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Abstract 23 

The proposed research contributes to our understanding of incorporating heterogeneity in 24 

discrete choice models with respect to exogenous variables and decision rules. Specifically, the 25 

proposed latent segmentation based mixed models segment population to different classes with 26 

their own decision rules while also incorporating unobserved heterogeneity within the segment 27 

level models. In our analysis, we choose to consider both random utility and random regret 28 

theories. Further, instead of assuming the number of segments (as 2), we conduct an exhaustive 29 

exploration with multiple segments across the two decision rules. The model estimation is 30 

conducted using a stated preference data from 695 commuter cyclists compiled through a web-31 

based survey. The probabilistic allocation of respondents to different segments indicates that 32 

female commuter cyclists are more utility oriented; however, the majority of the commuter 33 

cyclist’s choice pattern is consistent with regret minimization mechanism. Overall, cyclists’ 34 

route choice decisions are influenced by roadway attributes, cycling infrastructure availability, 35 

pollution exposure, and travel time. The analysis approach also allows us to investigate time 36 

based trade-offs across cyclists belonging to different classes. Interestingly, we observe that 37 

the trade-off values in regret and utility based segments for roadway attributes are similar in 38 

magnitude; but the values differ greatly for cycling infrastructure and pollution exposure 39 

attributes, particularly for maximum exposure levels.   40 

 41 

Keywords: Commuter cyclist, route choice, clean ride, pollution exposure, population 42 

homogeneity, decision homogeneity, regret based model, latent class model   43 
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Introduction 44 

Population homogeneity 45 

Discrete choice models and their variants are employed extensively for analyzing decision 46 

processes in various fields including transportation, marketing, social science, bio-statistics, 47 

and epidemiology. In discrete choice models, decision maker’s choice behavior is examined as 48 

a response to several exogenous variables that include attributes of the choice alternative or 49 

characteristics of the decision maker. The widely employed traditional discrete choice models 50 

restrict the impact of exogenous variables to be the same across the entire sample of records. 51 

The assumption is referred to as population homogeneity and is often highlighted as a 52 

limitation.  53 

Several approaches have been employed to address population homogeneity restriction 54 

in discrete choice models. Segmenting the population based on exogenous variables and 55 

estimating separate models for each segment is a common approach. However, because there 56 

may be many variables to consider in the segmentation scheme, the number of segments 57 

(formed by the combination of the potential segmentation variables) can explode rapidly. To 58 

address the potential explosion of segments, clustering methods have been employed where 59 

target groups are divided into different clusters based on a multivariate set of factors and 60 

separate models are estimated for each cluster. However, both methods require allocating data 61 

records exclusively to a particular cluster, and do not consider the possible effects of 62 

unobserved factors that may moderate the impact of observed exogenous variables. 63 

Additionally, these approaches might result in very few records in some clusters resulting in 64 

loss of estimation efficiency. 65 

A second approach to allow heterogeneity effects (variations in the effects of variables 66 

across the sample population) is to specify random coefficients (rather than imposing fixed 67 
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coefficients) (for example, see (1-5)). But, while the mean of the random coefficients can be 68 

allowed to vary across decision makers based on observed exogenous variables, the random 69 

coefficients approach usually restricts the variance and the distributional form to be the same 70 

across all decision makers. A third approach to accommodate heterogeneity is to undertake an 71 

endogenous (or sometimes also referred to as latent) segmentation approach (see, for example 72 

(6-11)). In this approach, decision makers are allocated probabilistically to different segments, 73 

and segment-specific choice models are estimated. At the same time, each segment is identified 74 

based on a multivariate set of exogenous variables. The approach limits the number of segments 75 

to a manageable number (relative to the combinatorial scheme realized in the first approach).  76 

A further extension of this approach would be accommodating unobserved 77 

heterogeneity within the segment specific choice models employing random parameters or 78 

error component model structures (see Hess and Stathopoulos (12)); thus subsuming the choice 79 

models from the second approach. Overall, the endogenous segmentation with segment level 80 

unobserved heterogeneity, offers an elegant alternative to address heterogeneity (observed and 81 

unobserved). In recent years, several studies have employed endogenous segmentation 82 

approaches (with or without unobserved heterogeneity) across different areas in transportation 83 

(for example, see (7-9, 11) in safety and see (6, 13-15) in travel behavior). 84 

 85 

Decision rule homogeneity 86 

The exact formulation of discrete choice models are a function of the decision rule employed. 87 

In traditional discrete choice models, the analyst generally assumes the same decision rule 88 

across the sample population. The predominantly adopted decision rule for developing discrete 89 

choice models is random utility maximization (RUM) that hypothesizes that decision makers, 90 

when faced with multiple alternatives with varying attributes, choose the alternative that 91 

provides them with the highest utility or satisfaction (16-18). While random utility model 92 
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formulations have served as the predominant decision rule for discrete choice models, there is 93 

growing recognition of their limitations. The implicit compensatory nature of the formulation 94 

allows for a poor performance on an attribute (such as travel time) to be compensated by a 95 

positive performance on another attribute (such as travel cost) (19). In some choice occasions, 96 

such behavior is not realistic. In recent years, motivated by research in behavioral economics, 97 

there has been considerable interest in alternative decision rules for discrete choice models 98 

such as relative advantage maximization (20), contextual concavity model (21), fully-99 

compensatory decision making (22, 23), prospect theory (PT) (24, 25) and random regret 100 

minimization (RRM) (19, 26).  101 

 102 

Current study 103 

Based on the aforementioned discussion, it is evident that homogeneity in both exogenous 104 

variable impact and decision rule restrict the flexibility offered by discrete choice models. In 105 

fact, the model parameters estimated with these restrictions are likely to be biased. While 106 

several research studies have focused on exogenous variable homogeneity, the decision rule 107 

homogeneity assumption has received less attention (for example see Hess et al. and Boeri et 108 

al. (27, 28)). The current research contributes to our understanding regarding heterogeneity in 109 

discrete choice models with respect to both exogenous variables and decision rules. 110 

Specifically, the proposed latent segmentation based mixed models segment population to 111 

different classes with their own decision rules while also incorporating unobserved 112 

heterogeneity within the segment level models. In our analysis, we choose to consider both 113 

random utility and random regret theories. The random regret minimization approach has 114 

received wide application because of its mathematical similarity to the random utility approach 115 

and its intuitive appeal (26, 29-34). In Hess et al., (27) a two-segment latent class model is 116 

proposed – one segment represented by random utility formulation and the other by random 117 



 

 

6 

regret formulation. In our approach, instead of assuming the number of segments (as 2), we 118 

conduct an exhaustive exploration with multiple segments across the two decision rules. 119 

Further, within each segment, we also allow for unobserved heterogeneity. The reader would 120 

note that the estimation of latent class models become complex with increasing number of 121 

segments and presence of unobserved heterogeneity (see Sobhani et al. (35) for some 122 

discussion). The extensive modeling exercise is developed employing a stated preference data 123 

compiled to understand influence of air pollution exposure on bicycle route choice.  124 

The remainder of the paper is organized as follows. Next section provides a discussion 125 

of econometric methodology applied followed by the empirical context. In the section after, 126 

data source, variables considered, and model estimation results are presented in detail. Results 127 

from the trade-off analysis is presented in the fifth section. Final section presents a summary 128 

of findings and concludes the paper.   129 

 130 

Econometric framework 131 

In this section, we describe the mathematical formulation of the model used in the current 132 

study. Let 𝑐 (𝑐 = 1,2, … , 𝐶) be the index for cyclists, 𝑖 (1, 2, … , 𝐼) be the index for route 133 

alternatives characterized by 𝑚 (𝑚 = 1,2, … , 𝑀) attributes, and 𝑘 (1, 2, … , 𝐾) be the index for 134 

choice occasions for each cyclist. In our case, 𝐼 = 3 and 𝐾 = 5 for all 𝑐. Let us also consider 135 

𝑆 possible number of segments where the cyclists would be probabilistically assigned. The 136 

probability that cyclist 𝑐 belongs to segment 𝑠 (𝑠 = 1,2, … , 𝑆) is given as:  137 

𝑃𝑐𝑠 =  
exp(𝛾𝑠

′𝑧𝑐)

∑ exp(𝛾𝑠
′𝑧𝑐)𝑆

𝑠=1

 
(1) 

𝑧𝑐 is a (M x 1) column vector of cyclist attributes that influences the propensity of belonging 138 

to segment s, 𝛾𝑠
′ is a corresponding (M x 1) column vector of estimable coefficients. Within the 139 
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latent class approach, the unconditional probability of a cyclist 𝑐 choosing a commuting route 140 

𝑖 is given as: 141 

𝑃𝑐(𝑖) = ∑(

𝑆

𝑠=1

𝑃𝑐(𝑖) | 𝑠)(𝑃𝑐𝑠) 
(2) 

where 𝑃𝑐(𝑖)|𝑠 represents the probability of cyclist 𝑐 choosing route 𝑖 within the segment 𝑠. 142 

Note that the decision paradigm used to obtain the conditional probability 𝑃𝑐(𝑖)|𝑠 may follow 143 

either utility or regret based unordered choice (traditionally multinomial logit) mechanism. 144 

If a random utility based multinomial logit model is assumed to evaluate the route 145 

choice decision accommodating unobserved heterogeneity, the conditional probability would 146 

take the following form: 147 

𝑃𝑐(𝑖) | 𝑠 =  ∫ (∏
exp(𝛼𝑠

′𝑥𝑐𝑖𝑘)

∑ exp(𝛼𝑠
′ 𝑥𝑐𝑖𝑘)𝑅

𝑟=1 )

𝐾

𝑘=1
) 𝑓(𝛼)𝑑𝛼 

(3) 

Here, 𝛼𝑠
′  is a (L x 1) column vector of coefficients, and 𝑥𝑐𝑖𝑘 is a (L x 1) column vector of route 148 

attributes, where 𝑓(𝛼) is a density function specified to be normally distributed with mean 0 149 

and variance 𝜎2.  150 

On the other hand, if a random regret based multinomial logit model is assumed to 151 

evaluate the route choice decision, the conditional probability would be given as: 152 

𝑃𝑐(𝑖)| 𝑠 =  ∫ (∏
exp(−𝑅𝑐𝑖𝑘 )

∑ exp(−𝑅𝑐𝑖𝑘 )
𝑅
𝑟=1

𝐾

𝑘=1
)  𝑓(𝛿)𝑑𝛿 

(4) 

Here, 𝑅𝑐𝑖𝑘 = ∑ ∑ ln[1 + exp {𝛿𝑚(𝑥𝑐𝑗𝑚𝑘 − 𝑥𝑐𝑖𝑚𝑘)}]𝑀
𝑚=1𝑗≠𝑖 ; 𝛿𝑚 is a (Lx1) column vector of 153 

estimable coefficients associated with attribute 𝑥𝑚; 𝑥𝑖𝑚 and 𝑥𝑗𝑚 are (Lx1) column vectors of 154 

route attributes for the considered alternative 𝑖 and another alternative 𝑗, respectively, where 155 

𝑓(𝛿) is a density function specified to be normally distributed with mean 0 and variance 𝜌2. 156 

The log-likelihood function for the entire dataset with appropriate 𝑃𝑐(𝑖)|𝑠 is as follows: 157 
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𝐿𝐿 =  ∑ log (𝑃𝑐(𝑖
𝐶

𝑐=1
)) 

(5) 

Contrary to the traditional endogenous segmentation approaches, capturing decision rule 158 

heterogeneity involves a more computationally intensive estimation approach. The estimation 159 

approach begins with single segment models from each regime. Then, a new segment from one 160 

of the two approaches is added. The process is continued until there is no further improvement 161 

in data fit. The approach allows for multiple segments originating from the same decision rule 162 

i.e. the segmentation model can have multiple RUM and RRM segments; thus offering 163 

enhanced flexibility. Finally, given the complexity of adding multiple segments from both 164 

regimes, we also consider overall sample shares of the segments in arriving at the final model 165 

as opposed to only data fit. 166 

 167 

Empirical context 168 

The analysis of population and decision rule heterogeneity is conducted drawing on an 169 

empirical context – impact of air pollution on bicycle route choice. While bicycling offers 170 

health benefits, there is growing recognition that the potential health benefits might be offset 171 

by increased exposure to air pollutants for bicyclists. Several research efforts have documented 172 

the potential increased exposure to air pollution for bicyclists owing to their close proximity to 173 

traffic, high respiration rates, and longer journeys (36-38). Furthermore, there is growing 174 

evidence from health research studies highlighting the potential consequences of increased air 175 

pollution exposure (for example see Weichenthal et al. (39)). Thus, there is need to explore the 176 

impact of air pollution exposure on bicycling choices.  177 

An exhaustive review of literature on bicycling related decisions (such as decision to 178 

cycle, frequency of cycling, and route choice) is beyond the scope of the paper. Given the focus 179 

of our current study, we provide a concise summary of literature on route choice decision 180 
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process for commuter cyclists (see Anowar et al. (40) for more details). For examining route 181 

choice, studies relied on both stated preference (SP) (41-48) and revealed preference (RP) 182 

survey data (49-53). The most commonly employed analytical approaches to model route 183 

choice include binary logit (BL) or multinomial logit (MNL), mixed multinomial logit 184 

(MMNL), multinomial probit (MNP), and heuristic approaches. The important factors 185 

affecting route choice decision include socio-demographic characteristics, bike route 186 

characteristics, traffic characteristics, environmental attributes, access to facilities (such as 187 

showers at work place), and trip characteristics. Of these, the most significant factors are: travel 188 

time (lower is preferred), presence of incline (flat is preferred), bicycle infrastructure 189 

(continuous and exclusive/segregated routes are preferred), traffic volume (lower is preferred), 190 

and air pollution exposure (lower is preferred) (36, 40, 41, 43-47, 49, 50, 52, 54-56). 191 

The current study builds on the first research effort that studied the impact of air 192 

pollution exposure on bicycling route choice (see Anowar et al., (40)). In the previous study, 193 

the emphasis was on examining if air pollution exposure information affected route choice. 194 

The study employed stated preference experiment data from 695 commuter cyclists and used a 195 

random utility approach to examine cyclist’s willingness to trade-off air pollution exposure 196 

with other attributes such as roadway characteristics, bike facilities, and travel time. 197 

 198 

Empirical analysis 199 

Data source and experimental design 200 

In our SP survey, responses from bicyclists were collected along four dimensions. (1) 201 

Respondent’s personal and household characteristics (such as gender, age, education level, 202 

employment type and schedule, nearest intersections at the place of residence and work, 203 

household income, number of persons in the household, level of automobile and bicycle 204 



 

 

10 

ownership, and commute time in minutes); (2) Cycling habits (frequency of cycling, if 205 

accompanied by children while making the trip, regular bicycling experience in years, primary 206 

reasons for cycling, seasons of cycling, and how often they switch their usual biking route); (3) 207 

Hypothetical choice scenarios with three route options per scenario; and (4) Cyclist’s 208 

perception about the characteristics of his/her usual commuting route.  209 

The experimental design for identifying the hypothetical choice scenarios for the SP 210 

game was developed considering the following attributes: roadway characteristics: grade, 211 

traffic volume, and roadway type; bike route characteristics: cycling infrastructure continuity 212 

and segregation and landmarks along the route; and air pollution: mean exposure level (in ppb) 213 

and maximum exposure level (in ppb). A detailed description of the considered attributes and 214 

the corresponding attribute levels are presented in Table 1. Considering and comparing all of 215 

these attributes would burden the respondents significantly and complicate their route choice 216 

process. Hence, an innovative partitioning technique where only five attributes were used to 217 

characterize the alternative routes in each of the SP scenarios was used. Of these five attributes, 218 

the air pollution (mean and maximum exposure) and travel time attributes were always 219 

retained. These air pollution exposures were measured as a concentration of Nitrogen dioxide 220 

(NO2) in units of parts per billion (ppb). In addition, one attribute from roadway characteristics 221 

and one from bike route characteristics were randomly chosen for each individual through 222 

carefully designed rotating and overlapping approach to capture all variable effects when the 223 

responses from the different SP choice scenarios across different individuals are compiled 224 

together. Route choice alternatives were developed by experimental design routines in SAS in 225 

such a way that every individual gets five choice experiments in the survey. The SP scenarios 226 

were preceded by clear definitions of the attributes – pictorial representations were provided to 227 

give respondents a clearer idea about exclusive/shared and continuous/discontinuous cycling 228 

infrastructure. 229 
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 230 

Table 1. Attribute Levels for the SP Experiments. 231 

Attribute 

Category 
Attribute Definition of Attribute Attribute Levels 

Roadway 

characteristics 

Grade Nature of terrain 

1. Flat 

2. Moderate  

3. Steep 

Traffic volume Amount of traffic on the roadway 

1. Light 

2. Moderate 

3. Heavy 

Roadway type 
Functional classification of 

roadway 

1. Residential /Local roads  

2. Minor arterial 

3. Major arterial 

Bike route 

characteristics 

 

Cycling infrastructure 

continuity 

Continuous bike route – if the 

whole route has a bicycle facility 

(a bike lane or shared-use path)  

Discontinuous - otherwise 

1. Continuous 

2. Discontinuous 

Cycling infrastructure 

segregation 

Exclusive/Segregated– if 

physically separated from motor 

vehicle traffic 

Shared – otherwise 

1. Exclusive 

2. Shared 

Environmental 

condition 

Amount of traffic-

related air pollution 

subjected to while 

cycling 

Mean exposure levels to pollutants 

1. 5 ppb 

2. 10 ppb 

3. 15 ppb 

Maximum exposure levels to 

pollutants 

1. 20 ppb 

2. 40 ppb 

3. 60 ppb 

Trip 

characteristics 
Duration of trip 

Travel time to destination (for 

commuting bicyclists only) 

1. 20 minutes 

2. 25 minutes 

3. 30 minutes 

4. 35 minutes 

5. 40 minutes 

 232 

We also conducted an “information provision” experiment to understand two issues. 233 

First, to identify if receiving information on the potential health effects resulting from exposure 234 

to traffic-related air pollution has any impact on a cyclist’s route choice decision and second, 235 

to study the sensitivity towards the nature of information provided. For this purpose, we 236 

devised three types of informational messages (see Supplementary information S1 Table for 237 

the messages). One (or none) of these messages was presented to the respondent in a window 238 

preceding the scenarios and following the description of attributes. The survey was designed 239 

so that information display was randomized to ensure that a quarter of the respondents received 240 

no information while the rest of them received at least one of the three messages. The details 241 
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of the experimental design, attribute selection process, and survey dissemination strategies with 242 

demographic profile of commuters are described in Anowar et al. (40, 57).  243 

The web-based survey was approved by the Health Sciences Research Ethics Board 244 

(HSREB) of the University of Toronto (UofT), Canada and was run from April 2016 through 245 

July 2016 for about 12 weeks. Several dissemination schemes were adopted including emailing 246 

web-link to the survey to individuals, university (University of Toronto and University of 247 

Central Florida) electronic mailing lists, various bicyclist forums, organizations, and groups; 248 

uploading posts in different social media platforms including Facebook, LinkedIn, and Twitter; 249 

placing advertisement posters in public message sharing spaces alongside major roadways (in 250 

Toronto). Additionally, bicycle-related websites posted the link on their web pages. Individuals 251 

who learnt about our survey from these sources may have distributed it to their peers, 252 

colleagues, family, and friends. Participation was completely voluntary and open to individuals 253 

over 18 years of age. At the beginning of the survey, participants were provided with an 254 

overview of what the survey entails and what it is for. They were given the option to proceed 255 

(I agree) or exit (I do not agree) from the survey, after reading the information. A total of 750 256 

cyclists responded, out which 695 cyclists completed the survey. 257 

 258 

Data compilation and sample demographics 259 

The survey data was processed by removing incomplete information from raw data. A total of 260 

3475 choices were compiled from 695 respondents. Figure 1 presents the descriptive statistics 261 

for the 695 commuter respondents from the sample. The sample of respondents is composed 262 

of 58 percent male and 42 percent female cyclists. Almost three-fifths (60%) of the respondents 263 

are aged between 18–34 years, reflecting that young adults are more likely to bicycle for 264 

commute purposes than older people. Almost fifty percent of commuter cyclists holds a 265 

graduate degree while almost three-fifths of cyclists are full-time job holders. About 40% of 266 
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the commuter cyclists belong to a high-income household (more than $100,000/year). The 267 

majority (77%) of commuter cyclists reside in multi-individual households. A vast majority of 268 

them come from households owning multiple bicycles (77% of respondents’ household own at 269 

least 2 bicycles) while 42% of the respondents come from vehicle-less household. The reader 270 

would note that the survey participants include a higher proportion of younger, highly educated 271 

and high income households. While the sample is not representative of the general population, 272 

given that the emphasis is on route choice decision process, the lack of representativeness does 273 

not adversely affect the sample quality (see TCRP (58) and Sener et al. (46) for more 274 

discussion). 275 

 276 

Fig 1. Socio-demographic Profile of Commuter Cyclists. 277 

 278 

Variables considered 279 

In our study, we considered household and individual socio-demographic characteristics for 280 

latent segmentation component and bicycle route choice attributes for within segment models. 281 

The socio-demographic characteristics considered are: gender, age category, education, 282 

employment status, experience of bicycling, bicycling frequency, accompaniment by children, 283 

and actual commute time reported by respondents, number of household members, number of 284 

automobiles and bicycles owned by household. The variables considered for the route choice 285 

part are: (1) roadway characteristics: grade (flat, moderate, and steep), traffic volume (low, 286 

medium, and heavy), and roadway type (residential/local street, minor arterial, and major 287 

arterial), (2) bike route characteristics: cycling infrastructure continuity and cycling 288 

infrastructure segregation (exclusive and shared), and (3) air pollution (mean exposure level 289 

and maximum exposure level), and (4) trip characteristics: travel time.  290 



 

 

14 

Note that residential/local streets are those with light traffic with speeds < 40 km/h or 291 

25 mph, minor arterials are those with moderate traffic with speeds 40-60 km/h or 25-40 mph, 292 

and major arterials are those with heavy traffic with speeds > 60 km/h or 40 mph. A bicycle 293 

route is labeled continuous if the whole route has a bicycle facility (a bike lane or a shared-use 294 

path). In contrast, a bicycle route is considered to be discontinuous if on some portions of the 295 

route bicyclists must share a lane with automobiles. Finally, exposure to traffic-generated 296 

pollution was expressed in two ways. First, mean exposure ranging from 5-15 ppb and 297 

maximum exposure ranging from 20-60 ppb. We used discretized travel time attribute ranging 298 

from 20-40 minutes. 299 

 300 

Model specification and performance evaluation 301 

The empirical analysis involves estimation of several models. More specifically, we estimated 302 

four traditional models and nine latent class models. Four traditional models include: (1) 303 

random utility based multinomial logit model, (2) random utility based mixed multinomial logit 304 

model, (3) random regret based multinomial logit model, (4) random regret based mixed 305 

multinomial logit model. The estimated latent class models are: (1) random utility based latent 306 

multinomial logit model with two segments, (2) random regret based latent multinomial logit 307 

model with two segments, (3) random regret based latent multinomial logit model with three 308 

segments, (4) latent class multinomial logit model with hybrid segments (LCMHS). In the 309 

LCMHS category, we tested different combinations of decision rules with different number of 310 

classes. These are: (1) LCMHS with two segments (1 random utility based segment, 1 random 311 

regret based segment), (2) LCMHS with three segments (2 random regret based segment – 1 312 

random utility based segment), (3) LCMHS with three segments (1 random regret based 313 

segment – 2 random utility based segment), (4) LCMHS with four segments (2 random regret 314 

based segment – 2 random regret based segment), (5) LCMHS with four segments (3 random 315 
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regret based segment – 1 random utility based segment) and (6) LCMHS with four segments 316 

(1 random regret based segment – 3 random utility based segment). Note that we also tested 317 

for taste heterogeneity in the segment specific models, but the results were not supportive of 318 

the presence of further segment level unobserved heterogeneity. The variables that offered a 319 

statistically significant parameter at the 90% confidence level and offered intuitive impacts 320 

were retained.  321 

 The performance of the estimated (13) models was compared based on two goodness 322 

of fit measures best suited for comparing non-nested models: (1) Akaike information criterion 323 

(AIC) and (2) Bayesian Information Criterion (BIC). AIC for a given empirical model is 324 

expressed as: 325 

𝐴𝐼𝐶 =  2𝑘 −  2𝑙𝑛(𝐿) 
(6) 

where 𝑘 is the estimated number of parameters and 𝐿 denotes the maximized value of likelihood 326 

function for a given empirical model. The empirical equation of BIC is: 327 

𝐵𝐼𝐶 =  − 2𝑙𝑛(𝐿)  +  𝐾 𝑙𝑛(𝑄) 
(7) 

where 𝑙𝑛(𝐿) denotes the log likelihood value at convergence, 𝐾 denotes the number of 328 

parameters, and 𝑄 represents the number of observations. Many of the earlier studies suggested 329 

that the BIC is the most consistent information criterion (IC) among all other traditionally used 330 

ICs (AIC, AICc, adjusted BIC) for number of segments selection in latent class models (6, 7, 331 

11, 13, 59, 60). The advantage of using BIC is that it imposes substantially higher penalty than 332 

other ICs on over-fitting. The model with the lowest AIC and BIC value is the preferred model. 333 

The BIC and AIC values for the final specifications of all the models are presented in Table 2.  334 

Based on these values, LCMHS with four segments (3 random regret based segment – 1 335 

random utility based segment) offers the best data fit. 336 

 337 
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Table 2. Goodness of Fit Measures. 338 

Model Log-likelihood  

Number of 

Parameters 

(K) 

Number of 

Observations 

(Q) 

BIC AIC 

Traditional Choice Models 

RUM based MNL -2765.470 23 3475 5718.467 5576.940 

RUM based mixed MNL -2759.650 24 3475 5714.980 5567.300 

RRM based MNL -2709.500 35 3475 5704.367 5489.000 

RRM based mixed MNL -2688.781 32 3475 5638.470 5441.563 

Latent Segmentation Models 

RUM based Latent MNL 

with two segments 
-2734.217 20 3475 5631.500 5508.434 

RRM based Latent MNL 

with two segments 
-2693.295 23 3475 5574.118 5432.591 

RRM based Latent MNL 

with three segments 
-2665.158 26 3475 5542.304 5382.316 

LCMS with two segments 

(1 RUM based segment-1 

RRM based segment) 

-2729.685 20 3475 5622.438 5499.371 

LCMS with three segments 

(2 RUM based segment-1 

RRM based segment) 

-2601.792 36 3475 5497.104 5275.583 

LCMS with three segments 

(1 RUM based segment-2 

RRM based segment) 

-2647.804 29 3475 5532.055 5353.608 

LCMS with four segments 

(2 RUM based segment-2 

RRM based segment) 

-2559.369 42 3475 5461.178 5202.738 

LCMS with four segments 

(1 RUM based segment-3 

RRM based segment) 

-2566.263 33 3475 5401.587 5198.526 

LCMS with four segments 

(3 RUM based segment-1 

RRM based segment) 

-2624.438 34 3475 5526.090 5316.876 

 339 

Population share distribution among segments 340 

The latent segmentation component determines the probability that a cyclist is assigned to the 341 

identified segments. We used the model estimations to generate the population shares across 342 

the various segments of all the latent class models following the equation (6, 61) below: 343 

𝐺𝑆 =  
∑ 𝑃𝑐𝑠𝑐

𝐶
 

(8) 
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where 𝐶 denotes the total number of respondents in the sample. The shares are presented in 344 

Table 3. The table offers some interesting insights. In all the latent class models with mixed 345 

choice paradigms, cyclists are more likely to be part of the segment(s) with random regret 346 

decision rule. For instance, in our best specified model, only 30% of the cyclists are likely to 347 

be allocated to the random utility based segment while the rest of them to the three random 348 

regret based segments (8%, 43%, and 19%). It is interesting to note that the split of cyclists 349 

who make their route choice decision following regret minimization concept is not equal. 350 

 351 

Table 3. Population Share Distribution. 352 

Model Segment-1 Segment-2 Segment-3 Segment-4 

RUM based Latent MNL with two segments 72 28 - - 

RRM based Latent MNL with two segments 47 53 - - 

LCMHS with two segments (1 RUM based 

segment-1 RRM based segment) 
35 65 - - 

RRM based Latent MNL with three segments 16 18 66 - 

LCMHS with three segments (2 RUM based 

segment-1 RRM based segment) 
30 34 36 - 

LCMHS with three segments (1 RUM based 

segment-2 RRM based segment) 
24 21 55 - 

LCMHS with four segments (2 RUM based 

segment-2 RRM based segment) 
19 14 21 46 

LCMHS with four segments (1 RUM based 

segment-3 RRM based segment) 
8 30 43 19 

LCMHS with four segments (3 RUM based 

segment-1 RRM based segment) 
13 25 33 29 

 353 

Model results 354 

In addition to the best model fit, LCMHS with four segments (3 random regret based segment 355 

– 1 random utility based segment) provided the most intuitive behavioral interpretation in terms 356 

of route choice decision. Hence, in this section we only discuss about the results of the best fit 357 

model in detail. Table 4 presents the results for the segmentation component (top panel of 358 

results) and segment specific route choice models (bottom panel of results). To provide a 359 
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benchmark for the proposed model, we have also included the results for the mixed MNL model 360 

in Table 5. 361 

 362 

Latent segmentation component 363 

The variables in the segmentation part with positive (negative) coefficient indicate increase 364 

(decrease) in the propensity of the cyclists being part of the segment. In our analysis, we 365 

considered Segment 1 as the base. The positive sign on the constant term does not have any 366 

functional interpretation, but simply reflects the larger likelihood of bicyclists being part of 367 

other three segments. The variables influencing segment membership include gender, age, auto 368 

ownership, biking frequency, and commute length. Our results indicate that female bicyclists 369 

are more likely to be assigned to Segment 2 (utility based decision rule segment). Examining 370 

the coefficients of Segment 3, we find that bicyclists in this class are more likely to be daily 371 

commuters, less than 35 years of age, from a household with less number of automobiles, and 372 

have a moderate commute duration. Interestingly, Segment 4 is more likely to be comprised of 373 

daily commuters as well (with a slightly higher propensity for Segment 4 membership than 374 

Segment 3 membership) but with short commute length.   375 

 376 

Segment specific route choice models 377 

A cursory examination of the results indicates the presence of the higher number of segment 378 

specific effects for Segment 2 and Segment 3. On the other hand, Segment 1 route choice 379 

behavior is only influenced by one variable. It is also evident that across the various segments, 380 

the variable impacts are significantly different manifesting the presence of population 381 

heterogeneity. We provide a discussion of model results across the 4 segments in this section 382 

by variable characteristics. 383 

 384 
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Table 4. Results of LCMS with Four Segments (1 RUM Based Segment-3 RRM Based Segment). 385 

Variables 
Segment-1 (RRM) Segment-2 (RUM) Segment-3 (RRM) Segment-4 (RRM) 

Estimate t-statistics Estimate t-statistics Estimate t-statistics Estimate t-statistics 

Segmentation Component 

Constant - - 0.892 3.225 2.710 6.854 0.710 1.836 

Female (Base: Male) - - 0.869 3.697 - - - - 

Age (Base: 18-34 years)  

 35 or more years      - - - - -1.119 -4.883 - - 

Auto Ownership - - - - -0.498 -3.913 - - 

Biking frequency (Base: Rarely) 

 Daily - - - - 0.546 2.023 0.795 2.36 

Commute length (Base: Short commute) 

 Long Commute - - - - -1.013 -2.442 - - 

 Moderate to Long Commute - - - - - - -0.978 -3.448 

Route Choice Component 

Roadway Characteristics  

Grade (Base: Flat) 

 Steep - - -1.795 -6.221 -2.131 -10.220 - - 

Traffic Volume (Base: Light) 

 Medium - - -1.027 -3.492 - - - - 

 Heavy - - -1.604 -5.906 -1.137 -6.399 -1.906 -5.760 

Roadway Type (Base: Residential roads) 

 Minor arterial - - -0.904 -5.156 - - - - 

 Major arterial - - -2.178 -6.356 -1.843 -11.443 - - 

Bike Route Characteristics 

Infrastructure Continuity (Base: Discontinuous) 

 Continuous - - 1.325 6.071 1.000 5.486 - - 

Infrastructure Segregation (Base: Shared) 

 Exclusive - - 1.859 8.215 1.029 8.136 - - 

Environmental condition 

Mean Exposure -0.055 -3.433 -0.058 -3.027 -0.067 -5.776 -0.050 -3.404 

Maximum Exposure - - -0.034 -6.957 -0.015 -5.723 -0.027 -6.984 

Trip Characteristics 

Travel Time - - -0.050 -4.247 -0.248 -12.122 -0.139 -8.205 

Log-likelihood at Convergence -2566.263 

386 
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Table 5. Results of RUM Based Mixed MNL. 387 

Attribute 

Category 
Attribute Attribute Levels Coefficient t-statistics 

Roadway 

Characteristics 

Grade 

(Base: Flat) 

Steep -0.982 -10.579 

 Female -0.804 -5.601 

Traffic Volume 

(Base: Light) 

Moderate -0.657 -7.729 

Heavy -1.508 -16.662 

Roadway Type 

(Base: Residential Roads) 

Minor arterial -0.398 -4.776 

Major arterial -1.290 -15.025 

 Female -0.345 -2.576 

Bike Route 

Characteristics 

Infrastructure Continuity 

(Base: Discontinuous) 
Continuous 0.879 13.485 

Infrastructure Segregation 

(Base: Shared) 

Exclusive 0.939 10.353 

 Female 0.306 2.561 

Environmental 

Condition 

Mean Exposure 

Mean exposure -0.054 -8.791 

 Biking experience (Base: 2 or more years) 

  Less than 2 years -0.021 -1.961 

Maximum Exposure 

Maximum exposure -0.019 -10.271 

Standard deviation 0.016 6.480 

 Exposure impact information (Base: No information) 



 

 

21 

  Short-term  -0.007 -2.148 

Trip 

Characteristics 
Travel Time 

Travel time -0.075 -4.551 

 Female 0.018 2.942 

 Age (Base: 18-24 years) 

  25-34 years -0.043 -6.740 

  55-64 years 0.027 2.656 

  65 years or more 0.056 2.762 

 Biking frequency (Base: Rarely) 

  Once or several times a month -0.049 -2.988 

  Daily -0.080 -4.982 

 Commute length (Base: Short commute) 

  Moderate 0.030 4.831 

  Long 0.072 7.997 

Log-likelihood at convergence (N = 3475): -2759.650 

 388 
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Roadway Characteristics  389 

Grade, traffic volume, and roadway type variables influence route choice behavior in segments 390 

2, 3 and 4. As expected, for commuting purposes, steep roadway grades reduce the likelihood 391 

of choosing the route in both utility (Segment 2) and regret (Segment 3) segments.  In Segment 392 

2, the coefficient indicates a reduction in utility for routes with steep grade. In Segment 3, 393 

commuter bicyclists will be predisposed to lower regret toward routes with flat or moderate 394 

grades relative to routes with steep grades. Cyclists are inclined to avoid steep grade 395 

presumably because of the discomfort from rigorous physical activity while commuting to 396 

work (see similar results in Sener et al. and Anowar et al. (40, 46)). High vehicular traffic 397 

volume (medium and heavy) on roadway deters cyclists from choosing the route. In Segment 398 

2, in particular, there is a larger drop in utility for routes with heavy traffic. The negative 399 

coefficients for heavy traffic volume in Segment 3 and Segment 4 suggest that regret reduces 400 

if traffic volume on the non-chosen alternatives is higher, thus reducing the likelihood for 401 

opting for route with heavy traffic (see similar result in Dill and Voros (62)). The presence of 402 

increased vehicular traffic will increase the probability of conflict between cyclists with 403 

motorized vehicles; so it is expected that commuter cyclists prefer routes with lower traffic 404 

levels. In terms of roadway type, routes on minor and major arterials (relative to routes on 405 

residential roads) are less likely to be chosen for commuting purpose. The effect is more 406 

pronounced in Segment 2, the utility for a route drops significantly when that route is located 407 

on a major arterial. In segment 3, the coefficient for major arterial is negative indicating that 408 

the regret associated with not choosing a route along major arterial is lower (relative to other 409 

alternatives). The results are quite intuitive and could be attributed to cyclist’s perception of 410 

higher level of safety on residential streets.  411 

 412 

Bike Route Characteristics  413 
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The effect of bike route characteristics is found significant only in Segment 2 and Segment 3 414 

– these two classes captured respondents who are highly sensitive to cycling infrastructure. The 415 

routes with continuous or segregated facilities are associated with higher utility in segment 2 416 

and lower regret in segment 3 increasing the inclination to choose routes with continuous or 417 

segregated facilities relative to routes without continuous or segregated facilities. The results 418 

indicate that cyclists prefer to ride on a route with continuous cycling facility or on an exclusive 419 

route segregated from vehicular traffic with a slightly higher preference for exclusive routes. 420 

The result is expected and is reported in earlier research as well (see similar results in (55, 62-421 

67)). On the other hand, the bicycle infrastructure variables have no impact on segment 1 and 422 

4.  423 

  424 

Air Pollution  425 

Of the two air pollution attributes, only mean exposure was found to affect route choice 426 

behavior across all segments. This essentially implies that irrespective of the decision rule, 427 

cyclists in all segments are strongly sensitive to exposing themselves to air pollution while on 428 

road. As expected, increase in mean exposure for a route reduces the likelihood that a bicyclist 429 

chooses the alternative. On the other hand, maximum exposure affects route choice behavior 430 

in segments 2, 3 and 4. The influence of maximum exposure is also along expected lines – 431 

increase in maximum exposure along the route reduces the probability of choosing that route 432 

(see Anowar et al. (40) for similar results). The reader would note that between mean and 433 

maximum exposure, the influence of mean exposure is consistently larger than the influence of 434 

maximum exposure on a parts per billion basis. The higher negative coefficient for mean 435 

exposure level indicates that cyclists are more sensitive towards a constant level of pollution 436 

on a regular basis rather than instantaneous exposure to pollution. 437 

 438 
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Trip Characteristics  439 

For commuters, travel time is an important determinant of route choice. The variable influences 440 

route choice decision in segments 2, 3 and 4. An increase in travel time is associated with 441 

reduction in utility or increase in regret for the route with longer travel time. Thus, that route 442 

have a lower probability of being chosen. Several studies have highlighted the impact of travel 443 

time along the same lines (see, Anowar et al. (40), Sener et al. (46) and Stinson and Bhat (66)). 444 

It is however, quite interesting that for segment 1, travel time is not a factor. The results 445 

highlight the behavior of a small population group that is focused solely on reducing their 446 

exposure to air pollution. The discovery of their presence would not have been possible without 447 

the 4 segment latent class model developed in our study.  448 

 449 

Information Provision  450 

We tested for the effect of information provision on route choice in the model specification. 451 

However, in our latent class model framework, the variables representing the message received 452 

by the cyclist did not offer any statistically significant impact. The result indicates that while 453 

the exposure impact information could have influenced the route choice decision process, the 454 

impact is not statistically significant in our study. 455 

 456 

Trade-off analysis 457 

Using the outputs from the model, we computed the time-based trade-offs, i.e. how much (in 458 

minutes) bicyclists are willing to travel extra for using routes with better facilities or less traffic-459 

generated pollution. This analysis gives us an insight on how the trade-off values are varying 460 

across different segments of cyclists. For Segment 2, the calculation is straightforward – 461 

dividing the coefficient value of each attribute by the coefficient value of travel time. However, 462 

Segment 3 and Segment 4 are random regret based classes. When all attributes in a model are 463 
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evaluated using random regret decision rule, the calculation of trade-offs is done using the 464 

following equation (Chorus, (68)): 465 

∑ −𝛽𝑡/(1 + 1/𝑒𝑥𝑝[𝛽𝑡(𝑡𝑗 − 𝑡𝑖)])𝑗≠𝑖

∑ −𝛽𝑟/(1 + 1/𝑒𝑥𝑝[𝛽𝑟(𝑟𝑗 − 𝑟𝑖)])𝑗≠𝑖

 (9) 

where 𝛽𝑡 and 𝛽𝑟 are the estimated coefficients for the two attributes for which we are 466 

calculating the trade-off. In our case, the 𝑟𝑡ℎ attribute is travel time and the 𝑡𝑡ℎ attribute 467 

represents the attribute for which the “willingness to travel extra” for a one-unit 468 

increase/decrease is being investigated. The results from the trade-off exercise (for main effects 469 

only) are presented in Table 6.  470 

The results of the trade-off analysis provides some interesting insights. For the utility 471 

oriented segment, as expected, cyclists are willing to travel 15-45 minutes extra to avoid steep 472 

grade, medium/heavy traffic volume, and riding on routes along minor/major arterial. 473 

Moreover, they are also willing to travel in excess of 25 minutes to ride on a continuous or 474 

exclusive bike facility. “Value of Clean Ride (VCR)” for mean exposure, was estimated as 1.16 475 

min/ppb and for maximum exposure, was estimated as 0.68 min/ppb suggesting that commuter 476 

cyclists are more sensitive to mean exposure than maximum exposure. The value obtained in 477 

our current analysis is double the value we obtained in our previous analysis (see (40)). This 478 

signifies that Segment 2 commuter cyclists, who more likely to be females, are strongly 479 

sensitive to air pollution and are willing to travel 5-40 minutes extra to avoid them. 480 

Trade-off values from random utility paradigm is insensitive to the changes in the 481 

attribute values. However, we can see from Table 6 that random regret formulation based trade-482 

offs calculated for Segment 3 and 4 are alternative and choice set dependent and monotonically 483 

decrease with increase in travel time. For example, from trade-off values, we can see that when 484 

a chosen alternative does poorly in terms of roadway attribute (has steep grade, or has heavy   485 
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Table 6. Time Based Trade-offs. 486 

Attribute Attribute Levels 

Travel Times (minutes) 

Segment-2 (RUM) Segment-3 (RRM) Segment-4 (RRM) 

20-40 20 25 30 35 40 20 25 30 35 40 

Grade Steep 35.90 46.22 13.95 7.68 5.30 4.19 - - - - - 

Traffic Volume 
Medium 20.54 - - - - - - - - - - 

Heavy 32.08 20.89 6.31 3.47 2.39 1.89 34.04 18.23 11.94 8.88 7.24 

Roadway type 
Minor Arterial 18.08 - - - - - - - - - - 

Major Arterial 43.56 38.61 11.65 6.42 4.43 3.50 - - - - - 

Infrastructure Continuity Continuous 26.50 3.26 0.99 0.54 0.37 0.30 - - - - - 

Infrastructure Segregation Exclusive 37.18 3.29 0.99 0.55 0.38 0.30 - - - - - 

Environmental Condition 

Mean Exposure (5 ppb) 5.80 3.07 0.93 0.51 0.35 0.28 2.09 1.12 0.73 0.55 0.44 

Mean Exposure (10 ppb) 11.60 8.13 2.45 1.35 0.93 0.74 5.13 2.75 1.80 1.34 1.09 

Mean Exposure (15 ppb) 17.40 15.17 4.58 2.52 1.74 1.38 9.11 4.88 3.20 2.38 1.94 

Maximum Exposure (20 ppb) 13.60 2.84 0.86 0.47 0.33 0.26 3.44 1.84 1.21 0.90 0.73 

Maximum Exposure (40 ppb) 27.20 7.28 2.20 1.21 0.83 0.66 11.08 5.93 3.88 2.89 2.36 

Maximum Exposure (60 ppb) 40.80 13.32 4.02 2.21 1.53 1.21 22.91 12.26 8.03 5.97 4.87 

 487 
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vehicular traffic or is located on a major arterial), but has a faster commuting time, an increase 488 

in travel time leads to a small increase in regret while improvement in terms of road grade leads 489 

to a relatively large decrease in regret. Hence, cyclists are willing to travel more than 40, 20, 490 

and 35 minutes, respectively for travelling on a route with better grades (medium or flat), better 491 

traffic situation (medium or low), and convenient roadway type (minor or residential). Cyclists 492 

in Segment 4 are willing to travel longer than cyclists in Segment 3 to avoid heavy traffic. 493 

Interestingly, the trade-off values in regret and utility based segments for roadway attributes 494 

are similar in magnitude; but values differ greatly for cycling infrastructure and exposure 495 

attributes, particularly for maximum exposure levels.  496 

The Segment 3 and Segment 4 regret-based trade-off results might appear counter-497 

intuitive on first glance. However, the reported results are a result of the construction of the 498 

RRM model. For alternatives with smaller travel times, any undesirable route feature (such as 499 

steep or high traffic volume) makes the alternative quite undesirable. Thus, individuals are 500 

willing to make larger trade-offs to avoid such features. The result is consistent across all 501 

attributes. At the lower end of travel time spectrum, the trade-off is quite high and drops as we 502 

move towards higher travel times. The result is analogous to the large shift in the “Value of 503 

Time (VoT)” values reported in Chorus (68). Overall, these results clearly highlight how 504 

ignoring the presence of decision rule heterogeneity are likely to result in incorrect policy 505 

guidelines.  506 

 507 

Conclusions   508 

In the extant literature, several approaches have been employed to address population 509 

homogeneity restriction in discrete choice models. Of these, latent class model is one of the 510 

elegant and intuitive approaches. Studies using latent class model have primarily focused on 511 

exogenous variable homogeneity; the decision rule homogeneity assumption has received less 512 
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attention. Our study aims to bridge the gap in the literature in this context by analyzing 513 

population and decision rule heterogeneity simultaneously while drawing on a novel empirical 514 

context – impact of air pollution on bicycle route choice. In our analysis, we choose to consider 515 

the random utility framework along with random regret minimization approach. Further, 516 

instead of assuming the number of segments (as 2), we conduct an exhaustive exploration with 517 

multiple segments across the two decision rules. Within each segment we also allow for 518 

unobserved heterogeneity. The model estimation is conducted using a stated preference data 519 

from 695 commuter cyclists compiled through a web-based survey. Model fit measures 520 

revealed that latent class models with four segments (3 random regret based segment – 1 521 

random utility based segment) provided the best data fit. The probabilistic allocation of 522 

respondents to different segments was achieved based on multivariate set of cyclist 523 

demographics and cycling habits. The results indicate that female commuter cyclists are more 524 

utility prone, however, the majority of the commuter cyclist’s choice pattern is consistent with 525 

regret minimization mechanism.  526 

Overall, cyclists’ route choice decisions are influenced by roadway attributes, cycling 527 

infrastructure availability, pollution exposure, and travel time. Although travel time is the most 528 

important attribute for commuter cyclists in their route choice decision, it is however, quite 529 

interesting that for one of the segments, travel time is not a factor. The results highlight the 530 

behavior of a small population group that is focused solely on reducing their exposure to air 531 

pollution. The discovery of their presence would not have been possible without the 4 segment 532 

latent segmentation model developed in our study. This observation has interesting policy 533 

implications – it suggests that bicyclists’ exposure to air pollution should be incorporated in 534 

bicycle route planning. In addition, we find that between mean and maximum exposure, the 535 

influence of mean exposure is consistently larger than the influence of maximum exposure on 536 

a parts per billion basis. The higher negative coefficient for mean exposure level indicates that 537 



 

 

29 

cyclists are more sensitive towards a constant level of pollution on a regular basis rather than 538 

instantaneous exposure to pollution. The analysis approach also allows us to investigate time 539 

based trade-offs across cyclists belonging to different classes. Interestingly, we observed that 540 

the trade-off values in regret and utility based segments for roadway attributes are similar in 541 

magnitude; but the values differ greatly for cycling infrastructure and exposure attributes, 542 

particularly for maximum exposure levels.    543 

However, the study is not without limitations. The parameter estimates from our model 544 

systems are influenced by how respondents considered mean exposure and maximum exposure 545 

attributes. Given the scope of our survey, we could not educate bicyclists comprehensively on 546 

air quality measurement and impact of air quality on health. Our study is aimed to offer a 547 

guidance on how bicyclists respond to air quality information. Future research efforts can focus 548 

on offering additional approaches to providing air quality information in an effort to identify 549 

the most appropriate information dissemination framework.  550 

 551 
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