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ABSTRACT 1 
 2 
In traffic safety literature, crash frequency variables are analyzed using univariate count models or 3 
multivariate count models. In this study, we propose an alternative approach to modeling multiple crash 4 
frequency dependent variables. Instead of modeling the frequency of crashes we propose to analyze the 5 
proportion of crashes by vehicle type. A flexible mixed multinomial logit fractional split model is employed 6 
for analyzing the proportions of crashes by vehicle type at the macro-level.  In this model, the proportion 7 
allocated to an alternative is probabilistically determined based on the alternative propensity as well as the 8 
propensity of all other alternatives. Thus, exogenous variables directly affect all alternatives. The approach 9 
is well suited to accommodate for large number of alternatives without a sizable increase in computational 10 
burden. The model was estimated using crash data at Traffic Analysis Zone (TAZ) level from Florida. The 11 
modeling results clearly illustrate the applicability of the proposed framework for crash proportion analysis. 12 
Further, the Excess Predicted Proportion (EPP) – a screening performance measure analogous to Highway 13 
Safety Manual (HSM), Excess Predicted Average Crash Frequency is proposed for hot zone identification. 14 
Using EPP, a statewide screening exercise by the various vehicle types considered in our analysis was 15 
undertaken. The screening results revealed that the spatial pattern of hot zones is substantially different 16 
across the various vehicle types considered.  17 
 18 
 19 
Key words:  multinomial logit fractional split model; traffic crash analysis; macroscopic crash analysis; 20 
traffic analysis zones; vehicle type; screening 21 
  22 
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1. INTRODUCTION 1 
 2 
The Federal, State, and Local government officials and transportation engineers have been working with 3 
consistent efforts in reducing both road crash related fatalities and fatality rates. In the United States, traffic 4 
collisions have steadily declined from 2003 to 2011. However, traffic fatalities and fatality rates rose in 5 
2012 with slight drop in 2013 highlighting the challenges faced by the safety community. Overall 29,989 6 
people were reported to be killed in the United States from traffic crashes in 2014 (NHTSA, 2016). These 7 
facts highlight that there is a need for continued efforts to identify remedial measures to reduce crash 8 
occurrences and crash consequences. Towards this end, the traffic safety literature has evolved along two 9 
main dimensions: collision frequency analysis and collision severity analysis. The former group of studies 10 
is focused on identifying factors that result in traffic collisions while the latter group is concentrated on 11 
ameliorating the consequences of traffic crashes (conditional on their occurrences). The current study 12 
contributes to traffic safety literature along the first dimension – identify factors that inform us about traffic 13 
collision occurrences. 14 
 15 
Collision frequency analysis is traditionally undertaken at the microscopic and macroscopic levels. The 16 
microscopic safety analysis focuses on roadway entities such as segments, intersections, and corridors (Lee 17 
et al., 2017). The studies broadly aim to identify contributing factors for traffic crashes from roadway 18 
geometric design, traffic characteristics, and provide specific engineering countermeasures to alleviate 19 
traffic collisions. On the other hand, the macroscopic safety analysis relates traffic crashes aggregated at a 20 
spatial level (traffic analysis zone (TAZ), census tract or county) with demographic, socioeconomic, built 21 
environment, traffic attributes and/or roadway characteristics at a study unit level. While microscopic level 22 
analysis is more focused on the engineering design and evaluation, the macroscopic analysis provides a 23 
broad spectrum for long-term policy based countermeasures such as enactments of traffic laws, police 24 
enforcement, education, and area-wide engineering solutions (Lee et al., 2014b). There has been growing 25 
recognition within the planning community to incorporate macroscopic models as part of long range 26 
transportation plans. For example, the Moving Ahead for Progress in the 21st Century Act (MAP-21) and 27 
Fixing America’s Surface Transportation Act (FAST) have emphasized the role of macro-level safety 28 
analysis in planning. 29 
 30 
While total traffic fatalities and fatality rates show a downward trend, NHTSA statistics indicate that the 31 
proportions of motorcycles, bicycles, and pedestrians in fatal crashes have considerably increased whereas 32 
the proportion of passenger cars has decreased from 2005 to 2014 (NHTSA, 2016). The proportions of 33 
motorcyclists and non-motorists involved in fatal crashes has risen from 11% to 14% and 13% to 18%, 34 
respectively, since the last decade. Despite these increases, earlier studies in the safety area have 35 
predominantly focused either on total crashes or crashes involving passenger cars/trucks or crashes 36 
involving non-motorists. These studies provide important information in improving safety situation for 37 
different road user groups separately. However, it is also important to examine critical factors contributing 38 
to crash occurrences including all road user groups in a single framework, which would allow stakeholders 39 
to devise a more general safety conscious planning. Towards that end, the main objective of this study is to 40 
explore the proportions of traffic crashes at TAZ level across different vehicle types including both 41 
motorized and non-motorized group of road users. Specifically, the current study considers the proportion 42 
of crashes by vehicle type as the dependent variable and estimates a TAZ level mixed multinomial fractional 43 
split model. The proposed approach will assist transportation planners and engineers in devising safety 44 
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conscious plans. Specifically, traffic engineers and planners can understand the factors affecting the 1 
proportions of crashes by vehicle types from the modeling results, and use these findings to design long-2 
term transportation plans. Furthermore, the predicted proportions of crashes from the proposed model can 3 
be used to identify hotspots for each vehicle type. Thus, traffic engineers and planners can proactively 4 
provide effective safety countermeasures for the zones with excessive high proportions for specific vehicle 5 
types. The vehicle types considered in our analysis include: passenger car1, van, light truck, medium and 6 
heavy truck, bus, motorcycle, bicycle, and pedestrian. The reader would note that the model employed is 7 
not similar to the traditional multinomial logit model because the dependent variable in our case is 8 
proportion by vehicle type whereas it is a single chosen alternative in the multinomial logit model.   9 
 10 
1.1. Literature Review 11 
 12 
The macro-level safety studies have been conducted by total crashes, crashes by severity levels (such as no 13 
injury, minor injury, severe injury, and fatal injury) and crashes by vehicle type (such as motor vehicle, 14 
pedestrian, and bicycle). It is beyond the scope of this paper to exhaustively review all the studies in 15 
frequency modeling (see Lord and Mannering (2010) and Yasmin and Eluru (2016) for a detailed review). 16 
In our study, we group literature in the context of our research effort along two main groups: 1) independent 17 
frequency models for a single dependent variable or multiple dependent variables; and 2) multivariate count 18 
models for the multiple dependent variables are estimated. 19 
 20 
In the first group of studies, usually either total number of crashes in the study unit or crashes by vehicle 21 
type or severity level are investigated. In some studies, multiple dependent variables are considered in the 22 
analysis while ignoring the relationship across the dependent variables. For example, Noland and Quddus 23 
(2004) developed fixed-effect negative binomial models for  bicycle and pedestrian crashes for severe and 24 
minor injury. Nevertheless, these models did not account for the possible correlation among dependent 25 
variables. Lee et al. (2013) estimated a series of negative binomial models for total, severe, driving under 26 
the influence (DUI), pedestrian and bicycle crashes based on zero-inflated Poisson (ZIP) framework while 27 
ignoring the relationships across the dependent variables. Abdel-Aty et al. (2013) analyzed the contributing 28 
factors for total, and severe pedestrian crashes, using negative binomial models without considering 29 
common unobserved factors across different crash types.  30 
 31 
In the second group of studies, multivariate models that recognize the dependencies between multiple 32 
dependent variables are estimated. For example, Song et al. (2006) analyzed intersection, intersection-33 
related, driveway access, and non-intersection crashes at the county level. The authors developed Bayesian 34 
multivariate conditional autoregressive models that can account for the dependencies between the variables 35 
and spatial effects. (Narayanamoorthy et al., 2013) explored pedestrian and bicycle crash frequencies by 36 
injury severity levels. The authors adopted a multivariate model to accommodate jointness in the dependent 37 
variables, while considering spatial dependence effects. Furthermore, Lee et al. (2015b) estimate 38 
multivariate Poisson lognormal models to analyze motor-vehicle, pedestrian, and bicycle crashes. The 39 
authors found that the multivariate model accounting for unobserved common factors across the dependent 40 
variables outperforms the univariate model that does not take the dependencies between dependent 41 

                                                      
1 Passenger cars include sedans and sport utility vehicles (SUV). 
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variables into consideration. Recently, Nashad et al. (2016) adopted a bivariate copula based modeling 1 
approach to examine pedestrian and bicyclist crashes simultaneously.  2 
 3 
Based on earlier literature, the factors that are likely to affect motor vehicle crashes are socio-demographic 4 
factors, land-use characteristics, roadway-related variables, and traffic characteristics (Kim et al., 2006; Lee 5 
et al., 2015b). Based on 0.1 mi2 grid structure, Kim et al. (2006) estimated various regression models based 6 
on the grid. The authors identified that population, total job, total economic output, and commercial area 7 
had positive relationship with motor vehicle crashes. Lee et al. (2015b) analyzed motor vehicle crashes 8 
based on TAZs. The authors found that population, total employment, total economic output, commercial 9 
area, roadway types, proportion of households without a vehicle, number of accommodation facilities per 10 
square mile, and number of traffic signals per mile have a positive effect on motor vehicle crashes. Very 11 
few researchers have explored truck-involved crashes at a macro-level. Pasupuleti and Pulugurtha (2013) 12 
identified several zonal characteristics related to truck crashes. The authors revealed that truck crashes are 13 
positively correlated to industrial areas and areas with large residential lots but negatively correlated with 14 
highly populated areas.  15 
 16 
Several factors that tend to increase bicycle crashes have been identified by researchers. Noland and Quddus 17 
(2004) found that national health service staff per population, percentage of motorway, percentage of trunk 18 
road density, percentage of older vehicle, percentage of households without cars, per capita expenditure on 19 
alcohol, population, percentage of population aged 65 or over have a positive relationship with severe 20 
bicycle crashes. On the other hand, length of inpatient stay in the hospital, income level, percentage of 21 
population aged 45-64 have a negative relationship with severe bicycle crashes. Kim et al. (2006) attempted 22 
several candidate variables including population, total job, total economic output, hospital, park, 23 
commercial area, and school for bicycle crashes but only population was found significant and positively 24 
related to bicycle crashes. Lee et al. (2013) investigated the residence of bicyclists who were involved in 25 
traffic crashes. It was revealed that median age, average travel time to work, household income, and workers 26 
in the primary industry field were negatively associated with the number of crash involved bicyclists. On 27 
the other hand, Hispanic people, workers commuting by bicycle, urban area, and older buildings were 28 
positively associated with the number of bicyclists who were involved in traffic crashes. Lee et al. (2015b) 29 
developed a multivariate model for motor vehicle-to-vehicle, bicycle-to-vehicle, and pedestrian-to-vehicle 30 
crashes. The authors uncovered that vehicle-miles-traveled, population, commuters using bicycle, 31 
hotel/motel/timeshare rooms per square mile, employments and school enrollments per square mile, number 32 
of traffic signals per mile are likely to increase bicycle crashes whereas proportion of roadway with speed 33 
limit of 20 mph or less tends to decrease bicycle crashes. The above mentioned literature suggest that the 34 
factors that tend to increase bicycle crashes are population, distance to urban location, employment, school 35 
enrollment density, roadway types, number of traffic signals per mile, proportion of households without a 36 
vehicle, and household income. 37 
 38 
Lastly, some factors that increase the propensity of pedestrian crashes have been found. Noland and Quddus 39 
(2004) found that total population and percentage of population aged 65 or over are positively correlated 40 
whereas percentage of other roads, income, percentage of population aged 45-64 are negatively correlated 41 
with severe pedestrian crashes. Loukaitou-Sideris et al. (2007) discovered that population, employment 42 
density, high traffic volume, commercial/retail land-use, and multifamily residential land-use have a 43 
positive effect on pedestrian crashes. In the study of Wier et al. (2009), traffic volume, arterials without 44 
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transit, proportion of mixed land-use (commercial and residential), proportion of commercial land-use, 1 
employee and resident populations, and proportion of people below poverty have a positive relationship 2 
while land areas, and proportion of population aged 65 or over have a negative relationship with pedestrian 3 
crashes. Lee et al. (2015a) used the product of population and VMT as an exposure variable in their model. 4 
The authors found that proportion of households below poverty level, rail and bus station density, 5 
accommodation density, marina/ferry terminal density, and K-12 school density tend to increase pedestrian 6 
crashes; but proportion of high-speed roads have a tendency to decrease pedestrian crashes. To the best 7 
authors’ knowledge, none of studies have explored motorcycle or bus related crashes at a macro-level. In 8 
the data preparation process, we consider the independent variables that have been found significant in the 9 
previous studies. 10 
 11 
1.2. Current Study 12 
 13 
In earlier research, the impact of exogenous variables is quantified through the propensity component of 14 
count models. The main interaction across different count variables is either ignored (first group) or sought 15 
through unobserved effects (studies from second group) i.e. there is no interaction of observed effects across 16 
the multiple count models. While this might not be a limitation per se, it might be beneficial to evaluate the 17 
impact of exogenous variables in framework that directly relates a single exogenous variable to all count 18 
variables of interest simultaneously i.e. a framework where the observed propensities of crashes by vehicle 19 
type interact directly. In the traditional count modeling approaches this is not feasible. In this study, an 20 
alternative approach to macro-level crash modeling is proposed. Specifically, as opposed to modeling the 21 
number of crashes, we adopt a fractional split modeling approach to study the fraction of crashes by each 22 
vehicle type for a zone. So for example, in a three-count variable case, the traditional approach would be to 23 
adopt a trivariate count model framework with three count equations. In the proposed approach, we adopt 24 
a multinomial fractional split model that examines the proportion of crashes (not frequency) by count type 25 
with three equations representing the three crash types in a single probabilistic model system.  So for a 26 
zone, the dependent variable could take the following form – crash type 1: 0.30, crash type 2: 0.25 and 27 
crash type 3: 0.45. The fractional split model is used to analyze the proportion by vehicle type across zones 28 
as a function of exogenous variables. To be sure, the approach is not a replacement for traditional count 29 
based approaches. We believe that the fractional split modeling approach would serve complementary to 30 
existing traditional approaches in providing more insights on the impact of exogenous variables on crash 31 
proportions.  32 
 33 
The fractional split model also provides another advantage. From the review of earlier literature, it is evident 34 
that vehicle crashes are usually grouped under one category. However, it is possible that the occurrence of 35 
crashes might vary across zones by vehicle type (such as passenger cars, light trucks, medium and heavy 36 
trucks, and buses). It is worthwhile to investigate the factors that influence crash occurrence by each vehicle 37 
type. However, the addition of different vehicle types would add additional computational burden for count 38 
modeling and hence such fine resolution of vehicle types is rarely considered. Within a fractional split 39 
model, the additional computation burden associated with adding the fine vehicle type resolution is minimal 40 
and thus facilitates considering detailed vehicle type resolution. 41 
 42 
The proposed methodology is based on earlier work in econometrics undertaken by Papke and Wooldridge 43 
(1993). The authors proposed a quasi-likelihood estimation method for binary probit model with a fractional 44 
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dependent variable. The authors explored 401(K) plan participation rates in two portfolios using their 1 
proposed method. The approach was extended to multinomial fractional model by Sivakumar and Bhat 2 
(2002). The authors analyzed statewide interregional commodity-flow volumes in Texas using the proposed 3 
model. Eluru et al. (2013) extended the binary probit model by Papke and Wooldridge (1993) and proposed 4 
a panel mixed ordered probit fractional split model to analyze vehicle operating speed on urban roads in 5 
Montreal. Yasmin et al. (2016) employed an ordered version of the fractional split model to investigate 6 
crash proportion by injury severity. To be sure, there has been earlier work in safety literature exploring the 7 
multinomial fractional split model at the microscopic level. Milton et al. (2008) developed a mixed 8 
multinomial fractional split model to study injury-severity distribution of crashes on highway segments 9 
by using highway-injury data from Washington State. Also several other researchers adopted a fractional 10 
split model in the respective fields (Nam, 2012; Witter et al., 2012; Wang & Wolman, 2014). 11 
 12 
Furthermore, we consider the influence of observed spatial effects in our analysis. In the macro-level studies, 13 
traffic crashes occurring in a geographic unit are aggregated. The aggregation process might create errors 14 
in identifying exogenous variables for the geographic unit. For instance, a crash occurring near or on the 15 
boundary of the geographic unit might be strongly related to the neighboring zone than the actual zone 16 
where the crash happened, which is the result of arbitrarily defining boundaries. In order to alleviate such 17 
geographic unit induced bias, the following two methodologies have been utilized to account for spatial 18 
autocorrelations: 1) spatial error correlation effects (unobserved exogenous variables at one location affect 19 
dependent variable at the targeted and adjacent zones); and 2) spatial spillover effects (observed exogenous 20 
variables at one location impact the dependent variable at both the targeted and adjacent zones) 21 
(Narayanamoorthy et al., 2013). Some research efforts have accommodated for spatial random error in 22 
safety literature (Huang et al., 2010; Dong et al., 2014; Lee, 2014; Dong et al., 2015; Lee et al., 2015a; Lee 23 
et al., 2015b; Dong et al., 2016; Huang et al., 2016; Xu et al., 2017). Nevertheless, using such spatially 24 
lagged dependent variable models, specifically for prediction, is of limited use because observed crash at 25 
adjacent geographic unit is required as an independent variable in the model. Thus, we adopted a method 26 
considering exogenous variables from adjacent zones for accounting for spatial dependency, which was 27 
recently suggested (Cai et al., 2016). To summarize, in this research we employ a zonal level mixed 28 
multinomial fractional split model to investigate the impact of exogenous factors with spatial spillover 29 
effects on the proportion of vehicle types in traffic crashes for the state of Florida. 30 
 31 
The rest of the paper is organized as follows: Section 2 provides a description of the mixed multinomial 32 
fractional split model. Section 3 describes the data collection and sample preparation steps. Section 4 33 
discusses the modeling results and the elasticity effects. A new performance measure for hot zone 34 
identification is proposed and screening results are provided in Section 5. Lastly, Section 6 summarizes and 35 
concludes the paper. 36 
 37 
2. STATISTICAL FRAMEWORK 38 
 39 
The dependent variable in this study is defined as the proportion of vehicle type in traffic crashes by TAZ. 40 
The sum of the proportions across a TAZ is equal to unity and each proportion of vehicle types in traffic 41 
crashes ranges between zero and one. Let ymn be the fraction of crashes by vehicle type m (m= 1,2, … , M; 42 
M=8) in TAZ n (n=1, 2, …, N). In this paper, the eight vehicle types correspond to passenger car, van, light 43 
truck, medium and heavy truck, bus, motorcycle, bicycle, and pedestrian. 44 
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 1 
 0 ≤ 𝑦𝑦𝑚𝑚𝑚𝑚 ≤ 1  ∑ 𝑦𝑦𝑚𝑚𝑚𝑚 = 1𝑀𝑀

𝑚𝑚=1             (1) 2 
Let the fraction ymn be a function of a vector xmn of relevant explanatory variables associated with attributes 3 
of TAZ n. 4 

𝐸𝐸[𝑦𝑦𝑚𝑚|𝑥𝑥] =  𝐺𝐺𝑚𝑚(𝑥𝑥;𝛽𝛽) 5 
 0 < 𝐺𝐺𝑚𝑚(∙) < 1  ∑ 𝐺𝐺(∙) = 1𝑀𝑀

𝑚𝑚=1             (2) 6 
where Gm(∙)is a predetermined function. The properties specified in Equation (2) for Gm(∙) warrant that the 7 
predicted fractional crash vehicle types will range between 0 and 1, and will add up to 1 for each TAZ. In 8 
this study, a mixed multinomial logit functional form for Gm in the fractional split model of Equation 2. 9 
Then Equation 2 is rewritten as: 10 

   𝐸𝐸(𝑦𝑦𝑚𝑚|𝑥𝑥) = 𝐺𝐺𝑚𝑚(𝑥𝑥;𝛽𝛽) = exp(𝑥𝑥𝛽𝛽𝑚𝑚)
∑ exp (𝑥𝑥𝛽𝛽𝑚𝑚)𝑀𝑀
𝑚𝑚=1

 ,   m =1, … , M            (3) 11 

Given the probability expression above, the quasi likelihood function is written as follows: 12 
 𝐿𝐿𝑞𝑞(𝛽𝛽) = ∏ 𝐺𝐺𝑚𝑚(𝑥𝑥𝑚𝑚;𝛽𝛽)𝑦𝑦𝑚𝑚𝑚𝑚𝑀𝑀

𝑚𝑚=1                   (4) 13 
The quasi log-likelihood function for the sample is defined as: ℒ(𝛽𝛽) = ∑ ln ( 𝐿𝐿𝑞𝑞(𝛽𝛽))𝑁𝑁

𝑚𝑚=1  14 
The model estimation is undertaken by maximizing the quasi log-likelihood function based on a routine in 15 
Gauss matrix programming language. The readers would note that the coefficient vector includes both mean 16 
parameters and standard deviation parameters following a normal distribution.  17 
 18 
3. DATA PREPARATION 19 
 20 
The number of road users involved in crashes for eight vehicle types (passenger car, van, light truck2, 21 
medium and heavy truck, bus, motorcycle, bicycle and pedestrian) were acquired from the Florida 22 
Department of Transportation (FDOT) Crash Analysis Reporting System (CARS) for the year 2010 through 23 
2012. The collected crash data by vehicle types were further aggregated based on statewide TAZs (N=8,518) 24 
and corresponding crash proportion were computed. Among 8,518 TAZs, there were no crashes reported 25 
for 389 TAZs for the study years and hence were excluded from the analysis of our study. The numbers of 26 
units by vehicle type in total crashes were aggregated based on TAZ-level. Then the TAZ-based unit counts 27 
by vehicle type were converted to the proportions. Table 1 summarizes the descriptive statistics of traffic 28 
crash related variables. From the table, we can observe that the proportion of passenger cars (57.5%) is the 29 
highest while the proportion of buses (1.1%) is the smallest among all vehicle types considered. The data 30 
for the dependent variable is further augmented by socio-demographic, traffic, roadway and commuter 31 
travel data from multiple sources such as FDOT CARS/Systems Planning Office/Roadway Characteristics 32 
Inventory, Florida Department of Revenue, and U.S. Census Bureau. The prepared independent variables 33 
were considered based on previous studies as discussed in the literature review section. 34 
  35 

                                                      
2 The reader would note that not only passenger car but also van and light truck represent vehicles used 
for passenger transport. 
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Table 1: Descriptive statistics of traffic crash related variables 1 

Variable (N=8,129) Mean Stdev Min Max % of zero 
proportion 

Total number of crash-involved units 
based on a TAZ 146.433 214.156 1 2773 - 

Proportion of  passenger cars 0.575 0.157 0.000 1.000 1.8% 
Proportion of vans 0.061 0.056 0.000 1.000 18.3% 
Proportion of light trucks 0.264 0.139 0.000 1.000 4.2% 
Proportion of medium & heavy trucks 0.032 0.065 0.000 1.000 33.8% 
Proportion of buses 0.011 0.030 0.000 1.000 53.6% 
Proportion of motorcycles  0.029 0.062 0.000 1.000 33.0% 
Proportion of bicycles 0.013 0.031 0.000 1.000 49.4% 
Proportion of pedestrians 0.015 0.030 0.000 0.667 45.6% 

 2 
Socio-demographic data such as population, family vehicle ownership, hotel/motel/timeshare rooms, 3 
employment, and school enrollment were obtained from the Systems Planning Office of the FDOT. Four 4 
employment related variables were processed: total employment density, and proportion by employment 5 
type - industrial, commercial, and service. Roadway/traffic data were compiled from the FDOT Roadway 6 
Characteristics Inventory (RCI) and they were processed at a TAZ level using geographical information 7 
systems (GIS). The roadway data include proportion of roadway length by functional classifications (i.e., 8 
arterial, collector, and local road), signals per mile, VMT density (VMT normalized by TAZ area), 9 
proportion of heavy vehicles, bike lane length density (per square mile), and sidewalk length density (per 10 
square mile). Two types of urban classification data were processed. Urban area polygon data (2010) was 11 
collected from the U.S. Census Bureau. The urban area data were processed into: 1) proportion of urban 12 
areas; and 2) distance to the nearest urban area. Commuting travel data were acquired from the U.S. Census 13 
Bureau and the proportions of commuters using specific travel modes (e.g., public transportation, bicycle, 14 
walking) were computed for each TAZ. Table 2 exhibits the descriptive statistics of the candidate 15 
explanatory variables. 16 
  17 
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Table 2: Descriptive statistics of candidate explanatory variables 1 
Variable (N=8,129) Mean Stdev Min Max 

Socio-
demographic 
characteristics 

Population density (per sqmi) 2574.39 4032.83 0 63069 
Proportion of young people (15-24 years) 0.132 0.083 0 1.000 
Proportion of elderly people (65 years and older) 0.171 0.116 0 0.938 
Hotel, motel, and timeshare room density (per sqmi) 173.89 951.75 0 32610 
Total employment density (per sqmi) 1190.3 1745.9 0 31932 
Proportion of industrial employments 0.176 0.232 0 1.000 
Proportion of commercial employments 0.299 0.235 0 1.000 
Proportion of service employments 0.492 0.259 0 1.000 
Proportion of families with no available vehicle 0.095 0.123 0 1.000 
School enrollment density (per sqmi) 803.4 6115.3 0 255147 
Median household income (in USD) 57389 24714 0 215192 

Roadway 
/traffic 

characteristics 

Arterial proportion of public road mileage 0.223 0.272 0 1.000 
Collector proportion of public road mileage 0.188 0.239 0 1.000 
Local proportion of public road mileage 0.572 0.324 0 1.000 
Number of signals per mile 3.032 88.134 0 6347.7 
Vehicle-miles-traveled density (per sqmi) 54304 187263 0 11469720 
Proportion of trucks 0.068 0.051 0 0.428 
Bike lane length density (per sqmi) 0.533 3.207 0 153.183 
Sidewalk length density (per sqmi) 3.542 10.245 0 183.373 
Presence of transit system (dummy variable) 0.597 0.491 0 1 
Lengths of transit system (mi) 1.474 2.857 0 59.580 
The existence of SIS (Strategic Intermodal System) 
network 0.310 0.463 0 1 
Number of bus stations 0.005 0.071 0 1 
Number of cargo centers 0.010 0.435 0 36 
Number of commuter rail stations 0.009 0.107 0 3 
Number of train stations 0.002 0.048 0 1 

Land-use  
attributes 

Proportion of urban areas 0.732 0.424 0 1.000 
Distance to the nearest urban area (mi) 1.991 5.209 0 44.101 
Mixed land-use area (sqmi) 0.004 0.017 0 0.636 
Residential area (sqmi) 1.265 6.020 0 280.114 
Commercial area (sqmi) 0.100 0.225 0 7.052 
Industrial area (sqmi) 0.045 0.428 0 23.902 
Agriculture area (sqmi) 3.428 13.707 0 227.568 
Institutional area (sqmi) 0.033 0.260 0 11.514 
Governmental area (sqmi) 1.756 15.665 0 748.162 
Miscellaneous area (sqmi) 0.279 4.098 0 338.046 
Vacant area (sqmi) 1.495 13.261 0 702.884 
Number of nightclubs, cocktail lounges and bars 0.234 0.757 0 18 

Commuting 
characteristics 

Proportion of commuters using public transportation 0.024 0.043 0 0.549 
Proportion of commuters using bicycle 0.009 0.023 0 0.309 
Proportion of commuters who walk 0.025 0.041 0 0.449 

Indicator 
variables 

District dummy variables (1 to 7) Percentages 
District 1 11.8% 
District 2 17.1% 
District 3 13.6% 
District 4 12.1% 
District 5 19.3% 
District 6 10.5% 
District 7 15.6% 

 2 
  3 
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4. RESULTS 1 
 2 
4.1. Modeling Results 3 
 4 
Table 3 presents the modeling results of the mixed multinomial logit fractional split model. The model 5 
estimation results revealed the absence of any significant unobserved parameters. Hence, the model 6 
collapsed to a multinomial logit fractional split model. Within the fractional split model, each alternative 7 
has a propensity equation. However, for the sake of identification, one of the alternative propensities has to 8 
be selected to serve as the base. In our analysis, the model estimation is undertaken considering that the 9 
passenger car option serves as the base alternative. Hence, there are no coefficients specific to passenger 10 
car in Table 3.  11 
 12 
Overall, the model results are intuitive and offer credence to our hypothesis that a fractional split approach 13 
to crash proportion modeling is of value. A brief examination of the results highlights substantial 14 
differences in the number of significant parameters across alternatives. The propensity for light truck and 15 
medium and heavy truck alternatives has more number of significant parameters while pedestrian and 16 
bicyclist alternatives have the fewest significant parameters in current study context. Given that the 17 
multinomial logit fractional split approach is compensatory in nature (difference of propensities affects 18 
proportion), alternatives with smaller proportions (as is the case with pedestrian and bicyclist crashes) are 19 
likely to have fewer parameters. In terms of data fit, the additional exogenous variables substantially 20 
improve the quasi log-likelihood at convergence (-9738.217) compared to the quasi log-likelihood at zero 21 
(-16903.780) and quasi log-likelihood at constants (-9930.663). A log-likelihood ratio test with respect to 22 
model at constants yields a test statistic of 384.886 (=2*(-9738.217 – (-9930.66))). The test statistic is larger 23 
than the corresponding chi-square distribution value for 25 additional parameters at any level of 24 
significance. The results from the model are discussed subsequently by variable groups. 25 
 26 
The reader would note that parameter values in Table 3 correspond to the impact of exogenous variables 27 
on the alternative relative to passenger car. Hence, a positive (negative) sign indicates increase (decrease) 28 
in the proportion of the alternative relative to the proportion of passenger cars. An insignificant effect 29 
implies the variable does not have any differential impact on the alternative relative to the passenger car 30 
alternative. The authors also discussed the explanatory variables used in the previous macro-level safety 31 
studies. At a first glance, some may think that the findings from prior studies are contradictory to those 32 
from this study. However, all the previous studies developed crash count models (by crash types or vehicle 33 
types) whereas this study estimated the proportions of vehicle types in traffic crashes, and thus they are not 34 
actually conflicting. 35 
 36 
Constants 37 
The constants in the model are negative for all alternatives with respect to the base alternative passenger 38 
cars. This is expected as the passenger car proportion is substantially larger than other alternatives.  39 
 40 
Socio-demographic characteristics  41 
Several sociodemographic variables influence the zonal level proportion of crashes by vehicle types. An 42 
increase in the variable, logarithm of population density indicates is associated with a reduction in the 43 
proportion of light truck and medium and heavy trucks involved crashes with the magnitude being higher 44 
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for medium and heavy trucks. In high population density zones, the exposure to light trucks is likely to be 1 
much lower (relative to zones with lower population density). The lower exposure might result in lower 2 
proportion of light truck involved crashes. Similarly, in high population density zones, the exposure to 3 
medium and heavy trucks is lower (relative to other zones) and more importantly the average speed of 4 
medium and heavy trucks is also likely much lower thus possibly reducing the proportion of their crash 5 
involvement. No prior studies have utilized the population density for the proportion of trucks in traffic 6 
crashes at the macro-level. Instead, some studies used the population density as an exploratory variable for 7 
total crashes (Lovegrove & Sayed, 2007; Lee et al., 2014b; Xu et al., 2014), property damage only (PDO) 8 
crashes (Ladron de Guevara et al., 2004), injury crashes (Ladron de Guevara et al., 2004; Lee et al., 2014b; 9 
Xu et al., 2014), and fatal crashes (Ladron de Guevara et al., 2004), bicycle crashes and pedestrian crash 10 
count models (Siddiqui et al., 2012; Cai et al., 2016). It was commonly found that the variable had positive 11 
effects on those crashes. 12 
 13 
The modeling results indicate that a higher proportion of elderly population tends to increase the crash 14 
proportion of bicycles and motorcycles (among the crash involved units). Florida has the highest percentage 15 
of senior people aged 65 or older and it has experienced consistent in-migration of retired people from other 16 
states (Sperazza et al., 2012). The large number of retired people might escalate demand for recreational 17 
and leisure activities including cycling and motorcycling. Thus, the higher percentage of elderly population 18 
may be associated with the larger crash proportion of both bicycles and motorcycles. The elderly population 19 
factor has been considered in the several macro-level studies. Huang et al. (2010) found that the larger 20 
elderly population tends to decrease total and severe crash counts. Also, Lee et al. (2014a) accommodated 21 
the proportion of elderly population in their study and the variable has a negative relationship with total 22 
crash counts.  23 
 24 
The variable corresponding to proportion of families with no available vehicle offers interesting results. 25 
The variable, on its own, is associated with a reduction in the crash proportion of motorcycles. Motorcycle 26 
is mainly a recreational vehicle in Florida and expensive to maintain, hence in such zones the likelihood of 27 
ownership as well as the use of motorcycles is likely to be lower. In addition to the TAZ variable, a spatial 28 
variable based on the proportion of families with no available vehicle from neighboring TAZs is also 29 
considered in our model. The variable is associated with an increase in the crash proportion of buses (among 30 
the crash involved units). Families without access to vehicles are captive to public transportation and 31 
possibly live in zones with higher access to public transit. Hence, it is not surprising that such zones have 32 
higher proportion of bus crashes. On the other hand, some research efforts employed vehicle ownership 33 
variable in their studies for other crash types. The higher proportion of households without available vehicle 34 
has a propensity to increase bicycle (Noland & Quddus, 2004), pedestrian (Noland & Quddus, 2004; Lee 35 
et al., 2015a), and total/severe crashes (Lee et al., 2014b). Siddiqui et al. (2012) used the percentage of 36 
households with 0 or 1 vehicle and identified that the variable was positively associated with bicycle and 37 
pedestrian crashes. Quddus (2008) showed that the logarithm of households without vehicle has a positive 38 
impact on fatal and serious injury crashes. 39 
 40 
Tourism is an important industry in Florida and it is important to consider tourist presence in traffic safety 41 
planning. A surrogate measure for tourist activity is hotel, motel and timeshare facility density. The variable 42 
highlights a negative association with the proportion of light trucks in traffic crashes alluding to the 43 
possibility that tourist areas are less likely to have larger number of light trucks in the zone. Although no 44 
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studies have considered the accommodation factor for the proportion of light trucks, some studies found 1 
that the hotel units have a positive impact on pedestrian (Siddiqui et al., 2012; Lee et al., 2015a; Lee et al., 2 
2015b; Cai et al., 2016), bicycle (Lee et al., 2015b), total, severe (Lee et al., 2014b), and vehicle-to-vehicle 3 
crashes (Lee et al., 2015b). On the contrary, Ng et al. (2002) showed that the hotel units have a negative 4 
effect on fatal crashes. 5 
 6 
The employment density variable is associated with a lower likelihood of motorcycle crashes. As 7 
motorcycle is mainly used for recreational purposes, it is expected that the use of such vehicles in zones 8 
with high employment density is unlikely. In terms of industrial employment, the result indicates that zones 9 
with higher industrial employment is likely to involve higher medium and heavy truck crash proportions. 10 
The variable is a reflection of increased exposure to medium and heavy trucks in these zones. The findings 11 
are further substantiated based on the result of the proportion of trucks estimates. From the previous studies, 12 
many researchers have found that employment-related factors have a significant effect on various crash 13 
types. An area with larger employment has a tendency to exhibit a greater number of vehicle-to-vehicle and 14 
severe crashes (Hadayeghi et al., 2006), pedestrian and bicycle crashes (Siddiqui et al., 2012; Cai et al., 15 
2016), and pedestrian crashes only (Loukaitou-Sideris et al., 2007). Levine et al. (1995) attempted diverse 16 
employment variables. The authors found that manufacturing, retail trade, and service employment 17 
positively affect crash counts while financial and military employment are negatively related to total crash 18 
counts.  19 
 20 
Roadway /traffic characteristics  21 
The increased vehicle mileage in the zone is negatively associated with medium and heavy trucks and bus 22 
crash proportions. The increased vehicle mileage reflects suburban zones where the exposure to medium 23 
and heavy trucks or buses is very low. Hence, the trend is expected. In zones with increased exposure to 24 
trucks, a higher incidence of van, light truck and medium and heavy truck crashes is likely with a 25 
substantially larger impact on the proportion of medium and heavy trucks. It is also found that the increased 26 
vehicle mileages in the neighboring zone have a negative effect on medium and heavy truck proportions. 27 
While there have been no macro-level studies exploring the share of trucks in traffic crashes, Golob and 28 
Regan (2003) uncovered the negative relationship between annual average daily traffic (AADT) level and 29 
the probability of truck involvement on urban freeways at the micro-level. This result is quite consistent 30 
with the finding from this study. 31 
 32 
Land-use attributes 33 
In terms of spatial location of the zone, proportion of urban areas and distance to the nearest urban location 34 
exert significant impact on crash proportions. The zones with larger proportion of urban areas, as expected, 35 
are likely to have higher incidence of bicycle crashes and lower proportion of light truck and motorcycle 36 
crashes. The zones that are farther from urban areas are likely to have a higher proportion of light trucks as 37 
these vehicles are more likely to be used in these zones. It was shown that several land-use characteristics 38 
have substantial effects on crashes in prior macro-level research studies. Huang et al. (2010) showed that 39 
the higher level of urbanization is positively related to total and severe crashes, and Siddiqui et al. (2012) 40 
also showed that an urbanized zone experience the larger number of bicycle crashes. 41 
 42 
Moreover, the agriculture area in the neighboring zone has a positive effect on the proportion of crash-43 
involved light trucks. Previous macro-level safety studies have not explicitly shown that the agriculture 44 
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area per se has a significant impact on traffic safety but some macroscopic safety studies showed that fatal 1 
crashes are more likely to occur in rural areas (Blatt & Furman, 1998; Stamatiadis & Puccini, 2000; Clark, 2 
2003). 3 
 4 
Other than urban and land-use variables, we considered FDOT districts as an independent variable in the 5 
model. The operations of the FDOT are organized into seven districts and their locations are shown in 6 
Figure 1. The result indicates that District 2 has higher crash proportion of medium and heavy trucks while 7 
District 4 has a propensity of less light truck crash proportion. District 2 is predominantly characterized by 8 
vast rural areas (90.4%) whereas 41.1% area in District 4 is urbanized area. 9 
 10 
Commuting characteristics 11 
The zonal commuting characteristics exhibit influence on crash proportions. The zones with high proportion 12 
of public transportation commuters are likely to have lower proportion of light truck crashes. The result is 13 
an indication of lower light truck ownership in zones with prevalence of public transit ridership. In zones 14 
with increased walking commuters, the proportion of pedestrian crashes increases (among the crash 15 
involved units). The result is a classic case of higher number of pedestrians in the zone resulting in more 16 
pedestrian crashes. In addition, the proportion of commuters using bicycle in adjacent zones has a tendency 17 
to increase motorcycle crashes. Several studies have used commuter variables in their studies. Abdel-Aty 18 
et al. (2013) found that both commuters by public transportation and walking commuters have considerable 19 
impacts on total, severe, and pedestrian crashes. Lee et al. (2014a) found that zones with higher proportion 20 
of commuters using non-motorized modes is more likely to have more total crashes ceteris paribus. Lee et 21 
al. (2015b) exhibited that the logarithm of commuters using bicycle is positively related to the number of 22 
bicycle crashes. 23 
 24 
4.2. Elasticity Effects 25 
 26 
The model results from Table 3 provide an indication of how the exogenous variables affect the proportion 27 
of crashes involving different vehicle types. However, the exact magnitude of the impact on all alternatives 28 
is not easily available. Hence, to evaluate the impact of exogenous variables on all crash proportions, we 29 
resort to the computation of elasticity effects. The elasticity effects in our study are computed by evaluating 30 
the change in crash proportions in response to increasing the value of significant exogenous variables by 31 
10% (see Eluru and Bhat (2007) for more details on elasticity calculations). The results from the elasticity 32 
exercise are presented in Table 4. The numbers presented in the table represent the percentage change in 33 
the proportion of alternatives in response to a 10% increase in the exogenous variable. For example, the 34 
value of elasticity for the variable logarithm of population density of 0.696 represents an increase in 35 
passenger car crash proportion with a 10% increase in zonal population density. All the other numbers can 36 
be interpreted similarly. 37 
 38 
4.3. Summary 39 
 40 
Based on the results, the following interesting observations may be made. First, the logarithm of population 41 
density affects most significantly and negatively the proportion of medium and heavy truck crashes. Second, 42 
the proportion of elderly people has a positive effect on bicycle proportions. Third, the proportion of 43 
households with no available vehicle affects negatively the proportion of motorcycles whereas the 44 
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proportion of households with no available vehicle in adjacent zones has the only and positive effect on the 1 
crash proportion of buses. Fourth, the logarithm of total employment density has the most significant and 2 
negative influence on the motorcycle crash proportion. Fifth, an increase in vehicle-miles-traveled density 3 
has a substantial negative impact on the proportion of medium and heavy trucks as well as buses. Sixth, the 4 
proportion of trucks has a significant positive association with crash proportion of medium and heavy trucks. 5 
Finally, the proportion of commuters who walk has a strong impact on crash proportion of pedestrians.  6 
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Table 3: fractional split multinomial model results for proportion of vehicle types involved in traffic crashes 1 

Variables Van Light truck Medium & 
heavy truck Bus Motorcycle Bicycle Pedestrian 

Constant -2.316 (-39.382) -0.441 (-3.365) -1.383 (-3.429) -3.607 (-10.955) -2.187 (-9.634) -4.842 (-14.810) -3.710 (-35.120) 

Socio-
demographic 
characteristics 
 
 

Log of population density (per sqmi) - -0.031 (-1.865) # -0.117 (-3.671) - - - - 
Proportion of population aged 65 
and more - - - - 1.356 (2.625) 1.906 (2.891) - 

Proportion of families with no 
available vehicle - - - - -1.484 (-1.987) - - 

Spatial-Proportion of families with 
no available vehicle of neighboring 
TAZs 

- - - 2.221 (3.487) - - - 

Log of hotel, motel, and timeshare 
rooms density (per sqmi) - -0.023 (-1.912) # - - - - - 

Log of total employment density 
(per sqmi) - - - - -0.071 (-1.991) - - 

Proportion of industrial 
employment - - 0.572 (2.259) - - - - 

Roadway 
/traffic 
characteristics 

Log of VMT density (per sqmi) - - -0.063 (-2.486) -0.068 (-2.023) - - - 
Proportion of heavy vehicles in 
VMT 1.074 (2.001) 1.074 (2.001) 6.832 (6.718) - - - - 

Spatial-Log of VMT density of 
neighboring TAZs (per sqmi) - - -0.082 (-2.565) - - - - 

Land-use  
attributes 

Proportion of urban areas - -0.201 (-1.960) - - -0.795 (-5.043) 0.848 (2.622) - 
Distance to the nearest urban area (mi) - 0.010 (1.700) # - - - - - 
Spatial-Log of agriculture area of 
neighboring TAZs (sqmi) - 0.028 (1.935) # - - - - - 

District 2 - - 0.306 (2.004) - - - - 
District 4 - -0.228 (-2.652) - - - - - 

Commuting 
characteristics 

Proportion of commuters using 
public transportation - -2.392 (-3.404) - - - - - 

Proportion of commuters who 
walk - - - - - - 2.923 (1.763) # 

Spatial-Proportion of commuters 
using bicycle of neighboring 
TAZs 

- - -  5.149 (1.743) # - - 

Log-likelihood 
Pseudo log-likelihood at 0 -16903.78 
Pseudo log-likelihood at constant -9930.663 
Pseudo log-likelihood at convergence -9738.217 

# significant at 90% confidence interval, and all other variables are significant at 95% confidence interval. 2 
Numbers in parentheses are t-values of the estimated coefficients. 3 
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 1 
Figure 1: Districts boundaries (1-7) and urban areas (dark colored) in Florida 2 

  3 
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Table 4: Elasticity effects  1 

Variables Passenger 
car Van Light 

truck 

Medium 
& heavy 

truck 
Bus Motorcycle Bicycle Pedestrian 

Socio-
demographic 
characteristics 
 

Log of population density (per sqmi) 0.696 0.698 -1.201 -5.448 0.694 0.688 0.696 0.695 
Proportion of population aged 65 and 
more -0.127 -0.126 -0.125 -0.118 -0.122 2.459 3.815 -0.127 

Proportion of families with no 
available vehicle 0.032 0.032 0.031 0.031 0.037 -1.082 0.032 0.034 

Spatial- Proportion of families with no 
available vehicle of neighboring TAZs -0.036 -0.035 -0.029 -0.031 3.075 -0.025 -0.038 -0.042 

Log of hotel, motel, and timeshare 
rooms density (per sqmi) 0.086 0.085 -0.235 0.062 0.088 0.071 0.096 0.089 

Log of total employment density (per 
sqmi) 0.111 0.111 0.115 0.113 0.106 -3.780 0.111 0.110 

Proportion of industrial employment -0.038 -0.040 -0.051 1.272 -0.038 -0.050 -0.028 -0.037 
Roadway 
/traffic 
characteristics 

Log of VMT density (per sqmi) 0.221 0.226 0.236 -4.876 -5.640 0.232 0.211 0.222 
Proportion of heavy vehicles in VMT -0.415 0.262 0.237 5.991 -0.407 -0.536 -0.334 -0.407 
Spatial- Log of VMT density of 
neighboring TAZs (per sqmi) 0.262 0.270 0.313 -8.434 0.267 0.311 0.228 0.258 

Land-use 
attributes 

Proportion of urban areas 0.031 0.031 -0.062 0.031 0.028 -0.361 0.405 0.030 
Distance to the nearest urban area (mi) -0.058 -0.062 0.178 -0.147 -0.061 -0.109 -0.028 -0.056 
Spatial-Log of agriculture area of 
neighboring TAZs (sqmi) -0.063 -0.068 0.196 -0.179 -0.066 -0.132 -0.020 -0.060 

District 2 -0.981 -1.009 -1.147 31.370 -1.019 -1.146 -0.874 -0.972 
District 4 5.625 5.659 -15.828 6.344 5.539 6.112 5.332 5.574 

Commuting 
characteristics 

Proportion of commuters using public 
transportation 0.126 0.126 -0.349 0.113 0.157 0.097 0.128 0.134 

Proportion of commuters who walk -0.016 -0.016 -0.013 -0.012 -0.021 -0.013 -0.017 0.953 
Spatial-Proportion of commuters using 
bicycle of neighboring TAZs -0.013 -0.013 -0.011 -0.010 -0.014 0.425 -0.014 -0.015 

2 
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6. HOT ZONE IDENTIFICATION FOR SPECIFIC VEHICLE TYPE 1 
 2 
To facilitate the application of multinomial fractional split model for hot zone identification, we propose a 3 
measure based on the predicted proportions. The measure is analogous to the  Highway Safety Manual 4 
(HSM) (AASHTO, 2010) performance measure for identifying crash hotspots. The HSM approach employs 5 
Excess Predicted Average Crash Frequency Using Safety Performance Functions. The measure is 6 
calculated by subtracting the predicted crash frequency from the observed crash frequency. When the excess 7 
predicted average crash frequency is greater than zero, a zone experiences more traffic crashes than 8 
predicted. On the other hand, when the excess predicted average crash frequency is less than zero, a zone 9 
experience fewer traffic crashes than predicted. 10 
 11 
Similar to this method, we propose the Excess Predicted Proportion (EPP) for a macroscopic screening 12 
performance measure, which is the difference between the observed and predicted proportion of each 13 
vehicle type for a TAZ.  14 

𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚 = 𝐸𝐸(𝑜𝑜𝑜𝑜𝑜𝑜)𝑚𝑚𝑚𝑚 − 𝐸𝐸(𝑝𝑝𝑝𝑝𝑝𝑝)𝑚𝑚𝑚𝑚           (5) 15 
 16 

where, EPPmn is the Excess Predicted Proportion of crash vehicle type m at TAZ n. P(obs)mn is the observed 17 
proportion of crash vehicle type; and P(prd)mn is the predicted proportion of crash vehicle type estimated 18 
from the fractional split multinomial logit model (Table 3). When EPP exceeds zero, the type proportion 19 
for that TAZ is higher than predicted. In contrast, when EPP is smaller than zero, the type proportion for 20 
that TAZ is lower than predicted.  21 
 22 
The EPP approach is slightly different from the earlier count based approach. Because we deal with 23 
proportions that add up to 1 for a TAZ, a positive EPP for one vehicle type automatically causes a negative 24 
EPP for at least another vehicle type. Hence, directly identifying the zones with positive EPP as hot zones 25 
will not be appropriate. Because every zone will be a hot zone for at least one mode (unless EPP is exactly 26 
0 for all modes). Hence, after computing the measure across the entire sample for all vehicle types, a vehicle 27 
type specific hot zone (H) is identified based on the top 10 percentile ranking of TAZs for that vehicle type. 28 
The other zones are labeled as normal (N). An illustration of EPP computation for the passenger car mode 29 
is provided in Table 5. The TAZs are arranged in descending order of EPP values. Clearly, TAZs #5762, 30 
#6944, and #7882 were classified as a hot zone for passenger cars since their EPPs are within top 10% in 31 
the study area. Therefore, it is recommended to focus on passenger car-involved crashes at these zones, 32 
since the proportion of crash-involved passenger cars far exceeded the expected proportion of crashes. The 33 
EPP measure is a useful tool for policy makers and practitioners to understand potential safety risks by 34 
various vehicle types, and provide an adequate safety countermeasure solely for the problematic vehicle 35 
types. The zones identified as risky might be very different from zones identified as risky using the HSM 36 
hot zone identification process. We believe that this provides an alternative paradigm for safety analysis. 37 
The reader would note that analogous measures to excess expected proportion can also be computed using 38 
the proposed model.   39 
  40 
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Table 5: Examples of screening results of passenger cars 1 
Rank based on 

passenger car EPP TAZ No Passenger car 
Pobs Ppred EPP percentile classification 

1 5762 1 0.317 0.683 0.01% H 
2 6944 1 0.373 0.627 0.02% H 
: : : : : : : 

812 7882 0.800 0.670 0.130 9.99% H 
813 1474 0.617 0.487 0.130 10.00% N 

: : : : :  : 
8129 6241 0 0.649 -0.679 100.00% N 

 2 
To further illustrate the value of the proposed framework, we identify hot zones across the state of Florida 3 
for all vehicle types. To clarify the presentation a figure that depicts the main urban areas in the State of 4 
Florida is provided (see Figure 1). In Figure 2 statewide screening results for all 8 vehicle types are 5 
provided. An observation of Figure 2 clearly shows that the spatial pattern of hot zones varies considerably 6 
across the various vehicle types. It is interesting to note that the spatial pattern of hot zones for passenger 7 
cars, vans, light trucks vary substantially across the region. For passenger cars the hot zones correspond to 8 
urban areas. The spatial distribution of van specific hot zones does not follow any particular pattern. On the 9 
other hand, the spatial distribution of light truck specific hot zones clearly indicates a predisposition for 10 
rural areas. For medium and heavy trucks, the hot zones are concentrated in central and south rural areas. 11 
The overall bus hot zones tend to be located in urban and suburban areas with minor exceptions. Motorcycle 12 
hot zones seem typically located in rural areas. The hot zones for bicyclists are apparently found in large 13 
metropolitan areas whereas rural areas are relatively safe for bicyclists. Lastly, the pedestrian hot zones are 14 
generally located in urban and suburban areas, where many residential areas are located. 15 
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Figure 2: Statewide screening results for each vehicle type 1 
  2 
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7. SUMMARY AND CONCLUSION 1 
 2 
In recent years, there is growing recognition that incorporating macroscopic traffic safety analysis into the 3 
long-term transportation planning process is beneficial. The macroscopic safety analysis relates traffic 4 
crashes aggregated at a spatial level (traffic analysis zone (TAZ), census tract or county) with demographic, 5 
socioeconomic, and zonal level traffic/roadway characteristics. The macroscopic analysis can provide a 6 
broad spectrum perspective and long-term policy suggestions. The macro-level safety studies have been 7 
conducted by total crashes, crashes by severity level (such as no injury, minor injury, severe injury, and 8 
fatal injury) and crashes by vehicle type (such as motor vehicle, pedestrian, and bicycle). The range of 9 
approaches employed in literature includes univariate count frequency approaches for single dependent 10 
variable and multivariate count frequency models for multiple dependent variables. It has been recognized 11 
that in the presence of multiple dependent variables, multivariate approaches are appropriate. 12 
 13 
In this study, we propose an alternative approach to examining multiple crash dependent variables. 14 
Specifically, a mixed multinomial logit fractional split model that examines the proportion of crash by 15 
vehicle type is developed. In this model, each alternative proportion is associated with a propensity. The 16 
proportion allocated to an alternative is probabilistically determined based on the alternative propensity as 17 
well propensity of all other alternatives. Thus, in this approach, exogenous variable effects directly affect 18 
all alternatives. In count frequency models, such interactions are absent. Thus, the proposed approach 19 
allows an alternate mechanism to examine multiple crash dependent variables. Further, the approach is well 20 
suited to accommodate a large number of alternatives without a sizable increase in computational burden. 21 
On the contrary, in a count modeling approach developing multivariate models for large number of 22 
dependent variables is computationally and methodologically challenging. The advantage is illustrated in 23 
our study by considering eight vehicle types in our analysis – passenger car, van, light trucks, medium and 24 
heavy trucks, bus, motorcycle, bicycle and pedestrian. The modeling approach allows us to identify and 25 
quantify the factors affecting crash proportions at the macro-level.  26 
 27 
The proposed mixed multinomial logit fractional split model was estimated using socio-demographic, 28 
traffic, land-use, and commuting data at a Traffic Analysis Zone level using data compiled from multiple 29 
sources in Florida. The modeling results clearly highlight the applicability of the proposed approach for 30 
crashes involving different vehicle type analysis. The modeling results revealed that the impact of 31 
explanatory variables varies significantly across different vehicle types. For example, medium and heavy 32 
truck crashes are influenced by both socio-demographic (such as population density and industrial 33 
employment) and traffic characteristics (such as vehicle-miles-traveled density and proportion of trucks). 34 
On the other hand, non-motorized vehicle types (i.e. bicycle and pedestrian) had only one variable related 35 
to urban location or commuting characteristics. Subsequently, to quantify the impact of variables across the 36 
alternatives, elasticity effects were computed and presented.  37 
 38 
To illustrate the applicability of the proposed framework for screening purposes, we also proposed the 39 
Excess Predicted Proportion (EPP) measure that computes the difference between the observed and 40 
predicted proportion of each vehicle type involved crashes in a zone. Hence, EPP, analogous to the Highway 41 
Safety Manual (HSM) Excess Predicted Average Crash Frequency, allows us to identify unsafe or hot zones. 42 
Based on this measure, a statewide screening exercise by the various vehicle types considered in our 43 
analysis was undertaken. The screening results revealed that the spatial pattern of hot zones is substantially 44 
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different across the various vehicle type crashes. The screening exercise clearly illustrates the value of the 1 
proposed approach. 2 
 3 
Overall, the paper demonstrated the application of a mixed multinomial fractional split model for crash 4 
proportion modeling as statewide screening purposes (using EPP). The findings from our study are useful 5 
for policy makers and practitioners to understand potential safety risks by various transportation vehicle 6 
types and provide appropriate and effective policy-based countermeasures by vehicle types. The proposed 7 
approach is quite flexible and can be adopted to examine crash proportions by other crash attributes, such 8 
as collision type, severity level and temporal classification.  9 
 10 
To be sure, the study is not without limitations. The consideration of crash proportions (as opposed to crash 11 
counts) might result in incorrect identification of problematic zones under rare circumstances (with very 12 
low number of crashes). To address this limitation, future studies can consider coupling a crash count model 13 
(for total crashes) with a fractional split model to ensure that proportion and frequency are simultaneously 14 
considered. Finally, due to the compensatory nature of the model structure an increase (or decrease) in crash 15 
proportion for an alternative is associated with decrease (or increase) in crash proportions from other 16 
alternatives. This needs to be recognized while developing and employing fractional split models for crash 17 
proportions.  18 
 19 
ACKNOWLEDGMENT 20 
The authors wish to thank the Florida Department of Transportation for providing data and funding for this 21 
study. 22 
 23 
REFERENCES 24 
AASHTO. (2010). Highway Safety Manual. Washington, DC: American Association of State Highway 25 

and Transportation Officials. 26 
Abdel-Aty, M., Lee, J., Siddiqui, C., & Choi, K. (2013). Geographical unit based analysis in the context 27 

of transportation safety planning. Transportation Research Part A: Policy and Practice, 49, 62-28 
75.  29 

Blatt, J., & Furman, S. M. (1998). Residence location of drivers involved in fatal crashes. Accident 30 
Analysis & Prevention, 30(6), 705-711.  31 

Cai, Q., Lee, J., Eluru, N., & Abdel-Aty, M. (2016). Macro-level pedestrian and bicycle crash analysis: 32 
incorporating spatial spillover effects in dual state count models. Accident Analysis & Prevention, 33 
93, 14-22.  34 

Clark, D. E. (2003). Effect of population density on mortality after motor vehicle collisions. Accident 35 
Analysis & Prevention, 35(6), 965-971.  36 

Dong, N., Huang, H., Lee, J., Gao, M., & Abdel-Aty, M. (2016). Macroscopic hotspots identification: a 37 
Bayesian spatio-temporal interaction approach. Accident Analysis & Prevention, 92, 256-264.  38 

Dong, N., Huang, H., Xu, P., Ding, Z., & Wang, D. (2014). Evaluating spatial-proximity structures in 39 
crash prediction models at the level of traffic analysis zones. Transportation Research Record: 40 
Journal of the Transportation Research Board(2432), 46-52.  41 

Dong, N., Huang, H., & Zheng, L. (2015). Support vector machine in crash prediction at the level of 42 
traffic analysis zones: assessing the spatial proximity effects. Accident Analysis & Prevention, 82, 43 
192-198.  44 

Eluru, N., & Bhat, C. R. (2007). A joint econometric analysis of seat belt use and crash-related injury 45 
severity. Accident Analysis & Prevention, 39(5), 1037-1049.  46 



Lee, Yasmin, Eluru, Abdel-Aty, and Cai     24 
 

Eluru, N., Chakour, V., Chamberlain, M., & Miranda-Moreno, L. F. (2013). Modeling vehicle operating 1 
speed on urban roads in Montreal: A panel mixed ordered probit fractional split model. Accident 2 
Analysis & Prevention, 59, 125-134.  3 

Golob, T. F., & Regan, A. C. (2003). Truck-involved crashes and traffic levels on urban freeways. 4 
University of California Transportation Center.  5 

Hadayeghi, A., Shalaby, A. S., Persaud, B. N., & Cheung, C. (2006). Temporal transferability and 6 
updating of zonal level accident prediction models. Accident Analysis & Prevention, 38(3), 579-7 
589.  8 

Huang, H., Abdel-Aty, M., & Darwiche, A. (2010). County-level crash risk analysis in Florida: Bayesian 9 
spatial modeling. Transportation Research Record: Journal of the Transportation Research 10 
Board(2148), 27-37.  11 

Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., & Abdel-Aty, M. (2016). Macro and micro models for 12 
zonal crash prediction with application in hot zones identification. Journal of Transport 13 
Geography, 54, 248-256.  14 

Kim, K., Brunner, I., & Yamashita, E. (2006). Influence of land use, population, employment, and 15 
economic activity on accidents. Transportation Research Record: Journal of the Transportation 16 
Research Board(1953), 56-64.  17 

Ladron de Guevara, F., Washington, S., & Oh, J. (2004). Forecasting crashes at the planning level: 18 
simultaneous negative binomial crash model applied in Tucson, Arizona. Transportation 19 
Research Record: Journal of the Transportation Research Board(1897), 191-199.  20 

Lee, J. (2014). Development of Traffic Safety Zones and Integrating Macroscopic and Microscopic Safety 21 
Data Analytics for Novel Hot Zone Identification. University of Central Florida, Orlando, Florida.    22 

Lee, J., Abdel-Aty, M., & Choi, K. (2014a). Analysis of residence characteristics of at-fault drivers in 23 
traffic crashes. Safety science, 68, 6-13.  24 

Lee, J., Abdel-Aty, M., Choi, K., & Huang, H. (2015a). Multi-level hot zone identification for pedestrian 25 
safety. Accident Analysis & Prevention, 76, 64-73.  26 

Lee, J., Abdel-Aty, M., Choi, K., & Siddiqui, C. (2013). Analysis of residence characteristics of drivers, 27 
pedestrians, and bicyclists involved in traffic crashes. Paper presented at the Transportation 28 
Research Board 92nd Annual Meeting. 29 

Lee, J., Abdel-Aty, M., & Jiang, X. (2014b). Development of zone system for macro-level traffic safety 30 
analysis. Journal of transport geography, 38, 13-21.  31 

Lee, J., Abdel-Aty, M., & Jiang, X. (2015b). Multivariate crash modeling for motor vehicle and non-32 
motorized modes at the macroscopic level. Accident Analysis & Prevention, 78, 146-154.  33 

Lee, J., Abdel-Aty, M., & Cai, Q. (2017). Intersection crash prediction modeling with macro-level data 34 
from various geographic units. Accident Analysis & Prevention, 102, 213-226. 35 

Levine, N., Kim, K. E., & Nitz, L. H. (1995). Spatial analysis of Honolulu motor vehicle crashes: II. 36 
Zonal generators. Accident Analysis & Prevention, 27(5), 675-685.  37 

Lord, D., & Mannering, F. (2010). The statistical analysis of crash-frequency data: a review and 38 
assessment of methodological alternatives. Transportation Research Part A: Policy and Practice, 39 
44(5), 291-305.  40 

Loukaitou-Sideris, A., Liggett, R., & Sung, H.-G. (2007). Death on the crosswalk A study of pedestrian-41 
automobile collisions in los angeles. Journal of Planning Education and Research, 26(3), 338-42 
351.  43 

Lovegrove, G., & Sayed, T. (2007). Macrolevel collision prediction models to enhance traditional 44 
reactive road safety improvement programs. Transportation Research Record: Journal of the 45 
Transportation Research Board(2019), 65-73.  46 

Milton, J. C., Shankar, V. N., & Mannering, F. L. (2008). Highway accident severities and the mixed logit 47 
model: an exploratory empirical analysis. Accident Analysis & Prevention, 40(1), 260-266.  48 

Nam, S. (2012). Multiple Fractional Response Variables with Continuous Endogenous Explanatory 49 
Variables.  50 



Lee, Yasmin, Eluru, Abdel-Aty, and Cai     25 
 

Narayanamoorthy, S., Paleti, R., & Bhat, C. R. (2013). On accommodating spatial dependence in bicycle 1 
and pedestrian injury counts by severity level. Transportation research part B: methodological, 2 
55, 245-264.  3 

Nashad, T., Yasmin, S., Eluru, N., Lee, J., & Abdel-Aty, M. A. (2016). Joint Modeling of Pedestrian and 4 
Bicylist Crashes: A Copula Based Approach. Paper presented at the Transportation Research 5 
Board 95th Annual Meeting. 6 

Ng, K.-s., Hung, W.-t., & Wong, W.-g. (2002). An algorithm for assessing the risk of traffic accident. 7 
Journal of safety research, 33(3), 387-410.  8 

NHTSA. (2016). Traffic Safety Facts 2014 (Vol. DOT HS 812 263). 9 
Noland, R., & Quddus, M. (2004). Analysis of pedestrian and bicycle casualties with regional panel data. 10 

Transportation Research Record: Journal of the Transportation Research Board(1897), 28-33.  11 
Papke, L. E., & Wooldridge, J. (1993). Econometric methods for fractional response variables with an 12 

application to 401 (k) plan participation rates: National Bureau of Economic Research 13 
Cambridge, Mass., USA. 14 

Pasupuleti, N., & Pulugurtha, S. S. (2013). Spatial extent and modeling intracity truck crashes. Procedia-15 
Social and Behavioral Sciences, 104, 1188-1197.  16 

Quddus, M. A. (2008). Modelling area-wide count outcomes with spatial correlation and heterogeneity: 17 
an analysis of London crash data. Accident Analysis & Prevention, 40(4), 1486-1497.  18 

Siddiqui, C., Abdel-Aty, M., & Choi, K. (2012). Macroscopic spatial analysis of pedestrian and bicycle 19 
crashes. Accident Analysis & Prevention, 45, 382-391.  20 

Sivakumar, A., & Bhat, C. (2002). Fractional split-distribution model for statewide commodity-flow 21 
analysis. Transportation Research Record: Journal of the Transportation Research Board(1790), 22 
80-88.  23 

Song, J. J., Ghosh, M., Miaou, S., & Mallick, B. (2006). Bayesian multivariate spatial models for 24 
roadway traffic crash mapping. Journal of multivariate analysis, 97(1), 246-273.  25 

Sperazza, L. J., Dauenhauer, J., & Banerjee, P. (2012). Tomorrow’s Seniors: Technology And Leisure 26 
Programming. The Journal of Community Informatics, 8(1).  27 

Stamatiadis, N., & Puccini, G. (2000). Socioeconomic descriptors of fatal crash rates in the Southeast 28 
USA. Injury control and safety promotion, 7(3), 165-173.  29 

Wang, Z., & Wolman, A. L. (2014). Payment Choice and the Future of Currency: Insights from Two 30 
Billion Retail Transactions Working Paper Series: The Federal Reserve Bank of Richmond. 31 

Wier, M., Weintraub, J., Humphreys, E. H., Seto, E., & Bhatia, R. (2009). An area-level model of 32 
vehicle-pedestrian injury collisions with implications for land use and transportation planning. 33 
Accident Analysis & Prevention, 41(1), 137-145.  34 

Witter, L. A., Johnson, C. J., Croft, B., Gunn, A., & Gillingham, M. P. (2012). Behavioural trade‐offs in 35 
response to external stimuli: time allocation of an Arctic ungulate during varying intensities of 36 
harassment by parasitic flies. Journal of Animal Ecology, 81(1), 284-295.  37 

Xu, P., Huang, H., Dong, N., & Abdel-Aty, M. (2014). Sensitivity analysis in the context of regional 38 
safety modeling: Identifying and assessing the modifiable areal unit problem. Accident Analysis 39 
& Prevention, 70, 110-120.  40 

Xu, P., Huang, H., Dong, N., & Wong, S. (2017). Revisiting crash spatial heterogeneity: A Bayesian 41 
spatially varying coefficients approach. Accident Analysis & Prevention, 98, 330-337.  42 

Yasmin. S., and N. Eluru (2016), "Latent Segmentation Based Count Models: Analysis of Bicycle Safety 43 
in Montreal and Toronto," Accident Analysis & Prevention, Volume 95, Part A, October 2016, 44 
Pages 157-171 45 

Yasmin. S., N. Eluru, J. Lee and M. Abdel-Aty (2016), "Ordered Fractional Split Approach for Aggregate 46 
Injury Severity Modeling," Transportation Research Record Vol. 2583, pp. 119-126 47 


