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ABSTRACT 

Macro-level traffic safety analysis has been undertaken at different spatial configurations. 

However, clear guidelines for the appropriate zonal system selection for safety analysis are 

unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal 

system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic 

analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic 

analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and 

non-motorized mode crashes) are developed based on the three zonal systems without and with 

consideration of spatial autocorrelation. The study proposes a method to compare the modeling 

performance of the three types of geographic units at different spatial configuration through a 

grid based framework. Specifically, the study region is partitioned to grids of various sizes and 

the model prediction accuracy of the various macro models is considered within these grids of 

various sizes. These model comparison results for all crash types indicated that the models based 

on TADs consistently offer a better performance compared to the others. Besides, the models 

considering spatial autocorrelation outperform the ones that do not consider it. Finally, based on 

the modeling results and motivation for developing the different zonal systems, it is 

recommended using CTs for socio-demographic data collection, employing TAZs for 

transportation demand forecasting, and adopting TADs for transportation safety planning. 

 

Keywords: macro-level crash modeling, census tracts, traffic analysis zones, traffic analysis 

districts, Poisson lognormal, spatial autocorrelation, CAR 
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1. Introduction 

Safety and mobility are two fundamental requirements of transportation services. Unfortunately, 

a recent study revealed that the total cost of traffic crashes is almost two times greater than the 

overall cost of traffic congestion (Meyer et al., 2008). Hence, it is very important to devote 

efforts to enhance road safety and thus reduce the social burden. Towards this end, a common 

approach is the application of macroscopic level crash modeling, which can integrate safety into 

long-range transportation planning at zonal level.  

In the past decade, several studies have been conducted for crash modeling at a macro-level (see 

(Yasmin & Eluru, 2016) for a detailed review). Across these studies, various zonal systems have 

been explored including: block groups (Levine et al., 1995), census tracts (LaScala et al., 2000), 

traffic analysis zones or TAZs (Abdel-Aty et al., 2011; Cai et al., 2016; Hadayeghi et al., 2003; 

Hadayeghi et al., 2010; Ladrón de Guevara et al., 2004; Lee et al., 2013; Yasmin & Eluru, 2016), 

counties (Aguero-Valverde & Jovanis, 2006; Huang et al., 2010), and ZIP code areas (Lee et al., 

2015; Lee et al., 2013).  Most of these zonal systems were developed for different specific 

usages. For example, the block groups and census tracts are developed by census bureau for the 

presentation of statistical data while TAZs are delineated for the long-term transportation plan. 

Meanwhile, the area of census tracts and TAZs are greater than the block groups (Abdel-Aty et 

al., 2013). As a result, within the study area, the number of units, aggregation levels and zoning 

configuration can vary substantially across different zonal systems. Regarding this, Kim et al. 

(2006) developed a uniform 0.1 square mile grid structure to explore the impact of socio-

demographic characteristics such as land use, population size, and employment by sector on 

crashes. Compared with other existing geographic units, the grid structure is uniformly sized and 

shaped which can eliminate the artifact effects. However, considering the availability and use of 

the various zonal systems for other transportation purposes creating a uniform grid structure 

would not be feasible from the perspective of state and regional agencies. Hence, as part of our 

study, we investigate the performance of safety models developed at various zonal 

configurations to offer insights on what zonal systems are appropriate for crash analysis and long 

term transportation safety planning.   

Recently, several research studies have been conducted to compare different geographic units. 

Abdel-Aty et al. (2013) conducted modeling analysis for three types of crashes (total, severe, and 
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pedestrian crashes) with three different types of geographic entities (block groups, TAZs, and 

census tracts). Inconsistent significant variables were observed for the same dependent variables, 

validating the existence of zonal variation. However, no comparison of modeling performance 

was conducted in this research. Lee et al. (2014) aggregated TAZs into traffic safety analysis 

zones (TSAZs) based on crash counts. Four different goodness-of-fit measures (i.e., mean 

absolute deviation, root mean squared errors, sum of absolute deviation, and percent mean 

absolute deviation) were employed to compare crash model performance based on TSAZs and 

TAZs. The results indicated that the model based on the new zone system can provide better 

performance. Instead of determining the best zone system, Xu et al. (2014) created different 

zoning schemes by aggregating TAZs with a dynamical method. Models for total/severe crashes 

were estimated to explore variations across zonal schemes with different aggregation levels. 

Meanwhile, deviance information criterion, mean absolute deviation, and mean squared 

predictive error were calculated to compare different models. However, the employed measures 

for the comparison can be largely influenced by the number of observations and the observed 

values. Thus, the comparison results might be limited in the two studies (Lee et al., 2014; Xu et 

al., 2014) since the measures were calculated based on zonal systems with different number of 

zones. Ignoring such limitation may result in inaccurate crash prediction results and 

inappropriate transportation safety plans.  

To address the limitation, one possible solution is to compute the measures based on a third-party 

zonal system so that the calculation would have the same observations. Towards this end, a grid 

structure that uniformly delineates the study region is suggested as a viable option. Specifically, 

the crash models developed for the various zonal systems will be tested on the same grid 

structure. To ensure that the result is not an artifact of the grid size, several grid sizes ranging 

from 1 to 100 square miles will be considered.  

The current paper aims to conduct comparative analysis of different geographic units for 

macroscopic crash modeling analysis and provide guidance for transportation safety planning. 

Towards this end, both aspatial model (i.e., Poisson lognormal (PLN) and spatial model (i.e, 

PLN conditional autoregressive (PLN-CAR)) are developed for three types of crashes (i.e., total, 

severe, and non-motorized mode crashes) based on census tracts, traffic analysis zones, and a 

newly developed zone system – traffic analysis districts (see the following section for detailed 
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information). Then, a comparison method is proposed to compare the modeling performance 

with the same sample sizes by using grids of different dimensions. By using different goodness-

of-fit measures, superior geographic units for crash modeling and transportation safety planning 

are identified.  

2. Configuration of Geographic Units 

In this study, crash models were developed based on three different geographic units, which are 

discussed in the following subsections. 

2.1 Introduction of Geographic Units 

2.1.1 Census Tracts 

According to the U.S. Census Bureau, census tracts (CTs) are small, relatively permanent 

subdivisions of a county or equivalent entity to present statistical data such as poverty rates, 

income levels, etc. On average, a CT has about 4,000 inhabitants. CTs are designed to be 

relatively homogeneous units with respect to population characteristics, economic status, and 

living conditions. 

2.1.2 Traffic Analysis Zones 

Traffic analysis zones (TAZs) are geographic entities delineated by state or local transportation 

officials to tabulate traffic-related data such as journey-to-work and place-of-work statistics (23). 

TAZs are defined by grouping together census blocks, block groups, or census tracts. A TAZ 

usually covers a contiguous area with a 600 minimum population and the land use within each 

TAZ is relatively homogeneous (Abdel-Aty et al., 2013). 

2.1.3 Traffic Analysis Districts 

Traffic analysis districts (TADs) are new, higher-level geographic entities for traffic analysis 

(FHWA, 2011). TADs are built by aggregating TAZs, block groups or census tracts. In almost 

every case, the TADs are delineated to adhere to a 20,000 minimum population criteria and more 

likely to have mixed land use.  
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2.2 Comparison of Geographic Units 

In Florida, the average area of CTs, TAZs, and TADs are 15.497, 6.472, and 103.314 square 

miles, respectively. Across the three geographic units, which are shown in Figure 1, a TAD is 

considerably larger than a CT and TAZ while a TAZ is most likely to have the smallest size.  

CTs boundaries are generally delineated by visible and identifiable features, with the intention of 

being maintained over a long time. On the other hand, both TAZs and TADs are developed for 

transportation planning and are always divided by physical boundaries, mostly arterial roadways. 

Usually, CTs and TAZs nest within counties while TADs may cross county boundaries, but they 

must nest within Metropolitan Planning Organizations (MPOs) (FHWA, 2011). 

 

 

 

 

  

Figure 1. Comparison of CTs, TAZs, and TADs  
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3. Data Preparation 

Multiple geographic units were obtained from the US Census Bureau and Florida Department of 

Transportation (FDOT). The state of Florida has 4,245 CTs, 8,518 TAZs, and 594 TADs. 

Crashes that occurred in Florida in 2010-2012 were collected for this study. A total of 901,235 

crashes were recorded in Florida among which 50,039 (5.6%) were severe crashes and 31,547 

(3.5%) were non-motorized mode crashes. In this study, severe crashes were defined as the 

combination of all fatal and incapacitating injury crashes while non-motorized mode crashes 

were the sum of pedestrian and bicyclist involved crashes. On average, TADs have highest 

number of crashes since they are the largest zonal configuration. Given the large number of 

crashes in the Florida data, units with zero count are observed for CTs and TAZs. However, 

within a TAD no zero count units exist for the time period of our analysis. 

A host of explanatory variables are considered for the analysis and are grouped into three 

categories: traffic measures, roadway characteristics, and socio-demographic characteristics. For 

the three zonal systems, these data are collected from the Geographic information system (GIS) 

archived data from Florida Department of Transportation (FDOT) and U.S. Census Bureau 

(USCB).  

The traffic measures include VMT (Vehicle-Miles-Traveled), proportion of heavy vehicle in 

VMT. Regarding the roadway variables, roadway density (i.e., total roadway length per square 

mile), proportion of length roadways by functional classifications (freeways, arterials, collector, 

local roads, signalized intersection density (i.e., number of signalized intersection per total 

roadway mileage), length of bike lanes, and length of sidewalks were selected as the explanatory 

variables. Concerning the socio-demographic data, the distance to the nearest urban area, 

population density (defined as population divided by the area), proportion of population between 

15 and 24 years old, proportion of population equal to or older than 65 years old, total 

employment density (defined as the total employment per square mile), proportion of 

unemployment, median household income, total commuters density (i.e., the total commuters per 

square mile), and proportion of commuters by various transportation modes (including 

car/truck/van, public transportation, cycling, and walking). It is worth mentioning that the 

distance to the nearest urban area is defined as the distance from the centroid of the CTs, TAZs, 

or TADs to the nearest urban region. So the distance will be zero if the zone is located in urban 

area. Also, it should be noted that the proportion of unemployment is computed by dividing the 

number of total unemployed people by the whole population. A summary of the crash counts and 

candidate explanatory variables on different zonal systems is also presented in Table 1.   
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Table 1. Descriptive statistics of collected data 

Variables 
Census tracts (N=4245) Traffic analysis zones (N=8518) Traffic analysis districts (N=594) 

Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S.D. Min. Max. 

Area (square miles)  15.50 63.43 0.04 1581.94 6.47 24.80 0.00 885.32 103.31 259.86 2.62 3095.52 

Crash variables 

Total crashes 212.31 234.96 0 4554.00 105.80 142.25 0 1507.00 1517.23 1603.29 188.00 15094.00 

Severe crashes 11.79 11.78 0 141.00 5.87 7.94 0 111.00 84.24 60.34 4.00 534.00 

Non-motorized mode crashes 7.43 7.96 0 76.00 3.70 6.08 0 121.00 53.11 60.09 1.00 562.00 

Traffic & roadway variables 

VMT 91953.02 121384.56 0 1618443.43 31381.04 41852.30 0 684742.78 599646.92 428747.16 38547.00 4632468.60 

Proportion of heavy vehicle in VMT 0.06 0.04 0 0.38 0.07 0.05 0 0.52 0.07 0.04 0.01 0.29 

Road density 9.34 6.96 0 32.87 9.40 28.40 0 2496.05 7.61 5.31 0.07 24.56 

Proportion of length of arterials 0.14 0.16 0 1.00 0.22 0.28 0 1.00 0.11 0.06 0.00 0.48 

Proportion of length of collectors 0.13 0.14 0 1.00 0.19 0.25 0 1.00 0.11 0.07 0.00 0.60 

Proportion of length of local roads 0.69 0.24 0 1.00 0.57 0.33 0 1.00 0.75 0.11 0.08 0.93 

Signalized intersection density 4.09 227.17 0 14771.18 2.90 86.10 0 6347.67 0.12 0.13 0.00 1.36 

Length of bike lanes 0.62 1.82 0 34.99 0.30 1.10 0 28.64 4.38 6.74 0.00 65.30 

Length of sidewalks 1.73 2.27 0 20.84 0.99 1.75 0 25.68 12.93 11.94 0.00 87.18 

Socio-demographic variables 

Distance to the nearest urban area 0.87 3.60 0 66.27 2.14 5.44 0 44.10 1.31 3.85 0.00 31.50 

Population density 3255.00 3975.05 0 48304.10 2520.34 4043.35 0 63070.45 1998.61 1969.81 7.68 15341.30 

Proportion of population age 15-24 0.13 0.08 0 1.00 0.13 0.08 0 1.00 0.13 0.06 0.03 0.69 

Proportion of population age ≥ 65 0.18 0.14 0 0.94 0.17 0.12 0 0.94 0.17 0.09 0.03 0.66 

Total employment density 2671.41 3350.12 0 45468.48 1770.29 2725.02 0 45468.48 1617.08 1609.59 6.84 13007.10 

Proportion of  unemployment 0.39 0.15 0 1.00 0.40 0.14 0 1.00 0.38 0.09 0.15 0.76 

Median household income 59070.89 26477.95 0 215192.00 57389.53 24713.50 0 215192.00 59986.00 17747.51 21636.65 131664.42 

Total commuters density 1477.99 2025.32 0 33066.11 926.73 1350.12 0 20995.26 900.67 904.09 3.60 6936.09 

Proportion of commuters by vehicle 0.87 0.15 0 1.00 0.87 0.12 0 1.00 0.90 0.05 0.54 0.97 

Proportion of commuters by public 

transportation 
0.02 0.04 0 0.69 0.02 0.04 0 0.69 0.02 0.03 0.00 0.20 

Proportion of commuters by cycling 0.01 0.03 0 1.00 0.01 0.03 0 1.00 0.01 0.01 0.00 0.17 

Proportion of commuters by walking 0.02 0.04 0 1.00 0.02 0.04 0 0.46 0.01 0.02 0.00 0.14 
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4. Preliminary Analysis of Crash Data 

The crash counts of different zonal systems were explored to investigate whether spatial 

correlations existed by using global Moran’s I test. The absolute Moran’s I value varies from 0 to 

1 indicating degrees of spatial association. Higher absolute value represents higher spatial 

correlation while a zero value means a random spatial pattern. As shown in Table 2, all crash 

types based on different zonal systems have significant spatial correlation. TAZs and TADs 

based crashes have strong spatial clustering (Moran’s I > 0.35) while crashes based on CTs were 

weakly spatial correlated (Moran’s I < 0.1). It is not surprising since the TAZs and TADs were 

delineated based on transportation related activities. Thus, spatial dependence should be 

considered for modeling crashes, especially for TAZs and TADs.  

Table 2 Global Moran's I Statistics for Crash Data 

Crash types Total crashes Severe crashes Non-motorized crashes 

Zonal systems CT TAZ TAD CT TAZ TAD CT TAZ TAD 

Observed Moran’s I  0.06 0.52 0.58 0.05 0.40 0.36 0.05 0.424 0.447 

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Spatial Autocorrelation Y Y Y Y Y Y Y Y Y 

 

5. Methodology 

5.1 Statistical Models 

Before comparison across different zonal systems, both aspatial and spatial models were 

employed to analyze the crash data based on each zonal system. The technology of models is 

briefly discussed below.   

5.1.1 Aspatial Models 

In the previous study about crash count analysis, the classic negative binomial (NB) model has 

been widely used (Lord and Mannering, 2010). The NB model assumes that the crash data 

follows a Poisson-gamma mixture, which can address the over-dispersion issue (i.e., variance 

exceeds the mean). A NB model is specified as follows: 

 𝑦𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖) (1) 

𝜆𝑖 = exp (𝛽𝑖𝑥𝑖 + 𝜃𝑖) (2) 
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where yi is the number of crashes in entity i, λi is the expected number of Poisson distribution for 

entity i, xi is a set of explanatory variables, βi is the corresponding parameter, θi is the error term. 

The exp (θi) is a gamma distributed error term with mean 1 and variance α2.  

Recently, a Poisson-lognormal (PLN) model was adopted as an alternative to the NB model for 

crash count analysis (Lord and Mannering, 2010).  The model structure of Poisson-lognormal 

model is similar to NB model, but the error term exp (θi) in the model is assumed lognormal 

distributed. In other words, 𝜃𝑖 can be assumed to have a normal distribution with mean 0 and 

variance 𝜎2. In our current study, the Poisson-lognormal model consistently outperformed the 

NB model. Hence, for our analysis, we restrict ourselves to Poisson-lognormal model 

comparison across different geographical units.  

5.1.2 Spatial Models 

Generally, two spatial model specifications were commonly adopted for modeling spatial 

dependence: the spatial autoregressive model (SAR) (Anselin, 2013) and the conditional 

autoregressive model (CAR) (Besag et al., 1991). The SAR model considers the spatial 

correlation by adding an explanatory variable in the form of a spatially lagged dependent 

variable or adding spatially lagged error structure into a linear regression model while the 

Conditional Autoregressive (CAR) model takes account of both spatial dependence and 

uncorrelated heterogeneity with two random variables. Thus, the CAR model seems more 

appropriate for analyzing crash counts (Quddus, 2008; Wang & Kockelman, 2013). A Poisson-

lognormal Conditional Autoregressive (PLN-CAR) model, which adds a second error component 

(𝜑𝑖) as the spatial dependence (as shown below), was adopted for modeling.  

𝜆𝑖 = exp (𝛽𝑖𝑥𝑖 + 𝜃𝑖 + 𝜑𝑖) (3) 

𝜑𝑖  is assumed as a conditional autoregressive prior with Normal ( 𝜑�̅�,
𝛾2

∑ 𝑤𝑘𝑖
𝐾
𝑖=1

) distribution 

recommend by Besag et al. (1991). The 𝜑�̅� is calculated by: 

𝜑�̅� =
∑ 𝑤𝑘𝑖𝜑𝑖

𝐾
𝑖=1

∑ 𝑤𝑘𝑖
𝐾
𝑖=1

 (4) 

where 𝑤𝑘𝑖 is the adjacency indication with a value of 1 if 𝑖 and 𝑘 are adjacent or 0 otherwise.  



   10 

 

  

In this study, both aspatial Poisson-lognormal model (PLN) and Poisson-lognormal Conditional 

Autoregressive model (PLN-CAR) were estimated. Deviance Information Criterion (DIC) was 

computed to determine the best set of parameters for each model and to compare aspatial and 

spatial models based on the same zonal system. However, it is not appropriate for comparing 

models across different zonal systems since they have different sample size. Instead, a new 

method should be proposed for the comparison.  

5.2 Method for Comparing Different Zonal Systems 

5.2.1 Development of Grids for Comparison 

Based on the estimated models, the predicted crash counts can be obtained for the three zonal 

systems. One simple method to compare the models based on different geographic units is to 

analyze the difference directly between the observed and predicted crash counts for each 

geographic unit. However, this method is not really comparable across the different geographical 

units due to differences in sample sizes. In this study, a new method was proposed to use grid 

structure as surrogate geographic unit to compare the performance of models based on different 

zonal systems. As shown in Figure 2, the grid structure, unlike the CT, TAZ, or TAD, is 

developed for uniform length and shape across the whole state without any artifact impacts. 

Furthermore, the numbers of grids remain the same for all models thereby providing a common 

comparison platform. To implement the procedure for comparison, the first step is to count the 

observed crash counts in each grid by using Geographic Information System (GIS). Then, the 

predicted crash counts of the three zonal systems are transformed separately to the grid structure 

based on a method is presented in detail in the next section. For each grid, six different values of 

the transformed crash counts (2 model types × 3 zonal systems) can be obtained. The difference 

between observed and transformed crash counts for each grid structure will be analyzed. Finally, 

by comparing the difference of different geographic units, the superior geographic unit between 

CTs, TAZs, and TADs can be obliquely identified for crash modeling with the same sample size.  

Additionally, to avoid the impact of grid size on the comparison results, we consider several 

sizes for grids. Specifically, based on the average area of the three geographic units, ten levels of 

grid structures with side length from 1 to 10 miles were created.  Table 3 summarizes the average 

areas and observed crash counts of CTs, TAZs, TADs, and different grid structures. The Grid 

L×L means the grid structure with side length of L miles. Based on the number of zones and 
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average crash counts, it can be concluded that the CTs, TAZs, and TADs are separately 

comparable with Grid 4×4, Grid 3×3, and Grid 10×10, respectively.    

 
Figure 2.  Grid structure of Florida (10×10 mile2) 
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Table 3. Crashes of CTs, TAZs, TADs, and Grids 

Geographic 

units 

Average area 

(mile2) 

Number of 

zones 

Total crash Severe crash Non-motorized mode crash 

Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max 

CT 15.497 4245 212.305 234.964 0 4554 11.788 11.775 0 141 7.432 7.964 0 76 

TAZ 6.472 8518 105.804 142.253 0 1507 5.875 7.944 0 111 3.704 6.084 0 121 

TAD 103.314 594 1517.230 1603.290 188 15094 84.241 60.344 4 534 53.109 60.093 1 562 

Grid 1×1 1 76640 11.759 61.598 0 2609 0.653 2.614 0 90 0.412 2.484 0 182 

Grid 2×2 4 19652 45.860 206.461 0 5321 2.546 8.513 0 271 1.605 7.862 0 209 

Grid 3×3 9 8964 100.539 425.753 0 10531 5.582 17.295 0 448 3.519 15.634 0 310 

Grid 4×4 16 5124 175.885 712.317 0 16307 9.766 28.997 0 650 6.157 26.161 0 609 

Grid 5×5 25 3355 268.624 1084.990 0 25230 14.915 42.962 0 727 9.403 39.150 0 914 

Grid 6×6 36 2364 381.233 1459.970 0 24617 21.167 57.821 0 749 13.345 52.004 0 842 

Grid 7×7 49 1766 510.326 1889.670 0 29553 28.335 74.121 0 715 17.864 65.854 0 985 

Grid 8×8 64 1362 661.700 2465.000 0 41463 36.739 95.446 0 966 23.162 84.708 0 1107 

Grid 9×9 81 1094 823.798 2956.390 0 50371 45.739 114.678 0 1218 28.836 103.396 0 1352 

Grid 10×10 100 907 993.644 3637.200 0 50989 55.170 141.544 0 1592 34.782 128.862 0 2185 
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5.2.2 Method to transform predicted crash counts  

The method to obtain transformed crash counts of grids is introduced by taking TAZ and Grid 

5×5 as an example. As shown in Figure 3, the red square is one grid (named as Grid A) which 

intersects with four TAZ units (named as TAZ 1, 2, 3, and 4). The four corresponding intersected 

entities are named as Region 1, 2, 3, and 4. It is assumed that the proportion of each region’s 

predicted crash frequency in the TAZ is equal to the corresponding proportion of the same 

region’s observed crash in the same TAZ. Hence, the predicted crash counts for each region can 

be determined by: 

𝑦𝑅𝑖
′ = 𝑦𝑇𝑖

′ ∗ 𝑃𝑅𝑖
′  (3) 

where 𝑦𝑅𝑖
′  and 𝑦𝑇𝑖

′  are the predicted crash counts in Region 𝑖 and TAZ 𝑖, 𝑃𝑅𝑖
′  is the proportion of 

Region 𝑖’s observed crash frequency in TAZ 𝑖. 

Obviously, the crashes that happened in Gird A should be equal to the sum of crashes that 

happed in the four intersected regions (Region 1, 2, 3, and 4). Then the predicted crash counts of 

the four TAZs can be transformed into Grid A by adding up the predicted crash counts of all the 

four intersected regions. Based on this method, the predicted crash counts of models based on 

CTs, TAZs, and TADs can be transformed into the same grids.  

 

Figure 3. Method to transform predicted crash counts   
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5.2.3 Comparison criteria 

Two types of measures, Mean Absolute Error (MAE) and Root Mean Squared Errors (RMSE), 

were employed to compare the difference between observed crash counts based on grids and six 

corresponding transformed predicted values. The two measures can be computed by: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖

′|

𝑁

𝑖=1

 (4) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖

′)2

𝑁

𝑖=1

 (5) 

where N is the number of observations, yi  and yi
′  are the observed and transformed predicted 

values of crashes for entity i of different levels of grids. The smaller values of the two measures 

indicate the better performance of estimated models based on CTs, TAZs, and TADs. Also, in 

order to better compare the measure values across different levels of grids, the weighted MAE 

and RMSE are computed by dividing MAE and RMSE by the areas of grids.  

6. Modeling Results and Discussion 

6.1 Modeling Results 

In this study, overall 18 models – 2 model types (PLN and PLN-CAR models), with and without 

considering spatial correlation based on 3 zonal systems (CTs, TAZs and TADs), were estimated 

for total, severe and non-motorized crashes. The results of estimated models are displayed in 

Tables 4-6, separately. Significant variables related to total, severe and non-motorized mode 

crashes at 95% significant level were analyzed. The Deviance Information Criterion (DIC) and 

the Moran’s I values of residual are also presented in the tables. It is observed that for each zonal 

system, the spatial models except for non-motorized crashes based on CTs offer substantially 

better fit compared to the aspatial models. The results remain consistent with the previous 

comparative analysis results. Also the residual of spatial models of crashes based on TAZs and 

TADs have weaker spatial correlation except for non-motorized crash based on TAZs, which 

may be due to the excess zeros. However, for the crashes based on CTs, the Moran’s I values of 

residual have no difference between the aspatial and spatial models. It is known that models with 

spatially correlated residuals may lead to biased estimation of parameters, which may cause 
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wrong interpretation and conclusion. That could explain that several significant variables in 

aspatial models become insignificant in the spatial models based on TAZs and TADs while 

parameters in the aspatial and spatial models vary based on CTs. Moreover, for different crash 

types, the TAZs and TADs have more significant traffic/roadway related variables compared to 

CTs. On the contrary, more socio-demographic variables are significant in CTs based models. 

These are as expected since CTs are designed for socio-demographic characteristics collection 

while TAZs and TADs are created according to traffic/roadway information.  

In addition to the observations, the following subsections present the detailed discussion focused 

on the PLN-CAR model that offers better fit for total, severe, and non-motorized mode crashes. 

6.1.1 Total Crash 

Table 4 presents the results of model estimation for total crashes based on CTs, TAZs, and TADs. 

The VMT variable, as a measure of vehicular exposure, is significant in all models and as 

expected increases the propensity for total crashes. Besides, the models share a common 

significant variable length of sidewalk, which consistently has positive effect on crash frequency. 

The length of sidewalk can be an indication of more pedestrian activity and thus exposure. 

Additionally, the variable proportion of heavy vehicle in VMT is found to be negatively 

associated with total crashes in TAZs and TADs based models. On the other hand, the population 

of the old age group over 65 years old was significant in models based on CTs and TADs. Since 

the variable is an indication of fewer trips, it is found to have negative relation with crash 

frequency.  

6.1.2 Severe Crash 

Modeling results for severe crashes for the three geographic units are summarized in Table 5. 

The VMT and length of sidewalks are still significant in the three models. Higher median 

household income results in decreased severe crashes for TAZs and TADs.  Also proportion of 

unemployment and proportion of commuters by public transportation are found significant in 

CTs and TAZs. Finally, various variables such as proportion of heavy vehicle mileage in VMT, 

roadway density, proportion of length of arterials and length of bike lanes are significant solely 

in the TAZs based model. 
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6.1.3 Non-motorized Mode Crash 

The results of the non-motorized mode crashes are shown in Table 6. The models based on the 

three geographic units have expected variables such as VMT, proportion of heavy vehicle in 

VMT, length of local roads, length of sidewalks, population density, commuters by public 

transportation and cycling. As mentioned above, the VMT, a measure of vehicular exposure, is 

expected to have positive impact on non-motorized mode crashes frequency. However, the 

proportion of heavy vehicle VMT has a negative impact since the likelihood of non-motorists 

drops substantially in the zones with increase in heavy vehicle VMT. The variables proportion of 

local roads by length and length of sidewalks are reflections of pedestrian access and are likely to 

increase crash frequency (Cai et al., 2016). The population density is a surrogate measure of non-

motorists exposure and is likely to increase the propensity for non-motorized mode crashes. 

Across the three geographic units, it is observed that the zones with higher proportion of 

commuters by public transportation and cycling have higher propensity for non-motorized mode 

crashes. The commuters by public transportation and cycling are indications of zones with higher 

non-motorists activity resulting in increased non-motorized mode crash risk (Abdel-Aty et al., 

2013).  
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Table 4. Total crash model results by zonal systems 

Zonal systems CT TAZ TAD 

Variables 
PLN PLN-CAR PLN PLN-CAR PLN PLN-CAR 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Intercept 
1.163 0.026 0.751 0.078 3.35 0.044 1.187 0.057 -1.554 0.023 -0.155 0.689 

(1.119, 1.207) (0.589, 0.911) (3.285, 3.409) (1.066, 1.274) (-1.591, -1.511) (-1.674, 1.255) 

Log (VMT) 
0.261 0.002 0.271 0.006 0.22 0.013 0.287 0.006 0.655 0.001 0.754 0.024 

(0.257, 0.264) (0.261, 0.282) (0.199, 0.240) (0.275, 0.302) (0.654, 0.656) (0.713, 0.800) 

Proportion of heavy vehicle 
mileage in VMT 

- - - - -2.189 0.29 -1.532 0.355 -2.32 0.322 -4.009 0.457 

- - (-2.655, -1.497) (-2.202, -0.904) (-2.798, -1.796) (-4.819, -2.953) 

Log (signalized intersection 
density) 

- - - - - - - - 0.579 0.056 0.685 0.162 

- - - - (0.455, 0.682) (0.203, 0.971) 

Log (length of sidewalks) 
0.331 0.007 0.342 0.017 0.495 0.047 0.519 0.022 0.085 0.006 0.082 0.01 

(0.316, 0.345) (0.297, 0.379) (0.383, 0.546) (0.475, 0.573) (0.075, 0.095) (0.061, 0.101) 

Log (distance to nearest urban 
area) 

- - - - -0.513 0.023 -0.181 0.027 - - - - 

- - (-0.560, -0.479) (-0.274, -0.109) - - 

Log (population density) 
- - - - - - - - 0.168 0.002 0.083 0.006 

- - - - - - - - (0.163, 0.171) (0.071, 0.097) 

Proportion of population age 
15-24 

- - 0.733 0.16 - - - - - - - - 

- (0.398, 1.076) - - - - 

Proportion of population age 65 
or older 

-1.469 0.056 -1.07 0.087 -1.079 0.206 -0.003 0.001 - - - - 

(-1.560, -1.350) (-1.234, -0.893) (-1.354, -0.608) (-0.006, -0.001) - - 

Proportion of unemployment 
- - - - -1.505 0.082 - - - - - - 

- - (-1.680, -1.380) - - - 

Log (Commuters density) 
0.144 0.002 0.167 0.006 - - - - - - - - 

(0.140, 0.148) (0.154, 0.180) - - - - 

Proportion of commuters by 
public transportation 

2.778 0.231 2.486 0.285 2.422 0.413 - - 5.464 0.312 2.427 0.995 

(2.376, 3.230) (1.834, 2.996) (1.929, 3.257) - (4.975, 6.146) (0.432, 4.378) 

Proportion of commuters by 
walking 

1.06 0.231 - - - - - - - - - - 

(0.698, 1.634) - - - - - 

Log (median household 
income) 

- - - - -0.06 0.004 - - -0.123 0.002 -0.301 0.063 

- - (-0.068, -0.054) - (-0.126, -0.123) (-0.419, -0.160) 

S.D. of θ 
0.695 0.003 0.339 0.064 1.033 0.006 0.378 0.04 0.388 0.001 0.136 0.01 

(0.691, 0.702) (0.241, 0.519) (1.024, 1.046) (0.308, 0.467) (0.385, 0.391) (0.117, 0.154) 

S.D. of φ 
- - 0.213 0.028 - - 0.393 0.083 - - 0.14 0.011 

- (0.166, 0.275) - (0.306, 0.591) - (0.118, 0.161) 

DIC 36898.300 36854.800 64441.000 64147.960 6446.200 6435.659 

Moran’s I of residual* 0.053 0.006 0.460 -0.020 0.412 -0.153 

*All explanatory variables are significant at 95% confidence level;       All Moran’s I values are significant at 95% confidence level 
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Table 5. Severe crash model results by zonal systems 

Zonal systems CT TAZ TAD 

Variables 
PLN PLN-CAR PLN PLN-CAR PLN PLN-CAR 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Intercept 
-2.493 0.094 -1.57 0.097 -1.344 0.069 -1.745 0.127 2.137 0.101 2.92 0.749 

(-2.704, -2.376) (-1.768, -1.379) (-1.466, -0.217) (-2.024, -1.466) (1.971, 2.279) (1.375, 4.447) 

Log (VMT) 
0.402 0.007 0.339 0.009 0.364 0.005 0.33 0.007 0.591 0.01 0.529 0.025 

(0.388, 0.418) (0.322, 0.357) (0.354, 0.371) (0.318, 0.345) (0.576, 0.606) (0.476, 0.583) 

Proportion of heavy vehicle 

mileage in VMT 

- - - - -2.383 0.277 -0.935 0.300 -1.671 0.349 - - 

- - (-2.908, -1.859) (-1.570, -0.312) (-2.391, -1.098) - 

Log (roadway density) 
- - - - -0.024 0.011 -0.108 0.016 - - - - 

- - (-0.050, -0.003) (-0.140, -0.076) - - 

Proportion of length of 

arterials 

- - - - -0.604 0.044 -0.591 0.045 - - - - 

- - (-0.686, -0.518) (-0.678, -0.502) - - 

Proportion of length of 

collectors 

- - -0.283 0.083 - - - - - - - - 

- (-0.452, -0.123) - - - - 

Proportion of length of local 

roads 

0.263 0.043 - - - - - - 0.851 0.076 - - 

(0.184, 0.352) - - - (0.701, 0.989) - 

Log (length of bike lanes) 
- - - - 0.082 0.028 0.113 0.028 - - - - 

- - (0.026, 0.134) (0.061, 0.166) - - 

Log (length of sidewalks) 
0.183 0.016 0.238 0.018 0.245 0.024 0.354 0.021 0.116 0.02 0.104 0.018 

(0.154, 0.214) (0.203, 0.273) (0.187, 0.282) (0.313, 0.393) (0.084, 0.151) (0.068, 0.141) 

Log (distance to nearest urban 

area) 

- - 0.201 0.018 - - - - - - - - 

- (0.168, 0.238) - - - - 

Proportion of unemployment 
-0.222 0.07 -0.444 0.081 -0.766 0.079 -0.152 0.089 - - - - 

(-0.343, -0.063) (-0.605, -0.278) (-0.935, -0.614) (-0.330, 0.032) - - 

Proportion of commuters by 

public transportation 

1.423 0.268 1.554 0.269 1.724 0.256 1.015 0.33 - - - - 

(0.862, 1.934) (1.032, 2.048) (1.244, 2.206) (0.423, 1.670) - - 

Proportion of commuters by 

walking 

0.976 0.273 - - - - - - - - - - 

(0.450, 1.525) - - - - - 

Log (median household 

income) 

- - - - -0.037 0.003 -0.021 0.009 -0.589 0.007 -0.536 0.062 

- - (-0.043, -0.030) (-0.039, -0.004) (-0.604, -0.576) (-0.659, -0.412) 

S.D. of θ 
0.614 0.007 0.218 0.049 0.835 0.008 0.393 0.045 0.458 0.006 0.116 0.006 

(0.601, 0.628) (0.166, 0.329) (0.819, 0.852) (0.304, 0.470) (0.447, 0.469) (0.107, 0.129) 

S.D. of φ 
- - 0.191 0.025 - - 0.519 0.024 - - 0.152 0.02 

- (0.148, 0.247) - (0.278, 0.749) - (0.123, 0.199) 

DIC 23958.000 23835.000 38158.200 37470.090 4741.080 4696.724 

Moran’s I of residual 0.065 -0.007 0.397 0.040 0.370 -0.096 

*All explanatory variables are significant at 95% confidence level;      * All Moran’s I values are significant at 95% confidence level 
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Table 6. Non-motorized mode crash model results by zonal systems 

Zonal systems CT TAZ TAD 

Variables 
PLN PLN-CAR PLN PLN-CAR PLN PLN-CAR 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Intercept 
-2.539 0.062 -2.256 0.129 -3.612 0.157 -3.503 0.144 0.176 0.063 4.737 1.221 

(-2.664, -2.388) (-2.510, -1.996) (-3.812, -3.301) (-3.800, -3.200) (0.069, 0.285) (2.412, 7.038) 

Log (VMT) 
0.172 0.007 0.161 0.008 0.297 0.005 0.283 0.007 0.345 0.004 0.252 0.038 

(0.161, 0.186) (0.145, 0.177) (0.289, 0.307) (0.268, 0.298) (0.336, 0.352) (0.179, 0.331) 

Proportion of heavy 

vehicle mileage in VMT 

-1.858 0.330 -2.262 0.389 -4.389 0.432 -4.803 0.391 -3.639 0.440 -2.969 0.854 

(-2.459, -1.134) (-3.053, -1.478) (-5.083, -3.520) (-5.518, -4.068) (-4.548, -2.884) (-4.519.-1.511) 

Log (roadway density) 
- - - - 0.154 0.016 0.143 0.020 - - - - 

- - (0.128, 0.189) (0.106, 0.182) - - 

Proportion of length of 

local roads 

0.377 0.043 0.367 0.061 0.717 0.044 0.752 0.047 0.679 0.101 - - 

(0.279, 0.453) (0.245, 0.488) (0.623, 0.794) (0.661, 0.845) (0.517, 0.838) - 

Log (length of sidewalks) 
0.48 0.017 0.488 0.019 0.506 0.022 0.558 0.022 0.283 0.015 0.306 0.027 

(0.450, 0.516) (0.454, 0.524) (0.458, 0.545) (0.516, 0.602) (0.257, 0.315) (0.252, 0.360) 

Log (population density) 
0.243 0.005 0.225 0.010 0.234 0.006 0.175 0.010 0.22 0.009 0.165 0.024 

(0.234, 0.252) (0.206, 0.247) (0.225, 0.246) (0.158, 0.192) (0.205, 0.237) (0.125, 0.215) 

Proportion of population 

age 65 or older 

-0.691 0.098 -0.761 0.094 - - - - - - - - 

(-0.890, -0.519) (-0.947, -0.582) - - - - 

Log (Commuters 

density) 

- - - - -0.635 0.075 -0.398 0.099 - - - - 

- - (-0.766, -0.450) (-0.587, -0.199) - - 

Proportion of 

commuters by public 

transportation 

3.532 0.260 3.565 0.292 3.467 0.258 2.949 0.282 7.525 0.606 4.802 1.286 

(3.011, 4.049) (3.011, 4.102) (2.919, 3.974) (2.375, 3.457) (6.544, 8.900) (2.676, 7.015) 

Proportion of 

commuters by cycling 

3.955 0.492 3.892 0.441 1.078 0.471 - - 7.000 1.703 8.566 2.258 

(2.901, 4.918) (3.069, 4.792) (0.076, 1.960) - (4.180, 10.670) (3.955, 12.758) 

Proportion of 

commuters by walking 

2.476 0.329 2.595 0.306 1.877 0.280 1.757 0.294 - - - - 

(1.874, 3.116) (1.998, 3.145) (1.321, 2.405) (1.189, 2.325) - - 

Log (median household 

income) 

- - - - -0.075 0.014 -0.047 0.01 -0.336 0.005 -0.565 0.094 

- - (-0.098, -0.056) (-0.066, -0.026) (-0.344, 0.326) (-0.745, -0.384) 

S.D. of θ 
0.605 0.009 0.361 0.090 0.790 0.011 0.518 0.144 0.456 0.008 0.222 0.023 

(0.588, 0.622) (0.196, 0.531) (0.769, 0.814) (0.224, 0.715) (0.440, 0.472) (0.181, 0.263) 

S.D. of φ 
- - 0.053 0.008 - - 0.037 0.058 - - 0.198 0.028 

- (0.042, 0.072) - (0.010, 0.152) - (0.147, 0.261) 

DIC 21032.300 21033.730 30244.700 29926.930 4317.540 4302.187 

Moran’s I of residual 0.028 0.021 0.286 0.325 0.092 -0.088 

*All explanatory variables are significant at 95% confidence level;      * All Moran’s I values are significant at 95% confidence level 
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6.2 Comparative Analysis Results 

Based on the estimated models of the three zonal systems, the predicted crash counts for each 

crash type of the three geographic units can be computed and then transformed into the 

correspondingly intersected grids. Weighted MAE and RMSE for each grid structure were 

calculated with the observed crash counts and transformed predicted crash counts based on 

different geographic units. The comparison results are as shown in Table 7 and several 

observations can be made. (1) The MAE and RMSE values consistently increase with the grid 

size, validating the previous discussion that the comparison measures can be influenced by the 

number of observations and observed values. (2) For each zonal system, the spatial (PLN-CAR) 

models substantially improve the performance over the aspatial (PLN) models for predicting 

crash counts. The results are consistent with the previous analysis results that the crash counts 

are spatially correlated and the model considering the spatial dependency can provide better 

understanding of crash frequency. Also, the improvements based on TAZs and TADs are much 

greater than that based on CTs which should be related to the spatial correlation levels. (3) 

Among aspatial and spatial models, the TADs always have the best performance indicating the 

advantages of TADs over the other two zonal systems. Meanwhile, CTs based on aspatial models 

can consistently perform better than the models based on TAZs. However, the exact ordering 

alters between spatial models based on CTs and TAZs according to MAE and RMSE.  

The CTs are designed to be comparatively homogenous units with respect to socio-demographic 

statistical data. Thus, it is not surprising that CT-based models do not show the best performance. 

TAZs are the base zonal system of analyses for developing travel demand models and have been 

widely used by metropolitan planning organizations for their long range transportation plans. 

However, one of the major zoning criteria for TAZs is to minimize the number of intra-zonal 

trips (Meyer & Miller, 2001) which results in small area size for each TAZ. Due to the small size, 

a crash occurring in a TAZ might be caused by the driver from another TAZ, i.e., the 

characteristics of drivers who cause the crashes cannot be observed by the models based on 

TAZs. Also, as TAZs are often delineated by arterial roads and many crashes occur on these 

boundaries. The existence of boundary crashes may invalidate the assumptions of modeling only 

based on the characteristics of a zone where the crash is spatially located (Lee et al, 2014; 

Siddiqui et al., 2012).  Hence, although TAZs are appropriate for transportation demand 
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forecasting, they might be not the best option for the transportation safety planning. The TADs 

are another transportation-related zonal system with considerably larger size compared with 

TAZs.  There should be more intra-zonal trips in each TAD and the drivers who cause crashes in 

a TAD will be more likely to come from the same TAD. So it seems reasonable that TADs are 

superior for macro-level crash analysis and transportation safety planning.  

In summary, considering the rationale for the development of different zonal systems and the 

modeling results in our study, it is recommended using CTs for socio-demographic data 

collection, employing TAZs for transportation demand forecasting, and adopting TADs for 

transportation safety planning.  
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Table 7. Comparison results based on grids 

 

Total Crashes Severe Crashes Non-motorized Crashes 

PLN PLN_CAR PLN PLN_CAR PLN PLN_CAR 

CT TAZ TAD CT TAZ TAD CT TAZ TAD CT TAZ TAD CT TAZ TAD CT TAZ TAD 

Weighted MAE 

Grid 1×1 4.70 6.12 3.43 4.45 3.34 2.30 0.28 0.33 0.22 0.26 0.23 0.18 0.17 0.19 0.15 0.17 0.18 0.12 

Grid 2×2 4.22 5.61 3.25 3.95 2.62 2.03 0.25 0.30 0.21 0.23 0.19 0.15 0.14 0.17 0.14 0.14 0.16 0.11 

Grid 3×3 3.87 5.23 3.10 3.59 2.19 1.85 0.23 0.28 0.20 0.21 0.17 0.14 0.13 0.16 0.13 0.13 0.15 0.10 

Grid 4×4 3.63 4.97 3.01 3.36 1.93 1.61 0.21 0.26 0.20 0.19 0.15 0.12 0.12 0.15 0.12 0.12 0.14 0.09 

Grid 5×5 3.42 4.74 2.79 3.16 1.81 1.39 0.20 0.25 0.19 0.18 0.14 0.10 0.11 0.14 0.11 0.11 0.13 0.08 

Grid 6×6 3.30 4.57 2.72 3.03 1.65 1.20 0.19 0.24 0.19 0.17 0.14 0.10 0.10 0.14 0.10 0.10 0.12 0.07 

Grid 7×7 3.18 4.43 2.68 2.94 1.55 1.17 0.18 0.23 0.18 0.17 0.13 0.09 0.10 0.13 0.10 0.10 0.12 0.07 

Grid 8×8 3.06 4.31 2.58 2.82 1.49 1.08 0.18 0.23 0.17 0.16 0.13 0.08 0.09 0.13 0.09 0.09 0.11 0.06 

Grid 9×9 2.99 4.23 2.53 2.74 1.47 0.94 0.17 0.22 0.17 0.15 0.12 0.07 0.09 0.13 0.09 0.09 0.11 0.06 

Grid 10×10 2.84 4.08 2.41 2.60 1.38 0.94 0.16 0.21 0.17 0.15 0.12 0.07 0.09 0.12 0.08 0.09 0.11 0.05 

AVE 3.52 4.83 2.85 3.26 1.94 1.45 0.21 0.25 0.19 0.19 0.15 0.11 0.11 0.15 0.11 0.11 0.13 0.08 

Weighted RMSE 

Grid 1×1 31.84 39.77 27.82 29.41 20.54 19.56 1.40 1.66 1.31 1.35 1.07 1.11 1.12 1.37 1.49 1.11 1.22 1.33 

Grid 2×2 25.54 32.53 22.64 23.27 12.60 14.61 1.07 1.30 1.02 1.03 0.73 0.74 0.77 0.96 1.00 0.76 0.85 0.87 

Grid 3×3 22.38 28.99 18.89 20.19 9.31 11.23 0.91 1.13 0.88 0.87 0.57 0.67 0.62 0.79 0.81 0.62 0.70 0.61 

Grid 4×4 20.30 26.18 16.78 18.16 7.68 7.65 0.83 1.04 0.80 0.79 0.51 0.55 0.54 0.72 0.59 0.54 0.64 0.46 

Grid 5×5 19.53 25.41 16.06 17.54 6.53 7.28 0.73 0.95 0.70 0.70 0.44 0.34 0.48 0.66 0.57 0.48 0.57 0.43 

Grid 6×6 18.30 23.92 15.10 16.34 5.50 5.25 0.66 0.86 0.65 0.61 0.39 0.31 0.44 0.60 0.48 0.43 0.52 0.35 

Grid 7×7 17.43 22.58 14.72 15.46 4.81 5.51 0.58 0.79 0.59 0.55 0.34 0.25 0.39 0.54 0.40 0.39 0.46 0.27 

Grid 8×8 17.43 22.65 14.24 15.41 4.68 4.86 0.59 0.79 0.58 0.55 0.35 0.24 0.36 0.52 0.38 0.36 0.44 0.25 

Grid 9×9 16.10 21.23 12.85 14.23 4.35 3.56 0.53 0.73 0.54 0.50 0.32 0.22 0.35 0.51 0.35 0.35 0.43 0.21 

Grid 10×10 15.45 21.18 12.79 13.71 3.89 4.03 0.49 0.71 0.49 0.47 0.31 0.17 0.32 0.50 0.31 0.32 0.40 0.18 

AVE 20.43 26.44 17.19 18.37 7.99 8.35 0.78 0.99 0.76 0.74 0.50 0.46 0.54 0.72 0.64 0.54 0.62 0.50 
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7. Conclusion 

Macro-level safety modeling is one of the important objectives in transportation safety planning. 

Although various geographic units have been employed for macro-level crash analysis, there has 

been no guidance to choose an appropriate zonal system. One of difficulties is to compare 

models based on different geographic units of which number of zones is not the same. This study 

proposes a new method for the comparison between different zonal systems by adopting grid 

structures of different scales. The Poisson lognormal (PLN) models without and Poisson 

lognormal conditional autoregressive model (PLN-CAR) with consideration of spatial 

correlation for total, severe, and non-motorized mode crashes were developed based on census 

tracts (CTs), traffic analysis zones (TAZs), and a newly developed traffic-related zone system - 

traffic analysis districts (TADs). Based on the estimated models, predicted crash counts for the 

three zonal systems were computed. Considering the average area of each geographic unit, ten 

sizes of grid structures with dimensions ranging from 1 mile to 100 square miles were created for 

the comparison of estimated models. The observed crash counts for each grid were directly 

obtained with GIS while the different predicted crash counts were transformed into the grids that 

each geographic unit intersects with. The weighted MAE and RMSE were calculated for the 

observed and different transformed crash counts of different grid structures. By comparing the 

MAE and RMSE values, the best zonal system as well as model for macroscopic crash modeling 

can be identified with the same sample size. 

The comparison results indicated that the models based on TADs offered the best fit for all crash 

types. Based on the modeling results and the motivation for developing the different zonal 

systems, it is recommended CTs for socio-demographic data collection, TAZs for transportation 

demand forecasting, and TADs for transportation safety planning. Also, the comparison results 

highlighted that models with the consideration of spatial effects consistently performed better 

than the models that did not consider the spatial effects. The modeling results based on different 

zonal systems had different significant variables, which demonstrated the zonal variation. 

Besides, the results clearly highlighted the importance of several explanatory variables such as 

traffic (i.e., VMT and heavy vehicle mileage), roadway (e.g., proportion of local roads in length, 

signalized intersection density, and length of sidewalks, etc.) and socio-demographic 

characteristics (e.g., population density, commuters by public transportation, walking as well as 

cycling, median household income, and etc.).  
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This study focuses on the comparison of zonal systems for crash modeling and transportation 

safety planning. However, only three zonal systems were adopted for the validation of the 

proposed comparison method. Extending the current approach to compare other zonal systems 

(e.g., census block and counties) could be meaningful. Also, it is possible that the trip distance 

might be related to the size of appropriate geographic units for crash modeling. Future research 

extension might consider such relationship. 
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