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ABSTRACT 

 

This paper focuses on identifying the appropriate ordered response structure for modeling 

pedestrian injury severity. The alternative ordered response approaches considered for the 

empirical analysis include: ordered logit model (OL), generalized ordered logit model (GOL) 

and latent segmentation based ordered logit model (LSOL). The GOL and LSOL models 

enhance the traditional OL model in different ways. The GOL model relaxes the restrictive 

thresholds in the OL model by allowing for individual level exogenous variable impacts on the 

threshold parameters. On the other hand, the LSOL model allows for differential impact on the 

alternatives by segmenting the pedestrian crash population into various segments with segment 

specific OL parameters. In our study, we focus on examining the performance of these two 

model structures relative to the traditional OL model in the context of pedestrian injury severity. 

The performance of the formulated injury severity models are tested based on the “New York 

City (NYC) Pedestrian Research Data Base” for the years 2002 through 2006. To our 

knowledge, the study provides a first of its kind comparison exercise among OL, GOL and 

LSOL models for examining pedestrian injury severity. The model estimation results clearly 

highlight the presence of segmentation based on the crash location attributes of pedestrian 

accidents. The crash location attributes that affect the allocation of pedestrians into these 

segments include: regional county, functional classification of roadway, pedestrian location on 

roadway, number of travel lanes and number of parking lanes in the roadway system. The key 

factors influencing pedestrian injury severity are weather condition, lighting condition, vehicle 

types, pedestrian age and season. Overall, the results of the empirical analysis provide credence 

to the hypothesis that LSOL model is a promising ordered framework to accommodate 

population heterogeneity in the context of pedestrian injury severity. 

 

Keywords: Pedestrian safety, Comparison of ordered response models, Generalized ordered logit 

model, Latent segmentation based ordered logit model, Validation  



 

 

 

 

INTRODUCTION 

 

Pedestrian safety is a global-health concern and the United States of America is no exception. 

Earlier research reveals that the risk of being injured while walking could be about four times 

higher than driving an auto (Elvik, 2009). In 2008, about 4,378 pedestrian fatalities and 69,000 

other pedestrian injuries from road traffic crashes were recorded in the United States (NHTSA, 

2009). More alarmingly, about 72 percent of these fatalities occurred in urban areas underscoring 

the need for examining urban pedestrian safety. To study pedestrian safety issues in urban 

regions, we focus on pedestrian crash injury severity data from the largest and most populous 

urbanized area of US, New York City (NYC).  In NYC, approximately 10% of the journey-to-

work trips are conducted on foot (Ukkusuri et al., 2012), while the national average for journey-

to-work trips is approximately 6% (Loukaitou-Sideris et al., 2007). However, the city has a poor 

pedestrian safety record compared to rest of the nation. The pedestrian fatality rate is almost five 

folds higher in NYC compared to the whole nation (pedestrian fatality rate is 11% in US and 

52% in NYC) (NHTSA, 2009; NYCDOT, 2010). On the NYC street, pedestrians are 10 times 

more likely to die than a motor vehicle occupant and the annual cost of these pedestrian crashes 

is as high as $1.38 billion (NYCDOT, 2010) - approximately 32% of total traffic crash costs of 

the city. These statistics clearly indicate that pedestrian safety is of great concern for NYC 

region. Any effort to reduce the social burden of these crashes and enhance pedestrian safety 

would necessitate the examination of factors that contribute significantly to crash likelihood 

and/or pedestrian injury severity in the event of a crash. This study endeavours to identify the 

various factors that affect pedestrian crash severity in a pedestrian-motor vehicle crash in NYC 

by developing econometric models that quantify the impact of these factors on injury severity.  

A critical component in the process of identifying the contributing factors is the 

application of appropriate econometric model. Pedestrian injury severity is often reported as an 

ordered variable resulting in the application of ordered response models for analyzing risk 

factors. The most commonly employed approach to pedestrian injury severity is the ordered 

logit/probit (OL/OP) models. These models recognize the inherent ordering in the severity 

variable while apportioning the probability of injury severity to various alternatives based on 

population specific thresholds. The traditional OL/OP model has been the workhorse for 

examining injury severity in safety literature. However, the traditional ordered response model 

imposes strong restrictions on the structure of threshold parameters. Specifically, the traditional 

OL/OP model assumes the thresholds to remain fixed across crashes (Eluru et al., 2008). 

However, it is possible that depending on the individual and crash attributes the thresholds could 

vary across crashes.  

In recent years, two enhanced econometric frameworks have been proposed and 

implemented in transportation safety literature allowing us to tackle the restriction on the 

threshold parameters in the traditional OL model. These advanced frameworks include: 1) 

Generalized Ordered Logit (GOL) (Eluru et al., 2008) and 2) Latent segmentation based Ordered 

Logit (LSOL) model (Eluru et al., 2012). The GOL model relaxes the restrictive assumption by 

allowing the threshold in the traditional OL model to vary based on individual and crash 

attributes. On the other hand, the LSOL model relaxes the assumption of the traditional OL 

model by categorizing pedestrian crashes into different segments based on crash location 

attributes while estimating segment specific OL parameters. The pedestrians involved in crashes 

are assigned to the various segments probabilistically as a function of individual level exogenous 

variables. The two approaches represent crash injury severity more realistically compared to the 



 

 

 

 

traditional OL model and improve the accuracy in quantifying the impact of exogenous variables 

on pedestrian injury severity (Eluru et al., 2008; Eluru et al., 2012). However, there has been no 

research conducted on examining which of these two approaches offers a better framework for 

injury severity analysis. In our study, we undertake a comparison exercise to identify the 

preferred ordered model for examining pedestrian injury severity. The comparison exercise is 

conducted based on the performance of the various ordered response frameworks in model 

estimation as well as in model validation (using a hold-out sample).  

The rest of the paper is organized as follows. Section 2 provides a discussion of earlier 

research on pedestrian injury severity modeling while positioning the current study. Section 3 

provides details of the various econometric model frameworks used in the analyses. In Section 4, 

the data source and sample formation procedures are described. The model estimation results, 

elasticity effects and validation measures are presented in Section 5. Section 6 concludes the 

paper and presents directions for future research along with the recommendations. 

 

EARLIER RESEARCH 

 

A number of research efforts have examined pedestrian crashes to gain a comprehensive 

understanding of the factors that affect crash frequency and severity. A category of these studies 

has focused on pedestrian crash frequencies (Gårder, 2004), or on the exposure measure of 

pedestrian crash risk (Keall, 1995) while another category of studies has examined the 

determinants of injury severity in the event of a pedestrian crash. The review in our study is 

restricted to the latter category. A summary of earlier research on pedestrian injury severity 

analysis is provided in Table 1. The table provides information on the analysis framework 

employed, pedestrian injury severity representation, and characteristics/factors considered in the 

analysis (including crash characteristics, vehicular characteristics, roadway design and land use 

attributes, environmental factors, pedestrian characteristics and driver characteristics).  

The following observations may be made from the review presented in Table 1. First, the 

dependent variable examined in most of the earlier studies is pedestrian injury severity ranging 

from two (killed/severe injury to slight injury/PDO) to five (fatality, disabling injury, not 

disabling injury, probable injury to no injury) severity levels. Second, the most prevalent 

mechanism to study pedestrian injury severity is logistic regression and OL/OP models (fourteen 

out of nineteen). Third, only two earlier research efforts (Eluru et al., 2008; Kim et al., 2008a) 

have considered variables from all factor categories. Fourth, the unordered response structure 

predominantly considered is the multinomial logit model (or its mixed version). Fifth, only two 

of the studies (Eluru et al., 2008; Clifton et al., 2009) considered the generalized version of 

ordered response model and notably none of the earlier studies have considered latent 

segmentation based models for examining pedestrian injury severity. Finally, two studies (Eluru 

et al., 2008; Rifaat et al., 2011) examined both the pedestrian and bicyclist crash severities 

together in their empirical analysis. 

The overall findings from earlier research efforts are usually consistent. The most 

common factors that increase pedestrian crash severities include: older pedestrians, male 

pedestrians, intoxicated pedestrians and/or drivers, occurrence of crash in darkness (with or 

without lighting), vehicle speeding, crash location is in a commercial area or on highways, and 

crash with bus or truck. On the other hand, exogenous factors that reduce the pedestrian crash 

severities include: older drivers, presence of traffic signal control, snowy weather and crash 

occurrence during the day.  



 

 

 

 

This Study in Context 

 

As is evident from the review presented in preceding section, many studies in earlier literature 

have employed traditional ordered and unordered outcome models. The traditional ordered 

response model imposes a restrictive assumption on the impact of exogenous variables by 

constraining their impact to be the same for all alternatives. Towards addressing this limitation, 

researchers have employed the unordered response models that allow the impact of exogenous 

variables to vary across the injury severity levels. A sample of recent research efforts used both 

the ordered and unordered response models for pedestrian crash severity analysis and find that 

the implications obtained from the two model systems differ for some variables (Abay, 2013; 

Kwigizile et al., 2011). In both studies, the unordered systems fit the data better than the ordered 

systems indicating that the additional flexibility of estimating alternative specific parameters is 

resulting in an improved fit. However, the increased flexibility from the unordered models is 

obtained at a cost. The unordered response models neglect the inherent ordering of crash severity 

outcome.  

Ideally, it would be beneficial to incorporate the influence of alternative specific effects 

of exogenous variable in the ordered response framework. The generalized ordered response 

model (or proportional odds logit) (Eluru et al., 2008; Clifton et al., 2009; Castro et al., 2013; 

Quddus et al., 2010; Eluru 2013; Yasmin  and Eluru, 2013; Yasmin et al., 2012, Mooradian et 

al., 2013; Wang and Abdel-Aty, 2008) relaxes the restrictive assumption of the traditional 

ordered response model by allowing for differential impact of exogenous variables on injury 

severity levels. Recent evidence on the comparison of the unordered models and generalized 

ordered response systems in the context of injury severity highlight how the generalized ordered 

response model offers the same flexibility (if not better) as that of the unordered systems 

(Yasmin and Eluru, 2013 and Eluru, 2013). Hence it is important that pedestrian injury severity 

models consider the generalized ordered response framework. 

In recent years, there has also been a revival of latent segmentation models in safety and 

transportation. The traditional discrete outcome models restrict the impact of exogenous 

variables to be same across all crash locations – homogeneity assumption. But, the impact of 

control variables on pedestrian crash severity might vary across individuals based on crash 

location attributes. To illustrate this, let us consider the pedestrian crash severity outcomes at two 

different crash locations (L1 and L2). For the ease of comparison, let us also assume that all 

crash attributes are identical with the only difference between the two scenarios being the 

location; suppose L1 is an intersection and L2 is a mid-block location. Now let us consider the 

influence of “dark road - lighted” variable in these crash locations. In the first crash at L1, the 

driver might be travelling at a lower speed while approaching an intersection thus requiring a 

smaller reaction time to reduce the impact of crash with a pedestrian at this location. In this case, 

the illumination of road light might help both the drivers and pedestrians to be more heedful in 

their movements and thus result in a less severe injury for pedestrians. On the other hand, at 

location L2, the driver would not have stopped and possibly would be travelling at a higher 

speed as he/she would not expect any pedestrian at mid-block location. In this event, the 

advantages of having illumination at the dark period would be reduced and the higher impact 

force would increase the pedestrian crash severity at L2.  This is an example of how pedestrian 

location at the time of crash moderates the influence of one variable (dark road – lighted) in 

determining pedestrian crash severity outcomes. However, it is possible that crash locations 

might serve as a moderating influence on multiple control variables in the context of pedestrian 



 

 

 

 

injury severity. Ignoring such heterogeneous impact of variable might result in incorrect 

coefficient estimates.  

A common approach employed to accommodate heterogeneity, in discrete outcome 

models, is the estimation of mixed/random coefficients version of the discrete outcome models 

(for example Eluru and Bhat, 2007; Paleti et al., 2010; Srinivasan, 2002; Morgan and Mannering, 

2011; Kim et al., 2013; Xiong and Mannering, 2013)
1
. However, in this approach the focus is on 

incorporating unobserved heterogeneity through the error term while also necessitating extensive 

amount of simulation for model estimation. In an attempt to accommodate for systematic 

heterogeneity researchers have considered segmenting the population based on exogenous 

variables (such as gender, age, location) and estimate separate models for each segment (see 

Aziz et al., 2013 for segmentation based on location). These approaches divide the population 

into groups and are meaningful only for 1 or 2 exogenous variables. When segmentation by 

many variables is considered simultaneously it results in a large number of data samples 

necessitating a huge number of model estimations and also might lead to very few records in the 

various samples. To address this limitation, more advanced approaches such as clustering 

techniques that allow us to segment based on a multivariate set of factors have been suggested. 

The approach has been successfully employed (Mohamed et al., 2013) in examining the 

pedestrian crash severity. However, the approach still requires allocating data records 

exclusively to a particular segment. So it is possible that some clusters end up with very little 

records (as was the case for one or two clusters in Mohamed et al., 2013).  

An alternative approach to accommodate for population heterogeneity is to undertake an 

endogenous segmentation approach. In this approach crash records are allocated probabilistically 

to different segments and a segment specific model is estimated for each segment. The approach 

does not allocate data records exclusively and hence allows the segment specific models to be 

estimated on the entire population (as opposed to data records allocated to the segment in 

clustering or simple segmentation approaches). Also, unlike the mixed models, it does not 

require any specific distributional assumption for the parameters (Greene and Hensher, 2003). 

The probabilistic allocation improves model estimation efficiency and is appropriate irrespective 

of the sample size of the dataset i.e. it works efficiently for large and small datasets. On the other 

hand, the clustering approach is suitable only when we have a large dataset. The endogenous 

segmentation approach, also referred to as the latent segmentation approach, has been employed 

in safety literature recently (Eluru et al., 2012; Xie et al., 2012).  

The current research draws on these advances to contribute to pedestrian injury severity 

modeling along two directions. First, the study contributes to econometric modeling by 

identifying the appropriate framework for examining pedestrian injury severity through an 

exhaustive comparison exercise across three ordered response models (OL, GOL and LSOL 

models). The models estimated are rigorously compared employing various comparison metrics 

for estimation and validation. Second, the study contributes substantively by identifying the 

various determinants of pedestrian injury severity in NYC allowing us to suggest remedial 

measures to improve pedestrian safety. The ordered response models are estimated using an 

exhaustive set of exogenous variables (crash characteristics, environmental factors, vehicle 

characteristics, roadway design and operational attributes, land use characteristics and pedestrian 

characteristics).  

 

                                                 
1
 The readers are encouraged to review Yasmin and Eluru, 2013 for an extensive review of discrete outcome 

modeling approaches employed in transportation safety literature (not just pedestrian literature). 



 

 

 

 

ECONOMETRIC FRAMEWORK 

 

In this section, we provide the brief discussion of the methodology of all the models considered 

for examining pedestrian injury severity in our research. 

 

Standard Ordered Logit Model 

 

In the traditional ordered response model, the discrete injury severity levels      are assumed to 

be associated with an underlying continuous latent variable    
  . This latent variable is typically 

specified as the following linear function:   

  
        , for           N (1)  

where, 

                represents the pedestrians 

   is a vector of exogenous variables (excluding a constant) 

  is a vector of unknown parameters to be estimated 

  is the random disturbance term assumed to be standard logistic 

Let               ) denotes the injury severity levels and    represents the 

thresholds associated with these severity levels. These unknown   s are assumed to partition the 

propensity into     intervals. The unobservable latent variable   
  is related to the observable 

ordinal variable    by the    with a response mechanism of the following form: 

                
    , for             (2)  

In order to ensure the well-defined intervals and natural ordering of observed severity, the 

thresholds are assumed to be ascending in order, such that               where 

      and      . Given these relationships across the different parameters, the resulting 

probability expressions for individual   and alternative   for the OL model take the following 

form: 

           |     (      )   (        ) (3)  

where      represents the standard logistic cumulative distribution function. 

 

Generalized Ordered Logit Model 

 

The GOL model relaxes the constant threshold across population restriction to provide a flexible 

form of the traditional OL model. The basic idea of the GOL is to represent the threshold 

parameters as a linear function of exogenous variables (Maddala, 1983; Terza, 1985; Srinivasan, 

2002; Eluru et al., 2008). Thus the thresholds are expressed as: 

           (4)  

where,     is a set of exogenous variable (including a constant) associated with      threshold. 

Further, to ensure the accepted ordering of observed discrete severity (         

            ), we employ the following parametric form as employed by Eluru et al., 

(2008): 



 

 

 

 

                   (5)  

where,    is a vector of parameters to be estimated. The remaining structure and probability 

expressions are similar to the OL model. For identification reasons, we need to restrict one of the 

   vectors to zero. 

 

Latent Segmentation Based Ordered Logit Model 

 

Standard ordered response model restricts the impact of crash related explanatory variables to be 

identical for all individuals (Eluru et al., 2008). The latent segmentation model relaxes this 

homogeneity assumption of the standard ordered response model by classifying the crashes 

based on crash location attributes and subsequently model the effect of crash attributes within 

each segment separately (Eluru et al., 2012). Let us consider   homogenous segments of crash 

locations. The multinomial logit structure is used to assign the pedestrians to these segments 

based on the attributes of crash locations. The utility for assigning a pedestrian  ’s crash location 

to segment   is defined as: 

   
    

          (6)  

where 

  
  is a vector of coefficients 

   is a vector of attributes that influences the propensity of belonging to senment   

    is an idiosyncratic random error term assumed to be identically and independently 

Type 1 Extreme Value distributed across individual   and segment  . 

Then the probability that pedestrian  ’s crash location belongs to segment   is given as: 

    
   [  

     ]

∑    [  
     ] 

 (7)  

Within the latent segmentation approach, the unconditional probability of individual sustaining 

injury severity level   is given as: 

      ∑      |       

 

   

 (8)  

where,      |  represents the probability of pedestrian   sustaining injury severity level   within 

the segment  . Now, if we consider the injury severity sustain by pedestrian   to be ordered and if 

the accident belongs to segment  , we can represent the latent propensity function as follows as 

in standard OL model: 

   
      

                    (9)  

Thus, the probability expressions take the form: 

     |   (        
 )   (           

 ) (10)  

where      represents the standard logistic cumulative distribution function. 

 

DATA  

 



 

 

 

 

Data Source 

 

The pedestrian crash data for NYC used in the research effort is extracted from “NYC Pedestrian 

Research Data Base” for the year of 2002 through 2006. The coded information of this database 

is compiled from three different data sources: 1) New York State Department of Transportation-

Safety Management System (NYSDOT SMS) data, 2) New York City Department of 

Transportation (NYCDOT) data and 3) US Census data. The NYC pedestrian research database 

consists of a total of 7,354 crashes involving at least one pedestrian during this five-year period. 

These crashes involve about 7,647 pedestrians and 7,712 motor vehicles resulting in 739 

fatalities and 6,710 serious injuries to the pedestrians. A number of crash-related factors are 

extracted from these databases to explore the effect of various exogenous variables on pedestrian 

injury severity. 

 

Sample Formation and Description 

 

In an effort to clearly examine the influence of exogenous variables on pedestrian injury severity, 

we limit our attention to crashes involving one pedestrian and one vehicle. Further, records with 

missing information for essential attributes were also removed. The final compiled dataset 

consisted of 4,701 records. In this final sample of accidents, the proportions of injury severity for 

the reported categories were as follows: a) property damage only (PDO) – 0.4%, b) minor injury 

– 1.0%, c) serious injury – 89.0%, and d) fatal injury – 9.7%. To obtain a reasonable sample 

share for all alternatives the PDO and minor injury categories were merged for our analysis. 

From the final dataset, 4,258 records are sampled out for the purpose of model estimation and the 

remaining 443 records are set aside for validation. Table 2 offers a summary of the sample 

characteristics of the dataset. From the descriptive analysis, we observe that a large portion of 

crashes occur at an intersection (72.3%), in clear weather (71.9%), in the presence of daylight 

(56.3%) and on urban streets (96.9%). The majority of pedestrians are adult (59.2%) and mostly 

struck by a passenger vehicle (74.1%). 

 

EMPIRICAL ANALYSIS 

 

Variables Considered 

 

For our analysis, we selected variables from six broad categories: crash characteristics (crash 

location), environmental factors (weather condition, season and lighting condition) vehicle 

characteristics (type of vehicle), roadway design and operational attributes (roadway class
2
, 

travel lane and parking lane), land use characteristics (boroughs) and pedestrian characteristics 

(pedestrian age). The impact of several variables such as presence of shoulder, shoulder width, 

vehicle weight, point of impact, pedestrian condition, driver condition, at fault-status and time of 

day could not be explored, because the information for these variables was either entirely 

unavailable or there was a large fraction of missing data for these attributes in the dataset. To be 

sure, we employed lighting condition and vehicle type to act as surrogates for time of day and 

vehicle weight, respectively. In the final specification of model, statistically insignificant 

variables were removed through a systematic process based on statistical significance (90% 

significance) from the universal variable set. The insignificant variables from our analysis 

                                                 
2
 Roadway class served as a surrogate for speed limit. 



 

 

 

 

include day-of-week and trajectory of vehicle’s motion. Further, in cases where the variable 

effects were not significantly different across different variable levels the coefficients were 

restricted to be the same.  

 

Overall Measures of Fit 

 

We estimated four models: 1) OL, 2) GOL, 3) LSOL with two segments (LSOL II) and 4) LSOL 

with three segments (LSOL III). After extensively testing for three segments in latent 

segmentation approach we found that the model collapses to the two segment model. Hence, 

from here on, the entire comparison exercise is focussed on three models: OL, GOL and LSOL 

II. Prior to discussing the estimation results, we compare the performance of these models. The 

GOL is a generalized version of OL. Thus, we can compare these two models by using 

likelihood ratio test for selecting the preferred model. However, the comparison with the LSOL 

II model using the likelihood ratio is not possible because these structures are not nested within 

one another. Hence, we employ different measures that are routinely applied in comparing 

econometric models including: 1) Bayesian Information Criterion (BIC), 2) Akaike Information 

Criterion corrected (AICc)
3
 and 3) Ben-Akiva and Lerman’s adjusted likelihood ratio (BL) test. 

These estimates are presented in Table 3. 

The BIC for a given empirical model is equal to − 2ln(L) + K ln(Q) and the AICc for an 

empirical model is given by AIC + [2 K(K+1)/(Q −K−1)], where ln(L) is the log-likelihood 

value at convergence, K is the number of parameters, and Q is the number of observations. The 

model with the lower BIC and AICc values is the preferred model. The numbers in Table 3 

indicate that the LSOL II model has lower values for both measures. 

The BL test statistic (Ben-Akiva and Lerman, 1985) is computed as: 

    { [√    ̅ 
   ̅ 

               ]},  where  ̅  represents the McFadden’s adjusted 

rho-square value for the model. It is defined as  ̅ 
     

        

    
, where       represents log-

likelihood at convergence for the i
th

 model, L(C) represents log-likelihood at sample shares and 

Mi is the number of parameters in the model (Windmeijer, 1995). The  (.) represents the 

cumulative standard normal distribution function. This BL test statistic identifies if the adjusted 

likelihood ratio indices of the two non-nested models are significantly different. It compares two 

models by computing the probability (λ) that we could have obtained the higher  ̅   value for the 

“best” model even though this is not the case. The resulting λ values (presented in Table 3) thus 

clearly indicate that LSOL II offers superior fit compared to both OL and GOL models at any 

significance level (LSOL II has the higher  ̅  with lowest number of parameters compared to OL 

and GOL). The comparison exercise, therefore, highlights the superiority of the LSOL II model 

in terms of data fit compared to the OL and GOL models. In the following discussion, we always 

denote LSOL II as LSOL for simplicity. 

 

Estimation Results 

 

To conserve on space, the subsequent discussions of exogenous variable impacts are restricted to 

LSOL estimates. Table 4 presents the estimation results of the LSOL model. An intuitive 

                                                 
3
 AICc is a more stringent version of the AIC [AIC = 2K− 2ln(L)] in penalizing for additional parameters 



 

 

 

 

discussion of the LSOL model is presented followed by the discussion of segmentation 

component parameters and severity component parameters specific to segment 1 and 2. 

 

Intuitive Interpretation of LSOL Model 

 

To delve into the segmentation characteristics, the model estimates are used to generate 

information on: 1) population share across the two segments, and 2) overall injury severity 

shares within each segment. These estimates are presented in Table 4. From the estimates, it is 

evident that the probability of pedestrians being assigned to segment 2 is substantially higher 

than the probability of being assigned to segment 1. Further, the likelihood of injury severity for 

pedestrians conditional on their belonging to a particular segment offer contrasting results 

indicating that two segments exhibit distinct injury severity profiles in the current research 

context. It is clear that pedestrians assigned to segment 1 are more likely to sustain fatalities 

while those assigned to segment 2 are more likely to sustain serious injury. To facilitate the 

discussion from here on, we label segment 1 as the “fatality segment” and segment 2 as the 

“serious injury segment”. 

 

Latent Segmentation Component 

 

The latent segmentation component determines the probability that a pedestrian is assigned to 

one of the two latent segments based on the crash location attributes. The latent segmentation 

component coefficients correspond to the likelihood of assigning pedestrians to serious injury 

segment. The positive sign of the constant term indicates a larger likelihood for pedestrians being 

assigned to serious injury segment. Crash location attributes that affect the allocation of 

pedestrians, into either of the segment, include: regional county, functional classification of 

roadway, pedestrian location on roadway, number of travel lanes and number of parking lanes in 

the roadway system.  

NYC is composed of five boroughs: Manhattan, Bronx, Brooklyn, Queens and Staten 

Island. From the estimated results, we find that the likelihood of pedestrian being assigned to 

serious injury segment is higher for Manhattan compared to other boroughs. On the other hand, 

pedestrian crashes occurring in Staten Island are likely to be assigned to fatality segment. The 

coefficients for functional classification of roadway indicate that highways and parkways 

increase the likelihood of pedestrians being assigned to fatality segment. It is not surprising that 

these variables increase the likelihood of a pedestrian being assigned to fatality segment, because 

highways and parkways represent roadway facilities with the highest speeds. The result 

associated with the crash at mid-block location reflects an increase likelihood of pedestrian being 

assigned to fatality segment. Motorists may not expect pedestrians at locations not designated for 

them and they tend to drive at a higher speed at mid-block compared to intersection (Kim et al., 

2010). Consequently, they might fail to notice the pedestrian in time leading to increased 

propensity of fatality. An increase in total number of travel lanes in roadway increases the 

likelihood of assigning the pedestrians to fatality segment. Generally, higher the number of travel 

lanes, higher is the width of the roadway. Wider roads imply longer exposure time for 

pedestrians to vehicular traffic, and higher vehicular speed, increasing the likelihood of 

pedestrian fatalities (Sze and Wong, 2007; Tay et al., 2011). The result associated with parking 

lanes indicates that an increase in number of parking lanes on roadway increase the likelihood of 

assigning the pedestrians to serious injury segment. The presence of on-street parking, in general, 

http://en.wikipedia.org/wiki/New_York_City
http://en.wikipedia.org/wiki/Borough


 

 

 

 

is expected to force the drivers to be more watchful for parked cars entering the roadway or 

sporadic pedestrian movement as people get in and out of their vehicles (Zajac and Ivan, 2003). 

Overall, fatality segment is characterized by high speed facilities in the roadway system, crashes 

occurring at mid-block location of road, increased number of travel lanes and lower number of 

parking lanes in roadway system. 

 

Injury Severity Component: Segment 1 

 

The injury severity component within the fatality segment is discussed in this section. The 

interpretation of the coefficients follows the usual ordered response framework.  

Weather is considered to be one of the most important environmental components that 

affect driving. The results presented in Table 4 indicate that snowy/foggy weather condition 

results in less severe pedestrian crashes compared to the clear and rainy weather. The reduced 

probability of severe pedestrian crashes during snowy/foggy period perhaps can be attributed to 

the reduced driving speed (Eluru et al., 2008; Kim et al., 2010) and more cautious pedestrian 

activities. The unfavourable driving conditions during adverse weather perhaps also result in 

increased driver attention thereby reducing the severity of pedestrian crashes. 

Visibility significantly affects driver and pedestrian activity. In our study, the lighting 

condition has significant association with the pedestrian injury severity propensity. It is very 

interesting to note that crashes of fatality segment occurring in the presence of artificial 

illumination (street-lights) during dark periods increases the likelihood of severe pedestrian 

injury compared to other lighting conditions (daylight, dawn and dusk). Problems associated 

with darkness at night-time could be attributed to poor visual conditions, higher vehicular speed, 

fatigue, possible negligence, inattentiveness, driving and walking under the influence of alcohol 

(Sze and Wong, 2007; Lee and Abdel-Aty, 2005; Tay et al., 2011; Rifaat et al., 2011; Kim et al., 

2008a; Kim et al., 2010; Montella et al., 2011). These conditions perhaps increase the reaction 

time and braking distance of vehicles, and lead to greater impact at the time of a crash. Further, 

longer response time by emergency crews at the crash location during darkness (Klop and 

Khattak, 1999) could also exacerbate the resulting pedestrian crash severity.   

The relevance of pedestrian age has long been recognized as an important contributory 

factor in pedestrian crash severity studies. The model results reveal a reduction in the risk 

propensity for both child and teenager pedestrian groups compared to the adult group perhaps 

because these pedestrian groups are more physically fit (Lee and Abdel-Aty, 2005) compared to 

other pedestrians. Moreover, child pedestrians are less likely to be transgressors of traffic rules 

(Kim et al., 2008c) and thus unlikely to be involved in severe crashes. Thresholds in the ordered 

response model form the boundary points for different levels of injury severities. In the first 

segment, when the latent propensity of the individual is less than -2.87 the pedestrian sustains 

PDO/minor injury. The pedestrian sustains a serious injury when the propensity is between -2.87 

and 0.50. The pedestrian is fatally injured when the propensity value is greater than 0.50. 

 

Injury Severity Component: Segment 2 

 

The OL model corresponding to serious injury segment provides variable impacts that are 

significantly different, in magnitude as well as in sign (for a few variables), from the impacts 

offered by the exogenous variables in fatality segment. Further, we also notice that the number of 



 

 

 

 

variables that moderate the influence of injury severity is significantly higher for serious injury 

segment. 

In the second segment, the results indicate that cloudy weather affects the injury 

sustained by a pedestrian in a crash. In particular, cloudy weather results in more severe crashes 

compared to the clear and rainy weather perhaps because of the reduced visibility, which 

presumably results in reduced perception-reaction and reduced ability to take evasive actions at 

the crash incident (Tay et al., 2011). Cloudy days perhaps also adversely affect human 

psychology. For example, Kim et al., (2008c) observed less compliance with traffic rules on 

behalf of both the drivers and pedestrians on a cloudy day. 

The influence of lighting condition has a strikingly different influence on the pedestrians 

compared to the effect in fatality segment. For the dark-lighted condition, the latent propensity is 

found negative, which indicates a lower injury risk propensity of pedestrian in serious injury 

segment. This might indicate more heedful movement of pedestrians and more effective 

avoidance maneuver of drivers during darkness. The result also highlights how the same variable 

can have distinct influence on injury severity based on the segment to which the crash is 

allocated. The LSOL approach allows for capturing such complex interactions. With respect to 

vehicle type involved in a crash with pedestrian, our study results show that a pedestrian struck 

by a truck or a bus has a higher injury risk propensity. The reason may be attributed to the 

heavier vehicle mass, greater stiffness, greater momentum, large area of impact for pedestrians, 

higher bumper height, blunter geometry, and longer stopping distances of bus and trucks 

compared to other vehicles (Eluru et al., 2008; Lee and Abdel-Aty, 2005; Tay et al., 2011; Kim 

et al., 2008a; Montella et al., 2011). For bus, the weaving pattern of movement in traffic due to 

frequent on-street bus stops could also impose higher fatality risk on pedestrians. 

The influence of pedestrian age on crash severity is along expected lines. It is found that 

the older pedestrians are associated with the higher likelihood of severe crashes compared to the 

adult pedestrian groups. Older pedestrians might be physically weak and they may be medically 

unfit with problems related to hearing, vision and contrast sensitivity (Lee and Abdel-Aty, 2005; 

Kim et al., 2010). Moreover, older pedestrians tend to be slow in reacting to hazardous 

situations, walk slower, can withstand low impact force of crash impact and may select 

insufficient gaps while crossing the road (Sze and Wong, 2007; Anowar et al., 2010); all of 

which contribute to their higher severity risk. The result associated with the season reflect that 

injury risk propensity of pedestrian crashes is lower in spring compared to any other season. The 

result is quite interesting and the reasons for the effect are not very clear. It is possibly a 

manifestation of some unobserved variables that are not considered in our analysis. 

In the serious injury segment, when the latent propensity of the individual is less than -

4.83 the pedestrian sustains PDO/minor injury. The pedestrian sustains a serious injury when the 

propensity is between -4.83 and 3.99. The pedestrian is fatally injured when the propensity value 

is greater than 3.99. This again highlights the difference between the two segments.  

 

Elasticity Effects 

 

The parameter effects of the exogenous variables do not provide the magnitude of the effects on 

injury severity. For this purpose, we compute the aggregate level “elasticity effects” for all 

independent variables (see Eluru and Bhat, (2007) for a discussion on the methodology for 

computing elasticities) and present the computed elasticities in Table 5. The effects are computed 

for both the GOL and LSOL models. 



 

 

 

 

The following observations can be made based on the results presented in Table 5. First, 

the results from the elasticity effects indicate that there are substantial differences in the elasticity 

effects of these two models. For instance, the LSOL model predicts a reduction in PDO/Minor 

injury for pedestrians in Manhattan region while the GOL model predicts an increase in the 

PDO/Minor injury category. In a similar vein, differences can be observed for travel lane and 

dark-lighted variables. Second, the most significant variables in terms of fatal injury (from both 

models) for pedestrians are pedestrian age 65 and above, crash with a truck or bus, crash 

occurred on a highway or parkway. In terms of fatal injury reduction the important factors are 

pedestrian age between 13-18 and snowy conditions. Finally, the dark unlighted variable exhibits 

substantially different impacts in the LSOL and GOL models. The reason for the difference 

could be attributed to differences in the model structures of the LSOL and GOL models.  

 

Validation Analysis 

 

We also evaluate the performance of these models on a validation sample. We use both the 

aggregate and disaggregate measures of fit for the validation exercise. At the disaggregate level 

we calculate predictive log-likelihood (computed by calculating the log-likelihood for the 

predicted probabilities of the sample), probability of correct prediction (computed as the 

probability that the chosen alternative has the highest predicted probability), and probability of 

correct prediction >0.7 (computed as the probability that the chosen alternative has the highest 

predicted probability and it is also >0.7). At the aggregate level, root mean square error (RMSE) 

and mean absolute percentage error (MAPE) are computed by comparing the predicted and 

actual (observed) shares of injuries for each injury severity level. We compute these measures 

for the complete validation sample and specific sub-samples in the population - Manhattan, 

Cloudy weather, Dark road-lighted, Pedestrian age 12 and less and Spring. The results for 

computation of these measures are presented in Table 6. 

At the disaggregate level the fit measures show that GOL performs marginally better than 

LSOL. At the aggregate level, both the RMSE and MAPE values are very close for the two 

model systems. It is important to note that with six fewer parameters the LSOL model 

performance only marginally poorly compared to the performance of the GOL model. The close 

performance of the two model systems is further illustrated through the computation of the 

validation measures for various sub-samples of the population. The results indicate that LSOL 

and GOL models offer very similar prediction for the various sub-samples at the aggregate and 

disaggregate level. The results reinforce the strengths of the LSOL model to perform very close 

to the GOL model.  

 

DISCUSSION AND RECOMMENDATIONS 

 

The results obtained in our analysis have important implications for improving the safety of 

pedestrians in terms of enforcement, engineering and educational strategies (3 ‘E’ approach). 

With respect to enforcement and education, our results endorse a continuous education program 

and stricter enforcement to prevent unsafe road crossing behaviour of pedestrians. Most 

importantly, public education campaigns are needed to encourage the pedestrians to wear 

“reflectors” to increase their conspicuity in darkness (European Commission,  2007). 

Retroreflective materials (lamps, flashing lights or retroreflective vest) enhance the drivers’ 



 

 

 

 

detection of pedestrians at nighttime (Luoma et al., 1996; Kwan and Mapstone, 2009; J., Muttart, 

2000; Wood, 2005) and hence in turn reduce the pedestrian crash severity. 

Policies concerning the visual enhancement of pedestrians during night time; in the form 

of artificial illumination, increased intensity of roadway lighting, adaptive headlighting solution, 

illuminated crosswalk, illuminated warning sign and smart lighting; could improve pedestrian 

safety (Sullivan and Flannagan, 2007; Sullivan and Flannagan, 1999; Ragland et al., 2003; Polus 

and Katz, 1978). Enhanced visibility is identified in several previous studies to be the most cost 

effective measures in improving pedestrian safety and the greatest safety benefit from it is 

observed in reducing fatal pedestrian crashes (Ragland et al., 2003; ITE, 2002; Sullivan and 

Flannagan, 1999). Campaigns should also address the issue of increased fatality risk of older 

pedestrians and advise seniors of the potential risk and suggest avoiding walking during night-

time and on high speed corridors. However, there is lack of evidence regarding the impact of 

safety education or training for this group of pedestrians (Duperrex et al., 2002). 

In terms of engineering measures, pedestrian crossing should be designed either to be 

space or time separated from vehicular movement. In terms of space separation, pedestrian 

crossings should be separated by barrier and fences or off-road or grade-separated facility on 

high speed corridors and on the roadways with more travel lanes. Several previous studies have 

demonstrated the safety benefits of such facilities (Elvik et al., 2009; Retting et al., 2003; Berger, 

1975). The greater injury severity of pedestrian in the event of crashes with bus and truck further 

endorse the importance of separating pedestrian traffic from heavy-vehicle traffic flow on 

roadways. With respect to time separation, pedestrians might be separated from vehicular 

movement by installation of traffic signal, by implementing exclusive pedestrian signal phase or 

by installing pedestrian prompting devices (Retting et al., 2002). The implementation of these 

recommendations will enhance pedestrian safety.  

 

 

CONCLUSIONS  

 

This paper focuses on identifying the appropriate ordered response structure for modeling 

pedestrian injury severity. Pedestrian injury severity is often reported as an ordered variable 

resulting in the application of ordered response models for analyzing risk factors. However, the 

traditional ordered response model (OL/OP) restrict the impact of risk factors to be the same 

across all alternatives, thus the model cannot identify risk factors that specifically influence a 

particular injury category. On the contrary, the generalized ordered logit (GOL) model relaxes 

the restrictive assumption by allowing for exogenous variable impacts on the threshold 

parameters in the OL structure. Another ordered response approach, the latent segmentation 

based ordered logit (LSOL) model, allows for differential impact on the alternatives by 

segmenting the pedestrian crash population into various segments with segment specific OL 

parameters. Earlier research efforts have concluded that these approaches are substantially better 

than the traditional OL model. However, a comparison of these two model frameworks has not 

been undertaken. Towards this end we undertake a comparison exercise involving four ordered 

response frameworks: OL, GOL, LSOL with two segments (LSOL II) and LSOL with three 

segments (LSOL III) to identify the preferred ordered model for examining pedestrian injury 

severity. The comparison exercise is conducted to identify the various risk factors affecting 

pedestrian injury severity in terms of model estimation as well as model validation (using a hold-

out sample). The empirical analysis is conducted using the “NYC Pedestrian Research Data 



 

 

 

 

Base” for the years of 2002 through 2006. The ordered response models are estimated using a 

comprehensive set of exogenous variables including: crash characteristics, environmental 

factors, vehicle characteristics, roadway design and operational attributes, land use 

characteristics and pedestrian characteristics. The comparison exercise highlights the superiority 

of the LSOL II model on the estimation sample in terms of data fit compared to the OL and GOL 

models. In the LSOL approach, pedestrian crashes are assigned probabilistically to two segments 

– fatality segment and serious injury segment – based on a host of crash location attributes. The 

fatality segment is characterized by crashes on high speed roadway facility, mid-block location 

of road, increased number of travel lanes and decreased number of parking lanes in the roadway 

system. In the fatality segment, crash during dark-lighted period contribute to increasing the 

injury severity while snowy/foggy weather, pedestrian age 12 and less and pedestrian age 13 to 

18 reduce the injury severity. On the other hand, for the serious injury segment the results 

indicate that cloudy weather, crash with truck or bus and pedestrian age 65+ increase injury 

severities while crash during dark-lighted period and spring season are likely to reduce injury 

severity. Overall, the number of variables moderating the effect of injury severity is higher in the 

serious injury segment compared to the fatality segment. Further, some variables provide 

different impacts, in magnitude as well as in sign, for two segments highlighting how the same 

variable can have distinct influence on injury severity based on the segment to which the 

pedestrian is allocated. Thus, target specific countermeasures for “fatality segment” crash 

locations might ensure an effective reduction of crash related pedestrian fatalities of NYC.   

In our research, to further understand the impact of various exogenous factors, elasticity 

effects for the exogenous variables for both the LSOL and GOL models are computed. The 

elasticity effects indicate that the most significant variables in terms of fatal injury (from both 

models) for pedestrians are pedestrian age 65 and above, crash with a truck or bus and crash 

occurred on a highway or parkway.  

 The results from the elasticity effects also indicate that there are substantial differences 

in the elasticity effects of these two models, and these differences might be attributed to the 

implicit structural differences of these two frameworks. The performance evaluation of these 

models on a validation sample reveals that GOL model performs marginally better than the 

LSOL model. The differences in the validation measures at aggregate and disaggregate level are 

very small for the two frameworks. The improvement in validation predictions for the GOL 

model is obtained at the cost of six additional parameters. Overall, the comparison exercise 

supports the hypothesis that both the GOL and LSOL models clearly provide a better fit than 

standard OL model. The empirical results also show that LSOL model (with six fewer 

parameters compared to GOL) performance is satisfactory relative to the GOL model 

performance in the current research context. Further, it is important to reemphasize the fact that 

LSOL model provides valuable insights on how the explanatory variables affect segmentation of 

pedestrians into fatality and serious injury segments. In conclusion, the results from our analysis 

identify LSOL model as a promising ordered response framework for accommodating population 

heterogeneity in the context of pedestrian injury severity. 
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TABLE 1 Summary of Existing Pedestrian Injury Severity Studies 

Paper 
Analysis Framework 

Employed 

Pedestrian  Injury 

Severity Representation 

Characteristics/Factors Considered 

Crash Vehicle 

Roadway 

Design & 

Land Use 

Environment Pedestrian Driver 

Moudon et al., 

(2011) 

Binary logistic 

regression 

Severely injured/dying, 

Suffering minor/no injury 
--- --- Yes Yes Yes Yes 

Tefft, (2013) Logistic regression 

Severe injury, Non-severe 

injury/Fatal injury, Non-fatal 

injury 

Yes Yes Yes --- Yes --- 

Ballesteros et al., 

(2004) 
Logistic regression 

Mortality, Non-mortality/Injury 

severity score <16 and ≥16 
--- Yes Yes --- --- --- 

Sze and Wong, 

(2007) 

Binary logistic 

regression 

Killed or severe injury, Slight 

injury 
Yes --- Yes Yes Yes --- 

Roudsari et al., 

(2004) 

Multivariate logistic 

regression 
Severe injury, Non-severe injury --- Yes Yes --- Yes --- 

Kim et al., 

(2008b) 
Logistic regression Serious injury, Non-injury --- --- Yes Yes Yes --- 

Zajac and Ivan, 

(2003) 
Ordered probit 

Fatality, Disabling injury, Not 

disabling injury, Probable injury, 

No injury 

--- Yes Yes Yes Yes --- 

Zahabi et al., 

(2011) 
Ordered logit 

No injury, Minor injury, 

Fatal/Major injury 
Yes Yes Yes Yes --- --- 

Lee and Abdel-

Aty, (2005) 
Ordered probit 

No injury, Possible injury, Non-

incapacitating injury, 

Incapacitating injury, Fatal 

injury 

--- Yes Yes Yes Yes --- 

Clifton et al., 

(2009) 

Generalized ordered 

probit 
No injury, Injury, Fatality Yes --- Yes Yes Yes --- 

Eluru et al., 

(2008) 

Mixed generalized 

ordered logit, Ordered 

logit 

No injury, Non-incapacitating 

injury, Incapacitating injury, 

Fatal injury 

Yes Yes Yes Yes Yes Yes 



 

 

 

 

Tay et al., (2011) Multinomial logit 
Minor injury, Serious injury, 

Fatal injury 
--- Yes Yes Yes Yes Yes 

Rifaat et al., 

(2011) 
Multinomial logit No injury, Injury, Fatality --- --- Yes Yes --- Yes 

Kim et al., 

(2008) 

Heteroskedastic 

generalized extreme 

value logit 

Fatal, Incapacitating injury, 

Non-Incapacitating injury, 

Possible or No Injury 

Yes Yes Yes Yes Yes Yes 

Aziz et al., 

(2013) 

Random-parameter 

multinomial logit 

Property  damage  and 

possible injury, Severe  injury, 

Fatality 

Yes Yes Yes Yes Yes --- 

Kim et al., 

(2010) 
Mixed logit model 

Fatal injury, Incapacitating 

injury, Non-incapacitating 

injury, Possible/no injury 

--- Yes Yes Yes Yes Yes 

Kwigizile et al., 

(2011) 

Ordered probit, 

Multinomial logit 

No/possible injury, Non-

incapacitating injury, 

Incapacitating injury, Fatal 

injury 

Yes Yes Yes --- Yes Yes 

Abay, (2013) 

Ordered logit, Mixed 

ordered logit, 

Multinomial 

logit, Mixed 

multinomial logit  

Slight/no injury, Serious injury, 

Fatal injury 
Yes Yes Yes Yes Yes Yes 

Mohamed et al., 

(2013) 

Latent Class 

Clustering: Ordered 

probit, K-Means: 

Multinomial logit 

Injury and Fatal injury, No 

injury, Minor Injury and Fatal 

injury 

--- Yes Yes Yes Yes Yes 



 

 

 

 

TABLE 2 Crash Database Sample Statistics 

Categorical Explanatory Variables 
Sample Share 

Frequency Percentage 

 Crash Location 

  
At intersection 3079 72.31 

At mid-block 1179 27.69 

 Weather Condition  

  

Snowy/Foggy 47 1.10 

Clear  3061 71.89 

Cloudy  555 13.03 

Rain  595 13.97 

 Season  

  

Winter  1041 24.45 

Spring 1024 24.05 

Summer 1060 24.89 

Autumn 1133 26.61 

 Light Conditions  

  

Daylight  2396 56.27 

Dawn 100 2.35 

Dusk 195 4.58 

Dark road - lighted 1518 35.65 

Dark road - unlighted 49 1.15 

 Vehicle Type  

  

Other vehicle type 827 19.42 

Car/van/pickup 3155 74.10 

Truck 140 3.29 

Bus 106 2.49 

Motorcycle  30 0.70 

 Roadway Class 

  
Town  15 0.35 

Urban street  4125 96.88 



 

 

 

 

Parkway  35 0.82 

Parking lot & other non-traffic  52 1.22 

Highway 31 0.73 

 Land use  

  

Family residential 729 17.12 

Mixed residential and commercial  403 9.46 

Commercial and office 752 17.66 

Industrial / Manufacturing 953 22.38 

Open Space & Vacant Land 426 10.00 

Parking Facilities and Transportation Utility 750 17.61 

Public facilities and institutions 153 3.59 

Misc. lots 92 2.16 

 Boroughs 

  

Bronx  661 15.52 

Brooklyn  1408 33.07 

Manhattan  1178 27.67 

Queens  848 19.92 

Staten island 163 3.83 

 Pedestrian Age  

    

Children (Pedestrian age 12 and less) 612 14.37 

Teenager (Pedestrian age 13 to 18)  378 8.88 

Adult (Pedestrian age 19 to 65) 2521 59.21 

Older (Pedestrian age 65+) 747 17.54 

Ordinal Explanatory Variables Mean 

 Travel lane 2.030 

 Parking lane 1.420 

  



 

 

 

 

TABLE 3 Measures of Fit in Estimation Sample 

Summary Statistic OL GOL LSOL II 

Log-likelihood at zero -4677.9 -4677.9 -4677.9 

Log-likelihood at sample shares -1654.5 -1654.5 -1654.5 

Log-likelihood at convergence -1481.6 -1454.5 -1456.19 

Number of parameters 20 22 16 

Number of observations 4258 4258 4258 

BIC 3120.1 3092.8 3046.1 

AICc 3007.5 2953.2 2944.5 

Adjusted likelihood ration index ( ̅ 
 ) 0.092 0.108 0.110 

OL = Ordered logit model; GOL = Generalized ordered logit model; LSOL II = Latent segmentation based ordered 

logit model with two segment; BIC = Bayesian Information Criterion; AICc = Akaike Information Criterion 

corrected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

TABLE 4 Latent Segmentation based Ordered Logit Model with Two Segments (LSOL II) 

Estimates 

 
Segments 

Segment 1 Segment 2 

Pedestrian population share 0.11 0.89 

In
ju

ry
 

se
v

er
it

y
 Property damage only (PDO)/ 

Minor Injury 
6.07 0.84 

Serious Injury 49.13 93.82 

Fatal 44.80 5.34 

PARAMETER ESTIMATES 

Explanatory Variables 
Segment 1 Segment 2 

Estimate t-stat Estimate t-stat 

Segmentation Components 

Constant  -- -- 3.0813 7.4560 

Regional country (Ref: Bronx, Brooklyn, Queens) 

Manhattan -- -- 0.5560 2.1420 

Staten island -- -- -0.8659 -1.8810 

Functional class of roadway (Ref: Urban Street) 

Highway and Parkway -- -- -2.6484 -3.9940 

Pedestrian location (Ref: Pedestrian at intersection) 

Pedestrian at mid-block -- -- -1.2367 -5.0650 

Travel lane  -- -- -0.4107 -4.6530 

Parking lane -- -- 0.2940 2.4460 

Injury Severity Components 

Threshold parameters 

Threshold 1 -2.8668 -- -4.8333 -- 

Threshold 2 0.4893 -- 3.9953 -- 

Weather condition (Ref:  Clear and Rain) 

Snowy/Foggy -3.9723 -2.6350 -- -- 

Cloudy  -- -- 0.5210 2.1540 

Light conditions (Ref: Daylight) 

Dark road - lighted 1.4309 2.3580 -0.4675 -1.7630 

Vehicle type (Ref: Car/van/pickup) 

Truck -- -- 2.5982 8.0080 

Bus -- -- 2.1061 5.7110 

Pedestrian age (Ref: Adult) 

Children -0.7475 -1.6760 -- -- 

Teenager -1.3881 -2.6140 -- -- 

Older -- -- 2.4296 7.5770 

Season (Ref: Winter, Summer, Autumn) 

Spring -- -- -0.5052 -2.2530 



 

 

 

 

TABLE 5 Elasticity Effects 

Variables 

LSOL II GOL 

PDO/ Minor 

injury 

Serious 

injury 

Fatal 

injury 

PDO/ Minor 

injury 

Serious 

injury 

Fatal 

injury 

Manhattan -16.05 2.22 -18.25 34.67 2.24 -25.31 

Staten island 36.22 -4.83 39.51 -36.54 -4.03 42.04 

Highway 167.058 -22.153 181.128 628.96 -24.28 134.67 

Parkway 167.058 -22.153 181.128 -75.58 -17.78 173.39 

Pedestrian at mid-block 46.58 -6.39 52.48 56.72 -7.08 56.95 

Travel lane 15.25 -2.03 16.61 0.00 -2.31 21.13 

Parking lane -8.58 1.15 -9.42 15.88 1.02 -11.52 

Snowy/Foggy 466.79 -2.08 -48.48 173.41 3.89 -59.79 

Cloudy -22.98 -2.07 22.53 -37.81 -3.86 40.65 

Dark-lighted -18.20 -1.81 19.46 0.00 -4.14 37.94 

Dark-unlighted -- -- -- 343.97 -17.92 116.14 

Truck -51.23 -22.09 212.26 -86.55 -26.15 251.52 

Bus -47.82 -15.46 150.28 0.00 -18.60 170.27 

Pedestrian age 12 and less 35.60 1.28 -17.02 39.60 2.27 -26.32 

Pedestrian age 13 to 18 83.70 1.85 -29.32 89.59 3.64 -45.81 

Pedestrian age 65+ -57.75 -14.57 143.44 -83.96 -14.87 147.89 

Spring 30.52 1.42 -17.61 24.51 1.62 -18.22 

Industrial and Vacant land -- -- -- 73.27 0.17 -11.75 

LSOL II = Latent segmentation based ordered logit model with two segments; GOL = Generalized ordered logit 

model; PDO = Property damage only. 
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TABLE 6 Measures of Fit in Validation Sample 

DISAGGREGATE MEASURE OF FIT IN VALIDATION SAMPLE 

Summary statistic GOL LSOL II 

Number of observations 443 443 

Predictive Log-likelihood -168.43 -168.94 

Average probability of correct prediction 88.49 83.30 

Average probability for chosen probability>0.70 83.97 85.78 

AGGREGATE MEASURE OF FIT IN VALIDATION SAMPLE 

Injury categories/Measures of fit Actual shares GOL predictions 
LSOL II 

predictions 

PDO/ Minor injury 1.80 1.39 1.47 

Serious injury 88.90 88.86 88.12 

Fatal injury 9.30 9.75 10.41 

RMSE - 0.30 0.70 

MPAE - 6.89 7.82 

M
a

n
h

a
tt

a
n

 

PDO/ Minor injury 1.60 1.59 1.39 

Serious injury 87.70 89.55 88.56 

Fatal injury 10.70 8.86 10.05 

RMSE - 10.78 10.20 

MPAE - 11.73 10.98 

Predictive Log-likelihood - -52.98 -52.65 

C
lo

u
d

y
 

PDO/ Minor injury 3.2 0.99 1.22 

Serious injury 88.9 88.13 89.12 

Fatal injury 7.9 10.87 9.66 

RMSE - 16.75 16.45 

MPAE - 32.82 33.95 

Predictive Log-likelihood - -27.76 -28.80 

D
a

rk
 r

o
a

d
 –

 

li
g

h
te

d
 

PDO/ Minor injury 3.1 1.42 1.48 

Serious injury 86.3 87.81 87.44 

Fatal injury 10.6 10.77 11.08 

RMSE - 27.30 27.04 

MPAE - 37.96 38.26 

Predictive Log-likelihood - -79.29 -77.10 

P
ed

es
tr

ia
n

 a
g

e 

1
2

 a
n

d
 l

es
s 

PDO/ Minor injury 1.5 1.76 1.86 

Serious injury 95.5 93.64 93.35 

Fatal injury 3.0 4.61 4.80 

RMSE - 16.38 16.48 

MPAE - 14.70 14.68 

Predictive Log-likelihood - -13.36 -14.15 

S
p

ri
n

g
 

PDO/ Minor injury 0.9 1.66 1.65 

Serious injury 92.0 89.86 89.69 

Fatal injury 7.1 8.48 8.65 

RMSE - 4.95 4.89 

MPAE - 38.40 38.89 

Predictive Log-likelihood - -32.41 -32.76 

GOL = Generalized ordered logit model; LSOLII = Latent segmentation based ordered logit model with two 

segments; PDO = Property damage only; RMSE = Root mean square error; MPAE = Mean absolute percentage 

error. 


