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ABSTRACT 

In our study, we examine the joint choice of freight transportation mode and shipment size. While 

shipment size could be considered as an explanatory variable in modeling mode choice (or vice-

versa), it is more likely that the decision of mode and shipment choice is a simultaneous process. 

A joint model system is developed in the form of an unordered choice model for mode and an 

ordered choice model for shipment size. We adopt a closed form copula-based model structure for 

capturing the impact of common unobserved factors affecting these two choices. Further, we 

explore alternatives to the traditional random utility structure in modeling mode choice. 

Specifically, we explore both the random utility (RU) based multinomial logit and the random 

regret (RR) minimization based multinomial logit (MNL) within a copula-based model. The 

shipment size is analyzed using ordered logit (OL) model within the copula structure. The RU and 

RR MNL structures are explored for several copula-based structures including Gaussian, Farlie-

Gumbel-Morgenstern (FGM), Clayton, Gumbel, Frank and Joe. The proposed approach considers 

copula models with multiple copula-based dependencies within a single model. The copula-based 

model dependency is also allowed to vary across the data by parameterizing the dependency as a 

function of observed attributes. The models are estimated based on the data from 2012 U.S. 

Commodity Flow Survey data. The copula RRM based MNL-OL copula with Frank and Joe 

copula dependencies offered the best data fit indicating the strong interconnectedness between 

shipment mode and shipment size choice decisions. A validation exercise provides further 

evidence of the joint model superiority for overall sample level and freight characteristics variables 

specific sub-samples. 

 

Keywords: Freight Mode Choice; Shipment Size; Random Regret Minimization; Copula  
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INTRODUCTION 

In recent years, with increased economic globalization, growing e-commerce, and internet-based 

shopping, the traditional pattern of freight flows is rapidly changing; particularly, the shipment 

size distribution is moving towards a higher share of smaller size shipments. In fact, with 

increasing online purchases (promoted by Amazon, e-Bay, Walmart and other retailers), it is 

expected that, there will be a reduction in personal travel while an increased frequency of freight 

movements is expected. Overall, the combined outcome of several factors can potentially lead to 

increased travel (Anderson et al., 2003; Mokhtarian, 2004). According to Bureau of Transportation 

Statistics (BTS) (2004), smaller sized shipments (less than 500 pounds) increased 56 percent by 

shipment value (net dollar sale value of the entire shipment or commodity, excluding freight 

shipping cost or excise vat) from 1993 to 2002. This is further confirmed by analysis of 2012 

Commodity Flow Survey (CFS) data. According to CFS data, in 2012, almost 90 percent 

commodities shipped were under 500 pounds and worth 25 percent by shipment value ($). The 

proclivity toward smaller shipment sizes will result in increased truck and parcel mode usage. The 

growth in truck and parcel flows will likely result in increasing the movement of light commercial 

vehicles on residential streets and heavy vehicles on major roads (accelerating road surface 

deterioration, creating safety hazards, causing congestion and increasing emissions).  

Given the importance of freight mode and shipment size decisions, we enhance current 

approaches used to model these two choice dimensions. In modeling mode choice, we explore 

alternatives to the traditional random utility (RU) structure. The commonly employed decision rule 

for developing discrete choice models for unordered alternatives such as mode choice, is the 

random utility maximization (RUM). RUM based approaches hypothesize that decision makers 

opt for alternatives that offer them the highest utility or satisfaction (Ben-Akiva and Lerman, 1985; 

McFadden, 1974; Train, 2009). The framework allows for the consideration of trade-offs across 

various attributes affecting the choice process. This implicit compensatory nature of the 

formulation allows for a poor performance on an attribute to be compensated by a positive 

performance on another attribute (Chorus et al., 2008). Several researchers, motivated by research 

in behavioral economics, have considered alternative decision rules for developing discrete choice 

models such as relative advantage maximization (Leong and Hensher, 2015), contextual concavity 

(Kivetz et al., 2004), fully-compensatory decision making (Arentze and Timmermans, 2007; 

Swait, 2001), prospect theory (PT) (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), 

and random regret minimization (RRM) (Chorus et al., 2008; Chorus, 2010). Of these approaches, 

we adopt regret minimization approach for our analysis due to its mathematical simplicity within 

a semi-compensatory decision framework. In our study, we explore both RU based multinomial 

logit (MNL) and random regret (RR) minimization based MNL models within a copula-based 

structure.  

The shipment size variable is examined using an ordered logit (OL) model. Given the 

continuous reporting of shipment size, the most common approach to modeling shipment size in 

the literature includes employing a linear (or log-linear) formulation. However, the shipment 

weight data is likely to be bunched together at various weight limits (such as 500 pounds or 1 ton). 

Given the inherent bunching of the shipment weight variable, the consideration of linear or log-

linear models is not appropriate. Further, linear models restrict the impact of explanatory variables 

to be linear in nature (or exponential in log-linear models). Hence, in our study, we employ an 

ordered representation of shipment size that groups the variable in meaningful categories. The 

grouping approach also allows for non-linear variable impacts in examining shipment size (for 

example, see Chakour and Eluru, 2016 for a similar approach in another context).   
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In addition to improving the individual model components, we also develop a joint model 

of shipment mode and shipment size. For the joint model, we adopt a closed form copula-based 

model structure for capturing the impact of common unobserved factors affecting these two choice 

dimensions. Copula-based structures tested include Gaussian, Farlie-Gumbel-Morgenstern 

(FGM), Clayton, Gumbel, Frank, and Joe. In applying copula models, we contribute along two 

main directions. First, we allow the copula dependency to vary across each shipment mode 

alternative and shipment size combination. To elaborate, for capturing the dependency between 

the mode (five alternatives) and shipment size we allow for various combinations of copula 

dependencies. Second, within the copula structure, we consider the possibility that copula 

dependency does not remain the same for all data points. Thus, we customize the dependency 

profile based on a host of freight characteristics; thus enhancing the relevance of the dependency 

profile. The proposed copula-based RU and RR multinomial logit and ordered logit models are 

estimated based on the data from 2012 U.S. CFS data. The rest of the paper is organized as follows. 

The literature review section provides a brief discussion of earlier research on joint decision of 

shipping mode and shipment size choice while positioning the current research in context. Next, 

the details of the econometric framework used in the analysis are discussed. The empirical data 

section contains discussion on the data source, data preparation, and descriptive analysis results. 

Model comparison results, model estimation results, and model validation results are presented in 

the empirical analysis section followed by the conclusion section. 

  

LITERATURE REVIEW 

 

Earlier Research 

Two of the most important and critical logistics decisions in freight transportation market are the 

mode of transportation and quantity of freight to be shipped (shipment size). There have been 

several studies examining freight mode and shipment size choice. An extensive review of all these 

studies is beyond the scope of the paper (see Keya et al., 2017 for a summary of studies on mode 

choice). In our earlier study (Keya et al., 2017), we found that shipment size is mostly used as an 

explanatory variable in mode choice models (Abdelwahab and Sayed, 1999; Jiang et al., 1999; 

Sayed and Razavi, 2000; Norojono and Young, 2003). However, there is a growing recognition of 

the interrelation between freight mode and shipment size in the transportation research community. 

For example, in an effort to reduce inventory costs, a shipper might decide to ship smaller sized 

shipments and then choose the shipment mode appropriate to the quantity to be shipped; meaning 

that choice of transportation mode is dependent on shipment size. On the other hand, the choice of 

shipment size might be dictated by the shipper’s goal of reducing the transportation/operating costs 

associated with the shipment modes. Table 1 provides a brief summary of earlier research on joint 

modeling of shipment size and mode choice. The information in the table includes study area, data 

elicitation approach (revealed preference (RP) versus stated preference (SP)), modeling 

methodology, decision variables of interest, types of mode considered, and the category of 

exogenous variables used.  

Several observations can be made from the Table. First, in terms of mode, most of the 

studies considered truck and rail for modeling. Very few studies considered other modes such as 

air, water, and courier mode in their analysis. Second, in the majority of the studies, mode is 

characterized as a discrete variable and shipment size as a continuous variable. Third, four types 

of exogenous variables are usually considered in the reviewed studies: (1) level of service measures 

(shipping cost, operating cost, shipping time); (2) freight characteristics (commodity size, 
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commodity group, commodity density, commodity value, commodity weight, product state, 

hazardous product or not, temperature controlled or not, perishability, quantity); (3) transportation 

network and origin-destination (O-D) attributes (O-D distance, O-D region); and (4) other 

characteristics (percentage of loss and damage, reliability of service, company size, access to rail 

track or piers, economic activities of firms, fleet size, number of employees in firm, season of the 

year, number of intermediate agents, number of trips, shipment operation type, rate of commodity 

flow, carrying capacity of vehicle, time of day). Fourth, classical random utility based MNL model 

(and its variants) is most commonly used to analyze the mode choice part while shipment size is 

analyzed using linear regression approach. . In recent years, some researchers have proposed the 

application of random regret based MNL models for analyzing freight mode choice (Keya et al., 

2018; Boeri and Masiero, 2014; Irannezhad et al., 2017). Finally, findings from these earlier 

studies clearly highlight the interconnectedness of mode choice and shipment size decisions. For 

instance, Holguin-Veras et al. (2011) concluded (based on the outcome of their game theory 

application) that shippers and carriers cooperate with each other for mode choice and the choice 

of mode largely depends on shipment size. To be sure, we do recognize that joint modeling of 

mode and shipment size might not be applicable to all kinds of freight flows; particularly so for 

foreign transactions (see Abdelwahab and Sargious, 1990 and Zhang and Zhu, 2018 for a 

discussion)  

 

Current Study Context  

The literature most relevant to the current study includes Pourabdollahi et al. (2013a), 

Pourabdollahi et al. (2013b), and Irannezhad et al. (2017). In these studies, mode and shipment 

size choice dimensions were jointly examined employing a copula-based system. Pourabdollahi 

and colleagues used RU based approach while Irannezhad et al. (2017) used RR based approach 

for mode choice with Frank copula correlation structure. As mentioned before, the shipment size 

variable was either examined using a continuous form or unordered discrete variable form. While 

it is intuitive to consider a continuous representation, the assumption could potentially be 

restrictive. The shipment size data is likely to be reported as continuous values but with significant 

rounding as the shipment size increases. Effectively, after passing a certain threshold, the reported 

data is no longer continuous but discrete in nature. Figure 1 represents the frequency of shipment 

size observed from 2012 Commodity Flow Survey data. From the figure we can observe that high 

frequency for weight occurs around round numbers such as 250 pounds and 3000 pounds. Further, 

employing linear regression (or log-linear) imposes a strict linearity (or exponential structure) on 

parameter effects. To address these limitations, we consider an ordered representation for the 

shipment size variable. The specific categories considered are customized by mode under 

consideration. Thus, in our study, we explore an unordered-ordered discrete model structure 

embedded within a copula-based joint system. Further, we compare the random utility model 

system with a random regret model structure for the mode choice dimension. Finally, we consider 

six different copula structures while allowing for different copula structures within the same model 

(as opposed to a single copula form for all dimensions). For all the copula models, a more flexible 

approach that allows for exogenous variables to influence dependency structure is also estimated.  

In summary, the proposed approach makes the following methodological and empirical 

contributions. Methodologically, we propose and estimate a closed form copula-based framework 

for mode and shipment size choice considering six different copulas (earlier work focused only on 

Frank Copula). We also allow for different copulas by mode choice alternative within a single 

model. Thus, we allow for symmetric dependencies for some alternatives and dependency on tails 
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for others. Within the copula structure, we do not impose the same dependency on all records; 

rather, we allow the dependency to vary across the records by parameterizing the dependency 

profile. This allows for an accurate estimation of the dependency profile. A restrictive approach, 

as employed in earlier research, simply estimates an average dependency profile across all data 

points. Thus, the dependency profile obtained might not be representative and could result in 

biased model estimates. The proposed model is also validated using a hold-out sample to evaluate 

model performance. Empirically, the proposed model system is employed to study mode choice 

and shipment size decisions. The comparison will allow us to identify the appropriate model 

structure for studying these choices. The resulting model estimates provide more accurate variable 

impacts on the choice dimensions. The models developed are used to generate money value of 

time measures for both random utility and regret model structures.  

 

ECONOMETRIC FRAMEWORK 

 

Copula-Based Joint MNL-OL Model 

In our empirical analysis, we considered two dependent variables – shipment mode and shipment 

size. The former is modeled using both RU based and RR based MNL structure proposed by 

Chorus (2010), and the latter is modeled using traditional OL structure. These two dependent 

variables are jointly analyzed using a copula approach (see Anowar and Eluru, 2017; Yasmin et 

al., 2014; Rana et al., 2010; Portoghese et al., 2011 for a similar modeling technique in different 

transportation contexts). To conserve on space, we only discuss the joint model framework with 

RR based system. 

Let 𝑖 (𝑖 = 1,2, … , 𝐼) and 𝑠 (𝑠 = 1,2, … , 𝑆) be the indices representing mode and shipment 

size choices of shippers 𝑛 (𝑛 = 1, 2, … , … , 𝑁), respectively. With these notations, the random 

regret associated with the choice of mode 𝑖 among 𝑗 modes, each characterized by 𝑚 (𝑚 =
1, 2, … , … , 𝑀) attributes, can be written as: 

𝑅𝑅𝑛𝑖 = ∑ ∑ 𝑙𝑛{1 + 𝑒𝑥𝑝 [ 𝛽𝑚

𝑚=1,2,…,𝑀

(𝑥𝑛𝑗𝑚 −

𝑗≠𝑖

𝑥𝑛𝑖𝑚)]} + 𝜉𝑛𝑖 (1) 

where 𝛽𝑚 denotes the estimable parameter associated with attribute 𝑥𝑚, 𝑥𝑛𝑖𝑚 and 𝑥𝑛𝑗𝑚 denote the 

values associated with attribute 𝑥𝑚 for chosen mode 𝑖 and considered mode 𝑗 for shipper  𝑛 . The 

choice probability with Type 1 extreme value distributed error term (𝜉𝑖) is as follows: 

𝑃𝑛𝑖 =
𝑒(−𝑅𝑛𝑖)

∑ 𝑒(−𝑅𝑛𝑗)𝐽
𝑗=1

 (2) 

We considered the shipment size to be an ordered variable. The underlying propensity (𝑠𝑛𝑖
∗ ) of 

choosing shipment size 𝑠 for mode i can be specified as: 

𝑠𝑛𝑖
∗ = 𝛼𝑖𝑧𝑛𝑖 + 𝜁𝑛𝑖 ,    𝑠𝑛𝑖

∗ = 𝑠𝑖 , 𝑖𝑓 𝜏𝑖,𝑠−1 < 𝑠𝑛𝑖
∗ < 𝜏𝑖,𝑠 (3) 

Considering a standard logistically distributed error term (𝜁𝑛𝑖), the probability of shipper 𝑛 

choosing shipment size 𝑠 for mode 𝑖 can be expressed as: 
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𝑃𝑛𝑖 = 𝛬𝑖(𝜏𝑖,𝑠 − 𝛼𝑖𝑧𝑛𝑖) − 𝛬𝑖(𝜏𝑖,𝑠−1 − 𝛼𝑖𝑧𝑛𝑖) (4) 

where, 𝛬 represents the cumulative density function for standard logistic distribution,  

𝜏𝑖,𝑠 (𝜏𝑖,0 = −∞, 𝜏𝑖,𝑆 = +∞) represents the thresholds associated with shipment size 𝑠 for mode 𝑖 

with the following ordering condition (−∞ < 𝜏𝑖,1 < 𝜏𝑖,2 < ⋯ < 𝜏𝑖,𝑆−1 < +∞); 𝛼𝑖 are the 

estimable parameters, 𝑧𝑛𝑖 are vector of attributes.  

The shipment size and mode component may be coupled together through their stochastic 

error terms using the copula approach. The joint distribution (of uniform marginal variables) can 

be generated by a function 𝐶𝜃𝑛(. , . ) (Sklar, 1973), such that: 

𝛬𝜉𝑛𝑖,𝜁𝑛𝑖
(𝑈1, 𝑈2) = 𝐶𝜃𝑛

(𝑈1 = 𝛬𝜉𝑛𝑖
(𝜉), 𝑈2 = 𝛬𝜁𝑛𝑖

(𝜁)) (5) 

where 𝐶𝜃𝑛(. , . ) is a copula function and 𝜃𝑛 the dependence parameter defining the link between 

𝜉𝑛𝑖 and 𝜁𝑛𝑖. Level of dependence between shipment mode and size might vary across shippers. 

Recognizing that, we parameterize the dependence parameter 𝜃𝑛 as a function of freight 

characteristics. The equation is: 

𝜃𝑛 = 𝑓(𝛾𝑖𝜗𝑛𝑖) (6) 

where 𝜗𝑛𝑖 is a column vector of exogenous variables, 𝛾𝑖 is a row vector of unknown parameters 

(including a constant) specific to mode 𝑖 and 𝑓 represent the functional form of parameterization. 

The parameterization was carefully done for each of the six copula types considering the 

permissible limits of the dependency parameters. More specifically, for normal, FGM and Frank 

copulas we use the following functional form: 

𝜃𝑛 = 𝑓(𝛾𝑖𝜗𝑛𝑖) (7) 

While for Clayton we use: 

𝜃𝑛 = 𝑒𝑥𝑝(𝛾𝑖𝜗𝑛𝑖) (8) 

and for Gumbel and Joe the function is: 

𝜃𝑛 = 1 + 𝑒𝑥𝑝(𝛾𝑖𝜗𝑛𝑖) (9) 

All the models are estimated by maximizing the log-likelihood function coded in GAUSS matrix 

programming language. In our analysis, we employ six different copula structures – Gaussian 

copula, Farlie-Gumbel-Morgenstern (FGM) copula, and a set of Archimedean copulas including 

Frank, Clayton, Joe and Gumbel copulas (a detailed discussion of these copulas is available in 

Bhat and Eluru, 2009). Please note that restricting the copula structure to have no correlation 

between the error terms of shipping mode and shipment size choices would result in the 

independent copula model.  

 

EMPIRICAL DATA  
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Data Source and Data Preparation 

The data for our analysis is drawn from the 2012 US CFS data available at 

www.census.gov/econ/cfs/pums.html. This survey is the joint data collection effort of Bureau of 

Transportation Statistics (BTS) and U.S. Census Bureau. The survey is conducted every 5 years 

since 1993. Although several data sources are available for freight planning purposes, this is the 

only freely available source that portray a detailed picture of freight movement at national level. 

A total of 4,547,661 shipment records from approximately 60,000 responding businesses and 

industries are recorded (including some important freight characteristics) in the Public Use 

Microdata (PUM) file of the 2012 CFS. To reduce the data processing and model estimation 

burden, a random sample of 15,000 records was carefully drawn from the PUM database ensuring 

that the mode share of the extracted sample was the same as the weighted mode share of the 

original database. From this sample, 10000 data records were randomly chosen for estimation and 

5,000 records were set aside for validation exercise. 

 

Dependent Variable Generation 

The 2012 CFS PUM file reports twenty-one modes of transport. In this study, the reported modes 

were categorized into five major groups: (1) for-hire truck, (2) private truck, (3) air, (4) parcel 

service, and (5) "other mode". Here, for-hire truck mode represents the trucks operated by a non-

governmental business unit to provide transport services to customers under a negotiated rate. On 

the other hand, private truck refers to trucks owned and used by an individual business entity for 

its own freight movement. Parcel service mainly refers to a combination of modes (on 

ground/air/express carrier). Air mode consists of both air and truck, as truck is needed to pick up 

and/or deliver the commodity from and/or to a particular place which cannot be accessed by air 

mode. The other mode consists of rail, water, pipeline or combination of non-parcel multiple 

modes. The weighted mode share by number of shipments in the estimation sample is as follows: 

for-hire truck (16.47%), private truck (26.23%), parcel (55.64%), air (1.36%), and other (0.29%). 

The reader would note that certain types of shipments can be transported by only a subset of the 

modes. For instance, it is very unlikely that a large load of 50 tons is shipped by air or parcel mode 

as these modes have capacity restrictions. Therefore, allowing air or parcel mode as an available 

option for such shipments affects the accuracy of the model estimates. To account for this issue, a 

heuristic approach was adopted to define the mode availability option based on shipment weight 

and routed distance (see Keya et al., 2017 for details). After carefully examining the freight 

characteristics of the chosen mode, following guidelines have been developed for alternative 

availability: for-hire truck and other mode have been considered always available; private truck is 

set available when routed distance is less than 413 miles (99 percentile of private truck observed 

in the data); air and parcel mode are considered available when shipment weight is less than 914 

lb and less than 131 lb respectively (99 percentile observed in the data).  

 Shipment size is reported as a continuous variable in the CFS data. In our study, we 

categorized it into seven groups from very small to very large shipment size based on the observed 

frequency distribution of shipment size from the CFS data. We have categorized the shipment size 

in such a way that there exists a reasonable share of shipment size in each category for each 

shipping mode. These are: (1) category 1 (<=30 lb), (2) category 2 (30-200 lb), (3) category 3 

(200-1,000 lb), (4) category 4 (1,000-5,000 lb), (5) category 5 (5,000-30,000 lb), (6) category 6 

(30,000-45,000 lb), and (7) category 7 (> 45,000 lb). Table 2 presents the weighted distribution of 

shipment sizes across five modes considered by number of shipments. We can see from the table 

that across for-hire truck and private truck modes; the shipment sizes are quite evenly distributed 

http://www.census.gov/econ/cfs/pums.html
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with the highest percentage share for 5,001-30,000 lb category for for-hire truck (18.59%) and for 

201-1,000 lb category for private truck (19.46%). Therefore, for for-hire and private truck, we 

considered all seven of the shipment size categories. It is also evident from the table that air and 

parcel modes primarily carry smaller shipments weighing less than 30 lb (59.6% and 78.81%, 

respectively). Hence, only two categories of shipment size were assigned to air and parcel mode – 

less than or equal to 30 lb and greater than 30 lb. We can also see that the other mode mainly 

contains large shipment sizes in categories 6 and 7. Since other mode consists primarily of rail, 

this is expected. Based on weight distributions, for other mode, we considered three shipment size 

categories (less than or equal to 30 lb (3.06%), 31-5,000 lb (9.17%), and greater than 5,000 lb 

(87.78%). Table 3 presents the weighted mode share across the seven shipment size groups. It can 

be observed from the table that in general truck modes have the largest share across all shipment 

sizes (except when shipment size is less than 200 lb). On the other hand, air and parcel mode 

mainly carry smaller shipment size (less than 200 lb). It is also clear from the table that other mode, 

which is dominated by rail, transports larger shipment size. The distribution clearly shows how by 

mode, shipment size varies substantially highlighting the potential interconnectedness.   

 

Independent Variable Generation 

While the CFS data contains important freight attributes, level of service (LOS) variables, such as 

shipment time and shipment cost, are not available in the data. Therefore, we augmented the data 

with a host of secondary data sources. First, LOS variables were generated for each mode based 

on the origin and destination locations, routed distance and the shipment weight reported in the 

data. We generated shipping time for for-hire and private truck considering three different travel 

speed bands based on trip distance. In this procedure, we also considered the required break times 

for the truck drivers according to the service regulations, suggested by Federal Motor Carrier 

Safety Administration (FMCSA). Based on the share of shipping speed from FedEx 2015 annual 

report, we generated the shipping time by parcel mode- express overnight (1day), express deferred 

(3 days) and ground service (5days). Shipping time of air and “other mode” (considering rail, as 

rail contains major share within other mode) was calculated based on the average speed obtained 

from different sources. For shipping cost by parcel mode we developed pricing functions 

considering shipping distance and shipment weight and using shipping cost information available 

from FedEx. We also considered the shipping speed in calculation of shipping cost by parcel mode 

based on the share of shipping speed from FedEx 2015 annual report. Shipping cost for for-hire 

truck, private truck and “other mode” (mainly rail) was calculated based on the 2007 average 

freight revenue information obtained from the National Transportation Statistics (NTS) website 

with appropriate regional and temporal correction factors. The shipping cost per pound for air was 

estimated based on cost documentation obtained from a U.S. based cargo company- Southwest 

Cargo Company. For more details on level of service generations see Keya et al, 2017. Second, a 

number of O-D attributes were compiled utilizing different sources which include National 

Transportation Atlas Database (NTAD) 2012, National Bridge Inventory (NBI) data, National 

Highway Freight Network (NHFN) data, Highway Performance Monitoring System (HPMS) data, 

and Freight Analysis Framework – version 4 (FAF4) network data. The transportation network 

attributes generated are: roadway length per functional classification (interstate highway, freeway 

and expressway, principal arterial, minor arterial, major and minor collector), railway length, 

number of airports, number of seaports, number of intermodal facilities, number of bridges, truck 

annual average daily traffic (AADT), length of tolled road, length of truck route, and length of 

intermodal connectors. Several CFS zonal level variables (both at origin and destination) have also 
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been generated including population density, number of employees and number of establishments 

by North American Industry Classification System (NAICS) (manufacturing, mining, retail trade, 

warehouse and storage, company and enterprise, wholesale, information), income categories based 

on mean income of an area (low (< $50,000), medium ($50,000-$80,000) and high (>$80,000)), 

number of warehouses and super centers, major industry type in an area (based on the majority of 

existing industries in an area), percentage of population below poverty level, and annual average 

temperature (www.currentresults.com/Weather/US/average-annual-state-temperatures.php) (cold 

if the average annual temperature is less than or equal to 60oF; warm if the temperature is greater 

than 60oF). To generate the zonal level variables, at first we collected the county level data. Then, 

we aggregated these information from the counties within each CFS area to obtain the CFS area 

level data. 

 

Descriptive Statistics 

Table 4 of descriptive analysis of the estimation sample reveals that the majority of the shipments 

are domestic – transported within the US (95.8%). Moreover, the shipment shares of both 

temperature controlled products and hazardous materials are very low (4.7% each) compared to 

other commodity types. We also found that most of the shipments are originating and terminating 

in non-mega regions1 (36.1% and 33.9%, respectively). The most commonly shipped commodity 

types by frequency of shipment in 2012 were electronics (20.2%), metals and machinery (18.8%), 

and wood, paper and textiles (17.9%). The least transported commodity type was stone and non-

metallic minerals (2.1%) and raw food (2.6%). The percentage share of shipment by value is the 

highest for shipment value less than $300 (44.5%). The mean shipping cost is the highest ($276.53) 

for air mode, with the lowest mean shipping time (1.30 hours). On the other hand, shipping cost is 

the lowest for other modes ($13.71) and mean shipping time is the highest for parcel mode (98.84 

hours).  

 

EMPIRICAL ANALYSIS 

 

Model Fit 
A series of models were estimated in the current study. First, we developed independent discrete 

choice models of mode and shipment size choice. For mode choice analysis, both RU based as 

well as RR based MNL models were estimated while for shipment size we estimated traditional 

OL models for each mode. The log-likelihood values of the independent models can be 

appropriately summed up to obtain the independent copula model log-likelihood. These models 

were estimated to establish a benchmark for model performance evaluation. Second, we estimated 

a copula-based joint mode and shipment size choice model considering both decision rules for the 

mode choice decision. In our study, we considered six different copula structures: (1) Gaussian, 

(2) FGM, (3) Clayton, (4) Gumbel, (5) Frank, and (6) Joe. We also estimated models allowing 

different dependency structures (for example Frank copula for the first three mode types, and Joe 

copula for parcel mode). Third, rather than imposing a single dependency parameter across the 

dataset, we allow for the copula dependency to vary as a function of exogenous variables. Please 

                                                 

1 The entire USA is divided into eleven megaregions which are expected to share common economic growth, natural 

resources and environmental system, topography, and transportation system.  These eleven megaregions are: Arizona 

Sun Corridor, Cascadia, Florida, Front Range, Great Lakes, Gulf Coast, Northeast, Northern California, Piedmont 

Atlantic, Southern California, and Texas Triangle. The remainder of the USA has been considered as non-mega region 

(http://www.america2050.org/content/megaregions.html).  

http://www.currentresults.com/Weather/US/average-annual-state-temperatures.php
http://www.america2050.org/content/megaregions.html
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note that we did not estimate any dependency parameter for “other” mode since it had too few 

observations for model estimation. Finally, to determine the most suitable copula model (including 

the independent copula model), a comparison exercise was undertaken.  

Since the alternative copula models are non-nested, we compared their performance using 

Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC). The BIC value for 

a given empirical model can be calculated as: [–  2 (𝐿𝐿)  +  𝐾 𝑙𝑛 (𝑄)], where 𝐿𝐿 is the log-

likelihood value at convergence, 𝐾 is the number of parameters and 𝑄 is the number of 

observations. While, AIC value is calculated using the following equation for a given empirical 

model: [2 𝐾 −  2 𝑙𝑛 (𝐿𝐿)], where K is the number of parameters and LL is the log likelihood at 

convergence. The model with the lowest BIC and AIC value is the preferred model. The BIC and 

AIC values obtained are presented in Table 5. We can see from the table that the combination of 

Frank-Frank-Frank-Joe-Independent for RRM based MNL-OL copula provided the best data fit. 

The BIC (number of parameters) values for the RRM based MNL-OL Frank-Frank-Frank-Joe-

Independent copula model and independent model are 25762.57 (94) and 26473.42 (99), 

respectively. From the RU regime as well, a similar combination of copulas (Frank-Frank-Frank-

Joe-Independent) provided the best data fit (25765.36 (93)). Also, the AIC (no. of parameters) 

values for the RRM based and RU based MNL-OL Frank–Frank-Frank-Joe-Independent copula 

model are 25084.80(94) and 25094.80(93) respectively. The BIC and AIC values indicate that the 

random regret based copula model outperformed its random utility counterpart. The copula model 

BIC and AIC comparisons confirms the importance of accommodating dependence between mode 

type and shipment size choice dimensions in the analysis of freight mode choice. In addition, we 

found that the RRM based copula model (Frank-Frank-Frank-Joe-Independent) with 

parameterization provided the best data fit amongst all the copulas (BIC value: 25713.41 (98) and 

AIC value: 25006.80(98)). Therefore, in the subsequent sections, we will only discuss about the 

results for this model. In our analysis, variable selection was guided by a 90 percent significance 

level and variable impact expectations from past research.   

 

Mode Choice Component 
Table 6(a) represents the results of the RR based mode choice component. A positive (negative) 

sign for the coefficients indicates that an increase (decrease) in the corresponding attribute 

increases (decreases) the regret associated with not participating in the alternative and contributes 

to an increase (decrease) in the probability for participating in the alternative. In the following 

section, the estimation results are discussed by variable groups. 

 

Level of Service Variables  

In our empirical analysis, shipment time and cost variables have negative coefficients (-001 per 

hour and -0.134 per $1000 respectively) indicating that regret is higher if the competitor mode has 

lower travel time or lower shipment cost (see Boeri and Masiero, 2014 for similar results). In our 

model, we also tested for several first order interactions of travel time with commodity types; only 

two interactions were significant. The signs of the coefficients of the interaction terms of shipping 

time with raw food and prepared products are found to be intuitive. Relative to other commodities, 

shipping of these two commodities are more time sensitive as indicated by worsening regret with 

increase in travel time. The magnitude of sensitivity is larger for raw food commodity. This result 

is reasonable because raw food products are perishable and require timely delivery. 

 

Freight Characteristics 
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The effects of the freight attributes provide interesting results. Both non-flammable liquid and 

other hazardous materials, and temperature controlled products are more likely to be shipped by 

private truck. These type of shipments require special handling and safety precautions which can 

be accommodated by private truck operators. In addition, temperature controlled products can be 

delivered to its destination without any transfer time (as required for other modes). The value of 

the coefficient for export trade by air mode is 1.125, which implies that air is the preferred mode 

for transporting export shipments. It is expected, as shipping overseas is more convenient by air 

mode (see Wang et al., 2013 for similar result). However, the coefficient for export trade by private 

truck (-0.220) indicates that, it is less likely that private truck would be chosen for export purposes 

as private trucks are more likely to be used for shorter shipping distances. Private truck is preferred 

for commodities such as prepared food and products, petroleum and coal, and furniture and other 

miscellaneous commodities. Private trucks are more likely to be used to carry small quantities of 

refined petroleum to the gasoline distribution locations, such as gas stations within shorter 

distances. On the other hand, private truck is less preferred for transporting stone and non-metallic 

minerals and electronic products. Air mode is preferred for transporting electronic products which 

are lightweight, costly and require special care to prevent any damage due to shock while 

transporting. Similar finding is reported by Pouraabdollahi et al. (2013a). In terms of shipment 

value, for shipments valued under $5000, private truck is more likely to be chosen. Regret 

gradually decreases for higher value merchandise (see Sayed and Razavi, 2000; Norojono and 

Young, 2003; Arunotayanun and Polak, 2011; Moschovou and Giannopoulos, 2012 for similar 

findings).  

 

Transportation Network and O-D Attributes 

Private truck is less preferred when the density of railways or number of intermodal facilities at 

destination zone increases. The possibility of choosing air mode decreases when density of railway 

at origin increases (coefficient value: -0.88) or when the percentage of population living below 

poverty level is high at origin (coefficient value: -4.006). Air mode is typically expensive and 

hence, shippers in the impoverished regions are less likely to ship/receive products by this mode. 

Higher population density is a proxy for higher demand for service. Hence, with increasing 

population density at destination CFS zone, the probability of choosing air and parcel mode 

increases. If shipment’s originating zone has higher highway density or increased number of 

warehouse and supercenters parcel mode is also more likely to be chosen. The result is expected 

because parcel mode requires greater accessibility through roadway network. Moreover, 

warehouses are generally situated in locations with better highway accessibility, allowing for faster 

access by parcel mode. However, parcel mode is less preferred when the density of wholesale 

industry at origin increases (coefficient value: -0.091); possibly because wholesale industries 

generally ship bulk loads and for bulk loads, parcel is not a convenient mode option.  

 

Shipment Size Component 
The results of ordered logit models for each mode type are presented in Table 6(b). A positive 

(negative) coefficient increases (decreases) the shipper’s propensity for choosing a larger (smaller) 

shipment size category. The results are discussed by variable groups in the following section. 

Please note that the threshold variables do not have any substantive interpretation. 

 

Freight Characteristics  
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The coefficient (0.946) of non-flammable liquid and other hazardous materials indicates that, these 

products are more likely to be shipped in larger volume using for-hire trucks. Trucks can be 

specially equipped and operated to carry hazardous materials to ensure safe transportation of such 

commodities. As expected, shipment size of commodities requiring temperature control 

(coefficient value: -0.853) is likely to be smaller for parcels as it may not be able to offer the special 

handling care required for these commodities. Commodities, such as raw food, prepared products, 

stone and non-metallic minerals, and petroleum and coals, are likely to be shipped in large amounts 

by for-hire and private trucks. Both for-hire and private trucks offer unhindered movement of these 

commodities without needing any transfers. On the other hand, chemicals, furniture and other 

products might be shipped in smaller quantities when using private truck as a mode of 

transportation. Also, electronics tend to be shipped in smaller amounts by for-hire truck, private 

truck, air and parcel modes. Parcel mode may have weight restrictions for shipping; hence, 

shipment size for furniture, and metals and machinery are likely to be on the smaller side. 

However, for prepared products, the shipment sizes are likely to be on larger side. Shipment value 

and its size are negatively correlated for all modes. 

 

Transportation Network and O-D Attributes  

Several transportation networks and O-D attributes were considered in the shipment size models. 

For for-hire truck, density of employees in mining industry at origin increased the propensity for 

larger shipments. This possibly reflects the nature of industry in the region. In addition, density of 

bridges at destination, cold climate at origin (average annual temperature ≤600F), and increased 

routed distance reduces the propensity for large shipments using for-hire trucks. For private truck, 

density of highways in the destination zone (coefficient value: 0.617) increases the propensity for 

larger shipments since increased roadway coverage facilitates movement of goods in large 

quantity. On the other hand, density of management companies and enterprises at destination 

decreases the propensity for large shipments, as this type of establishments normally attracts 

commodities with smaller weight including office supplies and electronics. For parcel mode, the 

propensity of large shipment increases when mean zonal income at origin is less than $50,000. 

However, increased density of wholesale industries at destination (coefficient value: -0.094) or 

increased number of seaports at origin (coefficients value: -0.001) reduces the propensity for large 

shipments by parcel mode. Wholesale industries potentially generate bulk weight that is less 

convenient to be transported by parcel mode. Shipping large amount of freight through seaports is 

cost effective.  

 

Copula Parameters 

The last panel of Table 6(b) presents the copula parameters estimated. The statistically significant 

dependency parameters imply the existence of unobserved factors strongly influencing the mode 

and shipment size choice decision simultaneously. Further, the results clearly highlight how the 

dependence varies across the dataset. The Frank copula is associated with for-hire truck, private 

truck, and air modes while Joe copula is associated with parcel mode. For the “other” mode 

alternative, dependency could not be captured due to the small sample size. The Frank copula 

provides symmetric dependency; i.e. the positive copula parameter specifies that the dependency 

caused by the common unobserved factors for the specific mode is positive, and a negative copula 

specifies that the dependency is negative. In our case, the constant parameter in Frank is negative 

indicating that the common unobserved factors that increase the probability of choosing the mode 

are likely to reduce the probability that larger shipment size is chosen. The Joe copula is only 
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associated with positive dependency and proposes a stronger right tail dependency. The positive 

sign of Joe copula associated with parcel mode implies that the common unobserved factors that 

increase the propensity of choosing parcel mode also increase the propensity of choosing a larger 

shipment size. Several freight characteristics influence the dependency across the mode and 

shipment size categories. The variables include raw food, stone and non-metallic minerals, 

shipment value less than $300 and shipment value from $300 to $1000 (for-hire truck); metals and 

machinery (private truck); and export trade type (parcel). The parameter values provide 

customized dependency values across the dataset. The reader would note that accounting for the 

flexible specification for common unobserved factors enhances model fit. At the same time, it is 

important to recognize that ignoring for the presence of these common unobserved factors is likely 

to result in biased and/or inconsistent estimates for all other parameters. Hence, the copula model 

offers a twofold benefit: (1) improve model fit and (2) allows for enhanced parameter estimation 

of the data under consideration.  

 

Model Validation 

To evaluate the performance of the estimated models, we also performed a validation exercise. 

Specifically, we employed the final parameters obtained from the models to compute the predictive 

log-likelihood (LL) and BIC values for four models: (1) RRM based MNL-OL Copula (Frank-

Frank-Frank-Joe-Independent) with parameterization, (2) RUM based MNL-OL Copula (Frank-

Frank-Frank-Joe-Independent) with parameterization, (3) RRM based MNL-OL Independent 

Copula, and (4) RUM based MNL-OL Independent Copula. The results are reported in Table 7. 

The overall predictive log-likelihood and BIC values clearly indicate that RR based MNL-OL 

copula (Frank-Frank-Frank-Joe) with parameterization performs better than other models. Further, 

to illustrate the performance, we generate predicted LL values for several sub-samples including 

freight characteristics such as flammable liquid, commodity type (such as raw food, prepared 

products, chemicals). Except for a few instances, the RRM based MNL-OL copula model offers 

improved fit in the majority of the cases. Overall, the validation results also confirm the value of 

considering dependency across mode choice and shipment size. A prediction exercise has been 

conducted to compare actual and predicted mode and shipment size share. From Figure 2, we can 

clearly observe that the actual and predicted mode share are almost similar indicating a satisfactory 

predictive ability of our model. The predicted shipment size share has been provided in Table 8 

and the results are quite reasonable highlighting the appropriateness of the joint model.  

 

Value of Time (VOT) 

We also have estimated the value of time (VOT). In the random regret minimization approach, 

the value of time (VOT) is calculated using the following equation (Chorus, 2012): 

VOT = 
∑ −βt/(1+1/exp [βt(TTj−TTi)]))j≠i

∑ −βc/(1+1/exp [βc(TCj−TCi)]))j≠i
 (10) 

Where, βt and βc are the estimated coefficients of shipping time and shipping cost respectively. In 

the RRM based approach, the shipping time and shipping cost of both the chosen alternative and 

the competitor alternatives enter into the VOT equation. Figure 3 represents the value of time 

analysis across different modes, where the blue plane with a single value represents VOT obtained 

from RUM model and the colored plane with varying values represents VOT values obtained from 

RRM model. From the figure, we can observe that the VOT obtained from random utility model 

in not sensitive to any change in the attributes. However, random regret formulation based VOT 
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changes across the mode and is affected by the change in attribute levels. The results from VOT 

analysis highlight that while RUM and RRM based analysis provide similar ranges of VOT, the 

inherent variation allowed in RRM models enhances data fit.  

In our analysis, we also calculated the VOT per ton using the weighted average shipment 

weight across all modes (4.93 ton). Based on the data used to generate Figure 3, the VOT per ton 

for RRM based model results in different range of values. For for-hire truck and private truck the 

VOT per ton value ranges between 1.50 to 1.52; for air this value ranges between 1.48 to 1.49; for 

parcel VOT per ton ranges between 1.56 and 1.65; and for other mode this value ranges between 

1.50 to 1.57. The value of VOT per ton for the RUM based analysis is obtained as 1.50 (same for 

all modes). The range of VOT per ton values are reasonable and are similar to values reported in 

earlier literature. For example, Fowkes et al. (1991) and Kurri et al. (2000) found the values as 

€1.18 ($1.33) per ton and €1.53 ($1.73) per ton respectively, whereas de Jong et al. (2004) found 

a comparatively higher value of €4.7 ($5.36) per ton.  

 

CONCLUSION 

In our study, a joint model system is developed in the form of an unordered choice model for mode 

and an ordered choice model for shipment size. We adopt a closed form copula-based model 

structure for capturing the impact of common unobserved factors affecting these two choices. We 

explore both the random utility (RU) based multinomial logit and the random regret (RR) 

minimization based multinomial logit (MNL) within a copula-based model. The RU and RR MNL 

structure are explored for several copula-based structures including Gaussian, Farlie-Gumbel-

Morgenstern (FGM), Clayton, Gumbel, Frank and Joe. Finally, we consider six different copula 

structures while allowing for different copula structures within the same model (as opposed to a 

single copula form for all dimensions). For all the copula models, a more flexible approach that 

allows for exogenous variables to influence dependency structure is also estimated. The models 

are estimated based on the data from 2012 Commodity Flow Survey data. The estimated results 

obtained from this study clearly indicates the importance of accommodating dependencies between 

shipment mode and shipment size choice decisions. Of the copula models, RR based MNL-OL 

Frank-Frank-Frank-Joe copula model with parameterization offered the best fit. The estimated 

coefficients exhibited plausible interpretations too. The validation exercise performed to evaluate 

the model fit for overall sample and sub-samples based on freight characteristics suggests that RR 

based MNL-OL copula (Frank-Frank-Frank-Joe-Independent) model with parameterization 

significantly outperforms other models. 

Certain drawbacks of this study need to be acknowledged. PUM CFS data does not contain 

exact geo-coded locations of origin and destination of freight movement. Advanced approaches to 

augment the data set with this information will improve the calculation of LOS variables and 

alternative availability matrices. Any information of trip chaining or intermediate modes used 

sequentially in a particular shipping trip from one origin to destination is also not available in the 

dataset. Availability of such information in future, will enhance the model estimation results.  

Additionally, evidence of shipper level reliability, shipment frequency, shipping time delay, 

ownership of the vehicle fleet by the shipping firms will enhance the model results. In the future, 

accommodating more detailed land use attributes will provide the policy makers more interesting 

insights.  

In terms of econometric methodology, two possible challenges can be fruitful avenues for 

future research. First, to accommodate the inherent discretization of the shipment size variable we 

developed the ordered logit model that provides additional flexibility by allowing for a non-linear 
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specification (as opposed to linear model). However, the approach can result in loss of information 

as we convert the continuous value to a discrete variable. In scenarios where the loss of information 

is likely to be a challenge, it might be useful to consider increasing the number of alternatives in 

modeling shipment size and estimating an advanced version of the ordered logit (see Rahman et 

al., 2019 for an example). Second, the dependency of copula model does not accommodate for 

random taste variations attribute impacts. Therefore, accommodating random taste variations 

within a copula based structure may be an avenue for future research.   
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FIGURE 1: Frequency Distribution of Shipment Size (lbs) 
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FIGURE 2: Actual vs. Predicted Mode Share
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FIGURE 3: VOT for Different Shipping Modes
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TABLE 1: Previous Literature on Joint Modeling of Freight Mode Choice and Shipment Size 

 

Study 
Study 

Area 

Data 

Type1 Methodology2 Decision 

Variable 

Modes 

Considered3 

Independent Variables Considered 

Level of 

Service 

Measures 

Freight 

Characteristics 

Network 

and O-D 

Attributes 

Other 

Characteristics 

Hall (1985) 
USA − 4 

Cost equations 

for alternative 

modes  

Mode, 

shipment 

size 

Truck, parcel Cost, time − Distance − 

Abdelwahab 

and Sargious 

(1992) 

USA RP 

Switching 

simultaneous 

equations 

(binary probit 

for mode choice 

and linear 

regression for 

shipment size) 

Mode, 

shipment 

size 

Truck, rail Cost, time 

Shipment size, 

commodity 

density, value, 

commodity type, 

hazardous, 

temperature 

controlled  

Destination 

territory 

Loss and 

damage 

percentage, 

reliability 

Abdelwahab 

(1998) 
USA RP 

Switching 

simultaneous 

equations 

(binary probit 

for mode and 

linear 

regression for 

shipment size) 

Mode, 

shipment 

size 

Rail, truck 
Freight charges, 

transit time 

Commodity 

category 

Origin-

destination 

territory 

− 

Holguin-

Veras (2002) 

Guatemala 

City, 

Guatemala 

RP 

Heteroscedastic 

extreme value 

model (HEV), 

MNL 

Mode, 

shipment 

size 

Truck Unit cost 
Commodity 

category 
Distance 

Economic 

activities 

de Jong and 

Ben-Akiva 

(2007) 

Sweden, 

Norway 
RP 

MNL for mode 

and shipment 

size choice, NL 

model, mixed 

MNL  

Mode, 

shipment 

size, 

transportat

ion chain 

Truck, rail, 

air, water 
Cost, time 

Commodity 

category, 

shipment 

value/weight ratio 

− 

Company size, 

access to rail 

track and piers 

de Jong and 

Johnson 

(2009)  

Sweden RP 

MNL, two step 

model (mode 

discrete, size 

continuous) 

Mode, 

shipment 

size 

Truck, rail, 

air, water 
Cost, time 

Commodity 

category, 

shipment 

value/weight ratio 

− Company size 
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Cavalcante 

and Roorda 

(2010) 

Toronto, 

Canada 
RP 

Discrete-

continuous 

model 

Mode, 

shipment 

size 

Passenger 

car, single 

unit truck, 

pick up/van 

and truck 

with 1 trailer 

Operating cost  

Commodity 

category, value to 

weight ratio, time 

sensitivity of 

commodity 

Distance Fleet size 

Habibi (2010)  Sweden  RP 

MNL (for mode 

and shipment 

size choice)  

Mode, 

shipment 

size, 

transport 

chain 

Truck, rail, 

combination 

of truck-rail-

sea 

Cost, time 

Value to weight 

ratio, commodity 

category 

− 

No. of 

employees in 

firm, season  

Windisch et 

al. (2010)  
Sweden RP 

MNL (for mode 

and shipment 

size choice) , 

NL (to find 

correlation 

between mode 

and shipment 

size choice) 

Mode, 

shipment 

size 

Truck/lorry, 

railway, 

ferry, cargo 

vessel, air 

Cost  
Commodity 

characteristics 
− 

Time of the 

year, proximity 

of rail/sea pier 

Holguin-

Veras et al. 

(2011) 

USA SP 

Game Theory – 

cooperative 

game between 

shippers and 

carriers to 

maximize 

profit. Set two 

experimental 

set-up where in 

one shippers 

decide the 

shipment size 

and in other 

carriers decide 

the shipment 

size. 

Mode, 

shipment 

size 

Truck, van, 

road-rail 
Cost 

Shipment size, no. 

of shipment  
− − 

Combes 

(2012) 
France RP 

Economic 

Order 

Quantity Model 

Mode, 

shipment 

size 

Truck, rail, 

combined 

transport, 

inland 

− − Distance 

No. of 

intervening 

agents, no. of 

trips, shipment 

operation type, 
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waterway, 

sea, air 

rate of 

commodity 

flow 

Pourabdollahi 

et al. (2013a) 
USA RP 

Copula-based 

joint MNL-

MNL 

Mode, 

shipment 

size 

Truck, rail, 

air, parcel 
Cost 

Commodity 

category, 

commodity 

characteristics, 

value, trade type 

Distance  
No. of 

employees 

Pourabdollahi 

et al. (2013b) 
USA SP 

MNL for mode 

and shipment 

size choice,  

Freight Activity 

Bases Modeling 

Framework 

(FAME) for 

simulation 

Mode, 

shipment 

size 

Truck, rail, 

air, parcel 
Cost 

Commodity 

category, 

commodity 

characteristics, 

value, shipment 

size 

Distance 
No. of 

employees 

Abate and de 

Jong (2014) 
Denmark RP 

MNL, Mixed 

MNL, Dubin-

McFadden 

method 

Truck 

size, 

shipment 

size 

Truck 
Shipping cost, 

fuel cost 
Weight 

Distance, 

shipment 

demand at 

origin 

Carrying 

capacity, fleet 

size, age of 

vehicle, hire 

vehicle or not 

Irannezhad et 

al. (2017) 

Mashhad, 

Iran 
RP 

Copula based 

joint hybrid 

RU-RR MNL 

and log-linear 

regression 

Mode, 

shipment 

size 

Truck, van, 

heavy truck, 

trailers 

Hire rate of 

vehicle 

Commodity 

category 
Distance 

Time of day, 

external trip 

Stinson et. al. 

(2017) 

Arizona, 

USA 
RP NL 

Mode, 

shipment 

size 

Truck, rail, 

air, parcel 
Cost, time 

Commodity 

category, export 
− − 

1 Data Type: RP = Revealed Preference, SP = Stated Preference 
2 Methodology: MNL = Multinomial Logit Model, NL = Nested Logit 
3 Mode: When the study specifies particular modes 
4 − = not available
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TABLE 2: Weighted Shipment Size Distribution (%) Across Modes 

 

Mode 

Shipment Size 

Total 
Categories 1 2 3 4 5 6 7 

Weight 

Range 

(lb) 

<= 30 31-200 201-1,000 1,001-5,000 5,001-30,000 30,001-45,000 > 45,000 

For-hire truck 11.05% 10.38% 17.66% 15.33% 18.59% 14.27% 12.71% 100.00 

Private truck 17.30% 18.41% 19.46% 16.15% 13.88% 7.36% 7.44% 100.00 

Air 59.60% 18.30% 15.00% 4.70% 2.30% - - 100.00 

Parcel 78.81% 21.19% - - - - - 100.00 

Other 3.06% 2.50% 2.22% 4.44% 9.44% 13.33% 65.00% 100.00 

Average weight (lb) 7.87 77.63 488.11 2377.40 14721.61 38625.86 153730.75 - 
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TABLE 3: Weighted Modal Split (%) Across Shipment Size (lbs) 

 

Shipment Size (lbs) 
Shipping Mode 

Total 
For-Hire Truck Private Truck Air Parcel Other 

<= 30 3.59% 9.00% 1.55% 85.84% 0.02% 100.00 

31-200 9.68% 25.28% 1.34% 63.65% 0.06% 100.00 

201-1,000 35.45% 61.95% 2.60% 0.00% 0.00% 100.00 

1,001-5,000 37.68% 61.21% 0.95% 0.00% 0.16% 100.00 

5,001-30,000 43.28% 55.82% 0.45% 0.00% 0.45% 100.00 

30,001-45,000 54.55% 44.52% 0.00% 0.00% 0.93% 100.00 

> 45,000 48.32% 47.03% 0.00% 0.00% 4.65% 100.00 
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Table 4: Summary Statistics of Exogenous Variables 

Variables Sample Characteristics 

Categorical Variables Percentage 

Export  

Yes 4.2 

No 95.8 

Temperature Controlled  

Yes 4.7 

No 95.3 

Hazardous Materials  

Flammable Liquids 2.1 

Non-flammable Liquid and Other Hazardous Material 2.6 

Non Hazardous Materials 95.3 

SCTG Commodity Type  

Raw Food 2.6 

Prepared Products 5.6 

Stone and Non-Metallic Minerals 2.1 

Petroleum and Coal 3.7 

Chemical Products 12.8 

Wood, papers and Textiles 18.1 

Metals and Machinery 18.7 

Electronics 20.2 

Furniture and Others 16.2 

Shipment Value  

Value < $300 44.5 

$300 ≤ Value ≤ $1,000 20.2 

$1,000 < Value ≤ $5,000 18.2 

Value > $5,000 17.1 

Continuous Variables Mean 

Shipping Cost ($)  

Hire Truck 37.33 

Private Truck 23.10 

Air 276.53 

Parcel 42.6 
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Other 13.71 

Shipping Time (hour)   

Hire Truck 17.83 

Private Truck 1.78 

Air 1.30 

Parcel 98.84 

Other 23.23 
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TABLE 5: Comparison of Different Copula Models 

 

MNL 

Decision 

Rule 

Copula 
LL at 

Constants 

LL at 

Convergence 

No. of 

Parameters 

No. of 

Observation 

Rho-

square 

Adjusted 

Rho-square 
BIC AIC 

RRM 
Frank-Frank-Frank-

Joe-Independent 
-15732.83 -12448.40 94 10000 0.2088 0.2028 25762.57 25084.80 

RUM 
Frank-Frank-Frank-

Joe-Independent 
-15732.83 -12454.40 93 10000 0.2084 0.2025 25765.36 25094.80 

RRM Frank2 -15732.83 -12450.10 94 10000 0.2087 0.2027 25765.97 25088.20 

RUM Frank -15732.83 -12456.20 93 10000 0.2083 0.2024 25768.96 25098.40 

RUM FGM -15732.83 -12656.40 95 10000 0.1955 0.1895 26187.78 25502.80 

RRM FGM -15732.83 -12655.60 96 10000 0.1956 0.1895 26195.39 25503.20 

RRM Normal -15732.83 -12741.10 94 10000 0.1902 0.1842 26347.97 25670.20 

RUM Normal -15732.83 -12809.50 86 10000 0.1858 0.1803 26411.09 25791.00 

RUM Clayton -15732.83 -12787.10 93 10000 0.1872 0.1813 26430.76 25760.20 

RUM Gumbel -15732.83 -12788.70 93 10000 0.1871 0.1812 26433.96 25763.40 

RRM Clayton -15732.83 -12786.50 94 10000 0.1873 0.1813 26438.77 25761.00 

RRM Joe -15732.83 -12788.10 94 10000 0.1872 0.1812 26441.97 25764.20 

RRM Gumbel -15732.83 -12788.20 94 10000 0.1872 0.1812 26442.17 25764.40 

RUM Joe -15732.83 -12788.50 94 10000 0.1871 0.1812 26442.77 25765.00 

RRM Independent -15732.83 -12780.80 99 10000 0.1876 0.1813 26473.42 25759.60 

RUM Independent -15732.83 -12782.40 99 10000 0.1875 0.1812 26476.62 25762.80 

Parameterization 

RRM 
Frank-Frank-Frank-

Joe-Independent 
-15732.83 -12405.40 98 10000 0.2115 0.2053 25713.41 25006.80 

RRM Frank -15732.83 -12413.70 97 10000 0.2110 0.2048 25720.80 25021.40 

RUM 
Frank-Frank-Frank-

Joe-Independent 
-15732.83 -12409.10 98 10000 0.2113 0.2050 25720.81 25014.20 

                                                 

2 Please note that the copula parameter for “Other” mode was set to 0 with FGM copula to ensure independence between “Other” mode and its 

corresponding shipping size. 
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TABLE 6(a): Copula RRM Based MNL (Shipping Mode Choice) Model Estimation Results 

 

Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Constant 0 − 1 0.082 2.199 -0.046 -0.220 1.334 16.796 -1.500 -22.221 

Level of Service Variables 

Shipping Cost  

(1000 $) 
-0.134 -6.829 -0.134 -6.829 -0.134 -6.829 -0.134 -6.829 -0.134 -6.829 

Shipping Time (hrs) -0.001 -3.214 -0.001 -3.214 -0.001 -3.214 -0.001 -3.214 -0.001 -3.214 

Shipping Time * Raw 

Food 
-0.005 -3.430 -0.005 -3.430 -0.005 -3.430 -0.005 -3.430 -0.005 -3.430 

Shipping Time * 

Prepared Products 
-0.002 -3.281 -0.002 -3.281 -0.002 -3.281 -0.002 -3.281 -0.002 -3.281 

Freight Characteristics 

Hazardous Material 

(Base: Not 

Hazardous) 

          

Non-flammable 

Liquid and Other 

Hazardous 

Materials 

− − 0.366 4.593 − − − − − − 

Export (Base: No)           

Yes − − -0.220 -3.018 1.125 9.177 − − − − 

Temperature 

Controlled  

(Base: No) 
          

Yes − − 0.092 1.908 − − − − − − 

SCTG Commodity 

Type (Base: Wood, 

Papers and Textile) 

          

Prepared Food and 

Products 
− − 0.261 4.332 − − − − − − 

Stone & Non-

Metallic Minerals 
− − -0.462 -8.122 − − − − − − 

Petroleum and 

Coals 
− − 0.244 3.767 − − − − − − 
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Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Electronics − − -0.171 -4.287 0.267 3.163 − − − − 

Furniture and 

Others 
− − 0.110 3.144 − − − − − − 

Shipment Value ($) 

(Base: Value >5000 ) 
          

Value ≤ 300 − − 0.899 17.399 − − − − − − 

300 < Value ≤ 

1000 
− − 0.745 14.071 − − − − − − 

1000 < Value ≤ 

5000 
− − 0.435 9.717 − − − − − − 

Transportation Network and O-D Attributes 

Origin Highway 

Density (mi/mi2) 
− − − − − − 0.500 4.142 − − 

Density of Railway at 

Origin (mi/mi2) 
− − − − -0.088 -2.855 − − −  

Density of Railway at 

Destination (mi/mi2) 
− − -0.020 -2.112 − − − − − − 

Destination 

Population Density 

(1000 pop/mi2) 
− − − − 0.200 2.661 0.100 3.195 −  

No. of Inter-Modal 

Facility at Destination 
− − -0.001 -1.743 − − − − − − 

No. of Warehouse and 

Super Center at Origin  
− − − − − − 0.001 2.784 − − 

Density of Whole Sale 

Industry at Origin (per 

mi2) 
− − − − − − -0.091 -4.386 − − 

Percentage of 

Population below 

Poverty Level at 

Origin 

− − − − -4.006 -3.808 − − − − 

1 − = variable insignificant at 90 percent confidence level 
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TABLE 6(b): Copula OL (Shipment Size) Model Estimation Results 

 

Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Thresholds            

Threshold 1 -6.279 -28.075 -5.789 -39.179 -3.823 -8.563 -0.706 -4.665 -5.624 -2.841 

Threshold 2 -4.796 -24.398 -4.235 -31.818 − 1 − − − -2.979 -3.171 

Threshold 3 -3.029 -17.646 -2.704 -22.587 − − − − − − 

Threshold 4 -1.780 -11.045 -1.656 -15.220 − − − − − − 

Threshold 5 -0.442 -2.728 -0.641 -6.201 − − − − − − 

Threshold 6 0.850 4.767 -0.028 -0.258 − − − − − − 

Freight Characteristics 

Hazardous Material 

(Base: Not 

Hazardous) 

          

Non-flammable 

Liquid and Other 

Hazardous 

Material 

0.946 2.647 − − − − − − − − 

Temperature 

Controlled  

(Base: No) 

          

Yes − − − − − − -0.853 -2.883 − − 

SCTG Commodity 

Type (Base: Wood, 

Papers and Textile) 

          

Raw Food 0.505 2.024 0.309 2.741 − − − − − − 

Prepared Food and 

Products 
0.853 4.875 0.276 2.654 − − 0.554 2.011 − − 

Stone & Non-

Metallic Minerals 
3.127 9.884 4.443 21.490 − − − − − − 

Petroleum and 

Coals 
1.675 6.126 0.317 2.757 − − − − − − 

Chemicals − − -0.167 -1.899 − − − − − − 
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Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Metals and 

Machinery 
− − − − − − -0.407 -3.887 − − 

Electronics -1.107 -8.001 -0.376 -2.859 -0.639 -2.226 -1.027 -10.189 − − 

Furniture and 

Others 
− − -0.349 -3.676 − − -0.406 -3.818 − − 

Shipment Value ($)  

(Base:Value >5000 ) 
          

Value ≤ 300 -3.678 -11.895 -4.344 -31.332 -1.585 -3.740 -2.484 -17.023 -5.210 -2.131 

300 < Value ≤ 

1000 
-2.929 -13.233 -3.185 -25.294 -1.169 -2.819 -0.874 -6.129 -3.393 -1.855 

1000 < Value ≤ 

5000 
-2.100 -15.030 -1.807 -16.824 -1.136 -2.805 -0.424 -2.939 − − 

Transportation Network and O-D Attributes 

Mean Household 

Income at Origin ($) 

(Base: ≥ $50,000 ) 

          

< $50,000 − − − − − − 0.346 2.233 − − 

Density of Employees 

in Mining Industry at 

Origin (per mi2) 

1.100 3.240 − − − − − − − − 

Density of 

Management 

Company and 

Enterprise at 

Destination (per mi2) 

− − -1.010 -2.959 − − − − − − 

Density of Wholesale 

Industries at 

Destination (per mi2) 
− − − − − − -0.094 -2.561 − − 

Density of Highway at 

Destination (mi/mi2) 
− − 0.617 2.867 − − − − − − 

Density of Bridges at 

Destination (per mi2) 
-0.314 -1.896 − − − − − − − − 

Origin Avg. 

Temperature  

(Base: Warm; > 600 F) 
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Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Cold; <= 600 F -0.353 -3.425 − − − − − − − − 

No. of seaports at 

Origin 
− − − − − − -0.001 -3.499 − − 

Routed Distance 

Between O-D (miles) 
-0.001 -8.086 − − − − − − − − 

Copula Parameters 

Copula Frank Frank Frank Joe  

Correlation 

Parameters 
-1.862 -4.047 -18.615 -8.804 -27.518 -2.580 1.351 5.652 0 − 

Raw Food 3.864 3.734 − − − − − − − − 

Stone & Non-Metallic 

Minerals 
13.362 6.866 − − − − − − − − 

Metals and Machinery − − 8.773 4.236 − − − − − − 

Shipment Value  

≤ $300 
-6.079 -3.823 − − − − − − − − 

$300 < Shipment 

Value ≤ $1000 
-3.090 -3.391 − − − − − − − − 

Export  − − − − − − -0.8539 -3.420 − − 

No. of Parameters 98 

Log-likelihood at 

constants 
-15732.83 

Log-likelihood at 

Convergence 
-12405.40 

Rho-square 0.2115 

Adjusted Rho-square 0.2053 
1 − = variable insignificant at 90 percent confidence level 
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TABLE 7: Prediction Comparison (Validation Sample) 

 

Summary statistics 

RRM based MNL-OL Copula 

with Parametrization  

(Frank-Frank-Frank-Joe-

Independent) 

RUM based MNL-OL Copula 

with Parameterization 

(Frank-Frank-Frank-Joe-

Independent) 

RRM based MNL-OL 

Independent Copula 

RUM based MNL-OL 

Independent Copula 

No. of parameters 98 98 99 99 

Log-likelihood at constants -7790.63 -7790.63 -7790.63 -7790.63 

Predictive log-likelihood -6189.38 -6197.95 -6364.32 -6378.69 

Rho-square  0.2055 0.2044 0.1831 0.1812 

Adjusted Rho-square 0.1930 0.1919 0.1704 0.1685 

BIC 13099.55 13116.68 13456.78 13485.53 

Predictive Log-likelihood at Variable Specific Level 

Freight Characteristics 

RRM based MNL-OL Copula 

(Frank-Frank-Frank-Joe-

Independent) 

RUM based MNL-OL Copula 

(Frank-Frank-Frank-Joe-

Independent) 

RRM based MNL-OL 

Independent Copula 

RUM based MNL-OL 

Independent Copula 

Flammable liquid -149.64 -150.43 -149.46 -149.79 

Non-flammable liquid and other 

hazardous material 
-231.23 -231.26 -239.23 -239.76 

Temperature controlled products -380.78 -381.10 -391.23 -392.90 

Export -250.12 -248.85 -247.11 -252.69 

Raw food -205.08 -205.26 -209.01 -208.57 

Prepared food and products -395.25 -395.44 -410.33 -410.26 

Stone and non-metallic minerals -203.48 -203.41 -202.61 -202.57 

Petroleum and coals -297.80 -298.43 -302.32 -302.18 

Chemicals -849.81 -852.97 -884.40 -889.21 

Metals and machinery -1345.29 -1347.29 -1382.86 -1384.44 

Electronics -921.78 -920.83 -948.91 -955.81 

Furniture and others -910.42 -913.14 -938.63 -940.68 
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TABLE 8: Actual vs. Predicted Shipment Size Share (Validation Sample) 

 

Shipment Size (lbs) 
For-hire Truck Private Truck Air Parcel Other Mode 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

<= 30 10.97 10.31 16.98 15.29 62.56 66.28 79.41 71.62 3.85 4.96 

31-200 9.08 11.48 19.04 19.73 

37.44 33.72 20.59 28.38 

9.23 10.60 201-1,000 18.16 19.08 20.20 22.95 

1,001-5,000 15.76 17.12 17.64 16.36 

5,001-30,000 18.79 16.81 11.62 11.08 

86.92 84.44 30,001-45,000 12.99 11.57 6.76 5.47 

> 45,000 14.25 13.63 7.75 9.12 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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APPENDIX 

 

TABLE A(i): Copula RUM Based MNL (Shipping Mode Choice) Model Estimation Results 

 

Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Constant 0 − 1 0.200 2.220 -0.943 -2.177 2.700 21.721 -4.579 -19.087 

Level of Service Variables 

Shipping Cost  

(1000 $) 
-0.287 -6.952 -0.287 -6.952 -0.287 -6.952 -0.287 -6.952 -0.287 -6.952 

Shipping Time (hrs) -0.002 -3.130 -0.002 -3.130 -0.002 -3.130 -0.002 -3.130 -0.002 -3.130 

Travel Time * Raw 

Food 
-1.269 -3.276 -1.269 -3.276 -1.269 -3.276 -1.269 -3.276 -1.269 -3.276 

Travel Time * 

Prepared Products 
-0.583 -3.169 -0.583 -3.169 -0.583 -3.169 -0.583 -3.169 -0.583 -3.169 

Freight Characteristics 

Hazardous Material 

(Base: Not 

Hazardous) 

          

Non-flammable 

Liquid and Other 

Hazardous 

Materials 

− − 0.866 4.880 − − − − − − 

Export (Base: No)           

Yes − − -0.568 -2.912 2.338 11.088 − − − − 

Temperature 

Controlled  

(Base: No) 
          

Yes − − 0.227 1.944 − − − − − − 

SCTG Commodity 

Type (Base: Wood, 

Papers and Textile) 

          

Prepared Food and 

Products 
− − 0.626 4.506 − − − − − − 

Stone & Non-

Metallic Minerals 
− − -1.231 -7.624 − − − − − − 
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Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Petroleum and 

Coals 
− − 0.588 3.920 − − − − − − 

Electronics − − -0.440 -4.201 0.599 3.083 − − − − 

Furniture and 

Others 
− − 0.270 3.185 − − − − − − 

Transportation Network and O-D Attributes 

Origin Highway 

Density (mi/mi2) 
− − − − − − 0.125 4.718 − − 

Density of Railway at 

Origin (mi/mi2) 
− − -0.049 -2.001 − − − − −  

Density of Railway at 

Destination (mi/mi2) 
− − − − − − − − − − 

Destination 

Population Density 

(10 /mi2) 
− − − − 0.300 2.604 0.200 3.111 −  

No. of Inter-Modal 

Facility at Destination 
− − -0.002 -1.760 − − − − − − 

No. of Warehouse and 

Super Center at Origin  
− − − − − − 0.003 2.953 − − 

Density of Whole Sale 

Industry at Origin (per 

mi2) 
− − − − − − -0.246 -4.073 − − 

Percentage of 

Population below 

Poverty Level at 

Origin 

− − − − -7.724 -2.601 − − − − 

1 − = variable insignificant at 90 percent confidence level 
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TABLE A(ii): Copula OL (Shipment Size) Model Estimation Results 

 

Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Thresholds            

Threshold 1 -6.283 -28.205 -5.790 -39.591 -3.896 -8.943 -0.705 -4.635 -5.631 -2.838 

Threshold 2 -4.799 -24.534 -4.235 -32.314 − 1 − − − -2.982 -3.166 

Threshold 3 -3.030 -17.773 -2.704 -23.065 − − − − − − 

Threshold 4 -1.782 -11.143 -1.656 -15.689 − − − − − − 

Threshold 5 -0.445 -2.765 -0.641 -6.495 − − − − − − 

Threshold 6 0.847 4.784 -0.027 -0.261 − − − − − − 

Freight Characteristics 

Hazardous Material 

(Base: Not 

Hazardous) 

          

Non-flammable 

Liquid and Other 

Hazardous 

Material 

0.951 2.662 − − − − − − − − 

Temperature 

Controlled  

(Base: No) 

          

Yes − − − − − − -0.854 -2.883 − − 

SCTG Commodity 

Type (Base: Wood, 

Papers and Textile) 

          

Raw Food 0.516 2.065 0.309 2.759 − − − − − − 

Prepared Food and 

Products 
0.856 4.890 -0.275 -2.660 − − 0.553 1.999 − − 

Stone & Non-

Metallic Minerals 
3.131 9.910 4.447 21.648 − − − − − − 

Petroleum and 

Coals 
1.674 6.124 0.318 2.788 − − − − − − 

Chemicals − − -0.169 -1.926 − − − − − − 
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Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Metals and 

Machinery 
− − − − − − -0.409 -3.892 − − 

Electronics -1.104 -7.976 -0.378 -2.874 -0.628 -2.226 -1.032 -10.191 − − 

Furniture and 

Others 
  -0.349 -3.691 − − -0.406 -3.808 − − 

Shipment Value ($)  

(Base:Value >5000 ) 
          

Value ≤ 300 -3.692 -12.028 -4.348 -31.358 -1.546 -3.714 -2.489 -17.048 -5.206 -2.127 

300 < Value ≤ 

1000 
-2.934 -13.292 -3.187 -25.322 -1.166 -2.847 -0.874 -6.109 -3.390 -1.848 

1000 < Value ≤ 

5000 
-2.097 -14.993 -1.808 -16.871 -1.131 -2.812 -0.423 -2.918 − − 

Transportation Network and O-D Attributes 

Mean Household 

Income at Origin ($) 

(Base: ≥ $50,000 ) 

          

< $50,000 − − − − − − 0.347 2.235 − − 

Density of Employees 

in Mining Industry at 

Origin (per mi2) 

1.108 3.260 − − − − − − − − 

Density of 

Management 

Company and 

Enterprise at 

Destination (per mi2) 

− − -1.028 -3.026 − − − − − − 

Density of Wholesale 

Industries at 

Destination (per mi2) 
− − − − − − -0.097 -2.632 − − 

Density of Highway at 

Destination (mi/mi2) 
− − 0.062 2.926 − − − − − − 

Density of Bridges at 

Destination (per mi2) 
-0.320 -1.963 − − − − − − − − 

Origin Avg. 

Temperature  

(Base: Warm; > 600 F) 
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Explanatory 

Variables 

For-hire truck Private Truck Air Parcel Other 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Cold; <= 600 F -0.352 -3.403 − − − − − − − − 

No. of seaports at 

Origin 
− − − − − − -0.001 -3.494 − − 

Routed Distance 

Between O-D (miles) 
-0.001 -8.125 − − − − − − − − 

Copula Parameters 

Copula Frank Frank Frank Joe  

Correlation 

Parameters 
-1.868 -4.059 -18.525 -8.895 -30.642 -2.724 1.369 5.613 0 − 

Raw Food 3.768 3.676 − − − − − − − − 

Stone & Non-Metallic 

Minerals 
13.321 6.871 − − − − − − − − 

Metals and Machinery − − 8.717 4.248 − − − − − − 

Shipment Value  

≤ $300 
-6.004 -3.844 − − − − − − − − 

$300 < Shipment 

Value ≤ $1000 
-3.068 -3.389 − − − − − − − − 

Export  − − − − − − -0.756 -2.878 − − 

No. of Parameters 98 

Log-likelihood at 

constants 
-15732.83 

Log-likelihood at 

Convergence 
-12409.10 

Rho-square 0.2113 

Adjusted Rho-square 0.2050 
1 − = variable insignificant at 90 percent confidence level 

 


