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JOINT FRAMEWORK FOR MODELING FREIGHT MODE AND DESTINATION 

CHOICE: APPLICATION TO THE US COMMODITY FLOW SURVEY DATA 

 

 

ABSTRACT 

Earlier research has extensively examined freight mode and shipment weight dimensions. 

However, freight destination behavior at a high resolution has received scant attention. In our 

study, we attempt to address the limited research on destination decision processes and develop a 

latent segmentation-based approach that accommodates mode and destination choices in a unified 

framework. The proposed approach postulates that these two choices are actually sequential in 

nature with an infinitesimally small time gap between them. However, the actual sequence (mode-

destination or destination-mode) is unknown to us. Thus, a probabilistic model that can 

accommodate for the two choice sequences within a single framework is proposed. The latent 

segmentation framework probabilistically assigns the decision maker to the two sequences. In the 

Mode first – Destination second (MD) sequence, the destination choice model is calibrated with 

choice alternatives customized to the chosen mode. In the Destination first – Mode second (DM) 

sequence, the destination model is calibrated without any mode information as mode is unknown 

to the decision maker. In the study, we used 2012 US Commodity Flow Survey (CFS) data. We 

found that the latent segmentation-based sequence model outperformed the independent sequence 

models (MD and DM). The validation exercise also confirmed the superiority of the proposed 

framework. Finally, an elasticity analysis is conducted to demonstrate the applicability of the 

proposed model system. 
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INTRODUCTION 

In the United States, the contribution of freight to the overall economy has increased substantially 

over the past half century. With more complex supply chains, growing population, and increasing 

adoption of online shopping for household goods, it is only likely that the trend will continue. The 

freight transportation sector contributes to 8.9 percent of the United States’ Gross Domestic 

Product (GDP) while also employing almost 4.5 million people (Freight Facts and Figure, 2017). 

The Freight Analysis Framework version 4 (FAF4) data predicts that, compared to 2012, freight 

movements in the US will increase about 42 percent by shipment weight and 87 percent by 

shipment value by 2040. These expected increases in freight movements will require transportation 

agencies to pro-actively address infrastructure design and planning related challenges. Towards 

addressing these challenges, it is important to understand how, where, and how much freight flows. 

While it would be ideal to model freight movements as a supply chain it is not always feasible to 

obtain supply chain level data for analysis. Hence, it is common for researchers to examine freight 

flows as a combination of three decisions. Specifically, study the following dimensions of freight 

flow: (1) transportation mode (how), (2) destination (where), and (3) shipment weight (how much).  

In transportation, several researchers have developed joint models for analysing 

interconnected decision processes. For example, freight mode and shipment size/weight choice. 

Generally, these joint models consider transportation mode as a labelled discrete alternative and 

shipping weight as a continuous or ordered categorical variable (for an exception see Abate et al., 

2018). The choice of mode is typically analyzed using a random utility (RU) based model that 

requires one utility equation per alternative. The shipping weight variable is usually studied using 

a linear regression (or ordinal regression) model that requires only one propensity equation for all 

alternatives. For these mathematical representations, researchers develop Simultaneous Equation 

Models (SEMs) that account for the endogenous nature of the relationship between shipment mode 

and size choice (common unobserved factors affecting the two dimensions of interest). SEMs can 

take the form of either a simulation-based approach (for example, see Abdelwahab and Sargious, 

1992; Abdelwahab, 1998; ) or an analytically closed form approach (for example, see de Jong and 

Ben-Akiva, 2007; Windisch et al., 2010; Pourabdollahi et al., 2013; Irannezhad et al., 2019; Keya 

et al., 2019). The typical dimensionality of the common error terms is obtained as a product of 

number of equations per choice. In the mode and shipment size case, this is limited to number of 

mode choice alternatives (as there is only one propensity equation for shipment weight); hence, 

earlier studies were able to successfully demonstrate these model frameworks. However, the 

approaches are not directly applicable when one of the dimensions is destination choice.  

At an aggregate level, gravity models or input-output models are considered for destination 

assignment (Ivanova, 2014). At the shipment level (or disaggregate level) destination choice is 

represented by a large number of alternatives. For example, in the US Commodity Flow Survey 

(CFS) data, the destination alternative is characterized as a CFS area and there are 132 potential 

CFS destinations within US for each shipment. The model framework would need to alter from 

discrete – continuous (or ordered) structure to a discrete – discrete structure where the second 

discrete model has a large number of alternatives. Thus, adapting the earlier joint frameworks 

would require us to employ one of two approaches. First, consider the large combinatorial 

possibilities (number of mode choice alternatives*number of destination choice alternatives) as 

the choice set. Second, reduce the combinatorial possibilities by parameterizing the destination 

error correlation as a function of destination attributes. Either approach would require us to resort 

to simulation-based model developments as closed form solutions become intractable. Simulation 

based models for a single choice with large number of alternatives is quite cumbersome 
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computationally. Thus, developing joint models with such large choice sets is time consuming and 

presents with lower prediction accuracy (relative to models with fewer alternatives). To be sure, 

some research efforts have considered destination choice within a production consumption 

framework (see de Jong et al., 2017). However, the destinations considered in the models are 

usually countries and are smaller in number. A similar approach cannot be extended to studies 

where the potential number of destinations is higher. Given these inherent challenges associated 

with modeling mode and destination choice behavior, we propose a relatively simpler econometric 

framework built on earlier work in the passenger demand modeling realm (for example, see 

Waddell et al., 2007; Chakour and Eluru, 2014; Anowar et al., 2019).  

In the proposed approach, we postulate that these joint choices are actually temporally 

sequential in nature with an infinitesimally small time gap between them. To elaborate, a shipper, 

while deciding the mode and destination for a shipment, selects one of the choices first. Then, 

based on the first choice, determines the second one. If the true sequence was known, the joint 

choice process can be broken down into individual sequential choice process. However, the 

sequence adopted by the shipper is unknown to us. Thus, in our approach, we recognize that the 

sequence choice is latent and consider a probabilistic model that can accommodate for all choice 

sequences within a single framework. The latent segmentation structure allows us to capture the 

influence of important factors on the sequence decisions while simultaneously modeling shipping 

mode and destination choices. In our analysis, we allow for two distinct choice hierarchies: (1) 

mode first – destination second (MD) and (2) destination first – mode second (DM). In this process, 

the first choice decision is assumed to be known while modeling the second choice decision. This 

consideration allows us to utilize additional information in modeling the second choice in the 

sequence. For example, when private truck is the chosen mode, it is more likely that the chosen 

destination will be within a certain distance (observed from the actual dataset). Hence, for private 

truck mode in the MD segment, we generate a destination choice set considering the CFS areas 

which are within 413 miles from the origin (99th percentile routed distance from the dataset). On 

the other hand, recognizing that the shipment mode is unknown to the shippers in the DM segment 

and hence, the chosen destination can be any one of the 132 CFS areas in US, we randomly selected 

30 unique destinations from the destination choice pool where one of them is the chosen 

destination CFS area.  The reader would note that by not combining mode and destination, the 

overall number of alternatives is reduced by an order of five (as many modes). This order of 

magnitude reduction offers computational benefits while also reducing prediction error. The 

proposed model structure is estimated using 2012 US Commodity Flow Survey (CFS) data. The 

results clearly highlight the value of the model developed. Additional validation exercises 

conducted also affirm the benefits of the proposed framework. 

 The rest of the paper is organized as follows: the following section briefly discusses the 

existing literature on joint destination and mode choice evaluation in both passenger and freight 

realms. The third section presents description of the data source and data preparation steps. The 

section after describes econometric framework used in this study followed by empirical analysis 

section which discusses model estimation, validation and elasticity results. Finally, the last section 

concludes the paper. 
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EMPIRICAL CONTEXT 

Earlier Research 

Mode choice is one of the most extensively researched topics in both passenger travel and freight 

transportation realm. A review of all the relevant work on freight mode choice behavior is beyond 

the scope of this paper (see Keya et al., 2017 for a detailed review or Jensen et al. (2019) for recent 

work). In this section, we focus our attention on research initiatives examining destination choice 

behavior. From our review, we have observed that earlier literature on the topic can be categorized 

into two broad groups: (1) studies that examine destination as a separate choice and (2) studies that 

examine destination in conjunction with mode choice. The majority of the studies in the first group 

analyze destination choice in the passenger travel context (recreational trip-end (Pozsgay and Bhat, 

2001); shopping trip-end (Arentze et al., 2005); tourist destination (Yang et al., 2013); bikeshare 

trip-end (Faghih-Imani and Eluru, 2015); tour-end (Paleti et al., 2017)), while only a handful of 

studies examine freight destination choice. We limit ourselves to the discussion of these studies 

only. We found that all of the studies used stratified importance sampling method (see Ben-Akiva 

and Lerman, 1985) for creating the destination choice set and used multinomial logit model for 

analysing the choice behavior (see Mei, 2013; Park et al., 2013; Wang and Holguin-Veras, 2008). 

The exogenous variables used in these studies include shipping time, distance, number of 

employment and area type. Of these, travel time/distance is found as the most important factor 

influencing destination choice. 

 The second group of studies examine mode and destination choice as a joint decision; 

again, the majority are from passenger travel behavior context with one exception (Genç et al., 

1994). Table 1 provides a summary of these research efforts. The table provides information 

pertaining to study area, type of mode alternatives, number of destination alternatives, sampling 

consideration, exogenous variables considered, and methodology employed. Several observations 

can be made from the table. First, auto (drive alone/passenger), transit, walk, and bike are the most 

commonly considered mode alternatives. Second, the number of destination alternatives (in the 

joint decision process) varied from 2 to 1404. Third, methodologically, MNL and nested logit (NL) 

models are widely used due to their closed form structure and easy interpretability. The reader 

would note that in MNL and NL models, the mode and destination choices are considered as 

simultaneous decisions. In a NL model, a pre-determined hierarchy is introduced allowing the 

consideration of correlation across a subset of alternatives. Within the nesting structure, destination 

is considered at the upper level and mode is considered at the lower level. More recently, Chakour 

and Eluru (2014) proposed a latent segmentation-based sequential model for examining commuter 

train users’ access mode and destination station behavior. This is the only study in the literature 

that allowed for a sequential decision process. Finally, in freight transportation context, Genc et 

al. (1994) evaluated mode-destination-shipment size jointly using mixed discrete-continuous 

choice model, where they considered shipment size as continuous variable and mode-destination 

alternatives as discrete variables. The authors considered only truck and rail as mode alternatives 

in their study and the number of destination alternatives was limited to 12.
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TABLE 1 Literature on Joint Modeling of Mode and Destination Choice 

 

Study Study Area 

Decision Variables 
Sampling 

Considered 
Exogenous Variables Methodology 

Mode 
No. of 

Destinations 

Passenger travel 

Richards and Ben-

Akiva (1974) 
Netherlands 

Car, bus, 

train, moped, 

walk, bike 

19 No 
Travel time, cost, no. of employment in 

destination shopping center 

Multinomial Logit 

Model 

Adler and Ben-

Akiva (1976) 

Washington 

D.C., USA 

Drive alone, 

passenger, 

transit 

134 No 

Travel time and cost, car ownership, 

distance, no. of retail employment, if 

destination in CBD, no. of persons in 

household, household income 

Multinomial Logit 

Model 

Southworth (1981) England Car, transit 14 No 
Travel time and cost, income, no. of worker 

in household, distance 

Multinomial Logit 

Model 

Timmermans 

(1996) 

Netherlands Car, bus 2 No 

Travel time, parking cot, travel cost, 

frequency of bus service, size of shopping 

center, price level at shopping center, 

parking facilities, distance 

Sequential 

multinomial logit 

model 

Jonnalagadda et al. 

(2001) 

San Francisco, 

USA 

Drive alone, 

shared ride, 

transit, walk, 

bike 

40 Yes 

No. of employment, destination household 

income, presence of CBD, urban/suburban 

area, distance, travel time, waiting time, no. 

of stops, vehicle ownership, no. of worker at 

household, destination topology, network 

connectivity, vitality of neighborhood 

Nested logit (mode), 

Multinomial logit 

(destination) 

Limanond and 

Niemeier (2003) 

Washington, 

USA 

Auto, bus, 

walk 
5 No 

Travel time and cost, no. of retail 

employment in destination, household 

income, day of week, distance 

Multinomial logit 

model 

LaMondia et al. 

(2008) 

Europe 

Car, air, 

surface public 

transport 

6 No 

Home country/abroad, distance, travel 

companions, age, household size, income, 

employment status, student, travel planning 

characteristics, cost at destination, quality of 

facilities at destination, easily accessible 

from home, population density, no. of large 

cities, np. Of hotels, climate, activities for 

children, friends/family lives at destination, 

familiar with destination language, product 

available for shopping, national 

park/spa/coastal area 

Multinomial logit 

model 
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Study Study Area 

Decision Variables 
Sampling 

Considered 
Exogenous Variables Methodology 

Mode 
No. of 

Destinations 

Yagi and 

Mohammadian 

(2008) 

Jakarta, 

Indonesia 

Drive alone, 

shared ride, 

motorcycle, 

taxi, transit, 

non-

motorized 

11 No 

Travel time, distance, time of the day, 

presence and location of intermediate stops, 

household income, household composition, 

vehicle ownership, age , gender, destination 

urban area, land use pattern, density of jobs 

Nested logit 

Newman et al. 

(2010) 

Tennessee, 

USA 

Car, transit, 

school bus, 

walk, bike 

- - 

No. of student in household, presence of 

seniors, household income, gas price, bus 

fare, activity diversity, percent of sidewalk 

in the zone, household vehicle per person, 

no. of employment, need river and county 

border crossing, percent of destination zone 

within 0.5 mile of bus stop 

Nested logit model 

Seyedabrishami 

and Shafahi 

(2013) 

Iran Car, transit 2 No 

Household car ownership, household size, 

trip purpose, zonal car ownership, distance 

from home zone to CBD, travel time 

MNL, fuzzy decision 

tree 

Chakour and Eluru 

(2014) 

Montreal, 

Canada 

Car, 

passenger, 

transit, walk, 

bike 

18 Yes 

Age, gender, vehicle ownership, 

employment status, time left home, distance 

to station, parking facilities at station, travel 

time, land-use 

Latent segmentation 

based sequential 

MNL-MNL model 

Fox et al. (2014) 
Toronto, 

Canada 

Drive alone, 

auto 

passenger, 

transit, walk 

1404 No 

Travel time, cost, if destination is CBD, 

distance, car availability, age, gender, no. of 

employment,  

Nested Logit 

Ding et al. (2014) 

Maryland, 

Washington 

D.C.,USA 

Car, transit, 

walk, bike 
3 No 

Household size, income, car ownership, 

gender, age, residential density, 

employment density, travel time and cost 

Multinomial logit, 

nested logit, cross-

nested logit model 

Freight transportation 

Genc et al. (1994) USA Truck, rail 12 No 
Waiting time, time for loading unloading, 

time to travel, market boundary 

Mixed 

continuous/discrete 

choice model 
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Current Study Context 

From the review exercise, it is evident that freight mode and destination choices have rarely been 

studied in a unified single framework. Even within the destination models from the passenger 

travel domain, only 2 studies developed joint model of mode and destination with destination 

alternatives being greater than 100. Further, earlier work typically imposed an a priori hierarchy 

of choice structure (mode at the top level and destination at the lower level or vice versa). 

Subsequently, the model fit across the two hierarchies are compared and the model with the better 

fit is chosen. However, it’s not necessary that all data records follow the same hierarchy. The 

current study addresses this limitation by developing a latent segmentation-based approach that 

allows for two choice sequences: (1) mode first – destination second (MD), and (2) destination 

first – mode second (DM). The mode and destination choice models estimated in the two sequences 

differ in exogenous attributes as well as choice alternatives. For instance, in the MD sequence, the 

mode choice model has no information on the actual destination while the destination choice model 

is calibrated with choice alternatives customized to the chosen mode. On the other hand, in the 

DM sequence, the destination model is calibrated without any mode information i.e. the same 

choice set is adopted for all records (universal choice set of 132 alternatives) while the mode choice 

model is estimated with the knowledge of destination. Thus, actual travel times to the destination 

and alternative availability at the destination can be incorporated. To be sure, while the universal 

choice set has 132 alternatives, our destination choice set for model development comprised of up 

to 30 alternatives carefully selected using random sampling method. Empirically, the research 

effort allows us to quantify the impact of various independent variables on mode and destination 

choice while accounting for the potential interrelationship between the two choices.  

 

EMPIRICAL DATA 

Data Source 

The model in the current study is estimated using 2012 US CFS data. CFS is a shipper based 

commodity survey carried out every five years since 1993 as part of the Economic Census by the 

US Census Bureau, in partnership with Bureau of Transportation Statistics (BTS). The 2012 Public 

Use Microdata (PUM) file contains a total of 4,547,661 shipment records from approximately 

60,000 responding businesses and industries. In the data, information is provided on type of 

commodities shipped, their origin and destination, if special handling is required, distance shipped, 

shipment value and weight, and their mode(s) of shipping. The commodities are classified by 

Standard Classification of Transported Goods (SCTG) code. A random sample of 15,000 records 

was carefully drawn from the PUM database to reduce the data processing and model estimation 

burden. Care was taken to ensure that the mode shares of the extracted sample matched with the 

weighted mode shares of the original data. From this sample, 5,000 data records were randomly 

chosen for model estimation and 10,000 records were set aside for validation exercise. The size of 

the data sample was based on the data preparation challenges for level of service variables to be 

employed in the mode choice model. The level of service data (including shipping time, shipping 

cost) for the various CFS data points were not available in the CFS dataset. The authors generated 

this information separately for each measure by mode using very time-consuming procedures 

(documented in Keya et al., 2017). Figure 1 and 2 represents the distribution of SCTG commodity 

types by shipment value and weight. It is interesting to observe that, by shipment weight, stone 

and non-metallic minerals has the highest share (27%), whereas by shipment value, this 

commodity has less than 1 percent share. By weight, only 2 percent electronics products were 

shipped in 2012, but this commodity had highest share by shipment value (28%). 
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FIGURE 1 Distribution of SCTG Commodity Type by Shipment Weight 

 

FIGURE 2 Distribution of SCTG Commodity Type by Shipment Value 
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Data Preparation 

Dependent Variables Generation 

In total, there are twenty-one modes reported in the 2012 CFS PUM file. For our analysis, we 

consolidated them and created a five-mode category. These include: (1) for-hire truck (including 

truck and for-hire truck): trucks run by non-governmental business organizations to provide freight 

transportation facilities to customers under a particular rate; (2) private truck: owned and used by 

private business units for their own freight movement; (3) air: includes both air and truck mode, 

as air has limited access and combination of truck with air increases the accessibility; (4) parcel: 

combination of multiple modes (mainly truck and rail); (5) other mode: involves rail (majority 

share), water, pipeline or combination of non-parcel multiple modes. 

The weighted mode shares in the estimation sample are as follows: for-hire truck (16.71%), 

private truck (25.55%), air (1.36%), parcel (56.06%), and other mode (0.33%). We adopted a 

heuristic approach to define mode availability based on observed shipment weight and routed 

distance. For instance, a 100-ton shipment is very unlikely to be transported by air or parcel mode 

due to their limitation in carrying capacity and high carrying cost. Private trucks are used for local 

shipping purposes; hence, they have an intrinsic distance restriction. Keeping these in mind, air 

and parcel modes are considered available when shipment weight is less than 914 pounds and 131 

pounds (99th percentile value from CFS dataset), respectively while private truck is considered 

available when routed distance is less than 413 miles (99th percentile value from CFS dataset). For-

hire truck and other modes are always available (see Keya et al., 2017 for more details). 

Destination choice sets for the two sequences are created separately. For DM sequence, the 

destination choice set comprised of 30 alternatives including the chosen alternative. These 30 

alternatives are randomly selected from the 132 available CFS areas. Due to the independence of 

irrelevant alternative (IID) property of MNL model, the process of random sampling does not 

affect (bias) the parameter estimates (see McFadden, 1984; Guevara and Ben-Akiva 2013a, 

Guevara and Ben-Akiva 2013b) and thus has been widely used in destination choice analysis 

(Pozsgay and Bhat, 2001; Scott et al., 2015; Scott and He, 2012). However, if the same procedure 

is followed for creating the destination choice set for the MD sequence, it might lead to potential 

inaccuracy in the empirical analysis. For example, choice of private truck as shipment mode limits 

possible destination choices; intuitively, destinations within a reasonable distance (as observed 

from actual data) from the origin would be more preferred. If air or parcel are chosen instead for 

the same shipment, the destination choice set would invariably expand. To address this issue, new 

sets of viable destination choice are generated based on chosen mode and its availability. As 

mentioned before, private trucks are considered available when the routed distance is less than 413 

miles. Therefore, for private trucks, the destination choice set comprised of randomly selected CFS 

areas that are within 413 miles (network distance). Due to the distance restriction, in some 

instances, we ended up having less than 30 available destination choices for a particular origin. In 

these cases, we created the choice set using all the available alternatives (including the chosen one) 

ensuring that all the choice alternatives are unique. For the origins with more than 30 available 

alternatives, the same methodology previously stated (for creating non-mode specific destination 

choice sets) is employed. For for-hire truck, air, parcel, and other mode we do not have any 

shipping distance restrictions. Therefore, for these modes, we randomly chose 30 unique 

destinations from the 132 CFS areas. Please note that in the mode specific destination choice set, 

the number of alternatives vary from 5 to 30 (about 21% origins have less than 10 destination 

alternatives). 
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Independent Variables Generation 

We augmented the extracted random sample by level-of-service (LOS) measures, a host of origin-

destination (O-D) attributes, and network characteristics. The LOS variables (shipping time and 

shipping cost) are generated for all available modes. Please note that for different destinations, the 

shipping time and cost would vary depending on how close/far they are located from the origin. 

Actual origin and destination location of the shipments is not available in the PUM data – only the 

CFS area from where the shipment originated and to which the shipment is destined to are 

provided. Therefore, using network analysis tool in ArcGIS, we generated the network distance 

from each origin CFS to each destination using their geometric centroids. Using the calculated 

network distance, we computed the shipping time and cost for each O-D pair employing 

information from several external sources. The detailed procedure of calculating shipping time and 

shipping cost is described in Keya et al. (2017). Network and O-D attributes were compiled from 

various sources including National Transportation Atlas Database (NTAD) 2012, National Bridge 

Inventory (NBI) data, National Highway Freight Network (NHFN) data, Highway Performance 

Monitoring System (HPMS) data, Federal Highway Administration (FHWA), and FAF4 network 

data. The transportation network attributes include: roadway length per functional classification 

(interstate highway, freeway and expressway, principal arterial, minor arterial, major and minor 

collector), railway length, number of airports, number of seaports, number of intermodal facilities, 

number of bridges, truck Annual Average Daily Traffic (AADT), length of tolled road, length of 

truck route, length of intermodal connectors, number of truck parking locations, number of truck 

parking spaces in rest and non-rest areas, ratio of the length of intermodal connectors to the total 

roadway length, ratio of the length of Primary Highway Freight System (PHFS) and other 

interstates portions not on PHFS to the total roadway length. The O-D attributes include population 

density, number of employees, number of establishments by North American Industry 

Classification System (NAICS) (manufacturing, mining, retail trade, warehouse and storage, 

company and enterprise, wholesale, information), income categories based on mean income of an 

area (low (<$50,000), medium ($50,000-$80,000), and high (>$80,000)), number of warehouses 

and super centers, major industry type in an area (based on the majority of existing industries in a 

CFS area), percentage of population below poverty level, and annual average temperature (cold if 

the average annual temperature is less than or equal to 60oF; warm  if the temperature is greater 

than 60oF) (Weather and Science Facts, 2018). 

 

METHODOLOGICAL FRAMEWORK 

The proposed modeling approach consists of three components: (1) latent segmentation component 

for the two sequences: (a) mode first-destination second (MD) sequence and, (b) destination first-

mode second (DM) sequence, (2) mode choice component for each segment, and (3) destination 

choice component for each segment. The ensuing presentation is organized by the components.  

 

Latent Segmentation Component 

Let i be the index for shippers (𝑖 = 1, 2, . . . , 𝐼), 𝑞 be the index for segment (𝑞 = 1 𝑜𝑟 2), 𝑚 be the 

index for mode choice alternative (𝑚 = 1, 2 … 𝑀), and 𝑑 be the index for destination alternative 

(𝑑 = 1, 2 … 𝐷). In the latent segmentation component, we determine how shippers are 

probabilistically assigned to one of the two sequences (MD or DM). The latent process is analyzed 

using a binary logit structure as follows: 

The utility for assigning a shipper 𝑖 to segment 𝑞 is defined as: 
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𝑢𝑖𝑞
∗ = α′𝑥𝑖𝑞 + 𝜀𝑖𝑞 (1) 

where 𝑢𝑖𝑞
∗  denotes the utility obtained by the 𝑖𝑡ℎ shipper in selecting the 𝑞𝑡ℎ segment. 𝑥𝑖𝑞 is the  

column vector of attributes which influence the propensity of belonging to segment 𝑞. 𝛼′ is the 

corresponding column vector of coefficients to be estimated. 𝜀𝑖𝑞 is an idiosyncratic error term 

assumed to follow Type 1 Extreme Value distribution. The shipper 𝑖 will choose the alternative 

that offers the highest utility. Then the probability that shipper 𝑖 belongs to segment 𝑞 is given as: 

𝑃𝑖𝑞 =
exp (𝛼′𝑥𝑖𝑞)

∑ exp (α′𝑥𝑖𝑞)2
𝑞=1

 (2) 

 

Mode and Destination Choice Component 

For mode and destination choice, we employ the random utility based that take the form of two 

multinomial logit models (see Chakour and Eluru, 2014 for a similar approach).  With this notation, 

the formulation takes the following form: 

𝑢𝑖𝑞𝑚
∗ = 𝛽𝑞′𝑥𝑖𝑞𝑚 + 𝜀𝑖𝑞𝑚 (3) 

𝑢𝑖𝑞𝑑
∗ = 𝛾𝑞′𝑥𝑖𝑞𝑑 + 𝜀𝑖𝑞𝑑 (4) 

where 𝑢𝑖𝑞𝑚
∗  denotes the utility obtained by choosing mode alternative 𝑚 in the 𝑞𝑡ℎ segment, and 

𝑢𝑖𝑞𝑑
∗  denotes the utility obtained by choosing destination alternative 𝑑 in the 𝑞𝑡ℎ segment. 𝑥𝑖𝑞𝑚, 

𝑥𝑖𝑞𝑑 are column vectors of attributes which influence the choice framework. 𝜀𝑖𝑞𝑚, 𝜀𝑖𝑞𝑑 are 

idiosyncratic error terms assumed to follow Type 1 Extreme Value distribution. 𝛽𝑞, 𝛾𝑞 are 

corresponding column vectors of parameters to be estimated. The second model in each segment 

is conditional on the first model in the segment. 𝑥𝑖𝑞𝑚, 𝑥𝑖𝑞𝑑 incorporate the information available 

to the shipper at that instant in the choice process.  

The probability expression for each model component takes the usual MNL form as 

follows: 

𝑃𝑖𝑞𝑚 =
exp (𝛽𝑞′𝑥𝑖𝑞𝑚)

∑ exp (𝛽𝑞′𝑥𝑖𝑞𝑚)𝑀
𝑚=1

 (5) 

𝑃𝑖𝑞𝑑 =
exp (𝛾𝑞′𝑥𝑖𝑞𝑑)

∑ exp (𝛾𝑞′𝑥𝑖𝑞𝑑)𝐷
𝑑=1

 (6) 

 

Model Estimation 

With these preliminaries, the latent segmentation-based probability for joint choice of mode 𝑚 and 

destination 𝑑 with two segments (𝑞 = 1 𝑜𝑟 2) can be formulated as follows: 
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𝑃𝑖𝑚𝑑 =  𝑃𝑖1𝑃𝑖1𝑚𝑃𝑖1𝑑 +  𝑃𝑖2𝑃𝑖2𝑑𝑃𝑖2𝑚 (7) 

The first term in Equation (7) reflects the first sequence - MD while the second term reflects the 

second sequence - DM. The exogenous variables in the second choice for each segment are 

generated while recognizing the chosen alternative attributes from the first choice process in the 

segment. The log-likelihood (LL) at the individual shipper level is defined as: 

𝐿𝑖 = 𝛿𝑚𝑑 ∗ 𝑙𝑛(𝑃𝑖𝑚𝑑) (8) 

where 𝛿𝑚𝑑= 1 if the mode and destination combination is the chosen alternative and 0 otherwise. 

𝐿 =  ∑ 𝐿𝑖

𝑖

 (9) 

The LL function is constructed based on the above probability expression, and maximum 

likelihood (ML) estimation technique is employed to estimate the 𝛼, 𝛽𝑞, 𝛾𝑞 parameters. The model 

is programmed in GAUSS matrix programming language. The reader would note that the 

simplicity of the log-likelihood function does not ensure that the model estimation is 

straightforward. In fact, the challenges with the estimation of latent models associated with the 

increase in the degrees of freedom are similar to the empirical identification issues observed in the 

estimation of simulated maximum likelihood functions for mixed logit models (Cherchi and 

Guevara 2012). In the simulated maximum likelihood optimization routine, it is very likely that 

the analyst runs into optimization routine convergence issues because of the flatness of the log-

likelihood function. In the latent case, the log-likelihood function in the initial stages of the latent 

segmentation model is relatively flat thus making it hard to identify the impact of exogenous 

variables. In fact, some research studies have resorted to the adoption of an EM algorithm for 

model estimation (Bhat 1997; Kuriyama et al., 2010; Sobhani et al., 2013). In our study, we 

carefully conduct our model estimation with starting values from the single segment models to 

alleviate these challenges.  

 

 

EMPIRICAL RESULTS 

The model specification process was guided by prior research, intuitiveness, and parsimony 

considerations. We removed statistically insignificant variables (at 80 percent confidence level (z-

stat = 1.282)) and combined variables when their effects were not significantly different to obtain 

the final specification. 

 

Model Fit 
We estimated the following models: (1) mode first-destination second (MD) independent model, 

(2) destination first-mode second (DM) independent model, and (3) latent segmentation-based 

sequential model (LSS). These models are non-nested; hence, we calculated Bayesian Information 

Criterion (BIC) for evaluating their performance. The BIC value for a given empirical model can 

be calculated as: –  2 (𝐿𝐿)  +  𝐾 𝑙𝑛 (𝑄), where 𝐿𝐿 is the log-likelihood value at convergence, 𝐾 is 

the number of parameters, and 𝑄 is the number of observations. The model with the lowest BIC 

value is the preferred model. The corresponding BIC (number of parameters) values for the MD 

sequence, DM sequence, and LSS models are: 33,805.96 (21), 31,587.80 (23), and 28,342.14 (43), 
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respectively. The values clearly show that, of the three estimated models, LSS is providing the 

best data fit. In terms of the two sequences, in this study context, the DM sequence model offers 

better model fit compared to the MD sequence model.  

 

Segment Characteristics 
The segment characteristics analysis indicates that, shippers are more likely to choose mode first 

and then decide the destination location of the shipment (aggregate segment share 53%). In the 

MD segment, the shipping mode share is as follows: for-hire truck (25.5%), private truck (8.6%), 

air (3.0%), parcel (62.4%), and other mode (0.5%). In the DM segment, the mode share is as 

follows: for-hire truck (16.6%), private truck (29.0%), air (0.9%), parcel (51.1%), and other mode 

(2.4%). These shares clearly illustrate that there is a significant difference in shipment mode shares 

across the two segments, confirming the presence of heterogeneity. In both segments, parcel mode 

occupies a larger share. However, the share of for-hire truck is substantially higher in the MD 

segment, while the share of private truck is significantly higher in the DM segment. The reason 

may be that when freight destination is decided and is within 413 miles, the shippers are more 

likely to choose their own vehicle fleet (private truck) for shipping.  

 

Model Estimation Results 
Sequence Choice Component 

The second and third columns of Table 2 present the estimates of the latent segmentation 

component. It examines whether the shippers will choose MD or DM sequence. The positive value 

of the constant illustrates that when everything remains the same, the probability of choosing MD 

sequence by the shipper is higher than choosing DM segment. In our analysis, we used freight 

characteristics as the segmentation variables. We found that when the shipment value is greater 

than $300, shippers are more inclined to choose MD sequence. One plausible reason might be that 

when shipping higher value items, shippers are more particular/selective about modes (for 

example, see Pourabdollahi et al., 2013 and Yang et al., 2014 found that the higher the value of 

commodity, the higher is the probability of choosing air mode). When the commodity to be shipped 

is hazardous in nature, shippers are more inclined to choose DM sequence. It is possible that 

demand for hazardous material is area-specific and depends on the nature of industries in the area. 

For instance, areas with manufacturing and mining industries might require supply of raw 

materials that might be hazardous (Pradhananga et al., 2010; Kazantzi et al., 2011; Zhou et al., 

2013). Moreover, hazardous materials need careful handling. Once destination is chosen, 

depending on mode availability and loading-unloading facilities in the destination zone, choosing 

appropriate mode equipped with the special handling capacity is more convenient. For shipping 

prepared foods and products, shippers tend to choose destination first and mode later. Market place 

and residential areas are more likely to attract prepared foods and products. Hence, once 

destinations are decided, it becomes easier for the shipper to decide on the shipping mode 

depending on the quantity of product to be shipped. We mapped the probability of belonging to 

Segment 1 against CFS areas and presented in Figure 3. We can see that, when the origin zones 

have high density of roadway, railway, airports and ports, shippers are more likely to select the 

shipping mode first and then destination; presumably, because these transportation features allow 

better modal accessibility.  
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FIGURE 3 Segment Choice (MD Sequence) Probability Distribution Plot against Origin CFS Areas 
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TABLE 2 Latent Segmentation-Based Mode-Destination Choice Model Results 
 

Variables 

Sequence Choice Results Shipping Mode Choice Results Shipment Destination Choice Results 

MD Segment DM Segment MD Segment DM Segment MD Segment DM Segment 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Constant 
0.207 

(3.709) 
- - - - - 

Private Truck Constant - - 
-0.912 

(1.704) 

1.768 

(13.164) 
- - 

Air Constant - - 
-0.69 

(-2.343) 

-11.525 

(-0.074) 
- - 

Parcel Constant - - 
3.18 

(12.691) 

3.406 

(9.601) 
- - 

Other Mode Constant - - 
-3.874 

(-11.688) 

-27.795 

(-3.521) 
- - 

Freight Characteristics 

Shipment Value: < $ 300 
-0.026 

(-1.379) 
- - - - - 

Hazardous Material 
-1.575 

(-8.182) 
- - - - - 

SCTG Commodity Type: Prepared Foods and 

Products 

-1.498 

(-8.197) 
- - - - - 

Level of Service Variables 

Shipping Cost ($1000) - - - 
-14.383 

(-4.498) 

-0.658 

(-9.547) 
- 

Shipping Time (100 hrs) - - - 
-1.131 

(-4.375) 
- 1 - 

Average Shipping Time To Destination (100 

hrs) 
- - - - - 

-1.815 

(-18.247) 

Transportation Network & Demographic Variables 

Major Industry in Manufacturing Industry at Origin  

For-hire Truck 
- - 

0.012 

(1.353) 

0.326 

(1.973) 
- - 

No. of Intermodal Facility at Origin 

Private Truck 
- - 

-0.006 

(-1.631) 
-     

No. of Intermodal Facility at Destination 

Private Truck 
- - - 

-0.008 

(-3.312) 
- - 

Roadway Density at Origin (mi/ mi2) 

Parcel 
- - 

0.09 

(1.23) 

1.06 

(3.237) 
- - 
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Variables 

Sequence Choice Results Shipping Mode Choice Results Shipment Destination Choice Results 

MD Segment DM Segment MD Segment DM Segment MD Segment DM Segment 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Coefficient 

(t-stat) 

Railway Density at Origin (mi/ mi2) 

Air 
- - 

-3.761 

(-2.537) 
- - - 

Population Density at Origin (1000/mi2) 

Air 
- - 

0.793 

(2.289) 
- - - 

Destination Urban Area 

Air 
- - - 

9.772 

(1.36) 
- - 

Population Density at Destination (1000/mi2) 

Air 
- - - 

0.804 

(1.871) 
- - 

Density of Manufacturing Industry at 

Destination 
- - - - 

0.503 

(5.609) 

1.81 

(7.807) 

Density of Management Company and 

Enterprise at Destination 
- - - - 

-0.408 

(-2.951) 

-5.33 

(-4.509) 

No. of Warehouse and Supercenter at 

Destination 
- - - - 

0.014 

(17.466) 

0.011 

(5.854) 

Household Income Level at Destination: 

 > $ 80,000 
- - - - 

0.441 

(4.973) 

0.935 

(4.863) 

Truck AADT at Destination (million) - - - - 
0.006 

(3.817) 

0.029 

(5.391) 

Density of workers at Destination - - - - 
1.154 

(3.146) 

6.156 

(8.452) 

No. of Truck Parking Location at Destination - - - - 
1.262 

(3.06) 

10.301 

(10.588) 

Interaction Terms with Chosen Mode 

Destination Urban Area*Private Truck - - - - 
-0.707 

(-1.466) 
- 

No. of Truck Parking Location at 

Destination*Private Truck 
- - - - 

7.455 

(1.294) 
- 

No. of Truck Parking Location at 

Destination*For-hire Truck 
- - - - 

2.295 

(3.299) 
- 

No. of Parameters 43 

Log-likelihood at Convergence -13987.95 
1 = insignificant at 80 percent confidence interval 
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Mode-Destination Segment (MD) 

The fourth and sixth columns of Table 2 provides the result of MD sequence. When mode is chosen 

first, the destination attributes are not known to the shipper. Therefore, destination characteristics 

or LOS variables which are dependent on the distance from origin to destination, cannot be 

examined in this sequence. When the major industry type at origin is manufacturing, then the 

probability of choosing for-hire truck increases. The capacity of carrying larger load from 

manufacturing industries and better maneuvering flexibility compared to other modes might be a 

plausible reason (Abdelwahab, 1998; McKinnon, 2006). With increasing number of intermodal 

facilities at origin, the probability of choosing private truck decreases. Intermodal facilities are 

intermediaries facilitating the transfer of freight from one mode to another. As private trucks are 

usually used for shipping within a shorter distance, chances of mode change are lower. Shipments 

originating from an area with higher highway density is more likely to be shipped by parcel mode 

as parcel mode requires greater accessibility through roadway network. When the railway density 

increases at origin, the probability of choosing air mode decreases while increased population 

density at origin increases the probability.  

When destination is chosen second, shipping mode is already known to the shipper. 

Therefore, LOS variables by mode can be introduced in this segment. As expected, shipping cost 

negatively impact destination choice; shippers are disinclined to choose a destination for which 

shipping cost is higher. The result makes intuitive sense. Destinations with higher density of 

manufacturing industry and increased number of warehouses and supercenters, are more likely to 

be chosen as they facilitate convenient stockpiling of materials. However, the density of 

management companies and enterprise negatively influence destination choice. Destination zones 

with higher household income, truck AADT, density of workers, and number of truck parking 

locations influence the destination choice positively. The results are intuitive, as higher values of 

these variables represent higher demand of goods and better facilities for trucking mode. We also 

tested several interactions between destination attributes and the chosen mode. The results indicate 

that shippers are less likely to choose destinations in urban area when using private truck as the 

shipping mode. Operation of truck mode is strictly regulated in urban areas (hence, reducing its 

accessibility) with high population density; restrictions are imposed on roadway usage (parking, 

loading, and unloading) along with weight carrying limit. On the other hand, the interactions of 

number of truck parking locations at destination with for-hire truck and private truck both affect 

destination choice positively. Understandably, shippers prefer destination areas where they are 

able to park vehicles easily 

 

Destination-Mode Segment (DM) 

The fifth and seventh columns of Table 2 present the effects of various variables on DM sequence. 

When destination is chosen first, the impacts of the variables are quite intuitive. As the mode is 

unknown to the shipper, the average shipping time for all modes was considered in the model. The 

impact of average shipping time to destination is found negative as expected. When the density of 

manufacturing industries and number of warehouses and supercenters at destination increase, the 

probability of choosing that particular destination increases. Manufacturing industries require raw 

materials in large quantities to manufacture different products and the number of warehouses and 

supercenters facilitate storing of raw materials in bulk, attracting more freight flows. However, 

density of management companies and enterprises affect destination choice negatively. High 

household income and density of workers increase the attractiveness of the location as freight flow 



 

18 

 

destination. Both variables are indicative of higher demand of goods. Besides, truck AADT and 

number of truck parking locations at destination also impact destination choice positively; because 

with increasing truck parking location the accessibility of truck increases.  

As destination is already chosen in this segment, therefore shipping time, shipping cost, 

and destination attributes are known to the shipper and hence, the effects of these variables can be 

tested in the mode choice model. The negative sign associated with shipping time and shipping 

cost clearly shows that probability of choosing a particular mode decreases with increasing 

shipping time and cost. When manufacturing industry is the major industry type at origin, the 

probability of choosing for-hire truck increases. The shipper is less likely to choose private truck 

when number of intermodal facilities at destination increases. With increasing roadway density at 

origin, the probability of choosing parcel mode increases. When destination is an urban area, the 

probability of choosing air mode increases. The reason may be airports are mainly situated near 

urban areas. Moreover, with increasing population density at destination, the probability of 

choosing air mode increases.  

 

Model Validation 

We also performed a validation exercise using the hold-out sample (10,000 records), in order to 

ensure that the estimated results are not affected by over-fitting of data. For this purpose, we used 

the estimated parameters of the final specified models and computed the predictive log-likelihood 

for the hold-out dataset. The predictive log-likelihood values obtained for MD sequence, DM 

sequence, and LSS models are: -33548.72, -32372.68, and -28330.62, respectively. The results 

indicate that the LSS model outperformed the two independent models by a large margin. To 

further illustrate the improvement in model prediction, we compute predictive log-likelihood 

values for various sub-samples including Mode, hazardous Material, Export product, Temperature 

controlled product, shipment value, and destination distance. Table 3 provides the summary of 

log-likelihood comparison for the three models for the various sub-samples. The results from the 

table clearly highlight the improvement in model fit for the LSS model across nearly all sub-

samples (with small number of exceptions where DM or MD sequence performs slightly better).  

 The shipping mode shares within the segments are also found similar to the mode shares 

obtained from the estimation sample. In the MD segment, the shipping mode shares are as follows: 

for-hire truck (25.6%), private truck (8.4%), air (3.0%), parcel (62.4%), and other mode (0.5%). 

In the DM segment, the share is as follows: for-hire truck (16.8%), private truck (28.9%), air 

(0.9%), parcel (51.1%), and other mode (2.3%). Please note that, we followed same data 

preparation approach for the validation sample as we did for the estimation sample. 

 

Table 3: Log-likelihood Comparison across Three Models for Different Sub-samples 

 

Variables 

Sample 

Share (%), 

N=10K 

Log-Likelihood 

MD 

sequence 

DM 

sequence 
LSS  

model 

Mode 

HT 15.68 -6435.43 -5333.08 -5754.43 

PT 24.97 -8343.36 -8492.79 -4876.38 

Air 4.09 -861.39 -440.98 -860.91 
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Parcel 52.96 -17641.99 -18012.74 -16651.56 

Other 2.30 -266.56 -93.09 -187.34 

Hazardous Material 

Yes 4.95 -1546.08 -1541.18 -865.95 

No 95.05 -32002.64 -30831.50 -27464.66 

Export 

Yes 5.46 -1417.52 -1352.01 -1341.07 

No 94.54 -32131.19 -31020.66 -26989.54 

Temperature Controlled Product 

Yes 4.77 -1503.98 -1543.62 -1186.75 

No 95.23 -32044.74 -30829.05 -27143.87 

Shipment Value 

Shipment Value: <$300 42.89 -15136.65 -14334.09 -12783.25 

Shipment Value: $300-$1000 19.97 -6816.09 -6558.78 -5657.75 

Shipment Value: $1000-$5000 18.23 -5928.28 -5933.40 -5001.10 

Shipment Value: > $5000 18.91 -5667.70 -5546.41 -4888.52 

Destination Distance 

<=100 miles 35.33 -12337.58 -11831.16 -6701.47 

> 100 miles and <=500 miles 23.31 -8147.32 -7624.07 -6589.63 

> 500 miles and <=1000 miles 16.54 -5297.89 -5228.17 -6025.72 

>=1000 miles 24.82 -7765.94 -7689.27 -9013.79 

 

ELASTICITY ANALYSIS 

The estimated results from Table 2 do not directly provide the exact magnitude of the effects of 

variables on the probability of mode and destination choices. However, it might be possible that 

the effects of some attributes might differ across the decision choices, particular for different 

modes. To evaluate this, we compute aggregate level elasticity effects for mode choice only 

considering a subset of independent variables including travel cost, travel time (for private truck 

and parcel mode), roadway density at origin, railway density at origin and population density at 

both origin and destination. In particular, we generated the aggregate change in choice probabilities 

for each mode in response to the increase of the explanatory variables by 10% (see Eluru and Bhat, 

2007; Bhowmik et al., 2019a,b; Kabli et al., 2020 for detail). The reader would note that travel 

cost and travel time measures were altered for one mode and the corresponding changes in 

probability across all alternatives are presented. In our presentation, we show the elasticities for 

travel cost for hire truck and air modes while in terms of travel cost, we present the elasticities for 

private truck and parcel mode. Further, for the latent model, we estimate the aggregate level 

elasticities for the overall sample as well as for each segment separately to emphasize policy 

repercussions based on the most critical contributory factors. For the overall sample, we took the 

segmentation probabilities into consideration. The elasticity effect across different modes for 

different variables are presented in Table 4.   

 

 



 

20 

 

Table 4 Elasticity Values 

 

Variables Segments 

Modes 

Hire 

Truck 

Private 

Truck 
Air Parcel Other 

Travel Cost  

(Hire Truck) 

Segment 1 (MD) 0.000 0.000 0.000 0.000 0.000 

Segment 2 (DM) -5.136 2.019 0.259 0.020 9.037 

Overall -2.032 1.586 0.057 0.008 7.488 

Travel Cost 

(Air) 

Segment 1 (MD) 0.000 0.000 0.000 0.000 0.000 

Segment 2 (DM) 0.099 0.022 -7.156 0.080 0.000 

Overall 0.039 0.017 -1.582 0.033 0.000 

Travel Time 

(Private Truck) 

Segment 1 (MD) 0.000 0.000 0.000 0.000 0.000 

Segment 2 (DM) 0.085 -0.110 0.029 0.040 0.000 

Overall 0.034 -0.086 0.006 0.016 0.000 

Travel Time 

(Parcel) 

Segment 1 (MD) 0.000 0.000 0.000 0.000 0.000 

Segment 2 (DM) 2.558 1.888 6.263 -2.214 0.000 

Overall 1.012 1.483 1.385 -0.901 0.000 

Roadway Density 

at Origin (mi/ mi2) 

Segment 1 (MD) -0.034 -0.024 -0.107 0.020 -0.034 

Segment 2 (DM) -0.826 -0.620 -2.212 0.725 0.000 

Overall -0.348 -0.492 -0.572 0.307 -0.006 

Railway Density  

at Origin (mi/ mi2) 

Segment 1 (MD) 0.311 0.280 -5.482 0.089 0.311 

Segment 2 (DM) 0.000 0.000 0.000 0.000 0.000 

Overall 0.188 0.060 -4.269 0.053 0.053 

Population Density 

at Origin 

(1000/mi2) 

Segment 1 (MD) -0.154 -0.146 3.225 -0.065 -0.154 

Segment 2 (DM) 0.000 0.000 0.000 0.000 0.000 

Overall -0.093 -0.031 2.512 -0.039 -0.026 

Population Density 

at Destination 

(1000/mi2) 

Segment 1 (MD) 0.000 0.000 0.000 0.000 0.000 

Segment 2 (DM) -0.068 -0.022 7.518 -0.097 0.000 

Overall -0.027 -0.017 1.663 -0.040 0.000 

 

The following observations can be made based on the elasticity effects presented in Table 

4. First, from the elasticity effects presented in Table 4, we can clearly see some significant 

differences in the mode choice probabilities across two segments for some variables which 

highlights the importance of adopting the latent segmentation-based approach. For instance, due 

to the 10% increase in the roadway density at origin, the likelihood of choosing hire truck will 

reduce in both segments (both MD and DM segments). However, the reduction rate is more 

significant (-0.826 vs -0.034)) if destination is chosen first (DM segment). Second, the results 

clearly indicate that travel mode shares are sensitive to the level of service attributes (travel cost 

and travel time) as reported in earlier literature (Rich et al., 2009). Specifically, we observe that 

increase in travel cost for both hire truck and air mode leads to a drop in the probability of choosing 

that particular mode. However, the impact is higher for hire truck which suggests that if the cost 

increases by same amount (10%) for both modes, shippers are less likely to choose the hire truck 
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relative to air mode for their deliveries. In terms of travel time, we find similar trends. Increase in 

travel time for private truck and parcel mode results in reduced likelihood of choosing that 

particular mode with higher impact on parcel mode. Third, increased roadway density results in 

increased likelihood of choosing parcel mode and the share of other four modes reduced. Similarly, 

with increase in railway density at origin, shippers are more inclined to choose the hire truck and 

parcel modes whereas the preferences for private truck, air and other modes reduced. Finally, 

changes in population density both at the origin and destination provides similar results. With 

higher population density, shippers will switch to air mode as indicated by the positive value in 

Table 4. 

 

CONCLUSIONS AND FUTURE WORK 

This paper investigates the joint decision of shipping mode and destination choice. Here, two 

sequences are considered for the two choices: mode first-destination second and destination first-

mode second. As analysts, we are not privy to the sequence chosen by the shipper. Hence, we 

considered a probabilistic approach that accommodates the two sequences in a unified model with 

two segments with each segment representing one sequence of choice. In this process, the first 

choice decision is assumed to be known while modeling the second choice decision. This 

consideration allows us to utilize additional information in modeling the second choice in the 

sequence. As a result, the proposed latent segmentation framework allows us to capture the 

influence of important factors on the choice of sequence while simultaneously modeling the 

shipping mode and destination choices. In the MD sequence, the mode choice model has no 

information on the actual destination. The destination choice model is calibrated with choice 

alternatives customized to the chosen mode. In the DM sequence, the destination model is 

calibrated without any mode information i.e. the same choice set is adopted for all records.  

The estimation results from the proposed joint model offers intuitive results. The model fit 

clearly shows that the latent segmentation-based sequence model performs better than the 

individual sequence model (MD or DM). The population shares in two segments are different with 

significant difference in mode shares clearly demonstrating the presence of population 

heterogeneity. While shipping higher value items, shippers are more inclined toward choosing 

mode first and then the destination. On the other hand, when shipping hazardous materials or 

prepared foods and products, they are more inclined to choose destination first as demand of these 

products depend on the nature of the destination area (industrial or marketplace).  

In order to better understand the magnitude of the effects of exogenous variables on the 

mode choice decision, we compute aggregate level elasticity effects for several variables of 

interest. We estimate the elasticities for the overall sample as well as for each segment separately 

to emphasize differences across the two segments. The results from our elasticity analysis provide 

intuitive policy interpretations. Moreover, from the elasticity effects, we can clearly see some 

significant differences in the mode choice probabilities across two segments.  

The proposed model framework can be employed by freight transportation planners to 

generate mode and destination outcomes as a function of various freight characteristics in the 

country. However, given the model complexity and the current state of practise, we consider our 

model to serve primarily as a framework to identify important variables. The elasticity approach 

described illustrates the process for identification of important variables influencing the mode and 

destination choice processes. Finally, certain drawbacks of this study need to be acknowledged. 

The proposed latent segmentation framework cannot be compared to observed real world data as 
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information on choice sequence is rarely collected in data collection exercises for freight  (and 

even passenger) transportation. Hence, it is not easy to hypothesize variable impacts across the 

various sequences. Hence, it is important that the models are estimated and interpreted carefully.  

US CFS 2012 data does not provide exact geo-coded locations of origin and destination of 

freight movement; rather, it provides the origin and destination at the CFS area level. Any 

information of trip chaining or any intermediate location of the trip is also unavailable in the 

dataset. In future, availability of this kind of information will lead to more accurate and intriguing 

analysis. Methodologically, several avenues for future research exist. The proposed sequential 

framework can be compared with several potential model systems such as (a) joint mode and 

destination based nested formulation with alternative hierarchies (mode at the top level or 

destination at the top level) and (b) latent segmentation-based model with alternative nesting 

structures as the two segments. Further, in our analysis, we focused on destination choice. It might 

also be interesting to explore freight origin as a dependent variable (Samimi et al., 2010; Outwater 

et al., 2013). The consideration could add a new dependent variable to the model and offer an 

interesting extension. Also, unobserved heterogeneity can be accommodated within the proposed 

structure to capture the influence of unobserved factors affecting the choice decisions. The 

computational complexity of the process will increase substantially and might result in estimation 

challenges. 
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