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ABSTRACT 

A Joint Econometric Analysis of Seat Belt Use and Crash-Related Injury Severity 

Naveen Eluru, MSE 

The University of Texas at Austin, 2005 

Supervisor: Chandra R. Bhat  

 

This study formulates a comprehensive econometric structure that recognizes two important 

issues in crash-related injury severity analysis. First, the impact of a factor on injury severity 

may be moderated by various observed and unobserved variables specific to an individual or to a 

crash. Second, seat belt use is likely to be endogenous to injury severity. That is, it is possible 

that intrinsically unsafe drivers do not wear seat belts and are the ones likely to be involved in 

high injury severity crashes because of their unsafe driving habits.  

The preceding issues are considered in the current research effort through the 

development of a comprehensive model of seat belt use and injury severity that takes the form of 

a joint correlated random-coefficients binary-ordered response system. To our knowledge, this is 

the first instance of such a model formulation and application not only in the safety analysis 

literature, but in the econometrics literature in general. The empirical analysis is based on the 

2003 General Estimates System (GES) data base. Several types of variables are considered to 

explain seat belt use and injury severity levels, including driver characteristics, vehicle 

characteristics, roadway design attributes, environmental factors, and crash characteristics. The 

results, in addition to confirming the effects of various explanatory variables, also highlight the 

importance of (a) considering the moderating effects of unobserved individual/crash-related 

factors on the determinants of injury severity and (b) seat belt use endogeneity. From a policy 

standpoint, the results suggest that seat belt non-users, when apprehended in the act, should 

perhaps be subjected to both a fine (to increase the chances that they wear seat belts) as well as 

mandatory enrollment in a defensive driving course (to attempt to change their aggressive 

driving behaviors).  
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1 Chapter 1: Introduction 

1.1 MOTIVATION FOR THE STUDY 

Traffic crashes result in several fatalities everyday on U.S. roadways, and those who manage to 

survive crashes are faced with such potential consequences as mental trauma, pain, expensive 

medical costs, and increased insurance premiums (Cohen and Einav, 2003; Chang and 

Mannering, 1999). The society as a whole is also at a loss, both economically and emotionally, 

because of these incidents.  

The injury severity sustained by individuals in traffic crashes is influenced by a multitude 

of factors, including vehicle characteristics, roadway design characteristics, driver behavior and 

physiological characteristics, angle of collision, driver use of alcohol or drugs, and driver use of 

restraint systems. It is essential to quantify the relative magnitudes of the impact of these factors 

on accident severity, so that measures to prevent or reduce accident severity can be identified and 

implemented.  

1.2 STUDY METHODOLOGY AND OBJECTIVES 

The current study contributes toward quantifying the relative magnitudes of the impact of 

various factors, discussed above, by formulating, and estimating, a comprehensive model of 

injury severity. The methodology employed in the present work recognizes two important 

econometric issues in safety analysis. First, the impact of a factor on injury severity may be 

moderated by various observed and unobserved variables specific to an individual or to a crash. 

The second issue addressed in the econometric framework is the endogeneity of seat belt use to 

injury severity (also referred to as selective recruitment in the safety analysis literature; see 

Evans, 1996 and Derrig et al., 2000). That is, it is possible that intrinsically unsafe drivers do not 
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wear seat belts and are the ones likely to be involved in high injury severity crashes because of 

their unsafe driving habits. If this sample selection is ignored (as has been done in several 

previous studies), the result is an artificially inflated estimate of the effectiveness of the seat belt 

use.  

 The present study formulates a joint model, with random coefficients binary choice logit 

model for seat belt use component and a correlated random coefficients ordered response logit 

model for injury severity component, which is referred to as correlated random binary-ordered 

(CRBO) model. A host of driver characteristics, vehicle characteristics, roadway design 

attributes, environmental characteristics, and crash characteristics, and the interactions of these 

characteristics, are considered in the joint model. The moderating influence of unobserved 

factors associated with the impact of these attributes is accommodated by imposing a random 

coefficients structure in the ordered logit model. The potential self selection in seat belt use 

based on injury severity propensity is considered by tying the binary seat belt use component and 

the ordered response injury severity component of the joint model through a common 

unobserved random term. The joint model is subsequently applied in an empirical analysis that 

uses data from the 2003 General Estimates System (GES), a nationally representative sample of 

police-reported crashes of all types in the U.S.  

In addition to the CRBO model, (1) a simple binary choice logit for seat belt use and an 

independent ordered response logit for injury severity (neglects influence of unobserved 

attributes and potential seat belt endogeneity), which is referred to as the independent binary 

ordered (IBO) model, and (2) a random coefficients binary choice logit for seat belt use and an 

independent random coefficients ordered response logit for injury severity (neglects influence of 

potential seat belt endogeneity), which is referred to as the independent random binary-ordered 
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model (IRBO) are also estimated. The results of this empirical analysis clearly highlight the 

importance of considering the moderating influence of unobserved attributes and endogeneity of 

seat belt use on crash injury severity of the driver.  

1.3 THESIS STRUCTURE  

The remainder of the thesis is organized as follows. Chapter 2 discusses the earlier studies on 

modeling crash injury severity. Chapter 3 presents the earlier studies that have highlighted the 

significance of considering selective recruitment of seat belt non-wearers in crashes, for 

modeling injury severity. Chapter 4 describes the formulation of IBO, IRBO and CRBO models. 

Chapter 5 discusses the data source used and sample formation techniques in detail. Chapter 6 

summarizes the results of the empirical application of the IBO, IRBO and CRBO models. 

Chapter 7 presents the conclusions and recommendations based on the empirical results of the 

study. 
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2 Chapter 2: Earlier Research on Modeling Injury Severity 

Crash injury severity has been extensively researched in the safety analysis literature. This 

chapter reviews earlier injury severity studies that do not consider seat belt use as an endogenous 

variable. 

2.1 SEAT BELT USE EXOGENOUS TO THE MODELING FRAMEWORK 

A number of studies have examined crash-related injury severity, while considering seat belt use 

and several other attributes as exogenous variables. Most of these injury severity studies 

undertake the analysis at the level of individual accidents, rather than using an aggregate-level 

dependent variable such as the number of annual accidents in a county or state (but see Lourens 

et al., 1999; Doherty et al., 1998; and Derrig et al., 2000 for examples of aggregate-level 

studies). The reason for using a disaggregate-level analysis (i.e., an analysis at the level of 

individual accidents) is that it better captures the fundamental relationship between accident 

severity and its determinants, rather than capturing spurious correlations from ignoring the 

heterogeneity of accidents in an aggregate-level analysis (see Kassoff and Deutschman, 1969 for 

an extensive discussion). Within the group of disaggregate-level injury severity studies, the early 

research efforts (those before 2000) applied frameworks such as log-linear analysis (Golob et al., 

1986; Kim et al., 1994; Abdel-Aty et al., 1998) and descriptive analysis (Evans, 1990; Evans and 

Frick, 1988; Cooper, 1994; Huelke and Compton, 1995). In the past several years, however, 

almost all injury severity studies have used a discrete variable framework because accident 

reports collect injury severity in discrete categories. 

The discrete variable studies of crash-related injury severity have used one or more of the 

following five categories of variables:  
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(1) Driver attributes (including demographics and such behavioral characteristics as seat 

belt use and drug/alcohol use),  

(2) Characteristics of the vehicle(s) involved in the crash (vehicle weight and type of 

vehicle(s)),  

(3) Roadway design attributes (number of lanes, grade, alignment, presence of shoulders, 

lane widths and speed limits),  

(4) Environmental factors (weather, lighting conditions, time of day, etc.), and  

(5) Crash characteristics (manner of collision, role of vehicle in crash, whether there was 

a roll-over of one or more vehicles, whether driver was ejected, etc.).  

A review of the earlier discrete choice studies of injury severity, and the categories of 

variables considered in each study, is presented in Table 2.1. Three important observations may 

be made from Table 2.1. First, except for the study by Ulfarsson and Mannering (2004), none of 

the earlier studies has comprehensively considered all the five categories of variables. Second, 

the two most prevalent structures used to examine injury severity are logistic regression models 

and ordered-response models. The logistic regression models are binary logit models that focus 

on whether or not there is a severe injury associated with a crash (severe injury is defined either 

as a fatality or some other severe characterization of injury). The ordered-response models 

consider the entire range of injury severity levels and, therefore, capture and provide more injury 

severity information (relative to the logistic regression models). The ordered-response models 

used in the past for injury severity analysis take the form of either an ordered-response logit or 

an ordered-response probit structure. Both these ordinal model forms are essentially equivalent, 

and differ only in whether a logistic or a normal distribution is used for the stochastic component 

 5
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in the latent propensity that is assumed to underlie the observed injury severity.1 Third, none of 

the existing studies allow randomness in the effects of injury severity determinants due to the 

moderating influence of unobserved factors. Srinivasan (2002) allows randomness due to 

unobserved factors in the threshold bounds that relate the underlying latent injury severity 

propensity to the observed injury severity categories, but does not address the randomness in the 

effects of injury severity determinants. Of course, none of the studies in Table 2.1 also consider 

seat belt as being endogenous in their modeling frameworks.  

2.2 SUMMARY 

This chapter presented a summary of the existing literature on injury severity modeling with seat 

belt use being considered exogenous to the modeling framework. It is evident that a relatively 

small proportion of the existing studies model injury severity considering the five categories of 

variables. In addition, it is also clear that apart from Srinivasan (2002) none of the other studies 

considered the moderating influence of unobserved variables in any form. The next chapter 

presents the discussion of studies that consider the selective recruitment of seat belt non-wearers 

in crashes and positions the current study. 

 

 

1 While the ordered-response models have been used only within the past 7-8 years in the safety analysis literature, 
they have a long history of use in other transportation contexts; see Kitamura and Bunch (1990), Bhat (1991), and 
Bhat and Koppelman (1993). The reader will also note that the ordered-response model is perhaps more suited than 
the multinomial logit model for injury severity because of the correlation between adjacent injury severity levels. 
However, a limitation of the ordered-response structure is that it imposes a certain kind of monotonic effect of 
exogenous variables on injury severity levels (see Bhat and Pulugurta, 1998 for a detailed exposition of the 
relationship between ordered and unordered response models). Ideally, one would consider an ordered generalized 
extreme value model for injury severity that combines the flexibility offered by the unordered-response structure 
with the proximate covariance characteristic due to the ordinality in the injury severity levels. The authors are 
currently undertaking a research study to compare such an OGEV structure with an ordered-response structure. 



TABLE 2.1 Summary of Existing Discrete Choice Studies of Crash Injury Severity 

Accident Characteristics Considered in the Empirical Framework 

Paper Research 
Methodology Driver 

attributes 
Vehicular 

characteristics 

Roadway 
design 

attributes 

Environmenta
l factors 

Crash 
characteristics 

Shibata and Fukuda 
(1993) Logistic Regression Yes --- --- --- --- 

Khattak et al. (1998) Ordered and Binary 
Probit Models --- --- --- Yes --- 

Renski et al. (1999) Ordered Probit 
Model --- --- Yes --- --- 

O’Donnell and 
Connor (1996) 

Ordered Logit and 
Probit Models Yes Yes --- --- Yes 

Chang and 
Mannering (1999) Nested Logit Model Yes Yes Yes --- Yes 

Krull et al. (2000) Logistic Regression Yes Yes Yes --- Yes 

Al-Ghamdi (2002) Logistic Regression --- --- Yes --- Yes 

Kockelman and 
Kweon (2001) 

Ordered Probit 
Model Yes Yes Yes --- Yes 

Bedard et al. (2002) Multivariate 
Logistic Regression Yes Yes --- --- Yes 

Dissanayake and Lu 
(2002) Logistic Regression Yes --- Yes Yes --- 

Ulfarsson and 
Mannering (2004) Multinomial Logit Yes Yes Yes Yes Yes 
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TABLE 2.1 (cont.) 
Kweon and 

Kockelman (2002) 
Ordered Probit & 

Poison models Yes Yes --- --- --- 

Khattak et al.*(2002) Ordered Probit 
Model --- Yes Yes Yes Yes 

Srinivasan (2002) 
Random Thresholds 

Ordered Logit 
Model 

Yes Yes --- Yes Yes 

Toy and Hammitt 
(2003) Logistic Regression Yes Yes --- --- Yes 

Khattak and 
Rocha$(2003) 

Ordered Logit 
Model --- --- --- --- Yes 

Abdel-Aty and 
Abdelwahab (2004) Nested Logit Model Yes Yes --- Yes Yes 

Wang and 
Kockelman (2005) 

Heteroscedastic 
Ordered Logit 

Model 
Yes Yes Yes Yes --- 

 
* The analysis is restricted to driver aged 65 and above. 
$ The analysis is confined to sports utility vehicles 

 



3 Chapter 3: Studies identifying Seat Belt Use Endogeneity 

The previous chapter presented a discussion of studies that considered seat belt use as an 

exogenous variable. The present chapter focuses on studies that have attempted or at least 

identified the potential “selective recruitment” of seat belt non-users in crashes involving severe 

injuries. 

3.1 SEAT BELT ENDOGENOUS TO THE MODELING FRAMEWORK  

A number of earlier studies have alluded to the “selective recruitment” of seat belt non-users in 

crashes involving severe injuries. One of the early studies that discusses the selective recruitment 

(or sample selection) issue conceptually is Evans (1985). However, the first empirical validation 

of the sample selection hypothesis appears to have been undertaken by Evans (1996), who used a 

probability sample of police-reported crashes in the U.S. between 1982-1991 from the National 

Accident Sampling System (NASS) to examine the relationship between crash severity and seat 

belt use. Evans measured crash severity in terms of the change in velocity due to the crash, 

which itself was inferred using structural equations based on the level of vehicle deformation in 

the crash. Evans’ results indicated an over-representation of unbelted drivers in high crash 

severity accidents. To the extent that crash severity level is correlated with injury severity level, 

Evans’ results provide evidence that unbelted drivers are intrinsically more likely to be involved 

in high injury severity crashes. Evans concludes that seat belt effectiveness is overestimated by a 

large amount if the sample selection is not accounted for. 

Another study that indirectly provides support for the sample selection hypothesis is Dee 

(1997), who examined why seat belt laws that increased seat belt usage sharply in the late 1980s 

and early 1990s had a relatively small impact on crash-related fatalities. One of the hypotheses 



he considered to explain this apparent paradox was that of sample selection. That is, unsafe 

drivers are more likely than the general population to continue not to wear seat belts even after 

passage of seat belt laws. If such unsafe drivers are also more likely to be involved in severe 

crashes, the net result would only be a small impact on crash-related fatalities. To test the 

hypothesis, Dee used the Center for Disease Control and Prevention’s (CDC) annual Behavioral 

Risk Factor Surveillance System (BRFSS) telephone surveys collected between 1985-1993. Dee 

compared the reported seat belt usage of crash-prone individuals and the general population after 

the passage of seat belt laws. His analysis provides evidence that crash-prone individuals are 

more likely not to wear seat belts than the general population after the enactment of seat belt 

laws, a finding consistent with the sample selection hypothesis.  

Cohen and Einav (2003) examined the impact of seat belt usage on crash-related vehicle 

occupant fatalities using data from the Fatality Analysis Reporting System (FARS) collected 

between 1983 and 1997. The FARS data on traffic fatalities were aggregated to obtain the total 

number of annual fatalities by U.S. state. The authors then used a log-linear regression model to 

relate the logarithm of the number of occupant fatalities per vehicle mile of travel in each state to 

(1) the seat belt usage rate in the state (2) a set of demographic, traffic density, crime and fuel tax 

rate control variables in the state, (3) fixed state effects to control for the potential endogeneity of 

usage rate (for example, states with high crash related fatalities may institute enforcement 

strategies that influence usage rates) and (4) fixed year effects. In addition, to address 

endogeneity of seat belt usage rates, the authors instrumented the usage rate through variables 

related to mandatory seat belt laws. The overall finding from this aggregate level analysis is that 

ignoring seat belt usage rate endogeneity leads to a substantial bias in the effect of seat belt usage 

rate on the logarithm of per-capita vehicle occupant fatalities.  
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 It is interesting that the three sample selection studies discussed above have been based 

on a simple univariate descriptive analysis (Evans, 1996), or a simple examination of seat belt 

usage between pre-defined accident prone groups and the general population (Dee, 1997), or an 

aggregate level analysis that can mask heterogeneity in crash outcomes and characteristics 

(Cohen and Einav, 2003).  

3.2 SUMMARY OF EARLIER STUDIES AND THE CURRENT WORK 

The overview of the literature outlines briefly the substantial amount of research on crash-related 

injury severity determinants. Increasingly, the methodology of choice for modeling injury 

severity is the ordered-response framework, which recognizes the ordinal nature of injury 

severity in police-reported accidents. However, the ordered-response models need to be 

enhanced to: 

(1) Comprehensively consider interactions among groups of potential determinants of 

injury severity,  

(2) Allow randomness in the effects of injury severity determinants due to the moderating 

influence of unobserved factors,  

(3) Recognize the potential, and very likely, endogeneity of seat-belt use in injury 

severity modeling, and  

(4) Accommodate the potential randomness in the effect of seat belt use on injury 

severity.  

It is indeed surprising, in particular, that there have been very few studies to date that 

recognize the potential endogeneity of seat belt use. The handful of studies that do so are focused 

toward testing the selective recruitment hypothesis using univariate, descriptive, and aggregate 
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analyses, rather than the multivariate, methodologically rigorous, and disaggregate discrete 

choice framework adopted by the studies that do not consider seat belt endogeneity. 

In this work, the two streams of earlier research (those that do not consider seat belt 

endogeneity and those that do) are brought together by developing a comprehensive, 

multivariate, methodologically rigorous, and disaggregate-level model of seat belt use and injury 

severity that takes the form of a joint correlated random-coefficients binary-ordered response 

system. This joint system is formulated as a mixing model that conveniently, and at once, 

considers all the issues of  

(1) Systematic interaction effects among variables,  

(2) Random unobserved effects in the influence of injury severity determinants,  

(3) Potential endogeneity of seat belt use in modeling injury severity level, and  

(4) Random variations in seat belt use effectiveness.  

To summarize, it is very important to recognize the potential moderating influence of 

unobserved attributes and the possibility of “selective recruitment” of seat belt non wearers in 

crashes. In addition to the methodological considerations highlighted above, a comprehensive set 

of potential determinants of injury severity in the empirical analysis are considered. The focus in 

the analysis, for the present study, is exclusively on driver injury severity (as opposed to the 

injury severity of other vehicle occupants). The methodology used and data assembly process 

used for the empirical analysis are described in detail in the subsequent chapters. 
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4 Chapter 4: Methodology and Econometric Framework 

The literature review and the positioning of this study highlight the issues that have been 

addressed inadequately in the past work on modeling injury severity. This chapter presents the 

methodology and the rigorous econometric framework employed for incorporating the aspects 

highlighted. Firstly, the current study incorporates random unobserved effects in the influence of 

injury severity determinants. For instance, the effectiveness of seat belt use in reducing injury 

severity may be higher for teenagers with their relatively unconventional driving styles. This is a 

case of age, an attribute available in crash data bases, impacting the influence of seat belt use on 

injury severity. In a similar vein, the physical frame or precise sitting posture of an individual 

may have an association with seat belt effectiveness. This is an instance where unobserved 

characteristics (physical frame and sitting posture) moderate the effectiveness of seat belt use in 

reducing injury severity. In general, one could argue that there are several subtle, unobserved, 

characteristics that moderate the effect of factors influencing injury severity. Ignoring such 

unobserved heterogeneity can, and in general will, result in inconsistent estimates in nonlinear 

models (see Chamberlain, 1980; Bhat, 2001). Secondly, potential endogeneity of seat belt use in 

modeling injury severity level is modeled. That is, it is possible that intrinsically unsafe drivers 

do not wear seat belts and are the ones likely to be involved in high injury severity crashes 

because of their unsafe driving habits. If this sample selection is ignored (as has been done in 

several previous studies), the result is an artificially inflated estimate of the effectiveness of the 

seat belt use. The study also incorporates random variations in seat belt use effectiveness.  

 The remaning discussion presents the framework of the correlated random binary-ordered 

(CRBO) model that incorporates the aforementioned aspects into a discrete choice framework. 

The discussion also clearly outlines the restrictions to be imposed on this modeling structure to 
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arrive at the independent binary ordered (IBO) model and the independent random binary-

ordered model (IRBO) model.  

4.1 MODEL STRUCTURE OF CRBO MODEL 

Let q (q = 1, 2, …, Q) be an index to represent drivers and let k (k = 1, 2, 3, …, K) be an index to 

represent injury severity. The index k, for example, may take values of “no injury” (k = 1), 

“possible injury” (k = 2), “non-incapacitating injury” (k = 3), “incapacitating injury” (k = 4), and 

“fatal injury” (k = 5), as in the empirical analysis in the current study. The equation system for 

the joint driver seat belt use and injury severity model is: 

qqqqq xs εηγβ ++′+′= )(* ,  if ; 1=qs 0* >qs 0=qs  otherwise                                  

qqqqqqqq swzy ξλμθηδα ++′++±′+′= )()(* , kyq =  if kqk y ψψ <<−
*

1                                 (4.1) 

The first equation is associated with the latent propensity  of seat belt use for driver q.  is 

the actual observed seat belt use by driver q, and  is an (M x 1)-column vector of attributes 

(including a constant) associated with driver q (for example, sex, age, soberness status, etc.) and 

driver q’s trip environment (for example, roadway speed limits, time-of-day, etc.). 

*
qs qs

qx

β  represents 

a corresponding (M x 1)-column vector of mean effects of the elements of  on seat belt use 

propensity, while 

qx

qγ  is another (M x 1)- column vector with its mth element representing 

unobserved factors specific to driver q and her/his trip environment that moderate the influence 

of the corresponding mth element of the vector . qx qη  captures common unobserved factors 

influencing driver q’s seat belt use propensity and the driver’s injury severity propensity (for 

instance, an intrinsically cautious and responsible driver is likely to wear seat belts and drive 
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defensively, incurring less severe injuries in crashes). qε  is an idiosyncratic random error term 

assumed to be identically and independently standard logistic distributed across individuals q. 

The second equation is associated with the latent propensity  associated with the injury 

severity sustained by driver q in the accident. This latent propensity  is mapped to the actual 

injury severity level  by the 

*
qy

*
qy

qy ψ  thresholds ( −∞=0ψ  and ∞=kψ ) in the usual ordered-

response fashion.  is an (L x 1) column vector of attributes (not including a constant and not 

including seat belt use) that influences the propensity associated with injury severity. 

qz

α  is a 

corresponding (L x 1)-column vector of mean effects, and  is another (L x 1)-column vector of 

unobserved factors moderating the influence of attributes in  on the injury severity propensity 

for driver q. 

qδ

qz

θ  is a scalar constant,  is a set of driver/crash attributes that moderate the effect 

of seat belt use on injury severity, and 

qw

μ  is a corresponding vector of coefficients. qλ  is an 

unobserved component influencing the impact of seat belt effectiveness for driver q, and qξ  is an 

idiosyncratic random error term assumed to be identically and independently standard logistic 

distributed across individuals q. 

 The ±  sign in front of qη  in the injury severity equation indicates that the correlation in 

unobserved factors between seat belt use and injury severity may be positive or negative. A 

positive sign implies that drivers who use seat belts are intrinsically more likely to incur severe 

injuries in crashes, while a negative sign implies that drivers who use seat belts are intrinsically 

less likely to incur severe injuries in accidents. Clearly, it is expected, from an intuitive 

standpoint, that the latter case will hold. However, one can empirically test the models with both 

‘+’ and ‘−’ signs to determine the best empirical result. Of course, if the correlation between the 
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seat belt use and injury severity propensities is ignored, when actually present, it results in a 

“corrupt” estimation of the effectiveness of seat belt use in reducing injury severity. More 

specifically, if the unobserved correlation between seat belt use and injury severity propensities 

is negative, as expected, ignoring this correlation would result in an inflated effectiveness of seat 

belt use in reducing injury severity. 

To complete the model structure of the system in Equation (4.1), it is necessary to specify 

the structure for the unobserved vectors qγ  and , and the unobserved scalars qδ qλ  and qη . In 

the current study, it is assumed that the qγ  and  elements, and qδ qλ  and qη , are independent 

realizations from normal population distributions; , , 

, and . 

),0(~ 2
mqm N σγ ),0(~ 2

lql N ωδ

),0(~ 2τλ Nq ),0(~ 2υη Nq

4.2 MODEL STRUCTURE OF IBO AND IRBO MODELS 

The CRBO model structure collapses into the IBO and IRBO model structures based on the 

assumptions imposed on the parameters estimated. The IBO model imposes the assumptions that 

 for all m,  for all l, and . This ensures that model collapses to a binary 

logit model for the seat belt use component and an ordered logit for the injury severity 

component. Similarly, to arrive at the IRBO model, the assumption that is imposed. 

Setting ensures that the CRBO model collapses to a model with a random coefficient 

binary logit for the seat belt use component and a random coefficient ordered logit component 

for injury severity (but no possibility for endogeneity in seat belt use) . 

02 =mσ 02 =lω 022 ==υτ

02 =υ

02 =υ
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4.3 MODEL ESTIMATION OF CRBO MODEL 

The parameters to be estimated in the joint model system of Equation (4.1) are the β , α  and μ  

vectors, the θ  scalar, the ψ  thresholds, and the following variance terms: , , , and . 

Let  represent a vector that includes all these parameters to be estimated. Also, let  be a 

vector that vertically stacks the 

2
mσ 2

lω
2τ 2υ

Ω qc

qγ  and qδ  vectors, and the qλ  and qη  scalars. Let Σ  be another 

vertically stacked vector of standard errors , mσ lω , τ , and υ , and let Σ−Ω  represent a vector of 

all parameters except the standard error terms. Finally, let 12 −= qq sg . Then, the likelihood 

function, for a given value of  and error vector , may be written for driver q as: Σ−Ω qc

{ }[ ]

{ }[ ] { }[ ]{ } ,  )()()()( 

)()|(

1
qkd

qqqqqqkqqqqqqk

qqqqqq
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xgGcL

ηλμθδαψηλμθδαψ

ηγβ

±+++′+′−−±+++′+′−

×+′+′=Ω

−

Σ− (4.2) 

where G(.) is the cumulative distribution of the standard logistic distribution and  is a dummy 

variable taking the value 1 if driver q sustains an injury of level k and 0 otherwise. Finally, the 

unconditional likelihood function can be computed for driver q as: 

qkd

)|()|)(()( ΣΩ=Ω ∫ Σ− qq

qc
qq cdFcLL ,                                                                                          (4.3) 

where F is the multidimensional cumulative normal distribution. The log-likelihood function is 

∑ Ω=Ω
q

qLL )()( .                                                                                                                       (4.4) 

The likelihood function in Equation (4.3) involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in . This multi-dimensional integration cannot be 

accomplished using general purpose numerical methods such as quadrature, since quadrature 

qc
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techniques cannot evaluate the integrals with sufficient precision and speed for estimation via 

maximum likelihood (see Hajivassiliou and Ruud, 1994).  

Simulation techniques are applied to approximate the integrals in the likelihood function 

and maximize the logarithm of the resulting simulated likelihood function across individuals 

with respect to Ω . The simulation technique approximates the likelihood function in Equation 

(4) by computing the  for each q at different realizations of  drawn from a 

multivariate normal distribution, and computing the individual likelihood function by averaging 

over the different values of the integrand across the different realizations. Notationally, if 

 is the realization of the likelihood function in the h

)|( qq cL Σ−Ω qc

)(Ωh
qSL th draw (h = 1, 2, …, H), then the 

individual likelihood function is approximated as: 

∑
=

Ω=Ω
H

h

h
qq SL

H
SL

1
)(1)( ,                                   (4.5) 

where  is the simulated likelihood function for the q)(ΩqSL th observation, given the parameter 

vector .  is an unbiased estimate of the actual likelihood function . Its variance 

decreases as H increases. It also has the appealing properties of being smooth (i.e., twice 

differentiable) and being strictly positive for any realization of draws. 

Ω )(ΩqSL )(ΩqL

The simulated log-likelihood is constructed as: 

∑ Ω=Ω
q

qSLSL )](ln[)( .                        (4.6) 

The parameter vector  is estimated as the value that maximizes the above simulated 

function. Under rather weak regularity conditions, the maximum (log) simulated likelihood 

(MSL) estimator is consistent, asymptotically efficient, and asymptotically normal (see 

Hajivassiliou and Ruud, 1994; Lee 1992). 

Ω
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In the current study, a quasi-Monte Carlo (QMC) method proposed by Bhat (2001) for 

discrete choice models to draw realizations for  from its population multivariate distribution is 

used. QMC methods are similar to the familiar Monte Carlo method in that they evaluate a 

multidimensional integral by replacing it with an average of values of the integrand computed at 

discrete points (see Equation 4.5). However, rather than using pseudo-random sequences for the 

discrete points, the QMC approach uses “cleverly” crafted non-random and more uniformly 

distributed sequences (labeled as QMC sequences) within the domain of integration. The 

underlying idea of the QMC methods is that it is really inconsequential whether the discrete 

points are truly random; of primary importance is the even distribution (or maximal spread) of 

the points in the integration space. Within the broad framework of QMC sequences, specifically 

the Halton sequence is used in the current analysis.  

qc

4.4 MODEL ESTIMATION OF IBO AND IRBO MODEL 

The model estimation of the IBO model is very simple because the model does not involve the 

evaluation of integrals as the Quasi-Monte Carlo process required for the estimation of the 

vectors qγ  and , and the unobserved scalars qδ qλ  and qη are done away with. The model 

estimation of the IRBO model is very similar to the CRBO model. In the estimation process the 

unobserved scalar is set to 0, thus reducing the number of coefficients to be estimated. 2υ

4.5 SUMMARY 

The present chapter described in detail the econometric framework employed in modeling injury 

severity in the present study. The new modeling framework successfully addresses the aspects 

that have been highlighted and found to be addressed inadequately, in the earlier studies 

discussed in chapter 2 and 3, in a comprehensive fashion. The empirical application of the IBO, 
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IRBO, and CRBO models is carried out on the data from the 2003 General Estimates System 

(GES), a nationally representative sample of police-reported crashes of all types in the U.S. The 

data source and other details regarding the data assembly process are described in detail in the 

next chapter. 
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5 Chapter 5: Data 

In the previous chapter the econometric framework employed in the current study for modeling 

crash injury severity is described in detail. In the present chapter, the data source employed for 

the empirical analysis of crash injury severity is discussed. The section also presents a detailed 

outline of the important assumptions made in the data assembly process.  

5.1 DATA SOURCE 

The data source used in this study is the 2003 General Estimates System (GES) obtained from 

the National Highway Traffic Safety Administration’s National Center for Statistics and 

Analysis. The GES consists of data compiled from a sample of police-reported accidents that 

involve at least one motor vehicle traveling on a traffic way and resulting in property damage, 

injury, or death. The GES data are drawn from accidents in about 60 areas across the U.S. that 

reflect the geography, population, and traffic density of the U.S. (the reader is referred to 

ftp://ftp.nhtsa.dot.gov/GES/GES03/SAS for comprehensive details of how the accident reports 

are collected and compiled). The 2003 GES includes information regarding 60,000 accidents 

involving about 150,000 individuals and 100,000 vehicles.  

A number of accident-related attributes are collected for each accident in the GES, 

including the characteristics of the drivers involved, vehicle characteristics, roadway design 

attributes, environment attributes, and crash characteristics. The injury severity of each 

individual involved in the accident is collected on a five point ordinal scale: (1) No injury, (2) 

possible injury, (3) Non-incapacitating injury, (4) Incapacitating injury, and (5) Fatal injury. 
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5.2 SAMPLE PREPARATION 

The data set obtained from National Center for Statistics and Analysis consists of accident data 

organized into various files. Of these files the person, accident and vehicle files were 

predominantly used in the study to obtain the variables used in the comprehensive modeling 

framework. The data cleaning process was carried out to retain as many records as possible from 

the dataset without altering the proportion of injury severity categories.  

In the current analysis, we examine seat belt usage and injury severity of drivers of 

passenger vehicles. The focus on drivers is because seat belt usage data is better recorded for 

drivers than for non-drivers. We also confined our attention to non-commercial drivers because 

of potential systematic differences between commercial and non-commercial drivers 

(commercial drivers are professionally trained and have to follow company-related and 

insurance-related driving protocols). Finally, our analysis is confined to crashes (accidents 

involving collision with a fixed object or other vehicles rather than non-collision accidents such 

as rolling over) and further to the vast majority of crashes in which one or two vehicles are 

involved. 

5.3 SAMPLE DESCRIPTION 

The final data sample of non-commercial driver crashes consisted of about 50,000 records. Of 

these, 11,388 records were sampled so that the distribution of injury severity in this smaller 

sample was about the same as the weighted distribution of injury severity in the full sample of 

about 50,000 records (The weighted full GES dataset is intended to replicate the overall national 

statistics of crashes and injury severity). The seatbelt use in the sample is as follows: used seat 
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belts (92.8%) and did not use seat belts (7.2%).2 The distribution of injury severity across the 

observations and by seat belt use is provided in Table 5.1. Clearly, the table shows a negative 

association between seat belt use and injury severity. One of the issues to be addressed in this 

research is to estimate how much of the association is due to “true” seat belt use effectiveness 

and how much is due to “spurious” effects.  

5.4 SUMMARY 

The chapter discussed in detail the data source used for the empirical application. It also 

highlighted the important assumptions made in the data assembly process. The results of the 

empirical application of the new modeling framework, using the GES 2003 data, developed in 

the current study are presented in the subsequent chapter. 

 

                                                 

2 The seat belt use rate of 92.8% in the GES sample is on the high side relative to national seat belt use rates, 
perhaps due to potential misreporting/misrecording of seat belt use. This misreporting/misrecording can result in an 
underestimation of the effectiveness of seat belt use in preventing serious injuries. However, such 
misreporting/misrecording should not detract from a potential finding of “spurious” effects of seat belt use 
effectiveness caused by seat belt non-users intrinsically being more likely to be involved in severe injury crashes. 
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TABLE 5.1 Cross Tabulation of Injury Severity and Seat Belt Use 
 

SEATBELT 
INJURY SEVERITY 

Not Used Used 

ALL 

DRIVERS 

No injury 24.6** 67.8 64.7 

Possible Injury 9.1 11.9 11.7 

Minor Injury 21.6 10.2 11.0 

Serious Injury 36.3 9.6 11.5 

Fatality 8.4 0.5 1.1 

 

** The numbers in the cell represent column percentages (the sum of the figures in each column is 100%) 
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6 Chapter 6: Empirical Analysis 

The results of the empirical analysis carried out on the 2003 General Estimates System (GES) 

are presented in this chapter. Three models are estimated in the present study. The estimation 

process was carried out with an emphasis on including variables from all categories discussed in 

Chapter 2. In addition to estimating the models, elasticity effects of the variables were also 

computed so as to clearly highlight the significance of considering the moderating influence of 

unobserved attributes and the potential endogeneity of seat belt use.  

6.1 VARIABLES CONSIDERED IN THE EMPIRICAL ANALYSIS 

Several types of variables were considered in the empirical analysis, including driver 

characteristics, vehicle characteristics, roadway design attributes, environmental factors, and 

crash characteristics.  

 Driver characteristics included driver demographics (age and sex) and driver alcohol 

use3. The only vehicle characteristics included in the current study are the vehicle types involved 

in the crash (the vehicle types include passenger cars, sports utility vehicles, pick up trucks, and 

minivans). Other vehicle characteristics, such as vehicle weight, vehicle speed just before 

impact, and seating configuration, are either not available in, or missing for a large fraction of, 

the GES data. The roadway design attributes considered in the analysis are speed limit and 

roadway functional class (whether the accident occurred on an interstate highway, or arterial, or 

other roads). Again, additional roadway design attributes, such as number of lanes, alignment of 

roads, and grade and shoulder widths, could not be included because of the absence of data, or 
                                                 

3 The GES data included information on drug use and airbag use. However, a large fraction of records had missing 
information on these variables, as well as their imputed counterparts. So we excluded these driver behavior variables 
from consideration. However, data was available for almost all records for an imputed version of driver alcohol use. 
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the large fraction of missing data, on these variables in the GES. Environmental factors related to 

the crash that were considered included day of the week, time of day4, lighting conditions (dawn, 

daylight, dusk, dark, and dark and lit), and weather conditions (no adverse weather, rain, snow, 

and fog). Finally, the crash characteristics included whether or not the person was ejected from 

the vehicle, if the vehicle rolled over, whether the crash was with a stationary object or another 

vehicle, and the manner of collision in crashes with another vehicle (head-on, rear end, angle, 

sideswipe when traveling in the same direction, and sideswipe when traveling in opposite 

directions), and the role of the driver’s vehicle in crashes with another vehicle (i.e., whether the 

driver’s vehicle struck the other vehicle,  or the driver’s vehicle was struck by the other vehicle, 

or both vehicles struck each other). 

 In addition to the five groups of variable discussed above, several interaction effects 

among the variables in both the seat belt use and injury severity models were also considered. 

The final specification was based on a systematic process of removing statistically insignificant 

variable and combining variables when their effects were not significantly different. The 

specification process was also guided by prior research and intuitiveness/parsimony 

considerations. We should also note here that, for the continuous variables in the data (such as 

age and speed limits), we tested alternative functional forms that included a linear form, a spline 

(or piece-wise linear) from, and dummy variables for different ranges. 

6.2 MODEL SPECIFICATION 

In the present study, as discussed earlier, three different models were estimated: (1) a simple 

binary choice logit for seat belt use and an independent ordered response logit for injury severity, 

                                                 

4 Time of day is represented in the following five categories: early morning (12am-6am), AM peak (6am-9am), 
midday (9am-3pm), PM peak (3pm-7pm), and evening (7pm-12pm). 
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(IBO model), (2) a random coefficients binary choice logit for seat belt use and an independent 

random coefficients ordered response logit for injury severity (IRBO model), and (3) a random 

coefficients binary choice logit for seat belt use and a correlated random coefficients ordered 

response logit for injury severity (CRBO model). In the context of the model formulation in 

Chapter 4, the IBO model imposes the assumptions that  for all m,  for all l, and 

. The IRBO model imposes the assumption that .  

02 =mσ 02 =lω

022 ==υτ 02 =υ

 The final specifications of the random-coefficients in the seat belt use and injury severity 

components of the IRBO and the CRBO models were obtained after extensive testing. In the 

following presentation of empirical results, only the results of the CRBO model are discussed for 

the sake of presentation ease. However, we will present the IBO and IRBO model results in the 

appendix and use the models as yardsticks to evaluate the performance of the CRBO model. 

6.3 ESTIMATION RESULTS 

6.3.1 Seat Belt Use Component 

Table 6.1 provides the results of the seat belt use component of the CRBO model (the 

coefficients represent the effects of the variables on the latent propensity to wear seat belts).  

The specific effects of the driver characteristics indicate that men, younger individuals 

(Age < 25 years), and those driving under the influence of alcohol are less likely to use seat-belts 

compared to women, older individuals (Age ≥ 25 years) and those not driving under the 

influence of alcohol, respectively (these results are consistent with earlier seat belt use studies; 
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for example, see Reinfurt et al., 1996 and Preusser et al., 1991).5 The effects of the vehicle 

characteristics indicate that individuals driving a pick-up are the least likely ones to wear a seat 

belt, while sports utility vehicle (SUV) drivers are the most likely to wear seat belts. This 

association between vehicle type and seat belt-use is perhaps the manifestation of the link 

between safety consciousness and type of vehicle owned. Finally, the time of day variables 

suggest that drivers are more likely to wear seat belts during the midday (9am-3pm) and PM 

peak periods (3pm-7pm) than the early morning (12am-6am), AM peak (6am-9am) and evening 

(7pm-12am) periods. The higher non-use of seat belts during the early morning and evening 

periods may be the result of fewer law-enforcement officials on the streets during these times. 

6.3.2 Injury Severity Component 

Table 6.2 presents the results of the injury severity component of the CRBO model (the 

parameters indicate the effects of variables on the latent propensity associated with injury 

severity). The results are discussed by variable group. 

6.3.2.1 Driver Characteristics   

The impact of driver characteristics show significant variations based on demographics and 

alcohol influence. In particular, men and young adults (< 25 years of age) are less likely to 

sustain severe injuries relative to women and older adults, respectively, a result also observed in 

earlier studies of injury severity (see, for example, O’Donnell and Connor, 1996; Kim et al., 

                                                 

5 We examined differential effects of teenagers (≤ 19 years of age) and adults between the ages of 20 and 24 years. 
However, we did not find statistically different propensities to wear seat belts between these two age groups, and so 
combined these two age groups into a single “age < 25 years” category. 

 28



1994; and Srinivasan, 2002).6 The likelihood of being injured severely is highest for women over 

74 years of age, while the likelihood of not being injured severely is highest for men younger 

than 25 years of age. Consistent with the findings from earlier studies and intuition, drivers under 

the influence of alcohol are likely to be more severely injured than those who are sober. 

6.3.2.2 Vehicle Characteristics   

The type of the driver’s vehicle as well as the vehicle type of the other vehicle involved in dual-

vehicle crashes were considered in the injury severity component of the joint model. In addition 

to main effects, combinations of the driver vehicle type and the other vehicle type, and 

interactions of vehicle type with all the four other variable groups, were considered. The final 

specification, however, comprised only three variables related to vehicle type (see Table 6.2). 

The results show that drivers in sedans are likely to be injured more severely in crashes 

compared to drivers in other vehicle types (SUVs, pick-up trucks, and minivans). This is 

particularly the case in the presence of snow and/or fog, and in crashes where the driver’s sedan 

is struck by a non-sedan.  

6.3.2.3 Roadway Attributes   

The only roadway design attributes considered in the current analysis are speed limit and 

roadway functional class (and interactions of the two). However, once speed limit was controlled 

for, roadway functional class did not have any additional significant effects, because of the 

strong correlation between speed limits and roadway functional class. The results indicate that, 

                                                 

6 As for the case of seat belt use, we examined differential injury severity effects for teenagers (≤ 19 years of age) 
and adults between the ages of 20 and 24 years. However, due to the lack of statistically different injury severity 
propensities between the two age groups, they were combined into a single “age < 25 years” category. 
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on average, driver injury tends to be most severe for crashes on medium-to-high speed limit 

roads (26-64 mph). Also, driver injury from crashes tends to be, on average, more severe on high 

speed limit (≥ 65 mph) roads relative to low speed limit (≤ 25 mph) roads. These patterns may be 

a reflection of two issues. First, vehicle speeds are higher on the roads with high speed limits, 

because of which injury severity is higher on such roads. Second, there are several design factors 

associated with roads with very high speed limits (≥ 65 mph) that can temper the seriousness of 

injuries from a crash. For instance, roads with high speed limits have wider lanes, more lanes, 

and wide shoulders that may present drivers the opportunity to take last minute evasive measures 

to reduce injury severity. It is also interesting, however, to note the wide variation in injury 

severity propensity across crashes on high speed roads (note the large standard deviation relative 

to the mean on the high speed limit coefficient in the table). This indicates that, while injury 

severity on high speed roads may be low for some crashes because of roadway characteristics, it 

can also be very high for some crashes because of the vehicle speed. 

6.3.2.4 Environmental Factors 

The results associated with environmental factors indicate that crashes occurring during the day 

(6am-7pm) tend to be less severe than those occurring during other times of the day. This may be 

because of higher traffic volumes on the roads during the day, resulting in drivers being more 

alert as well as traveling at slower speeds (note that this lower injury severity crashes during the 

day cannot be attributed to higher seat belt use, since seat belt use is included as a variable in the 

analysis). 

The remaining parameters characterizing the effects of the crash environment in Table 

6.2 suggest lower injury severity levels in dusk or dark lighting conditions (relative to dawn, 

daylight, and dark but lit lighting conditions) and under adverse weather conditions (relative to 
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normal weather conditions). These results, while initially counter intuitive, are presumably 

capturing the vehicle speed effect. That is, drivers are likely to travel slower under poor lighting 

and adverse weather conditions. It is also important to note the large standard deviation on the 

“dark” variable, which indicates a wide dispersion in injury levels sustained under dark lighting 

conditions. 

6.3.2.5 Crash Characteristics 

Several crash characteristics are strong determinants of injury severity. As expected, a driver 

ejected from her/his vehicle or in a vehicle that rolled over is likely to sustain severe injuries. 

The “crash with a stationary object” group of variables and the “manner of collision in two 

vehicle crashes” group of variables need to be considered together. The results indicate that, on 

average, crashes with a stationary large object (such as a concrete traffic barrier, post, pole, 

culvert, ditch, trees, etc.) and head-on collisions with another vehicle are most dangerous, 

followed by crashes with a stationary small object (such as a fire hydrant, shrubbery, boulder, 

curb, guard rail, etc.) and angle collisions with another vehicle (see O’Donnell and Connor, 1996 

for similar results). Rear-end collisions with another vehicle are less severe than stationary object 

and head-on/angle collisions with another vehicle, but more severe than swipe collisions with 

another vehicle. There is also a large standard deviation of the “angle” coefficient; the mean and 

the standard deviation of this coefficient imply that, in a majority of cases (88%), angle crashes 

are less severe than head-on collisions. But, about 12% of the time, angle crashes lead to higher 

injury severity than head-on crashes. Finally, in the set of crash characteristics, the “vehicle role 

in two vehicle crashes” group of variables suggests a higher injury severity level if the driver is 

struck, or is struck and strikes another vehicle, relative to striking another vehicle. 
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6.3.2.6 Seat Belt Use and Sample Selection Effect   

The impact of seat belt-use is negative, indicating a reduced injury severity if the driver uses the 

seat belt. Also, the standard deviation of the common error component between the seat belt use 

and injury severity propensities is statistically significant. This standard deviation corresponds to 

the standard deviation υ  of qη  in Section 4.1. The term qη  was introduced as qη−  in the injury 

severity component of Equation (1) because it provided a substantially better fit than introducing 

it as qη+ . This result lends very strong support for the selective recruitment (or sample 

selection) hypothesis: safety conscious drivers are more likely to wear seat belts and their 

defensive habits also lead to less severe injuries when they are involved in crashes. The standard 

deviation estimate of the common error component translates to an effective correlation of –0.46 

[=  –(0.93)2 / 1 + (0.93)2] between the unobserved factors impacting the seat belt use and injury 

severity propensities. 

 In contrast to the correlated random binary-ordered (CRBO) model presented here, the 

independent random binary-ordered (IRBO) model ignores the selective recruitment issue; that 

is, it ignores the unobserved factors influencing seat belt use propensity and injury severity 

propensity. As a result, the safety-conscious and defensive driving habits of seat-belt users gets 

incorrectly manifested as an inflated effectiveness of seat belt use in reducing injury severity. In 

fact, the coefficient estimate on the seat belt use variable in the IRBO model is –1.39 with a 

corresponding t-statistic of –13.74 (compared to coefficient of –0.75 with a corresponding t-

statistic of –1.88 in the CRBO model). While the coefficients between the IRBO and CRBO 

models are not comparable, the CRBO coefficients should be generally larger in magnitude 

compared to the IRBO coefficient (as is the case with all other coefficients except the seat belt 

 32



use coefficient).7 Thus, there is clear, substantial, and incorrect inflation in seat belt use 

effectiveness when sample selection is ignored. We revisit this important point again in Section 

6.4. 

6.3.2.7 Threshold Parameters   

The threshold parameters map the injury severity latent index to the reported injury severity 

categories. As such, they do not have any substantive interpretation. 

6.3.3 Overall Likelihood-Based Measures of Fit 

The log-likelihood value at convergence of the CRBO model (with 44 parameters) is –10551.9, 

of the IRBO model (with 43 parameters) is –10557.6, and of the IBO model (with 40 parameters) 

is –10570.6. The corresponding value for the “constants only” model with only the constant in 

the seat belt use binary choice model and only the four thresholds in the injury severity ordered 

logit model is –15054.5. Likelihood ratio tests may be undertaken to compare the four models 

above. In particular, the test for no sample selection (CRBO vs. IRBO models) yields a 

likelihood ratio test value of 11.4 [= –2 x (10557.6–10551.9)], which is larger than the chi-

squared table value with one degree of freedom at any reasonable level of significance (of 

course, this is also reflected in the statistically significant t-statistic on the standard deviation of 

the common error component between the seat belt use and injury severity equations). The test 

for the absence of unobserved heterogeneity in the effects of exogenous variables (IRBO vs. 

IBO) yields a likelihood ratio test value of 26, which is again larger than the critical chi-squared 

value with 3 degrees of freedom at even the 0.0001 level of significance. 

                                                 

7 The injury severity component of the CRBO model is normalized with respect to a smaller overall scale relative to 
the injury severity component of the IRBO model (due to the additional presence of the term qη  in the CRBO 
model). This smaller scaling should, in general, lead to larger coefficients in the CRBO model. 
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Clearly the results indicate the importance of considering randomness in the effects of 

injury severity determinants due to the moderating influence of unobserved factors as well as 

accommodating the endogeneity of seat belt use on injury severity. Failure to accommodate these 

issues, as done by almost all earlier injury severity studies, will, in general, lead to poor model 

fits as well as biased parameter estimates. 

6.4 ELASTICITY EFFECTS 

The parameters on the exogenous variables in Table 6.2 do not directly provide the magnitude of 

the effects of variables on the probability of each level of injury severity. To do so, we compute 

the aggregate level “elasticity effects” of variables. This is achieved by first computing the 

probability of seat belt non-usage ( 0=qs ) and injury severity level k ( ) for individual q 

as: 
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The corresponding probability of seat belt usage ( 0=qs ) and injury severity level k ( kyq = ) is 

computed as: 
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Next, the unconditional probability that individual q sustains an injury of severity level k is 

obtained as  
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The expected aggregate numbers of drivers sustaining an injury of severity level k is then 

computed by summing the above individual-level probability across all individuals Q.  

 With the preliminaries above, one can compute the aggregate-level “elasticity” of any 

dummy exogenous variable (all exogenous variables in the model are dummy variables) by 

changing the value of the variable to one for the subsample of observations for which the 

variable takes a value of zero and to zero for the subsample of observations for which the 

variable takes a value of one. We then sum the shifts in expected aggregate shares in the two 

subsamples after reversing the sign of the shifts in the second subsample, and compute an 

effective percentage change in expected aggregate shares in the entire sample due to change in 

the dummy variable from 0 to 1. 

 The elasticity effects are presented in Table 6.3 by variable category and for each of the 

IBO, IRBO, and CRBO models (note that the expressions in Equations (6.1) and (6.2) simplify 

in the case of the IBO and IRBO models). For ease in presentation, we provide the elasticities 

only for the fatal injury category. The table also presents only the effects of the non-interaction 

variables from Table 6.2 because the effect of an interaction variable is accommodated by 

increasing the variable whenever a component variable is increased. The numbers in the table 

may be interpreted as the percentage change in the probability of a fatal injury due to a change in 

the variable from 0 to 1. For instance, the CRBO model in the table indicates that the probability 

of a man being fatally injured in a crash is about 40% less than the probability of a woman being 

fatally injured, other characteristics being equal.  

Several important observations may be made from Table 6.2. First, the major factors that 

are likely to lead to a fatal injury in a crash are driver ejection from vehicle, vehicle rollover, and 
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crash into a stationary object or a head-on collision with another vehicle. On the other hand, seat 

belt use and a swipe collision with another vehicle traveling in the same direction are the two 

most important factors associated with survival in a crash. Second, the elasticity effects of many 

variables are quite different among the three models. For example, the likelihood of being in a 

fatal injury if under the influence of alcohol is underestimated in the OL and IRBO models. 

Similarly, the positive effects of ejection from the vehicle, vehicle rollover, and stationary 

object/head-on collision with another vehicle on fatal injury are underestimated in the OL and 

IRBO models. Third, the elasticity effect of seat belt use from the CRBO model is about half that 

of the estimated effects from the OL and IRBO models. This is, of course, because the OL and 

IRBO model do not consider the endogenous nature of seat belt use. In fact, the seat belt use 

elasticities from the different models suggest that seat belt usage and the safety-conscious 

driving attitudes of those who wear seat belts are about equally important in reducing the 

likelihood of a fatal injury. This result is important from a policy standpoint and suggests that 

seat belt non-users, when apprehended in the act, should perhaps be subjected to both a fine (to 

increase the chances that they wear seat belts) as well as mandatory enrollment in a defensive 

driving course (to attempt to change their aggressive driving behaviors). Thus, the results in our 

research provide support for changing the current “Click it or Ticket” campaign in several states 

in the US to the “Click it or Defensive Driving and Ticket” campaign. 

 Overall, the results indicate clear biases in the effects of variables on injury severity level 

when unobserved factors moderating the impact of variables is ignored and/or seat belt 

endogeneity is not considered. 
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6.5 SUMMARY 

To summarize it is very clear that neglecting the potential seat belt endogeneity in seat belt use 

might lead to incorrect estimates, especially of the potential benefits from wearing a seat belt. So, 

from a policy perspective seat belt use is still important, but it is essential to recognize that the 

nature of the driver is also significant. The statistical tests performed on the CRBO model with 

respect to the IBO and IRBO models clearly indicate that the joint model performs better. In 

addition the IRBO model is also outperforms the IBO model, highlighting the fact that 

considering the moderating influence of unobserved variables on injury severity is important. 

Recommendations to policy makers, based on these empirical analyses, are presented in the last 

chapter. 
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TABLE 6.1 Estimates of the Seat Belt use Component of Joint Model 

Variables Coefficient t-stats 

Constant 3.351 12.77 

Driver Characteristics   

Male -0.574 -6.17 

Age Variables (age < 25 years is base)   

25-29 years 0.327 2.25 

30-64 years 0.222 2.56 

65-74 years 1.226 2.92 

Under the influence of alcohol -2.255 -12.88 

Vehicle Characteristics (pick-up is base)   

Sedan 0.331 3.45 

SUV 1.155 6.58 

Minivan 0.606 3.24 

Environmental Factors   

9am-7pm 0.601 5.96 
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TABLE 6.2 Injury Severity Component of Joint Model 
 

Variables Coefficient t-stats 
Driver Characteristics   
Male -0.454 -7.59 
Age Variables (age < 25 years is base)  s 

25-74 years 0.207 2.81 
> 74 years 0.371 2.46 

Male Age < 25 years -0.173 -1.63 
Under the influence of alcohol 0.465 2.48 
Vehicle Characteristics   
Sedan 0.288 4.98 
Sedan x snow / fog 0.714 3.17 
Sedan x struck by a non-sedan 0.131 1.62 
Roadway Design Attributes   
Medium-to-high speed limit (26-64mph) 0.906 9.28 
High speed limit (≥64 mph) 0.358 1.11 

Standard Deviation 1.554 2.94 
Environmental Factors   
6am – 7pm -0.308 -4.09 
Lighting Conditions   

Dusk -0.237 -1.44 
Dark -0.398 -2.74 
Standard Deviation 1.500 5.53 

Adverse Weather Conditions   
Rain -0.144 -2.00 
Snow and/or fog -0.659 -3.80 

Crash Characteristics   
Driver ejected out of the vehicle 3.468 7.04 
Vehicle rolled over 1.855 10.05 
Crash with a Stationary Object (base is crash with another vehicle)   

Large object 1.509 11.34 
Small object 1.201 8.76 

Manner of Collision in Two Vehicle Crashes (base is rear-end collision)   
Head on 1.397 8.71 
Angle 0.151 1.56 
Standard Deviation 1.066 5.41 
Swipe collision when vehicles are traveling in opposite directions -0.666 -1.96 
Swipe collision when vehicles are traveling in same direction -1.302 -9.31 

Vehicle Role in Two Vehicle Crashes (base is driver strikes other vehicle)   
Driver struck by a vehicle 0.446 6.88 
Driver involved in strike and struck 0.323 1.60 

Seat belt -0.752 -1.88 
Standard deviation of common error component between seat belt use and 
injury severity propensities 

0.926 3.10 

Threshold Parameters   
Threshold 1 2.366 3.89 
Threshold 2 3.730 5.47 
Threshold 3 5.218 6.99 
Threshold 4 8.151 9.41 
Log-likelihood at convergence -10551.9 

 



TABLE 6.3 Elasticity Effects 
 

Fatal Injury Category Variables 
OL IBRO CBRO 

Driver Characteristics    
Male -36.55 -36.23 -39.33 
Age Variables    

25-74 years 13.13 14.03 15.05 
>74 years 26.57 27.39 31.17 

Under the influence of Alcohol 18.55 19.67 38.86 
Vehicle Characteristics    
Sedan 19.83 20.47 23.27 
Non-sedan (other vehicle type) 0.95 1.11 1.36 
Roadway Design Attributes    
Medium-to-high speed limit (26-64mph) 49.52 49.29 53.73 
High speed limit (≥64 mph) 74.50 21.93 29.78 
Environmental Factors    
6am-7pm -19.75 -19.60 -23.40 
Lighting Conditions    

Dusk -16.15 -14.94 -16.22 
Dark -1.43 -25.98 -27.76 

Adverse Weather Conditions    
Rain -8.76 -9.11 -10.29 
Snow and/or fog -11.38 -12.17 -13.38 

Crash Attributes    
Driver ejected out of the vehicle 808.90 871.37 1054.25 
Vehicle rolled over 186.00 189.02 226.74 
Crash with a Stationary Object (base is crash with another vehicle)    

Large object 120.29 119.62 147.09 
Small object 107.71 101.98 127.19 

Manner of Collision in Two Vehicle Crashes  
(base is rear-end collision)    

Head on 133.97 132.49 167.92 
Angle 29.63 6.31 11.41 
Swipe collision when vehicles are traveling in opposite directions -40.12 -37.55 -39.57 
Swipe collision when vehicle are traveling in same direction -62.75 -60.50 -63.95 

Vehicle Role in Two Vehicle Crashes  
(base is driver strikes other vehicle)    

Driver struck by a vehicle 32.05 33.13 37.20 
Driver involved in strike and struck 15.00 25.94 27.28 

Seat belt use -129.45 -132.06 -64.50 
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7 Chapter 7: Conclusions and Recommendations 

This research effort formulates a comprehensive econometric structure that recognizes two 

important issues in safety analysis. First, the impact of a factor on injury severity may be 

moderated by various observed and unobserved variables specific to an individual or to a crash. 

Second, seat belt use is likely to be endogenous to injury severity. That is, it is possible that 

intrinsically unsafe drivers do not wear seat belts and are the ones likely to be involved in high 

injury severity crashes because of their unsafe driving habits. The structure of the model 

developed in the study takes the form of a mixed joint binary logit-ordered response logit 

formulation that conveniently, and at once, considers all the issues of (1) systematic interaction 

effects among variables, (2) random unobserved effects in the influence of injury severity 

determinants, (3) potential endogeneity of seat belt use in modeling injury severity levels, and (4) 

random variations in seat belt use effectiveness. The present chapter presents the conclusions 

based on the empirical analysis carried out on the 2003 General System Estimates data base. 

7.1 CONCLUSIONS 

The empirical analysis in the current study is based on the 2003 General Estimates System 

(GES) data base. The focus in the analysis is exclusively on non-commercial driver seat belt use 

and crash-related injury. The analysis is also confined to the vast majority of crashes in which 

one or two vehicles are involved. Several types of variables are considered in the empirical 

analysis, including driver characteristics, vehicle characteristics, roadway design attributes, 

environmental factors, and crash characteristics. 

The empirical results indicate the important effects of all of the above types of variables 

on driver seat belt use and injury severity. In addition, the results reveal a substantial and 



significant negative error correlation between seat belt use propensity and injury severity 

propensity, which lends strong support for the selective recruitment (or sample selection) 

hypothesis. That is, safety conscious drivers are more likely to wear seat belts, and their 

defensive habits also lead to less severe injuries when they are involved in crashes.  

To conclude, ignoring the moderating impact of unobserved factors on the influence of 

injury severity determinants and/or the endogeneity of seat belt use in injury severity modeling 

leads to biased parameter estimates and elasticity effects. 

7.2 RECOMMENDATIONS 

With respect to seat belt use specifically, our results suggest that seat belt usage and the safety-

conscious driving attitudes of those who wear seat belts are about equally important in reducing 

the likelihood of a fatal injury (earlier research efforts do not disentangle these two different 

aspects of seat belt usage). This is very significant from a policy stand point. The results 

advocate for stringent enforcement of the seat belt use laws. Moreover, the seat belt non-users 

should perhaps be subjected to both a fine (to increase the chances that they wear seat belts) as 

well as mandatory enrollment in a defensive driving course (to attempt to change their aggressive 

driving behaviors). 

7.3 SUMMARY 

To summarize, the present study attempts at modeling crash injury severity of drivers of non-

commercial vehicles. The study highlights the need to consider the moderating influence of 

unobserved variables and potential seat belt endogeneity in modeling injury severity. A new 

multivariate, methodologically rigorous, and disaggregate discrete choice framework is adopted 

to address these issues. The study also establishes, both intuitively and statistically, that the new 
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joint model performs better in modeling crash injury severity and has very significant 

implications for policy makers. 
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Appendix 

 TABLE A.1 Estimates of the Seat Belt use Component of IBO Model 
 

Variables Coefficient t-stats 

Constant 2.988 22.25 

Driver Characteristics   

Male -0.558 -6.31 

Age Variables (age < 25 years is base)   

25-29 years 0.316 2.30 

30-64 years 0.209 2.55 

65-74 years 1.201 2.92 

Under the influence of alcohol -2.063 -18.25 

Vehicle Characteristics (pick-up is base)   

Sedan 0.323 3.57 

SUV 1.108 6.67 

Minivan 0.575 3.23 

Environmental Factors   

9am-7pm 0.573 6.06 
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TABLE A.2 Injury Severity Component of IBO Model 
 

Variables Coefficient t-stats 
Driver Characteristics   
Male -0.397 -8.68 
Age Variables (age < 25 years is base)   

25-74 years 0.170 2.88 
> 74 years 0.307 2.57 

Male Age < 25 years -0.155 -1.77 
Under the influence of alcohol 0.224 2.07 
Vehicle Characteristics   
Sedan 0.234 5.29 
Sedan x snow / fog 0.595 3.31 
Sedan x struck by a non-sedan 0.097 1.47 
Roadway Design Attributes   
Medium-to-high speed limit (26-64mph) 0.772 10.83 
High speed limit (≥64 mph) 0.742 5.06 
Environmental Factors   
6am – 7pm -0.247 -4.36 
Lighting Conditions   

Dusk -0.222 -1.60 
Dark -0.018 -0.24 

Adverse Weather Conditions   
Rain -0.116 -1.97 
Snow and/or fog -0.531 -3.80 

Crash Characteristics   
Driver ejected out of the vehicle 2.992 8.06 
Vehicle rolled over 1.567 14.31 
Crash with a Stationary Object (base is crash with another vehicle)   

Large object 1.249 17.59 
Small object 1.023 11.80 

Manner of Collision in Two Vehicle Crashes (base is rear-end collision)   
Head on 1.164 10.68 
Angle 0.360 8.18 
Swipe collision when vehicles are traveling in opposite directions -0.633 -1.98 
Swipe collision when vehicles are traveling in same direction -1.167 -10.07 

Vehicle Role in Two Vehicle Crashes (base is driver strikes other vehicle)   
Driver struck by a vehicle 0.372 7.67 
Driver involved in strike and struck 0.176 1.13 

Seat belt -1.290 -14.37 
Threshold Parameters   
Threshold 1 1.398 10.35 
Threshold 2 2.544 18.46 
Threshold 3 3.855 25.48 
Threshold 4 6.555 21.63 
Log-likelihood at convergence -10570.6 
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TABLE A.3 Estimates of the Seat Belt use Component of IRBO Model 

 

Variables Coefficient t-stats 

Constant 2.989 22.26 

Driver Characteristics   

Male -0.559 -6.31 

Age Variables (age < 25 years is base)   

25-29 years 0.317 2.31 

30-64 years 0.208 2.55 

65-74 years 1.200 2.92 

Under the influence of alcohol -2.063 -18.19 

Vehicle Characteristics (pick-up is base)   

Sedan 0.322 3.56 

SUV 1.105 6.64 

Minivan 0.571 3.21 

Environmental Factors   

9am-7pm 0.573 6.05 
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TABLE A.4 Injury Severity Component of IRBO Model 
 

Variables Coefficient t-stats 
Driver Characteristics   
Male -0.431 -8.56 
Age Variables (age < 25 years is base)   

25-74 years 0.198 3.07 
> 74 years 0.342 2.60 

Male Age < 25 years -0.160 -1.68 
Under the influence of alcohol 0.258 2.11 
Vehicle Characteristics   
Sedan 0.262 5.45 
Sedan x snow / fog 0.637 3.20 
Sedan x struck by a non-sedan 0.118 1.65 
Roadway Design Attributes   
Medium-to-high speed limit (26-64mph) 0.830 10.76 
High speed limit (≥64 mph) 0.280 0.94 

Standard Deviation 1.510 3.19 
Environmental Factors   
6am – 7pm -0.267 -4.31 
Lighting Conditions   

Dusk -0.222 -1.53 
Dark -0.382 -2.91 
Standard Deviation 1.382 5.81 

Adverse Weather Conditions   
Rain -0.131 -2.06 
Snow and/or fog -0.587 -3.87 

Crash Characteristics   
Driver ejected out of the vehicle 3.254 7.72 
Vehicle rolled over 1.681 13.82 
Crash with a Stationary Object (base is crash with another vehicle)   

Large object 1.336 17.09 
Small object 1.058 11.09 

Manner of Collision in Two Vehicle Crashes (base is rear-end collision)   
Head on 1.239 11.04 
Angle 0.087 0.99 
Standard Deviation 1.016 5.81 
Swipe collision when vehicles are traveling in opposite directions -0.636 -1.99 
Swipe collision when vehicles are traveling in same direction -1.204 -10.29 

Vehicle Role in Two Vehicle Crashes (base is driver strikes other vehicle)   
Driver struck by a vehicle 0.416 7.69 
Driver involved in strike and struck 0.320 1.78 

Seat belt -1.390 -13.74 
Threshold Parameters   
Threshold 1 1.397 9.58 
Threshold 2 2.638 17.52 
Threshold 3 4.031 24.02 
Threshold 4 6.853 21.09 
Log-likelihood at convergence -10557.6 

 
 

 47



8 References 

Abdel-Aty, M. A., C. L. Chen, and J.R. Schott (1998) An Assessment of the Effect of Driver 
Age on Traffic Accident Involvement Using Log-Linear Models. Accident Analysis and 
Prevention, 30(6), 851-861. 

Abdel-Aty, M. A., and H. Abdelwahab (2004) Modeling Rear-End Collisions Including the Role 
of Driver’s Visibility and Light Truck Vehicles using a Nested Logit Structure. Accident 
Analysis and Prevention, 34(6), 724-741. 

Al-Ghamdi, S.A. (2002) Using Logistic Regression to Estimate the Influence of Accident 
Factors on Accident Severity. Accident Analysis and Prevention, 36(3), 447-456. 

Bedard, M., G. H. Guyatt, M. J. Stones, and J. P. Hirdes (2002) The Independent Contribution of 
Driver, Crash, and Vehicle Characteristics to Driver Fatalities. Accident Analysis and 
Prevention, 34(6), 717-727. 

Bhat, C.R. (1991) Toward a Model of Activity Program Generation. PhD Dissertation, 
Department of Civil and Environmental Engineering, Northwestern University. 

Bhat, C.R. (2001) Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed 
Multinomial Logit Model. Transportation Research Part B, 35, 677-693. 

Bhat, C.R., and F.S. Koppelman (1993) An Endogenous Switching Simultaneous Equation 
System of Employment, Income and Car Ownership. Transportation Research Part A, 
27, 447-459. 

Bhat, C.R., and V. Pulugurta (1998) A Comparison of Two Alternative Behavioral Choice 
Mechanisms for Household Auto Ownership Decisions. Transportation Research Part B, 
32(1), 61-75. 

Chamberlain, G. (1980) Analysis of Covariance with Qualitative Data. Review of Economic 
Studies, 47, 225-238. 

Chang, L. Y., and F. L. Mannering (1999) Analysis of Injury Severity and Vehicle Occupancy in 
Truck and Non-Truck Involved Accidents. Accident Analysis and Prevention, 31(5), 579-
592. 

Cohen, A., and L. Einav (2003) The Effects of Mandatory Seat Belt Laws on Driving Behavior 
and Traffic Fatalities. The Review of Economics and Statistics, 85(4), 828-843. 

Cooper, P. J. (1994) Estimating Over Involvement of Seat Belt Nonwearers in Crashes and the 
Effect of Lap/Shoulder Restraint Use on Different Crash Severity Consequences. 
Accident Analysis and Prevention, 26, 263-275. 

 48



Dee, T. S. (1997) Reconsidering the Effects of Seat Belts Laws and their Enforcement Status. 
Accident Analysis and Prevention, 30(1), 1-10. 

Derrig, R. A., M. Segui-Gomez, A. Abtahi, and L. L. Liu (2000) The Effect of Population Safety 
Belt Usage Rates on Motor Vehicle-Related Fatalities. Accident Analysis and Prevention, 
34(1), 101-110. 

Dissanayake, S., and J. J. Lu (2002) Factors Influential in Making an Injury Severity Difference 
to Older Drivers Involved in Fixed Object-Passenger Car Crashes. Accident Analysis and 
Prevention 34(5), 609-618. 

Doherty, S. T., J. C. Andrey, and C. MacGregor (1998) The Situational Risks of Young Drivers: 
The Influence of Passengers, Time of Day and Day of Week on Accident Rates. Accident 
Analysis and Prevention, 30(1), 45-52. 

Evans, L. (1985) Fatality Risk for Belted Drivers versus Car Mass. Accident Analysis and 
Prevention, 17(3), 251-271. 

Evans, L. (1990) The Fraction of Traffic Fatalities Attributable to Alcohol. Accident Analysis 
and Prevention, 22(6), 587-602. 

Evans, L. (1996) Safety-Belt Effectiveness: The Influence of Crash Severity and Selective 
Recruitment. Accident Analysis and Prevention, 28(4), 423-433. 

Evans, L., and M. C. Frick (1988) Seating Position in Cars and Fatality Risk. American Journal 
of Public Health, 78(11), 1456-1458.

Golob, T. F., W. W. Recker, and J. D. Leonard (1986) An Analysis of the Severity and Incident 
Duration of Truck-Involved Freeway Accidents, Accident Analysis and Prevention, 
19(5), 375-395. 

Hajivassiliou, V. A., and P.A. Ruud (1994) Classical Estimation Methods for LDV Models 
Using Simulations. In Handbook of Econometrics, IV, (R. Engle and D. McFadden, eds.), 
Elsevier, New York, 2383-2441. 

Huelke, D. F., and C. P. Compton (1995) Effects of Seat Belts on Injury Severity of Front and 
Rear Seat Occupants in the Same Frontal Crash. Accident Analysis and Prevention 27(6), 
835-838. 

Kassoff, H., and H. D. Deutschman (1969) Trip Generation: A Critical Appraisal. Highway 
Research Record, 297, 15-30. 

Kim, K., L. Nitz, J. Richardson, and L. Li (1994) Personal and Behavioral Predictors of 
Automobile Crash and Injury Severity. Accident Analysis and Prevention, 27(4), 469-
481. 

 49



Kitamura, R., and D. S. Bunch (1990) Heterogeneity and State Dependence in Household Car 
Ownership: A Panel Analysis Using Ordered-Response Probit Models with Error 
Components. In Transportation and Traffic Theory, (M. Koshi, ed.), 477–496.  

Khattak, A. J., and M. Rocha (2003) Are SUVs ‘Supremely Unsafe Vehicles’? Analysis of 
Rollovers and Injuries with Sport Utility Vehicles. Transportation Research Record, 
1840, 167-177. 

Khattak, A. J., P. Kantor, and F. M. Council (1998) Role of Adverse Weather in Key Crash 
Types on Limited-Access Roadways. Transportation Research Record, 1621, 10-19. 

Khattak, A. J., M. D. Pawlovich, R. R. Souleyrette, and S. L. Hallmark (2002) Factors Related to 
More Severe Older Driver Traffic Crash Injuries. Journal of Transportation Engineering 
128(3), 243-249. 

Krull, K. A., A. J. Khattak, and F. M. Council (2000) Injury Effects of Rollovers and Events 
Sequence in Single-Vehicle Crashes. Transportation Research Record, 1717, 46-54. 

Kockelman, K. M., and Y. J. Kweon (2001) Driver Injury Severity: An Application of Ordered 
Probit Models. Accident Analysis and Prevention, 34(3), 313-321. 

Kweon, Y. J., and K. M. Kockelman (2002) Overall Injury Risk to Different Drivers: Combining 
Exposure, Frequency, and Severity Models. Accident Analysis and Prevention, 35(4), 
441-450. 

Lee, L-F. (1992) On the Efficiency of Methods of Simulated Moments and Maximum Simulated 
Likelihood Estimation of Discrete Response Models. Econometric Theory, 8, 518-552. 

Lourens, P. F., J. A. M. M. Vissers, and M. Jessurun (1999) Annual Mileage, Driving Violations 
and Accident Involvement in Relation to Drivers’ Sex, Age and Level of Education. 
Accident Analysis and Prevention, 31(1), 593-597. 

O’ Donnell, C. J., and D. H. Connor (1996) Predicting the Severity of Motor Vehicle Accident 
Injuries Using Models of Ordered Multiple Choice. Accident Analysis and Prevention, 28 
(6), 739-753. 

Preusser, D. F., A. F. Williams, and A. K. Lund (1991) Characteristics of Belted and Unbelted 
Drivers. Accident Analysis and Prevention, 23(6), 475-482. 

Reinfurt, D., A. Williams, J. Wells, and E. Rodgman (1996) Characteristics of Drivers Not Using 
Seat Belts in a High Belt Use State. Journal of Safety Research, 27(4), 209-215. 

Renski, H., A. J. Khattak, and F. M. Council (1999) Effect of Speed Limit Increases on Crash 
Injury Severity: Analysis of Single-Vehicle Crashes on North Carolina Interstate 
Highways. Transportation Research Record, 1665, 100-108. 

Shibata, A., and K. Fukuda (1993) Risk Factors of Fatality in Motor Vehicle Traffic Accidents. 
Accident Analysis and Prevention, 26(3), 391-397.  

 50



Srinivasan, K. K. (2002) Injury Severity Analysis with Variable and Correlated Thresholds: 
Ordered Mixed Logit Formulation. Transportation Research Record, 1784, 132-142. 

Toy, E. L., and J. K. Hammitt (2003) Safety Impacts of SUVs, Vans, and Pickup Trucks in Two 
Vehicle Crashes. Risk Analysis, 23(4), 641-650. 

Ulfarsson, G. F., and F. L. Mannering (2004) Differences in Male and Female Injury Severities 
in Sport-Utility Vehicle, Minivan, Pickup and Passenger Car Accidents. Accident 
Analysis and Prevention, 36(2), 135-147. 

Wang, X., and K. M. Kockelman (2005) Occupant Injury Severity using a Heteroscedastic 
Ordered Logit Model: Distinguishing the Effects of Vehicle Weight and Type. Presented 
at the 84th Annual Meeting of the Transportation Research Board and forthcoming in 
Transportation Research Record. 

 51



VITA 
 
 
 
 

 Naveen Eluru was born to his parents, Babu Rao and Swarajyam, in Tanuku, India. He 

went to S.F.S High School, Tanuku. After completing high school at Gowtham Junior College, 

Vijayawada, he entered Indian Institute of Technology Madras, India. He graduated successfully 

from IIT Madras with a Bachelor’s degree in Civil Engineering in the year 2004. In August 2004 

he joined University of Texas Austin as a Graduate Research Assistant to pursue graduate studies 

in Transportation Systems Engineering under the guidance of Dr. Chandra R. Bhat. He will be 

continuing his graduate education under the guidance of Dr. Bhat.  

 
 
Permanent address: # 23-10-7, Vinnakota vari Street,  

                                Tanuku -534 211, Andhra Pradesh, India  

 

This thesis was typed by the author.  

9  

 52


	start1.pdf
	 

	start2.pdf
	Acknowledgements  

	TOCnew.pdf
	Listoftables.pdf
	1 List of Tables  

	fulldraftnew.pdf
	1 Chapter 1: Introduction 
	1.1 MOTIVATION FOR THE STUDY 
	1.2 STUDY METHODOLOGY AND OBJECTIVES 
	1.3 THESIS STRUCTURE  
	2  Chapter 2: Earlier Research on Modeling Injury Severity 
	2.1 SEAT BELT USE EXOGENOUS TO THE MODELING FRAMEWORK 
	2.2 SUMMARY 

	3 Chapter 3: Studies identifying Seat Belt Use Endogeneity 
	3.1 SEAT BELT ENDOGENOUS TO THE MODELING FRAMEWORK  
	3.2 SUMMARY OF EARLIER STUDIES AND THE CURRENT WORK 

	4  Chapter 4: Methodology and Econometric Framework 
	4.1 MODEL STRUCTURE OF CRBO MODEL 
	4.2 MODEL STRUCTURE OF IBO AND IRBO MODELS 
	4.3 MODEL ESTIMATION OF CRBO MODEL 
	4.4 MODEL ESTIMATION OF IBO AND IRBO MODEL 
	4.5 SUMMARY 

	5  Chapter 5: Data 
	5.1 DATA SOURCE 
	5.2 SAMPLE PREPARATION 
	5.3 SAMPLE DESCRIPTION 
	5.4 SUMMARY 

	6  Chapter 6: Empirical Analysis 
	6.1 VARIABLES CONSIDERED IN THE EMPIRICAL ANALYSIS 
	6.2 MODEL SPECIFICATION 
	6.3 ESTIMATION RESULTS 
	6.3.1 Seat Belt Use Component 
	6.3.2 Injury Severity Component 
	6.3.2.1 Driver Characteristics   
	6.3.2.2 Vehicle Characteristics   
	6.3.2.3 Roadway Attributes   
	6.3.2.4 Environmental Factors 
	6.3.2.5 Crash Characteristics 
	6.3.2.6 Seat Belt Use and Sample Selection Effect   
	6.3.2.7 Threshold Parameters   

	6.3.3 Overall Likelihood-Based Measures of Fit 

	6.4 ELASTICITY EFFECTS 
	6.5 SUMMARY 

	7 Chapter 7: Conclusions and Recommendations 
	7.1 CONCLUSIONS 
	7.2 RECOMMENDATIONS 
	7.3 SUMMARY 




