50% of datasets) at 95% confidence level. 
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Table 4: (Continued) Evaluation of estimated parameters in the presence and absence of correlations between random parameters.a 

Parameters 
Performance 
metricsb 

Scenario-S1 Scenario-S2 Scenario-S3 Scenario-S4 Scenario-S5 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

With 
correlations 

Without 
correlations 

Correlation term 

True value -0.7 - -0.7 - -0.7 - -0.7 - -0.7 - 

Mean 
estimate 

-0.689 - -0.632c - -0.652c - -0.76c - -0.566 - 

APB 1.57 - 9.71 - 6.86 - 8.57 - 19.14 - 

FSSE 0.198 - 0.265 - 0.208 - 0.178 - 0.351 - 

CP 0.956 - 1 - 1 - 0.931 - 0.933 - 
a Values in parentheses represent the standard deviation of random parameters. 
b APB = Absolute Percentage Bias; FSSE = Finite Sample Standard Error; CP = Coverage Probability. 
c Parameter estimates are statistically insignificant (in at least 50% of datasets) at 95% confidence level. 

  



 
 

44 
 

Table 5: Comparison of marginal effects for the estimated models with and without correlation between random parameters. 

 
 

  

Scenario 

Variable description Age Gender Intersection indicator Protective clothing indicator 

Model 
With 

correlations 
Without 

correlations 
With 

correlations 
Without 

correlations 
With 

correlations 
Without 

correlations 
With 

correlations 
Without 

correlations 

S1 

No injury -0.004 -0.004 0.024 0.024 0.058 0.058 0 0 

Non-incapacitating injury -0.007 -0.007 0.041 0.041 0.101 0.101 0.397 0.396 

Incapacitating injury -0.006 -0.006 0.035 0.034 0.087 0.085 -0.145 -0.13 

Fatal Injury 0.016 0.016 -0.1 -0.1 -0.245 -0.244 -0.252 -0.266 

S2 

No injury -0.018 -0.018 0.112 0.112 0.273 0.273 0 0 

Non-incapacitating injury 0.005 0.005 -0.033 -0.033 -0.08 -0.08 0.215 0.215 

Incapacitating injury 0.008 0.008 -0.047 -0.047 -0.116 -0.116 -0.19 -0.187 

Fatal Injury 0.005 0.005 -0.032 -0.032 -0.077 -0.076 -0.024 -0.028 

S3 

No injury -0.014 -0.014 0.089 0.089 0.221 0.221 0 0 

Non-incapacitating injury -0.002 -0.002 0.011 0.011 0.028 0.029 0.329 0.33 

Incapacitating injury 0.003 0.003 -0.019 -0.02 -0.049 -0.049 -0.213 -0.204 

Fatal Injury 0.013 0.013 -0.081 -0.081 -0.201 -0.2 -0.117 -0.125 

S4 

No injury -0.0183 -0.0205 0.1137 0.1274 0.2803 0.3138 0 0 

Non-incapacitating injury 0.0047 0.0093 -0.0308 -0.0596 -0.0762 -0.1486 0.2297 0.2102 

Incapacitating injury 0.0077 0.0082 -0.0475 -0.0503 -0.1178 -0.1243 -0.228 -0.2064 

Fatal Injury 0.006 0.003 -0.0354 -0.0175 -0.0863 -0.0409 -0.0018 -0.0038 

S5 

No injury -0.004 -0.004 0.024 0.024 0.057 0.057 0 0 

Non-incapacitating injury -0.007 -0.007 0.041 0.041 0.101 0.101 0.4 0.399 

Incapacitating injury -0.006 -0.006 0.036 0.035 0.086 0.089 -0.146 -0.131 

Fatal Injury 0.016 0.016 -0.1 -0.1 -0.244 -0.246 -0.254 -0.267 
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a) Shift in the thresholds when protective clothing variable enters only the second threshold directly and takes value 1 

 

b) Shift in the thresholds when protective clothing variable enters both the second and third thresholds directly and 

takes value 1 

Figure 1: Influence of protective clothing variable on the shift of thresholds. 
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Figure 2: Log-likelihood profiles of unconverged models with respect to the correlation term. 
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(a) No injury - S1 (b) Non-incapacitating injury - S1 (c) Incapacitating injury - S1 (d) Fatal injury - S1 

    
(e) No injury - S2 (f) Non-incapacitating injury - S2 (g) Incapacitating injury - S2 (h) Fatal Injury - S2 

Figure 3: Predicted percentage shares of different injury severity levels by the models with and without correlated random parameters. 
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(i) No injury - S3 (j) Non-incapacitating injury - S3 (k) Incapacitating injury - S3 (l) Fatal Injury - S3 

    
(m) No injury - S4 (n) Non-incapacitating injury - S4 (o) Incapacitating injury - S4 (p) Fatal Injury - S4 

Figure 3: (Continued) Predicted percentage shares of different injury severity levels by the models with and without correlated random parameters. 
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(q) No injury – S5 (r) Non-incapacitating injury – S5 (s) Incapacitating injury – S5 (t) Fatal Injury – S5 

Figure 3: (Continued) Predicted percentage shares of different injury severity levels by the models with and without correlated random parameters. 
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