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Abstract 

This paper proposes an innovative joint econometric framework for examining total crash count 

and crash proportion by different crash severity. Specifically, we propose to consider a crash 

frequency model for total crashes and a fractional split model that considers proportion by crash 

severity. The model ties total crash counts and crash proportion by accommodating for the 

potential common unobserved heterogeneity (across study unit) in the joint framework. In our 

proposed approach, irrespective of the number of crash frequency variables the dimensions to be 

investigated is ‘two’, offering substantial benefits in terms of parameter stability and computational 

time as opposed to the traditional multivariate approaches. The proposed model is demonstrated 

in the study by employing a joint Negative Binomial-Ordered Logit Fractional Split (NB-OLFS) 

model framework. In the joint econometric framework, we also allow for the potential unobserved 

heterogeneity to vary across study units. The empirical analysis is conducted using zonal level 

crash count data for different crash severity levels from the state of Florida for the year 2015. The 

models are estimated employing a comprehensive set of exogenous variables − sociodemographic 

characteristics, socioeconomic characteristics, built environment, transport infrastructure and 

traffic characteristics. We also generate a comprehensive set of measures to evaluate model 

performance and data fit of the proposed framework. The results clearly highlight the superiority 

of the joint model in terms of data fit compared to independent model. The applicability of the 

proposed framework is demonstrated by generating spatial distribution of predicted motor vehicle 

crash frequency and predicted crash counts by severity levels. 

 

Keywords: count model, crash count by severity, negative binomial model, ordered fractional split 

model, joint model, crash prediction model   
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1. INTRODUCTION  

Road traffic crashes and their consequences (property damage, injuries and fatalities) remain a 

global health concern given the extent of societal, emotional and economic impacts of these 

unfortunate events. However, many developed countries have been able to achieve a reduction in 

road crash related fatalities through coordinated multi-sectoral responses, devised and 

implemented based on evidence-based data-driven strategies. Crash frequency analysis is a major 

component for devising and evaluating these road safety policies. The analysis is focused on 

identifying attributes that result in traffic crashes and propose effective countermeasures to 

improve roadway infrastructure design and operational efficiency. The outcome of these models 

is also useful to devise safety-conscious decision support tools to facilitate a proactive approach 

in assessing medium and long term policy based countermeasures.  

Traffic crashes aggregated at a certain spatial scale are non-negative integer valued random 

events. Researchers have employed a wide array of econometric approaches (linear regression, 

count regression and discrete outcome models) for quantifying the impact of exogenous factors  at 

different scales - micro-level such as intersection or segment and macro-level such as traffic 

analysis zone or census tract. The application of traditional Poisson and negative binomial (NB) 

regression models remains predominant in examining univariate crash count events. However, as 

argued in different studies, crash counts across different attributes (crash severity, vehicle types, 

road user groups, crash types) are likely to be correlated and hence are multivariate in nature. With 

the emergence of increased computational power, examining such “jointness” is becoming more 

tractable and useful. In fact, a number of studies have employed multivariate econometric 

frameworks for examining multiple crash count variables – often referred to as multivariate count 

models (Mannering et al., 2016).   

The current research effort contributes to the safety literature in examining crash count 

events methodologically and empirically by proposing an alternative crash count model 

formulation for multivariate count variables. Specifically, we propose an innovative joint 

econometric framework for examining total crash count and crash proportion by crash severity. In 

our approach, crash count is analyzed using a NB model and the crash proportions by severity is 

represented as an ordered fractional split model. The joint NB-ordered fractional split model ties 

total crash counts and crash severity proportions by accommodating for the influence of common 

unobserved heterogeneity. Such an integrated approach is appealing compared to traditional 

multivariate count framework for many reasons. From the methodological perspective, the 

proposed approach (1) is computationally less burdensome irrespective of the number of count 

dimensions – the proposed approach requires only two equations, (2) allows for unobserved 

heterogeneity across and within  count and fractional split components, (3) recognizes the inherent 

ordering of the dependent variable in the fractional split component and (4) allows for a 

parsimonious specification while retaining the benefits of both the count and fractional split 

approaches. From the empirical perspective, the proposed approach (1) provides a complete 

picture of count events with respect to total counts and contribution of each count dimension under 
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consideration and (2) provides a platform to perform policy scenario analysis considering possible 

change in total count events as well as changes within and across different count dimensions.    

To the best of the authors’ knowledge, this is the first attempt to employ such a joint 

framework within an ordered framework for examining count events. The proposed joint NB-

Fractional split econometric framework is generic and applicable for examining count and ordered 

events simultaneously for any domain. In current study context, the application of the proposed 

model is demonstrated by using zonal level motor vehicle crash count data for different crash 

severity levels from the state of Florida employing a comprehensive set of exogenous variables 

from a host of variable groups including − sociodemographic characteristics, socioeconomic 

characteristics, built environment, transport infrastructure and traffic characteristics. 

 

2. EARLIER STUDIES AND CURRENT STUDY IN CONTEXT 

2.1 Summary of Earlier Studies 

In our paper, we reviewed studies employing econometric framework for examining crash counts. 

A number of research efforts have examined traffic crashes aggregated at a certain spatial scale to 

gain a comprehensive understanding of the factors that affect crash occurrences (see Lord and 

Mannering, 2010; Mannering and Bhat, 2014; Mannering et al., 2016 and Yasmin and Eluru, 2016 

for detailed reviews). In general, crash count studies can be grouped into three broad categories 

based on the dimensions of dependent variables examined: (1) univariate crash count models, (2) 

multivariate crash count models and (3) crash proportion models.  

The first group of studies in the transportation safety area identify a single count variable 

for different crash attribute level (road user group, crash severity, crash types, or vehicles types), 

for a spatial unit and study the impact of exogenous variables. Among different road user groups, 

considerable research has been carried out for examining total crash risk and motor vehicle crash 

risk (Shin and Washington, 2012; Huang et al., 2016; Roshandeh et al., 2016; Lee et al., 2015). 

Given the increased patronage for active mode of transportation, studies examining pedestrian 

and/or bicycle crash risk have also increased over the last decade (Cai et al., 2016; Wei and 

Lovegrove 2013). It is beyond the scope of the paper to review all the research on transportation 

crash frequency employing univariate crash count models (see Lord and Mannering, 2010 and 

Yasmin and Eluru, 2016 for a detailed review of this group of studies). With respect to crash 

frequency by crash attribute levels, a significant number of studies have developed crash count 

models by severity levels: fatal crash count, fatal/serious injury crash count, injury crash count and 

no injury crash count (Dong et al., 2017; Abdel-Aty et al., 2011; Lee et al., 2014; Naderan and 

Shahi, 2010). Another crash classification that has been considered in examining a single count 

variable is crash type (Lee and Mannering, 2002; Hosseinpour et al., 2014). In examining crash 

counts in a univariate modeling system, statistical modeling approaches considered include 

negative binomial regression model, generalized linear modeling techniques, ordinary least square 

regression, Poisson-lognormal, generalized Poisson regression, negative multinomial regression, 

random effect negative binomial, geographically weighted Poisson regression, geographically 



 

 

5 

 

weighted negative binomial regression, bayesian Poisson lognormal, quasi induced exposure 

method and bayesian spatial regression.  

While these approaches perform adequately in the presence of a single count variable, these 

models ignore the correlations across different levels of crash attributes. For instance, crash 

frequencies by different severity levels are likely to be dependent for the same observation unit 

resulting in a multivariate crash event set. For a study unit, if multiple dependent variables are 

available it is plausible to imagine that common unobserved factors that affect one dependent 

variable might also affect the other dependent variables. The process of incorporating the impact 

of unobserved factors poses methodological challenges. Essentially, accommodating the impact of 

unobserved factors recognizes that the multiple dimensions of interest have common error terms 

that affect the dependent variables. At the same time, ignoring the presence of such potential 

correlation may result in biased parameter estimates and thus lead to inaccurate policy implications 

(Chamberlain, 1980; Eluru and Bhat, 2007; Washington et al., 2010).  

 The second group of studies – multivariate crash count models examine multiple dependent 

variables for each study unit. A summary of earlier studies employing multivariate crash count 

models is presented in Table 1. The information provided in the table includes the study unit 

considered, the methodological approach employed, the dependent variables analysed and the 

number of dimensions examined in the multivariate frameworks. The following observations can 

be made from the table. The most prevalent study unit considered is roadway segment for micro-

level analysis. The model structures employed in developing multivariate count model include 

multivariate-Poisson model, multivariate Poisson-lognormal model, multivariate random-

parameters zero-inflated negative binomial model, multinomial-generalized Poisson model, 

multivariate random parameter model with spatial heterogeneity, copula based bivariate model, 

multivariate conditional autoregressive model, multivariate tobit model, multivariate Poisson 

gamma mixture count model, multivariate mixture latent class multivariate model and 

simultaneous equation models. Within the multivariate scheme, studies have predominantly 

explored crash frequency by severity level, frequency by crash type, frequency by crash location, 

crash counts by active mode of transportation, road user group and vehicle type. The dimensions 

considered in the multivariate econometric framework varies from 2 to 6 based on the number of 

dependent variables considered in the modeling exercise. 

The multivariate count modeling approaches presented in Table 1, in general, partition the 

error components of the dependent variables to accommodate for a common term and an 

independent term across dependent variables (see Mannering et al., 2016 for a detailed discussion 

of various methodologies). The common error term across the dependent variables allows for the 

possible unobserved effects. Any probability computation requires integrating the probability 

function over the error term distribution. The exact computation is dependent on the distributional 

assumption and does not have a closed form expression usually1. Thus, the estimation procedure 

requires the adoption of maximum simulated likelihood (MSL) approach in the classical approach 

                                                 
1 In some cases, a parametric multivariate distributional assumption might result in closed form approaches such as 

the copula based approach (see Nashad et al., 2016) 
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or Markov Chain Monte Carlo (MCMC) approach in the Bayesian realm. MSL and MCMC 

methods provide substantial flexibility in accommodating for unobserved heterogeneity. However, 

the probability evaluation with high dimensional integrals is affected by the challenges in 

generating high dimensionality of random numbers and longer computational run times. 

Furthermore, the stability of the variance-covariance matrix is often sensitive to model 

specification and number of simulation draws.  

The third group of studies is based on examination of crash proportions. One of the recently 

employed analytical framework for examining proportions is known as the fractional split 

approach (Eluru et al., 2013; Papke and Wooldridge, 1996). In a traditional count modeling 

approach, crash counts by different crash attributes are estimated using separate crash propensity 

equations for each attribute under consideration. In multivariate count modeling approaches that 

study frequency across different attributes in a joint framework, the impact of exogenous variables 

is quantified through the propensity component of count models. The main interaction across 

different count variables is sought through unobserved effects (studies discussed in second group 

above) i.e. there is no interaction of observed effects across the multiple count models. For 

forecasting and policy evaluation, it might be beneficial to evaluate the impact of exogenous 

variables in a framework that directly relates a single exogenous variable to all count variables 

simultaneously. Such specification is not feasible within the traditional univariate or multivariate 

count modeling approaches. The fractional split approach provides an alternative approach toward 

achieving such an objective.  

In a fractional split approach, as opposed to modeling the count events, count proportions 

by different attributes (such as injury severity, collision type or vehicle type) for a study unit are 

examined. The fractional split approach directly relates a single exogenous variable to count 

proportions of all attribute levels simultaneously. Thus, in this model, exogenous variables affect 

attribute proportions through a single equation allowing us to obtain a parsimonious specification 

of exogenous variable impacts. In safety literature, very few studies have employed the fractional 

split approach. Milton et al. (2008) developed a mixed multinomial fractional split model to study 

injury-severity distribution of crashes on highway segments by using highway-injury data from 

Washington State. A number of studies have also examined crash frequency and crash severity 

simultaneously by building on multinomial-Poisson transformation (Chiou and Fu, 2013, 2015; 

Chiou et al., 2014). However, the approach employed in these studies intrinsically ignores the 

inherent ordering between ordinal attribute levels (for crash severity from no injury to fatal) (see 

Lee et al., 2016 for a similar approach within fractional split framework). Also, the number of 

equations in the multinomial-Poisson approach increases with the increase in crash severity 

dimensions. The reader would also note that the multinomial-Poisson transformation is 

significantly different in mathematical formulation from the multinomial fractional split approach. 

Recently, Yasmin et al. (2016) developed an ordered outcome fractional split model that allows 
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the analysis of proportion for variables with multiple alternatives while also recognizing the 

inherent ordering in the severity2.  

 

2.2 Current Study in Context 

The current study proposes a new joint modeling approach that builds on earlier research from 

second and third group of research efforts. Specifically, we propose to consider a crash frequency 

model for total crashes in conjunction with a fractional split model that considers proportion by 

each crash attributes. Similar to the multivariate studies, a simulation based framework is 

employed to accommodate for the influence of common unobserved effects in frequency and 

proportion components. The proposed approach offers many advantages. First, in the proposed 

joint approach, the dimensions that define the joint distribution are no longer tied to the number of 

crash frequency variables. In our approach, irrespective of the number of crash frequency variables 

the dimensions to be investigated is ‘two’, offering substantial benefits in terms of parameter 

stability and computational time as opposed to the traditional multivariate approaches. Second, the 

proposed approach retains the benefit of the fractional split model that allows observed variables 

to affect the proportion across crash frequency variables. Third, the proposed approach also 

recognizes the inherent ordering of the dependent variable in the fractional split component. 

Finally, the proposed approach allows for a parsimonious specification for the components under 

consideration. To be sure, the proposed approach is not suggested as a replacement to existing 

multivariate approaches but as an alternative approach that could potentially augment the available 

approaches for crash frequency analysis.  

In the current study context, we demonstrate the application of the proposed approach by 

employing a Negative Binomial-Ordered Logit Fractional Split (NB-OLFS) model framework3. 

Our study also allows for the potential unobserved heterogeneity to vary across the study unit in 

the joint framework. We also generate a comprehensive set of measures to evaluate model 

performance and data fit of the proposed framework. In the current study context, the proposed 

model is estimated using zonal level crash count data for different crash severity levels from the 

state of Florida employing a comprehensive set of exogenous variables − sociodemographic 

characteristics, socioeconomic characteristics, built environment, transport infrastructure and 

traffic characteristics. The outcomes of this macro-level crash count model can be used to devise 

safety-conscious decision support tools to facilitate proactive approach in assessing medium and 

long term policy based countermeasures considering possible change in total count events as well 

as changes within and across different severity dimensions.   

                                                 
2 The reader would note that there might be other approaches to combining counts and severity. For example, see Pei 

et al. (2011) for an approach that employs MCMC based joint model estimation of crash counts and crash counts by 

severity. Also, Wang et al. (2011) and Xu et al. (2014) developed two-stage model by incorporating a sequential 

estimation of Poisson-mixed multinomial and bivariate logistic-Tobit model, respectively. 
3 It is worthwhile to recognize that, the proposed approach can also be implemented with unordered or generalized 

ordered fractional split approaches. Moreover, the approach can be employed in developing both macro and micro-

level count models.  
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The rest of the paper is organized as follows. Section 3 provides details of the econometric 

model framework used in the analysis. In Section 4, the data and dependent variable formation 

procedures are described. Model comparison results and estimation results are presented in Section 

5. Section 6 concludes the paper. 

 

3. ECONOMETRIC FRAMEWORK 

3.1 Model Structure 

The focus of our study is to jointly model “total number of crashes” and “proportion of crashes by 

severity”. Let us assume that 𝑖 (𝑖 = 1,2,3, … , 𝑁) be the index for Statewide Traffic Analysis Zone 

(STAZ) and 𝑘 (𝑘 = 1,2,3, … , 𝐾) be the index to represent injury severity categories. In this 

empirical study, 𝑘 take the values of ‘no injury’ (𝑘 = 1), ‘minor injury’ (𝑘 = 2), ‘incapacitating 

injury’ (𝑘 = 3) and ‘fatal injury’ (𝑘 = 4). For the joint approach, the equation system for 

modeling total crash count in the usual NB formulation can be written as: 

𝑃(𝑐𝑖) =  
Γ (𝑐𝑖 +

1
𝛼)

Γ(𝑐𝑖 + 1)Γ (
1
𝛼)

(
1

1 + 𝛼𝜇𝑖
)

1
𝛼

(1 −
1

1 + 𝛼𝜇𝑖
)

𝑐𝑖

 (1)  

where, 𝑐𝑖 be the index for crashes occurring over a period of time in STAZ 𝑖. 𝑃(𝑐𝑖) is the 

probability that STAZ 𝑖 has 𝑐𝑖 number of crashes. Γ(∙) is the gamma function, 𝛼 is NB 

overdispersion parameter and 𝜇𝑖 is the expected number of crashes occurring in STAZ 𝑖 over a 

given time period. In equation 1, we can express 𝜇𝑖 as a function of explanatory variables by using 

a log-link function: 

𝜇𝑖 = 𝐸(𝑐𝑖|𝒛𝑖) = 𝑒𝑥𝑝((𝜹 + 𝜻𝑖)𝒛𝑖 + ln(𝐴𝑟𝑒𝑎) + 𝜀𝑖 + 𝜂𝑖) (2)  

where, 𝒛𝑖 is a vector of explanatory variables associated with STAZ 𝑖. 𝐴𝑟𝑒𝑎 is the STAZ area used 

as an offset variable in the NB model specification4. 𝜹 is a vector of coefficients to be estimated. 

𝜻𝑖 is a vector of unobserved factors on crash count propensity for STAZ 𝑖 and its associated zonal 

characteristics assumed to be a realization from standard normal distribution: 𝜻𝑖~𝑁(0, 𝝅2). 𝜀𝑖 is a 

gamma distributed error term with mean 1 and variance 𝛼. 𝜂𝑖 captures unobserved factors that 

simultaneously impact total number of crashes and proportion of crashes by severity for STAZ 𝑖. 

In the joint model framework, the modeling of crash proportions by severity levels is 

undertaken using the Ordered Logit Fractional Split (OLFS) model. In the ordered outcome 

                                                 
4 STAZ areas under consideration vary from 10-7 mile2 to 885.321 mile2 with a mean of 6.472 mile2. Given the wide 

range in STAZ areas, we allow the area associated with STAZs as an offset variable in order to account for different 

sizes of STAZs in our model specification. The coefficient of the offset variable is restricted to be one in estimating 

the model to normalize for the number crash events by STAZ area.  
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framework, the actual injury severity proportions (𝑦𝑖𝑘) are assumed to be associated with an 

underlying continuous latent variable (𝑦𝑖
∗). The latent propensity equation is typically specified as 

the following linear function: 

𝑦𝑖
∗ = ((𝜷 + 𝝆𝒊)𝒙𝑖 +  𝜉𝑖 ± 𝜂𝑖), 𝑦𝑖𝑘 = 𝑘 𝑖𝑓 𝜏𝑘−1 < 𝑦𝑖

∗ < 𝜏𝑘 (3)  

The latent propensity 𝑦𝑖
∗ is mapped to the actual severity proportion categories 𝑦𝑖𝑘 by 𝜏 

thresholds (𝜏0 = −∞ 𝑎𝑛𝑑 𝜏𝐾 = +∞) as presented in equation 3. 𝒙𝑖 is a vector of attributes (not 

including a constant) that influences the propensity associated with severity proportion categories. 

𝜷 is the corresponding vector of mean effects. 𝝆𝒊 is a vector of unobserved factors on severity 

proportion propensity for STAZ 𝑖 and its associated zonal characteristics assumed to be a 

realization from standard normal distribution: 𝝆~𝑁(0, 𝝈2). 𝜉𝑖 is an idiosyncratic error term 

assumed to be identically and independently standard logistic distributed across STAZ 𝑖. 𝜂𝑖 term 

generates the correlation between equations for total number of crashes and crash proportions by 

severity levels. To estimate the model presented in equation 3, we assume that:    

𝐸(𝑦𝑖𝑘|𝒙𝑖) = 𝐻𝑖𝑘(𝜆, 𝜓), 0 ≤ 𝐻𝑖𝑘 ≤ 1, ∑ 𝐻𝑖𝑘 = 1𝐾
𝑘=1  (4)  

𝐻𝑖𝑘 in our model takes the ordered logistic probability (Λ) form for the severity category 

𝑘. Given these relationships across different parameters, the resulting probability (Λ) for the OLFS 

model takes the following form:  

Λ(𝑦𝑖𝑘 = 𝑘) = φ{𝜏𝑘 − ((𝜷 + 𝝆𝒊)𝒙𝑖 ± 𝜂𝑖)} − φ{𝜏𝑘−1 − ((𝜷 + 𝝆𝒊)𝒙𝑖 ± 𝜂𝑖)} (5)  

where, φ(∙) is the standard logistic cumulative distribution function. In employing fractional split 

approach within an ordered framework, previous studies have typically assumed φ(∙) as standard 

normal distributed (Papke and Wooldridge, 1996; Eluru et al., 2013). However, as indicated by 

Papke and Wooldridge, (2008), logistic function form of φ(∙) is also feasible. The ± sign in front 

of 𝜂𝑖 in equation 5 indicates that the correlation in unobserved individual factors between total 

crashes and crash proportions by severity levels may be positive or negative. A positive sign 

implies that STAZs with higher number of crashes are intrinsically more likely to incur higher 

proportions for severe crashes. On the other hand, negative sign implies that STAZs with higher 

number of crashes intrinsically incur lower proportions for severe crashes. To determine the 

appropriate sign one can empirically test the models with both ′ + ′ and ′ − ′ signs independently. 

The model structure that offers the superior data fit is considered as the final model. 

It is important to note here that the unobserved heterogeneity between total number of 

crashes and crash proportions by severity levels can vary across STAZs. Therefore, in the current 

study, the correlation parameter 𝜂𝑖 is parameterized as a function of observed attributes as follows: 



 

 

10 

 

𝜂𝑖 = 𝜸𝑖𝒔𝑖 (6)  

where, 𝒔𝑖 is a vector of exogenous variables, 𝜸𝑖 is a vector of unknown parameters to be estimated 

(including a constant). 

 

3.2 Model Estimation 

In examining the model structure of total crash count (equation 1) and proportions of crashes by 

severity levels (equation 5), it is necessary to specify the structure for the unobserved vectors 

𝜻, 𝝆 and 𝜸 represented by Ω. In this paper, it is assumed that these elements are drawn from 

independent realization from normal population: Ω~𝑁(0, (𝝅𝟐, 𝝈𝟐 𝝂2)). Thus, conditional on Ω, 

the likelihood function for the joint probability can be expressed as: 

𝐿𝑖 = ∫ 𝑃(𝑐𝑖) × ∏(Λ(𝑦𝑖𝑘 = 𝑘))
𝜛𝑖𝑑𝑖𝑘

𝐾

𝑘=1Ω

𝑑Ω (7)  

where, 𝜛𝑖 is a dummy with 𝜛𝑖 = 1 if STAZ 𝑖 has at least one crash over the study period and 0 

otherwise. 𝑑𝑖𝑘 is the proportion of crashes in severity category k. Finally, the log-likelihood 

function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (8)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 8. The parameters to be estimated in the model are: 𝜹, 𝛼, 𝜷, 𝜏, 𝝅, 𝝈 and 𝝂. 

To estimate the proposed model, we apply Quasi-Monte Carlo simulation techniques based on the 

scrambled Halton sequence to approximate this integral in the likelihood function and maximize 

the logarithm of the resulting simulated likelihood function across individuals (see Bhat, 2001; 

Eluru et al., 2008; Yasmin and Eluru, 2013 for examples of Quasi-Monte Carlo approaches in 

literature). The model estimation routine is coded in GAUSS Matrix Programming software 

(Aptech, 2015).  

  

4. DATA 

4.1 Study Area  

The study area, the state of Florida is associated with 8,518 STAZ with a population of about 18 

million and approximately 9 million households. More than 90% of these population lives in urban 
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area which covers only about 14% of total land area of Florida (U.S. Census Bureau, 2012). Like 

many other state of the United States, Florida is also an auto oriented state where nearly 80% of 

Floridians commute to work by automobiles and 93% of households (HH) have access to at least 

one passenger vehicle (FDOT and CUTR, 2015). Data for the empirical study is compiled from 

Florida Department of Transportation Crash Analysis Reporting (CAR) and Signal Four Analytics 

(S4A) databases. Florida Department of Transportation CAR and S4A are long and short forms of 

crash reports in the State of Florida, respectively. The long form crash report includes higher injury 

severity level or crash related to criminal activities (such as hit-and-run or Driving Under 

Influence). The Short Form Report is used to report all other types of traffic crashes. Crash data 

records from short and long form databases are compiled in order to generate complete information 

on road crashes and hence are used for the purpose of analysis in the current study context.  

 

4.2 Dependent Variables and Data Descriptions 

This study is focused on crashes involving motor vehicles at the zonal level - pedestrian or bicycle 

involved crashes were excluded. The geocoded crash data involving motorized vehicles are 

aggregated at the level of STAZ for the year 2015 – dependent variables for count model 

component (represented as NB model) of the joint system. For the year 2015, Florida has a record 

of 494,831 motor vehicle crashes with an average of 58.09 crashes per STAZ (ranging from 0 to 

864 crashes). These crashes are further classified by crash severity outcomes (no injury, minor 

injury, incapacitating injury and fatal injury) at the zonal level. In this case of four severity levels, 

the dependent variable for fractional split component (represented as OLFS model) can be 

represented as proportions (number of specific severity level/total number of all crashes) as 

follows: (1) proportion of no injury crashes, (2) proportion of minor injury crashes, (3) proportion 

of incapacitating injury crashes and (4) proportion of fatal crashes. The dependent variables and 

sample size for both components are presented in upper row panel of Table 2. From Table 2, we 

can observe that, as expected, number of no injury crashes has the highest proportion followed by 

proportion of minor injury crashes. 

In addition to the crash database, the explanatory attributes considered in the empirical 

study are also aggregated at the STAZ level. The selected explanatory variables can be grouped 

into five broad categories: sociodemographic characteristics, socioeconomic characteristics, built 

environment attributes, transport infrastructure and traffic characteristics. These variables are 

collected from different data sources including: 2010 US census data, 2009-2013 American 

Community Survey (ACS), Florida Geographic Data Library (FDGL), Florida Department of 

Transportation (FDOT) and Signal Four Analytics (S4A) databases. Sociodemographic 

characteristics included are household (HH) density, dependence5, proportion of female 

population, proportion of Caucasian population, proportion of Asian population, proportion of 

Hispanic population and proportion of African-American population. Socioeconomic 

                                                 
5 Dependence is defined as the ratio of youth (15 years or younger) and elderly (65 years or more) to working age 

persons. 
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characteristics included are automobile commuters, transit commuters, walk commuters, bike 

commuters, number of workers that work from home, employment density and population below 

poverty level. Built environment attributes included are proportion of urban area, law enforcement 

offices, restaurants, park and recreational centers, transportation hubs, shopping centers, land use 

mix, proportion of retail and office land use and proportion of industrial land use. Transport 

infrastructures included are local roads, major roads, traffic signal density and intersection density. 

Traffic characteristics included are vehicle miles travelled (VMT), proportion of heavy vehicle 

miles travelled, average speed and traffic intensity. 

Table 2 offers a summary of the sample characteristics of the exogenous factors in the 

estimation dataset. The table represents the definition of variables considered for final model 

estimation along with the zonal minimum, maximum and average values. The final specification 

of the model development was based on removing the statistically insignificant variables in a 

systematic process based on statistical significance (90% significance level). The specification 

process was also guided by prior research and parsimony considerations. In estimating the models, 

several functional forms and variable specifications were explored. The functional form that 

provided the best result was used for the final model specifications and, in Table 2, the variable 

definitions are presented based on these final functional forms. 

 

5. EMPIRICAL ANALYSIS 

5.1 Model Specification and Overall Measures of Fit 

The empirical analysis involves estimation of three different models: 1) an independent Negative 

Binomial (NB) and Ordered Logit Fractional Split (OLFS) model system, 2) joint NB-OLFS 

model without correlation parameterization and 3) joint NB-OLFS model with correlation 

parameterization. The independent model (separate NB and OLFS models) were estimated to 

establish a benchmark for comparison. Prior to discussing the estimation results, we compare the 

performance of these models in this section. We employ the Bayesian Information Criterion (BIC) 

to determine the best model between independent and joint models. The BIC for a given empirical 

model is equal to: 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (9)  

where 𝐿𝐿 is the log likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 is the 

number of observations. The model with the lower BIC is the preferred model.  

The log-likelihood values at convergence for the models estimated are as follows: (1) 

Independent NB-OLFS (with 45 parameters) is -44872.33 (2) joint NB-OLFS model without 

correlation parameterization (with 46 parameters) is -44863.11 and (3) joint NB-OLFS model with 

correlation parameterization (with 47 parameters) is -44856.98. The BIC values for the final 

specifications of the independent, joint NB-OLFS models without and with correlation 
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parameterization are 90150.76, 90142.52 and 90139.31, respectively. The comparison exercise 

clearly highlights the superiority of the joint model with the correlation parameterization in terms 

of data fit compared to independent model. 

 

5.2 Estimation Results 

In presenting the effects of exogenous variables, we will restrict ourselves to the discussion of the 

joint model with the correlation parameterization6. For the ease of presentation, the crash count 

component (NB model) and crash proportion component (OLFS model) are presented and 

discussed separately. Table 3 presents the estimation results of the joint NB-OLFS model with NB 

component results in second and third column panels of the table and OLFS component results in 

fourth and fifth column panels. The correlation parameters within joint model specification are 

presented in the last row panel of Table 3. 

 

5.2.1 Crash Count Component (NB Model) 

A positive (negative) sign for a variable in the crash count component of Table 3 indicates that an 

increase in the variable is likely to result in more (less) motor vehicle crashes. 

 

Sociodemographic Characteristics: Several sociodemographic characteristics considered are found 

to be significant determinants of motor vehicle crash risk at the zonal level. As expected, we find 

that as HH density increases, the risk of motorized vehicle crashes also increases. The result is in 

accordance with the finding from Hadayeghi et al. (2003). Dependence (a surrogate for non-

working group of population) has significant negative impact on motor vehicle crashes risk, 

perhaps indicating a lower exposure to motor vehicles for this group of population. Increased 

proportion of female population at the zonal level is negatively associated with increased number 

of motor vehicle crashes. The result can be explained by overall low risk taking attitude of this 

group of population (Stamatiadis and Puccini, 2000). The estimation results also indicate that 

STAZs with greater proportions of Caucasian and Asian population are likely to experience less 

motor vehicle crashes. On the other hand, motor vehicle crash risk increases with increasing 

proportion of Hispanic population, a result also observed in Lee et al. (2014). 

  

Socioeconomic Characteristics: In terms of commuters by mode choice, total number of bike and 

walk commuters are found to have significant impact in NB component of the joint model system. 

As expected, increases in both of these variables reduce the likelihood of motorized vehicle crash 

risk at the zonal level. The findings are contradictory to Rifaat et al. (2010), perhaps indicative of 

the difference in contexts - Rifaat et al. (2010) examined total number of crashes whereas in our 

study we examine total crashes involving motor vehicles only. The result associated with 

                                                 
6 Estimation results of independent NB-OLFS and joint NB-OLFS without correlation parameterization are presented 

in Table A and B, respectively, in the APPENDIX section. 
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employment density reflects that an increase in employment density increases the likelihood of 

motor vehicle crash risk (see Khondakar et al., 2010 for similar result). 

 

Built Environment: In NB component of the joint model system, a higher proportion of urban area 

results in higher motor vehicle crash risk, plausibly indicating higher interactions of vehicles and 

in turn, higher vehicular conflicts within an urbanized road environment. Among different point 

of interests considered, the results reveal that motor vehicle crashes are negatively associated with 

higher number of law enforcement offices, parks and recreational centers and transportation hubs. 

Further, the results reveal that the presence of more restaurants in a STAZ is positively associated 

with motor vehicle crash risk. Among land use characteristics, land use mix and proportion of 

retail and office area have significant impact on the crash count component. Interestingly, crashes 

are negatively associated with higher land use mix in a zone. The result shows that STAZs with 

higher proportion of retail and office area have higher likelihood of motorized vehicular crash risk 

(see Ng et al, 2002; Rifaat et al, 2009; Rifaat et al, 2010 for similar results). 

 

Transport Infrastructure: In crash count component, proportion of major roads has significant 

impact on motor vehicle crash risk. We find that in presence of more major roads in a STAZ, the 

possibility of crash risk decreases. As explained in prior literature (Huang et al., 2010), the result 

can be explained by better road design of major roads. An increase in traffic signal density in a 

STAZ increases the likelihood of motorized vehicular crash risk. With respect to intersection 

density, the model estimation result indicates an expected positive correlation of higher 

intersection density with motorized vehicular crashes, a result also observed in several previous 

studies (Jiang et al., 2016; Abdel-Aty et al., 2013). 

 

Traffic Characteristics: With respect to the traffic characteristics, none of the variables are found 

to affect motor vehicle crash risk at the zonal level. The reader should note that we considered 

VMT in the count propensity component of the joint model. However, the model estimation 

offered a statistically insignificant parameter. In the macro-level model for our study area, it is 

possible that the influence of VMT is represented by other attributes that serve as surrogates for 

VMT (such as household density). 

 

5.2.2 Crash Proportion Component (OLFS Model) 

In OLFS model, the positive (negative) coefficient corresponds to increased (decreased) 

proportion for severe injury categories.  

 

Sociodemographic Characteristics: From Table 3, we can see that HH density is highly significant 

in the crash severity proportion component. As expected, the variable has an opposing effect in 

fractional split component than crash count component of the joint model. HH density has negative 

impact on proportion of crash severity outcomes implying a reduced likelihood of more severe 
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crashes. We find that crash proportion for severe outcome levels is lower in the STAZs with higher 

proportion of Caucasian, Hispanic and African-American population. 

 

Socioeconomic Characteristics: The results for the number of commuters based on different 

commute modes reveal that STAZs with higher number of automobile commuters increase the 

likelihood of more severe crashes. The result associated with transit commuter reflects lower 

probability of severe crash proportions. Higher number of workers working from home is 

negatively associated with more severe crash proportions. The result can be explained by overall 

lower exposure of this group of people to traffic (Abdel-Aty et al., 2013). In our joint model 

specification, employment density has significant impact in OLFS model component as well. From 

the model estimates we find that the likelihood of higher proportion of severe crash outcomes 

decreases with increasing employment density. Proportion of population below poverty level, an 

indicator for area deprivation, reveals positive impact on proportion of crashes by severity levels. 

Huang et al. (2010) and Aguero-Valverde and Jovanis (2006) also found a similar impact in 

examining the impact of variables on severe crashes.   

 

Built Environment: As found in previous studies (Noland and Quddus, 2004), we also find that the 

possibility of more severe crashes decreases with increasing share of urbanized area of a STAZ, 

presumably due to the congested and/or slower traffic on roadways of urbanized environment. 

With respect to point of interests, number of law enforcement offices, restaurants, parks and 

recreational centers and shopping centers are negatively associated with crash severity proportions. 

In the OLFS component, the result for proportion of industrial land use category reveals that 

STAZs with higher share of industrial land use increase the likelihood of higher severe crash 

proportions. A similar positive relationship between industrial land use and severe crash 

occurrence is documented by Hadayeghi et al. (2007). 

 

Transport Infrastructure: The only transport infrastructure variables influencing motor vehicle 

crash risk proportions is the zonal level length of local roads. Crash severity proportions are 

negatively associated with higher length of local roads. 

 

Traffic Characteristics: Several traffic characteristics considered are found to be significant 

determinants of crash proportions by severity levels. Among traffic characteristics, crash 

proportion of severe crashes is found to be higher for STAZs with higher vehicle miles travelled 

(VMT). The result is in line with several previous studies and can be attributable to higher exposure 

and /or adaptation of drivers to different levels of traffic volume (see Milton et al., 2008; Dong et 

al., 2014; Lee et al., 2014; and Hadayeghi et al., 2003 for similar results). The OLFS model results 

reveal higher proportion of severe crash outcomes for higher proportion of heavy vehicular miles 

travelled at the STAZ level, consistent with earlier research findings (Li et al., 2013). Average 

zonal speed limit is found to be a significant determinant of crash proportion by severity outcomes. 

The estimate for average speed has a positive coefficient suggesting that proportion of severe 
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crashes increases with increasing zonal level average speed. In line with findings from previous 

studies (Hadayeghi et al., 2003; Li et al., 2013), we find that higher traffic intensity (defined as the 

ratio of VMT and total length of roadways in miles) decreases the possibility of higher proportions 

of severe crash outcomes, attributable to lower travel speed of motor vehicles in more congested 

roadway environment.   

5.2.3 Unobserved Effects 

Significance of the unobserved heterogeneity parameters presented in the last row panel of Table 

3 highlights the presence of common unobserved factors affecting crash count and crash severity 

proportion components. As indicated earlier, we parameterize the correlation profile as a function 

of observed exogenous variables. In terms of exogenous variables, we find that the correlation 

between the two dimensions of the joint model system is moderated by the proportion of heavy 

vehicle miles travelled. This provides support to our hypothesis that the correlation is not constant 

across the entire database. Both the constant and proportion of heavy vehicle miles travelled are 

introduced with a " − " sign before 𝜂𝑖 in the crash proportion component (as described in 

econometric framework section) since it was the expected effect and also provided a substantially 

better fit compared to introducing them with a " + " sign.  

 

5.3 Predictive Performance Evaluation 

In order to demonstrate the predictive performance of the estimated models, we also perform 

computation of several in-sample goodness-of-fit measures. In doing so, performance of joint NB-

OLFS model with correlation parameterization is compared with the predictive performance of 

independent NB-OLFS for verifying the improvement of incorporating correlation in estimating 

crash count and crash severity proportions simultaneously. To evaluate the in-sample predictive 

performance, we employ three different fit measures: mean absolute error (MAE), mean 

percentage error (MPE) and mean absolute percentage error (MAPE)7. These fit measures quantify 

the error associated with model predictions and the model with lower fit measures provides better 

predictions of the observed data. We compute these measures at the disaggregate level by 

generating measures at the study unit level (STAZ) and compute the average measures across all 

units. 

Table 4 presents the values for these measures for independent NB-OLFS and joint NB-

OLFS model with correlation parameterization. Other than total crash counts and crash proportions 

across different severity levels, from the estimated joint models, we can also generate crash counts 

by severity levels by using equations 2 and 5 as follows: 

𝐸(𝒌𝑖) = 𝜇𝑖 ∗ Λ(𝑦𝑖𝑘 = 𝑘) (10)  

                                                 
7 These measures can be computed as 𝑀𝐴𝐸 =  

∑ (𝑦̂𝑛−𝑦𝑛)𝑁
𝑛=1

𝑁
, 𝑀𝑃𝐸 =  ∑ (

𝑦̂𝑛−𝑦𝑛

𝑦𝑛
)𝑁

𝑛=1  𝑎𝑛𝑑 𝑀𝐴𝑃𝐸 =  ∑ |
𝑦̂𝑛−𝑦𝑛

𝑦𝑛
|𝑁

𝑛=1 , 

where, 𝑦̂𝑛 and 𝑦𝑛 are the predicted and observed values across different study units 𝑛 (𝑛 = 1,1,2,…8518). 
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where, 𝐸(𝒌𝑖) is the expected number of crashes by injury severity 𝑘 for STAZ 𝑖. Thus the 

framework allows us to predict total crash counts, proportion of crash counts by crash severity 

levels and crash counts across different severity levels within a single econometric framework. In 

evaluating predictive performance, we compute errors in crash predictions for total crash counts 

(from NB component), crash severity proportions (from OLFS component) and counts for different 

severity levels (from joint distribution). It is worthwhile to recognize here that in independent NB-

OLFS model 𝜂𝑖 = 0 in equation 2 and 5, while in joint NB-OLFS model with correlation 

parameterization 𝜂𝑖 is estimated by using structure as presented in equation 6. The resulting fit 

measures for comparing the predictive performance clearly indicate that overall the joint NB-

OLFS with correlation parameterization model offers superior fit compared to the independent 

NB-OLFS model. The independent model performs marginally better than the joint model in 

OLFS component with respect to MAE and MAPE, while the joint model provides superior 

predictions across all other fit measures. These prediction results further confirm the benefit of 

accommodating correlation and heterogeneity in modeling crash counts and crash severity 

proportions at a zonal level. 

 

5.4 Model Implications 

The model results and performance evaluation from the previous sections clearly highlight the 

value of the proposed joint NB-OLFS model. The model findings have important implications in 

terms of countermeasures for zones with higher number of crashes. Moreover, the findings can be 

used to identify zones with greater risk of severe crashes. To illustrate the model applicability, we 

employ the model results to plot the spatial distribution of predicted motor vehicle crash frequency 

and predicted crash counts by severity levels (calculated by using equation 10). These plots are 

presented in Figure 1. The reader would note that the Figure also identifies major urban regions in 

Florida - Tallahassee, Jacksonville, Orlando, Tampa and Miami. From Figure 1, we can see that 

STAZs with higher number of total crashes are also in general associated with higher crash counts 

across different severity levels. Further, the figures indicate that high crash risk zones are dispersed 

throughout the state with visible clustering. From spatial representation, we can also observe that 

zones with higher number of crashes are, in general, close to the major cities. This spatial 

illustration can easily be used to prioritize STAZs based on total crash risk and crash risk across 

different severity levels in enhancing motor vehicle safety of these high crash risk zones.  

 

6. CONCLUSIONS 

The paper proposed, formulated and estimated an innovative joint econometric framework for 

examining total crash count and crash proportion by different crash attribute levels (such as crash 

severity, different crash types or different road user groups involved in crashes). Specifically, we 

proposed to consider a crash frequency model for total crashes in conjunction with a fractional 

split model that considers proportion by crash attribute levels. The model ties total crash counts 
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and crash proportions by accommodating for the potential common unobserved heterogeneity 

(across study unit) in the joint framework. To the best of the authors’ knowledge, this is the first 

attempt to employ such a joint framework for examining count events. 

In this study, we demonstrated the application of the proposed approach by employing a 

Negative Binomial-Ordered Logit Fractional Split (NB-OLFS) model framework. We also 

allowed the potential unobserved heterogeneity to vary across study units in the joint framework. 

The empirical analysis was conducted by using zonal level crash count data for different crash 

severity levels from the state of Florida for the year 2015. The models were estimated employing 

a comprehensive set of exogenous variables − sociodemographic characteristics, socioeconomic 

characteristics, built environment, transport infrastructure and traffic characteristics. The empirical 

analysis involved estimation of three different model systems: 1) an independent Negative 

Binomial (NB) and Ordered Logit Fractional Split (OLFS) model system, 2) joint NB-OLFS 

model without correlation parameterization and 3) joint NB-OLFS model with correlation 

parameterization. The comparison exercise, based on information criterion metrics, highlighted 

the superiority of the joint model with the correlation parameterization in terms of data fit. 

According to our results, the impacts of exogenous variables (in sign) between two components of 

the joint model were different for some variables. An in-sample validation exercise is conducted 

to compare the performance of the joint NB-OLFS model with correlation parameterization to the 

performance of the independent NB-OLFS model. The prediction results clearly highlight the 

superior performance of the joint model. To further illustrate the model applicability, we employed 

the model results to plot the spatial distribution of predicted motor vehicle crash frequency and 

predicted crash counts by severity levels. 

The paper is not without limitations. In our research effort, we employed aggregate level 

crash count data at a zonal level. However, we have not explored spatial correlation across different 

zones. It will be an interesting exercise to model the impact of spatial correlation across zones. 

Moreover, it might be interesting to explore the transferability of models developed for crash count 

and crash severity simultaneously by estimating similar models for multiple spatial units and 

several years.  
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FIGURE 1 Spatial Distribution of Expected Motor Vehicle Crash Frequency for Total Crash Counts and Counts by Severity 

Levels  
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TABLE 1 Summary of Existing Multivariate Crash Frequency Studies 

Studies Study Unit (Scale) Methodology Dependent Variables Analyzed 

Number of 

Dimensions 

Examined 

(Ye et al. 2013) 
Multilane freeway segment 

(Micro) 

Joint Poisson regression 

model 

Crash frequencies by severity level - property 

damage only, possible 

injury, and injury/fatality 

3 

(Aguero-Valverde 

and Jovanis 2009) 

State-maintained rural two-

lane roads (Micro) 

Full Bayes multivariate Poisson 

lognormal 

models 

Crash frequencies by severity level - Fatalities, 

major injuries, moderate injuries, minor injuries, 

and PDO 

5 

(Tunaru 2002) 
Single carriageway link 

sites (Micro) 

Bayesian Multivariate Poisson-

log Normal Model 

Crash frequencies by severity level – slight injury, 

serious/fatal injury by number of vehicles involved 

(1 and 2+) 

4 

(Ladron de Guevara 

et al. 2004) 

Traffic analysis zone 

(Macro) 

Simultaneous negative binomial 

model 

Crash frequencies by severity level – no injury, 

injury and fatal 
3 

(Song et al. 2006) District (Macro) 
Bayesian multivariate 

conditional autoregressive model 

Crash frequencies by location – intersection crash, 

intersection-related crash, driveway-access crash, 

and non-intersection crash 

4 

(Ma and Kockelman 

2006) 
Highway segments (Micro) 

Multivariate Poisson regression 

model 

Count of victims by severity type - fatal, disabling 

injury, non-disabling injury, possible injury, and 

non-injury 

5 

(Park and Lord 2007) Intersection (Micro) 
Multivariate Poisson–lognormal 

Model 

Crash frequencies by severity level – fatal, 

incapacitating-injury, non-incapacitating injury, 

minor injury, property damage only 

5 

(Ye et al. 2009) Intersection (Micro) 
Multivariate Poisson regression 

model 

Crash frequencies by crash types – head-on, rear-

end, sideswipe (same direction), sideswipe 

(opposite direction) and pedestrian-involved 

crashes 

6 

(Ma et al. 2008) Road segment (Micro) 
Bayesian multivariate Poisson 

log-normal model 

Count of victims by severity type - fatal, disabling 

injury, non-disabling injury, possible injury, and 

non-injury 

5 

( Aguero-Valverde et 

al. 2016) 
Roadway segment (Micro) 

Multivariate Poisson log-normal 

spatial model 

Crash frequencies by crash types – same direction, 

opposite direction, angle and hit-fixed object 

crashes 

4 

(Dong et al. 2014) Intersection (Micro) 

Multivariate random-parameters 

zero-inflated negative binomial 

model 

Crash frequencies by vehicles involved – car only 

crash, car-truck crash and truck only crash 
3 

(El-Basyouny and 

Sayed 2009) 
Intersection (Micro) 

Multivariate Poisson log-normal 

regression model 

Crash frequencies by crash severity levels – PDO 

and injury/fatal crashes 
2 
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(Song et al. 2006) District (Macro) 
Multivariate conditional 

autoregressive (CAR) models 

Crash frequencies by roadway locations – 

intersection, intersection-related, driveway access 

and non-intersection locations 

4 

(Anastasopoulos et 

al. 2012a) 

Roadway segments 

(Micro) 
Multivariate tobit regression 

Rates of crashes (per distance travelled) by crash 

severity levels - no-injury, possible injury and 

injury crashes 

3 

(Park et al. 2010) Roadway segment (Micro) 
Fully Bayesian multivariate 

Poisson regression model 

Crash frequencies by different crash characteristics 

– total crash, speed related crash and crashes for 

different severity and situational characteristics 

4 

(Brijs et al. 2007) Intersection (Micro) 
Bayesian multivariate Poisson 

regression model 

Crash frequencies by crash outcome levels – total 

crashes, fatal crashes and slight/serious injury 

crashes 

3 

(Barua et al. 2016) Road segment (Micro) 
Bayesian multivariate random 

parameters spatial model 

Crash frequencies by severity levels – no injury 

and injury/fatal crashes 
2 

(Anastasopoulos 

2016) 
Roadway segment (Micro) 

Random parameter multivariate 

tobit model, Multivariate zero-

inflated negative binomial model 

Crash frequency and crash rate (per distance 

travelled) by severity type – PDO, injury and 

fatality 

3 

(Mothafer et al. 

2016) 

Multilane freeway segment 

(Micro) 

Multivariate Poisson 

gamma mixture count model 

Crash frequency by crash type – rear-end, 

sideswipe, fixed object and other collision types 

(same direction, overturn, head-on, and 

miscellaneous type) 

4 

(Serhiyenko et al. 

2016) 

Limited access highway 

segment (Micro) 

multivariate Poisson Lognormal 

model 

Crash frequency by crash type – single vehicle, 

same direction and opposite direction crashes 
3 

(Huang et al. 2017) Urban intersection (Micro) 
Multivariate spatial conditional 

autoregressive (CAR) models 

Crash frequency by travel mode – pedestrian, 

bicycle and motor vehicle 
3 

(Barua et al. 2014) Road segment  (Micro) 
Multivariate Poisson lognormal 

model 

Crash frequency by crash severity – no injury and 

injury/fatal crashes 
2 

(Zhan et al. 2015) 
Census tract (Macro) 

Roadway segment (Micro) 

Multivariate Poisson-lognormal 

model 

Crash frequency of pedestrian-vehicle crashes by 

severity levels – fatal and severe injury crashes 

Crash frequency by crash severity – no injury, 

possible injury and evident injury  

2, 3 

(Zeng et al. 2017) Road segment (Micro) 
Multivariate random parameter 

tobit model 

Crash frequency by severity levels – slight injury 

crash and killed/seriously injured crashes 
2 

(Heydari et al. 2017) Intersection (Micro) 
Bayesian latent class flexible 

mixture multivariate model 

Crash frequency by crash type – pedestrian and 

bicycle crashes 
2 

(Wang et al. 2017) 
Roadway segment and 

intersections (Micro) 

Integrated Nested Laplace 

Approximation Multivariate 

Poisson Lognormal model 

Crash frequency by crash types –same-direction, 

intersection-direction, opposite direction and 

single vehicle crashes 

4, 3 
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Crash frequency by severity outcomes – no injury, 

possible/non-incapacitating injury and 

fatal/incapacitating injury crashes  

(Nashad et al. 2016) 
Statewide Traffic Analysis 

Zone (Macro) 

Copula based bivariate negative 

binomial model 

Crash frequency by crash type – pedestrian and 

bicycle crashes 
2 

(Cheng et al. 2017) Intersection (Micro) 
Multivariate Poisson lognormal 

temporal and spatial models 

Crash frequency by crash type - Rear-end, Head-

on, Side-swipe, 

Broad-side, Hit object, and Others crashes 

6 

(Dong et al. 2016) Intersection (Micro) 

Random parameter bivariate 

zero-inflated negative binomial 

model 

Crash frequency by severity – disabling injury and 

non-disabling injury 
2 
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TABLE 2 Sample Statistics for the State of Florida 

Variable Names Definition 
Zonal 

Minimum Maximum Average 

Dependent Variables 

 Count of total crashes Total number of crashes in STAZ 0.000 864.000 58.092 

 Proportion of no injury crashes 
Total number of no injury crashes in STAZ/ Total number of crashes in 

STAZ 
0.000 1.000 0.693 

 
Proportion of minor injury 

crashes 

Total number of minor injury crashes in STAZ/ Total number of crashes in 

STAZ 
0.000 1.000 0.218 

 
Proportion of incapacitating 

injury crashes 

Total number of incapacitating injury crashes in STAZ/ Total number of 

crashes in STAZ 
0.000 1.000 0.034 

 Proportion of fatal crashes 
Total number of fatal injury crashes in STAZ/ Total number of crashes in 

STAZ 
0.000 1.000 0.006 

Sociodemographic Characteristics 

 HH density Ln(Number of HH in STAZ/Total area of STAZ in square miles) -9.816 10.182 5.619 

 Dependence 
Ratio of youth (15 years or younger) and elderly (65 years or more) to 

working age persons 
0.000 12.622 0.607 

 Proportion of female population Number of female residents in STAZ/Total number of population in STAZ 0.000 0.834 0.500 

 Proportion of Caucasian 

population 

Number of Caucasian residents in STAZ/Total number of population in 

STAZ 
0.000 1.000 0.759 

 Proportion of Asian population Number of Asian residents in STAZ/Total number of population in STAZ 0.000 0.508 0.020 

 Proportion of Hispanic 

population 

Number of Hispanic residents in STAZ/Total number of population in 

STAZ 
0.000 1.000 0.171 

 Proportion of African - 

American population 

Number of African - American population residents in STAZ/Total number 

of population in STAZ 
0.000 1.000 0.172 

Socioeconomic Characteristics 

 Automobile commuters Ln(Total passenger vehicle commuters in STAZ) -11.428 9.847 5.325 

 Transit commuters Ln(Total public transit commuters in STAZ) -18.900 6.928 0.095 

 Walk commuters Ln(Total walk commuters in STAZ) -21.362 7.024 0.100 

 Bike commuters Ln(Total bike commuters in STAZ) -20.711 6.407 -0.360 

 Number of workers that work 

from home 
Ln(Total number of workers that worked from home in STAZ) -17.688 8.414 1.640 
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 Employment density Total number of jobs in STAZ/Total number of population in STAZ -10.514 11.386 -0.673 

 Population below poverty level 
Total number of population below poverty level in STAZ/Total number of 

population in STAZ 
0.000 0.790 0.182 

Built Environment 

 STAZ area Ln(Total area of STAZ in square miles) -18.517 6.786 -0.171 

 Proportion of Urban area Urban area in STAZ/Total area of STAZ 0.000 1.000 0.731 

 Law enforcement offices Number of law enforcement offices in STAZ 0.000 4.000 0.116 

 Restaurants Count of restaurants in STAZ/10 0.000 11.000 0.410 

 Park and recreational centers Count of park and recreational centers/10 0.000 5.400 0.079 

 Transportation hubs Count of transportation hubs/10 0.000 5.200 0.016 

 Shopping centers Count of shopping centers/10 0.000 18.900 0.583 

 Land use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-use, 𝑝 is the 

proportion of the developed land area devoted to a specific land-use, 𝑁  is 

the number of land-use categories in a STAZ 

0.000 0.859 0.046 

 Proportion of retail and office 

land use 
Retail and office land use in STAZ/Total area of STAZ 0.000 0.786 0.008 

 Proportion of industrial land use Industrial land use in STAZ/Total area of STAZ 0.000 0.871 0.002 

Transport Infrastructure 

 Local roads Ln(Length of local roads in STAZ in meter) -4.240 11.713 1.935 

 Major roads Ln(Length of major roads in STAZ in meter) -4.036 11.155 6.288 

 Traffic signal density Total number of traffic signal in STAZ/Total roads length in STAZ in miles -4.144 6.840 -0.078 

 Intersection density Ln(Total number of intersections/Total roads length in STAZ in miles) -2.638 8.464 1.815 

Traffic Characteristics 

 Vehicle miles travelled (VMT) Ln(Total vehicle miles travelled in STAZ) 0.000 13.524 9.442 

 Proportion of heavy vehicle 

miles travelled  

Heavy vehicle miles travelled in STAZ/Total vehicle miles travelled in 

STAZ 
0.000 0.848 0.037 

 Average speed Ln(Average posted speed limit in square miles per hour in STAZ) 0.000 4.248 3.390 

 Traffic intensity Vehicle miles travelled/Total length of roadways in miles in STAZ 0.000 13.094 8.798 
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TABLE 3 Joint NB-OLFS with Correlation Parameterization Model Results for Florida 

Variable Names 
NB Model Component OLFS Model Component 

Estimate t-stat Estimate t-stat 

Constant 1.393 7.234 --- --- 

Threshold Parameters --- --- --- --- 

 Threshold between no injury and minor injury --- --- -0.121 -0.571 

 Threshold between minor and incapacitating injury --- --- 2.058 9.660 

 Threshold between incapacitating and fatal injury --- --- 3.992 18.003 

Sociodemographic Characteristics 

 HH density 0.476 17.313 -0.049 -4.117 

 Dependence -0.312 -7.423 --- --- 

 Proportion of female population -1.263 -3.419 --- --- 

 Proportion of Caucasian population -0.948 -12.200 -1.021 -5.531 

 Proportion of Asian population -2.243 -3.901 --- --- 

 Proportion of Hispanic population 1.038 13.718 -0.541 -10.692 

 Proportion of African-American population --- --- -1.067 -5.632 

Socioeconomic Characteristics 

 Automobile commuters --- --- 0.039 3.149 

 Transit commuters --- --- -0.007 -2.200 

 Walk commuters -0.041 -6.045 --- --- 

 Bike commuters -0.023 -3.440 --- --- 

 Number of workers that work from home --- --- -0.011 -2.242 

 Employment density 0.317 17.713 -0.033 -3.645 

 Population below poverty level --- --- 0.310 3.292 

Built Environment 

 Proportion of Urban area 1.360 13.084 -0.239 -5.201 
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 Law enforcement offices -0.126 -3.996 -0.084 -4.592 

 Restaurants 0.157 7.647 -0.093 -5.798 

 Park and recreational centers -0.444 -5.287 -0.202 -3.645 

 Transportation hubs -0.398 -4.326 --- --- 

 Shopping centers --- --- -0.021 -2.349 

 Land use mix -0.907 -10.541 --- --- 

 Proportion of retail and office land use 1.623 4.849 --- --- 

 Proportion of industrial land use --- --- 0.602 2.476 

Transport Infrastructure 

 Local roads --- --- -0.018 -5.601 

 Major roads -0.041 -5.653 --- --- 

 Traffic signal density 0.338 12.448 --- --- 

 Intersection density 0.343 10.179 --- --- 

Traffic Characteristics 

 Vehicle miles travelled --- --- 0.053 3.929 

 Proportion of heavy vehicle miles travelled  --- --- 0.432 1.968 

 Average speed --- --- 0.064 3.792 

 Traffic intensity --- --- -0.060 -4.256 

Dispersion parameter 1.728 53.801 --- --- 

Correlation Parameters 

Variables Estimate t-stat 

 Constant 0.144 2.559 

 Proportion of heavy vehicle miles travelled  1.755 2.922 
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TABLE 4 In-Sample Predictive Performance Evaluation 

Models 
Fit 

measures 

Error in 

Total counts Fractions Counts for different severity levels 

NB 

component 

OLFS 

component 
No injury Minor injury 

Incapacitating 

injury 
Fatal injury 

Independent NB-

OLFS 

MAE 570.783 0.255 426.927 122.356 18.620 3.367 

MPE 13.196 0.248 12.249 12.648 7.299 0.605 

MAPE 13.385 0.638 12.420 12.797 7.405 0.648 

Joint NB-OLFS with 

correlation 

parameterization 

MAE 532.401 0.262 403.121 110.151 16.638 3.021 

MPE 12.199 0.243 11.608 11.216 6.509 0.531 

MAPE 12.400 0.652 11.795 11.373 6.621 0.577 
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APPENDIX 

 

TABLE A Independent NB-OLFS Model Results for Florida 

Variable Names 
NB Model Component OLFS Model Component 

Estimate t-stat Estimate t-stat 

Constant 1.471 7.208 --- --- 

Threshold Parameters --- --- --- --- 

 Threshold between no injury and minor injury --- --- -0.121 -0.625 

 Threshold between minor and incapacitating injury --- --- 2.056 10.560 

 Threshold between incapacitating and fatal injury --- --- 3.990 19.544 

Sociodemographic Characteristics 

 HH density 0.461 15.076 -0.053 -4.524 

 Dependence -0.316 -7.322 --- --- 

 Proportion of female population -1.240 -3.080 --- --- 

 Proportion of Caucasian population -0.937 -11.614 -1.020 -6.061 

 Proportion of Asian population -2.243 -3.793 --- --- 

 Proportion of Hispanic population 1.033 12.921 -0.536 -10.845 

 Proportion of African-American population --- --- -1.063 -6.118 

Socioeconomic Characteristics 

 Automobile commuters --- --- 0.049 4.375 

 Transit commuters --- --- -0.007 -2.208 

 Walk commuters -0.041 -5.726 --- --- 

 Bike commuters -0.025 -3.380 --- --- 

 Number of workers that work from home --- --- -0.011 -2.348 

 Employment density 0.312 15.817 -0.027 -3.093 

 Population below poverty level --- --- 0.316 3.385 

Built Environment 
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 Proportion of Urban area 1.394 12.577 -0.231 -5.117 

 Law enforcement offices -0.131 -4.056 -0.087 -4.757 

 Restaurants 0.156 7.383 -0.098 -6.215 

 Park and recreational centers -0.447 -5.364 -0.205 -3.744 

 Transportation hubs -0.402 -4.304 --- --- 

 Shopping centers --- --- -0.023 -2.565 

 Land use mix -0.935 -10.597 --- --- 

 Proportion of retail and office land use 1.616 4.791 --- --- 

 Proportion of industrial land use --- --- 0.602 2.567 

Transport Infrastructure 

 Local roads --- --- -0.018 -5.554 

 Major roads -0.043 -5.415 --- --- 

 Traffic signal density 0.348 11.533 --- --- 

 Intersection density 0.341 9.651 --- --- 

Traffic Characteristics 

 Vehicle miles travelled --- --- 0.050 3.760 

 Proportion of heavy vehicle miles travelled  --- --- 0.435 2.347 

 Average speed --- --- 0.065 3.852 

 Traffic intensity --- --- -0.060 -4.323 

Dispersion parameter 1.760 50.424 --- --- 
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TABLE B Joint NB-OLFS without Correlation Parameterization Model Results for Florida 

Variable Names 
NB Model Component OLFS Model Component 

Estimate t-stat Estimate t-stat 

Constant 1.420 7.285 --- --- 

Threshold Parameters --- --- --- --- 

 Threshold between no injury and minor injury --- --- -0.119 -0.601 

 Threshold between minor and incapacitating injury --- --- 2.061 10.312 

 Threshold between incapacitating and fatal injury --- --- 3.996 19.107 

Sociodemographic Characteristics 

 HH density 0.472 17.427 -0.049 -4.087 

 Dependence -0.309 -7.403 --- --- 

 Proportion of female population -1.296 -3.540 --- --- 

 Proportion of Caucasian population -0.942 -12.202 -1.031 -5.955 

 Proportion of Asian population -2.250 -3.947 --- --- 

 Proportion of Hispanic population 1.037 13.547 -0.534 -10.750 

 Proportion of African-American population --- --- -1.076 -6.027 

Socioeconomic Characteristics 

 Automobile commuters --- --- 0.039 3.227 

 Transit commuters --- --- -0.007 -2.141 

 Walk commuters -0.041 -6.088 --- --- 

 Bike commuters -0.024 -3.506 --- --- 

 Number of workers that work from home --- --- -0.011 -2.256 

 Employment density 0.316 18.259 -0.032 -3.477 

 Population below poverty level --- --- 0.302 3.214 

Built Environment 

 Proportion of Urban area 1.372 13.465 -0.243 -5.297 

 Law enforcement offices -0.127 -4.049 -0.085 -4.596 
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 Restaurants 0.159 7.763 -0.096 -6.029 

 Park and recreational centers -0.448 -5.246 -0.195 -3.550 

 Transportation hubs -0.400 -4.382 --- --- 

 Shopping centers --- --- -0.022 -2.441 

 Land use mix -0.919 -10.605 --- --- 

 Proportion of retail and office land use 1.636 4.897 --- --- 

 Proportion of industrial land use --- --- 0.602 2.514 

Transport Infrastructure 

 Local roads --- --- -0.018 -5.591 

 Major roads -0.040 -5.556 --- --- 

 Traffic signal density 0.337 12.670 --- --- 

 Intersection density 0.340 10.302 --- --- 

Traffic Characteristics 

 Vehicle miles travelled --- --- 0.054 4.023 

 Proportion of heavy vehicle miles travelled  --- --- 0.435 2.313 

 Average speed --- --- 0.065 3.818 

 Traffic intensity --- --- -0.060 -4.294 

Dispersion parameter 1.732 53.880 --- --- 

Correlation Parameters 

Variables Estimate t-stat 

 Constant 0.177 4.257 

 


