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ABSTRACT
[bookmark: _Hlk67423245]Traditionally, in developing non-motorized crash prediction models, safety researchers have employed land use and urban form variables as surrogate for exposure information (such as pedestrian, bicyclist volumes and vehicular traffic). The quality of these crash prediction models is affected by the lack of “true” non-motorized exposure data. High-resolution modeling frameworks such as activity-based or trip-based approach could be pursued for evaluating planning level non-motorist demand. However, running a travel demand model system to generate demand inputs for non-motorized safety is cumbersome and resource intensive. The current study is focused on addressing this drawback by developing an integrated non-motorized demand and crash prediction framework for mobility and safety analysis. Towards this end, we propose a three-step framework to evaluate non-motorists safety: (1) develop aggregate level models for non-motorist generation and attraction at a zonal level, (2) develop non-motorists trip exposure matrices for safety evaluation and (3) develop aggregate level non-motorists crash frequency and severity proportion models. The framework is developed for the Central Florida region using non-motorist demand data from National Household Travel Survey (2009) Florida Add-on and non-motorist crash frequency and severity data from Florida. The applicability of the framework is illustrated through extensive policy scenario analysis.
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1. INTRODUCTION
Urban regions in North America are encouraging the adoption of active modes of transportation by proactively developing infrastructure for non-motorist (pedestrians and bicyclists). However, a strong impediment to the increasing adoption of active modes of transportation is the safety risk associated with these modes. The safety risk posed to active transportation users in Florida is exacerbated compared to active transportation users in the rest of the US. While the national average for pedestrian (bicyclist) fatalities per 100,000 population is 1.50 (2.35), the corresponding number for the state of Florida is 2.56 (6.80), which clearly demonstrates the safety risk for non-motorists in Florida (NHTSA, 2015). An important tool to determine the critical factors affecting the occurrence of pedestrian and bicycle crashes and identifying vulnerable locations is the application of planning level crash prediction models. 
[bookmark: _Hlk61095120]Traditionally, in developing these models, safety researchers have employed land use and urban form variables as surrogate for exposure information (pedestrian, bicyclist volumes and vehicular traffic). The quality of these crash prediction models is affected by the lack of “true” non-motorist exposure data. Moreover, to assess how recent investments in pedestrian and bicycle transportation infrastructure are influencing their mobility and safety, it is important to develop demand models. High-resolution modeling frameworks such as activity-based or trip-based approaches could be pursued for evaluating planning level non-motorist demand. However, the current state-of-the-art of travel demand models focus on generating vehicular demand (for automobile and transit). For example, the existing Central Florida Regional Planning Model (CFRPM) is predominantly focused on auto mode and public transit mode. The modeling approach does not consider non-motorized modes in detail. Therefore, travel demand matrices of active transport modes are not often readily available to integrate those in road safety evaluation. Even when non-motorist demand is considered, the models employed for these dimensions are rule-based or simplistic models with very few parameters. Further, running a travel demand model system to generate inputs for non-motorist safety is cumbersome, resource intensive and unlikely to be implemented.
The current study is focused on addressing this drawback by developing an integrated demand and crash prediction framework for active modes (pedestrians and bicyclists) with the objective of using it for mobility and safety analysis. To be sure, analysts often develop non-motorists’ demand model at different local levels, such as: regional level (Porter et al. 1999), corridor (Matlick 1998) or sub-area level and household/individual level (Pulugurtha and Repaka 2008, Schneider et al. 2009a). Extrapolating planning level non-motorists demand from corridor level exposure data is not straightforward. An alternative approach to generating planning level non-motorist demand is to estimate origin-destination (O-D) demand at an aggregate level. The proposed integrated demand and safety framework would allow us to devise evidence-based policy implications for improving mobility and safety of pedestrians and bicyclists. In the following section, non-motorist refers to pedestrians and bicyclists collectively, while non-motorist crash refers to pedestrian and bicycle involved crashes and finally non-motorist demand refers to pedestrian and bicycle trips.

2. BACKGROUND AND CURRENT STUDY IN CONTEXT

2.1 Earlier Research
As the focus of our research is on examining non-motorist demand and non-motorist safety, we organize our literature along these two dimensions.
Non-motorist Demand
Accurate information on non-motorized trip volumes is useful for many studies including public health studies (Cervero and Duncan 2003), non-motorist safety research (Miranda-Moreno et al. 2011), and active mode infrastructure improvements (Ercolano et al. 1997). Table 1 provides a summary of the literature on non-motorist demand modeling. The table provides information on the unit of analysis, the spatial and temporal aggregation level, (non-motorists counts at what spatial temporal unit), methodological framework employed, and different categories of exogenous variables considered. The studies presented in Table 1 are categorized along two streams: (1) studies examining the non-motorist activity only and (2) studies analyzing non-motorist demand and safety simultaneously.
Several observations can be made from Table 1. First, only a small share of studies had developed an integrated framework for analyzing non-motorist demand and safety. Second, several spatial units were considered for analyzing the non-motorist demand including segments, intersections, census block and household amongst which intersections and segments are the most prevalent one. Third, in terms of temporal aggregation, majority of the earlier research has examined the non-motorist traffic at a daily level or at an hourly level. Finally, the methodological frameworks adopted in these studies include Linear regression, Ordinary least square, Negative binomial, Poisson regression, Hurdle negative binomial, Generalized linear mixed model, Time series model and Space syntax tool.
With respect to exogenous variables, the overall findings from earlier research effort are consistent. The various factors identified as influencing non-motorist demand include: (1) socio-demographic characteristics such as population density and household income, (2) land-use characteristics such as residential land use and land use mix, (3) built environment characteristics such as transport accessibility and nearby educational center (such as universities), (4) roadway characteristics such as sidewalk length and presence of traffic signal, and (5) weather variables such as average temperature and precipitation rate.

Non-motorist Safety
[bookmark: _Hlk25118]There is a vast body of safety literature examining the factors affecting crash occurrence of active travellers (pedestrians and bicyclists) and the severity of different types of non-motorist crashes with motorized vehicles. It is beyond the scope of the paper to review all the research on non-motorists safety (see (Eluru et al., 2008; Cottrill and Thakuriah, 2010; Ukkusuri et al., 2012, 2011; Siddiqui et al., 2012; Abdel-Aty et al., 2013; Wei and Lovegrove, 2013; Yasmin et al., 2014; Lee et al., 2015; Cai et al., 2016; Nashad et al., 2016) for a detailed review). In general, studies evaluating non-motorist road user safety do not consider non-motorist exposure in detail. In our paper, we focus our attention on studies that attempted to incorporate non-motorist exposure in their studies.
A critical component in the process of analyzing non-motorist safety is the selection of appropriate exposure measure. A number of research efforts have examined several surrogate measures to gain a comprehensive understanding of the individual non-motorist crash risk. In general, total five types of matrices are being developed throughout the years to be used as exposure for the non-motorist safety analysis (see (Jamali & Wang, 2017) for detail review) including: (1) area-based approach such as population density (Chakravarthy et al., 2010; Cottrill & Thakuriah, 2010; Wang et al., 2017; Sze et al., 2019), number of trips (Bouaoun et al., 2015; Kerr et al., 2013; Bao et al., 2017; Su et al., 2020; Kamel and Sayed, 2020) and vehicular traffic (C. Lee & Abdel-Aty, 2005; Wier et al., 2009; Wei and Lovegrove, 2013; Kamel and Sayed, 2020); (2)  point-based approach such as non-motorist volume (Lee et al., 2019, 2018a;; Guo et al., 2018; Xie et al., 2018; Ding et al., 2020; Cai et al., 2020; Heydari et al., 2020; Kwayu et al., 2020); (3) segment-based approach such as pedestrian volume at a segment (Clifton et al., 2008); (4) distance-based approach such as distance (Molino et al., 2012); and (5) trip-based approach such as space time prism (Lam et al., 2013, 2014; Yao et al., 2015). 
Over the past few years, a significant debate has emerged among the researchers about the best exposure matrix that can explain the non-motorist crash risk. Several studies investigated the link between non-motorist trip frequency and collision; and concluded that motorists were more likely to exhibit safer driving behavior in the presence of higher volumes of pedestrians and bicyclists (Jacobsen, 2015; Schepers, 2012). However, the relationship is non-linear which implies that with the increase in number of walking or bicycling trips, the absolute number of non-motorist involved crashes might increase, but the individual risk of the non-motorist involved in a crash may decline (for example see (Robinson, 2005; Elvik, 2009; Elvik and Bjørnskau, 2017; Xu et al., 2017). Robinson (2005) investigated the accuracy of the relationship between non-motorist volume and safety by conducting a comparison study in Australia and found that the risk per kilometer for cyclist dropped by around 34% when the volume of the cyclists was doubled.  In recent years, researchers have geared towards trip-based approach where the amount of time or distance travelled by walking/cycling are used as exposure for examining the non-motorist involved crash occurrences (Lam et al., 2013, 2014; Yao et al., 2015; Yao & Loo, 2016; Ding et al., 2020;). Yao et al. (2015) investigated the vehicle-pedestrian crashes and proposed two approaches for estimating the pedestrian exposure matrix including: (1) Deterministic approach - space time path (SPT) method using the shortest path algorithm based on the origin-destination of the trip and (2) Probabilistic approach - potential path tree (PPT) method that considers all the possible paths between origin and destination given the link level travel time. The findings from the study indicate that while both methods are useful for measuring the pedestrian exposure, the PPT method is more efficient in explaining the manner of vehicle-pedestrian crashes. A relatively recent study by Ding and colleagues (Ding et al., 2020) considered both bicycle use and time duration (based on the public bicycle rental system) to serve as proxy for exposure in their bicycle crash risk model.  The authors concluded that the duration of bicycle serve as a better exposure in capturing the interactions between bicycles and motor vehicles as indicated by the superior performance of the model using duration relative to the model considering bicycle frequency as exposure. Another study by Li et al., 2020 considered three different types of exposure including trip frequency, distance travelled and number of roads crossed in their pedestrian crash model and found that model using trip frequency to serve as a surrogate for exposure provided inferior performance (statistical fit and prediction accuracy) compared to the other models. 

2.2 Current Study 
[bookmark: _Hlk67256887]It is evident from the literature review that apart from a handful of studies, non-motorist safety literature has not adequately addressed the link between non-motorist demand and safety. With growing emphasis on improving mobility in Florida region there are targeted efforts to enhance non-motorist mobility. To evaluate the effectiveness of these strategies and to enhance safety, it is useful to develop methods that accommodate the potential adoption of active modes within the mobility planning process. Thus, developing an integrated framework of demand and safety would allow a seamless evaluation of various scenarios that influence mobility and/or safety. In transportation research, the concept of demand/exposure is defined based on the underlying research question and the intended use of data. The exposure measures can be identified at aggregate or disaggregate level by considering different unit of analysis (as discussed in the earlier research section for the non-motorists group). The distance travelled and/or time-based exposures, disaggregate exposure measures, allows us to disaggregate trip over space and time. However, generating these exposure measures are often computationally burdensome. Therefore, in our study, we resort to using aggregate level demand in terms of total trip as exposure measure, since generation of these measures are practice-oriented and less expensive[footnoteRef:1]. Aligned with “trip generation step” of traditional four-step approach of travel demand modeling, we identify the total number of non-motorist trips generated and attracted in different zones. Based on these aggregate counts, we further develop separate models for trip generation and attraction as a function of zonal level attributes. Finally, we hypothesize that total zonal level exposure (zonal level trip generation count + zonal level trip attraction count) would influence zonal level safety and, hence, considered as the exposure matrix in examining zonal-level safety. Thus, in developing an integrated framework of demand and safety for non-motorist, we propose a three-step approach as follows: (1) develop aggregate level models for non-motorist trip generation and attraction at a zonal level, (2) develop non-motorists trip exposure matrices for safety evaluation and (3) develop aggregate level non-motorists crash frequency and crash severity proportion models. [1:  Chu (2003) identified that distance-based exposure measure can generate misleading result because of difference in travel speed across different trip mode. Using such disaggregate measure in an aggregate level analysis may mislead the outcome. Beyond all the arguments on which measure should adopt, there is no clear consensus in existing safety literature on which exposure measure is more appropriate and more effective. In fact, different exposure measure can lead to different results. In our study design, we hypothesized that the aggregate level demand is surrogate for aggregate level safety analysis. It is beyond the scope of this study is to examine which exposure measure – aggregate/disaggregate – is better representative of non-motorist exposure matrices. ] 

[bookmark: _Hlk486593902][bookmark: _Hlk486593928]We investigate non-motorists demand at a zonal level by using aggregate trip information based on origin and destination locations of trips. We develop four models: (1) Pedestrian generation model – based on zonal level pedestrian origin trip demand, (2) Pedestrian attraction model – based on zonal level pedestrian destination trip demand, (3) Bicycle generation model – based on zonal level bicycle origin trip demand, (4) Bicycle attraction model – based on zonal level bicycle destination trip demand. In the second step, predicted origin and destination trip counts are used from the exposure models to generate different zonal level trip exposure matrices for both pedestrian and bicycle modes to be considered as non-motorists exposure measures for safety evaluation. Finally, in the third step, we estimate non-motorist safety models by employing predicted exposure matrices, generated from second step, along with other zonal attributes. Specifically, we estimate four different aggregate level safety models: (1) zonal-level crash count model for examining pedestrian-motor vehicle crash occurrences, (2) zonal-level crash count model for examining bicycle-motor vehicle crash occurrences (3) zonal-level crash severity model for examining pedestrian crash injury severity by proportions and (4) zonal-level crash severity model for examining bicycle crash injury severity by proportions. These models are estimated for the Central Florida Region as a function of zonal level sociodemographic characteristics, roadway/traffic attributes, built environment and land-use characteristics. The applicability of the framework is illustrated through extensive policy scenario analysis. 
The rest of the paper is organized as follows: The description of the data and exogenous variables adopted in the analysis are describes in Section 3. Model estimation results are presented in Section 4. Section 5 presents the policy scenario analysis and finally, conclusions are presented in section 6. 

3. DATA

3.1 Study Area and Data Sources
[bookmark: _Hlk486593958]The study area is the Central Florida Region defined by Central Florida Regional Planning Model version 6.0 (CFRPM 6.0) which includes 4,747 traffic analysis zones (TAZ). Data for developing non-motorist exposure models are sourced from 2009 National Household Travel Survey (NHTS) Add-on database provided by the Florida Department of Transportation (FDOT) that allowed us to geo-tag trips recorded in the Central Florida region. In the dataset, there were 2,749 households, 5,090 individuals and 22,359 trips. Among these trips, walk and bike trip shares were 8.8% and 1.3%, respectively. Data for the non-motorist safety analysis is compiled from FDOT Crash Analysis Reporting System (CARS) and Signal Four Analytics (S4A) databases. CARS and S4A are long and short forms of crash reports in the State of Florida, respectively. The long form crash report includes higher injury severity level or crash related to criminal activities (such as hit-and-run or Driving Under Influence). The Short Form Report is used to report all other types of traffic crashes. Crash data records from short and long form databases are compiled to generate complete information on road crashes and hence are used for the purpose of analysis in the current study context. For this study, we have examined the pedestrian and bicycle crash events for the year 2010 to incorporate the exposure measures in terms of non-motorist safety[footnoteRef:2]. For the year 2010, 1,474 and 1,012 crashes were reported involving pedestrian and bicycle, respectively. [2:  The proposed integrated demand-safety approach can be employed by using recent data, if both demand and safety data are available to maintain the same base year condition. In our study, we had access to the demand data for the year 2009 from NHTS data. Therefore, for safety models, we have selected year 2010 to reflect the base year demand condition from 2009 NHTS data.] 


3.2 Data Description
The dependent variables for the exposure models are daily zonal origin trip count and daily zonal destination trip count for pedestrians and bicyclists. We incorporate “person-trip weight” – as defined in NHTS database – to extrapolate the non-motorized trips to represent number of trips for the zones in the Central Florida region. Locations of zones with pedestrian and bicycle O-D demand are shown in Figure 2. With respect to safety component, the geo-coded crash data involving non-motorists are aggregated at the level of TAZ for the year 2010. These crashes are further classified by crash severity outcomes (property damage only (PDO), possible injury, non-incapacitating, incapacitating injury and fatal crashes) at the zonal level. Locations of zones with pedestrian and bicycle crashes (total crashes and by crashes by different injury severity levels) are shown in Figures 3 and 4, respectively.  The corresponding variables by proportion (number of specific severity level/total number of all crashes) include: (1) proportion of PDO crashes, (2) proportion of possible injury crashes, (3) proportion of non-incapacitating injury crashes, (4) proportion of incapacitating injury crashes and (5) proportion of fatal crashes. The dependent variables and sample size for both exposure and safety models are presented in Table 2. The crash proportion models for pedestrian and bicyclists are estimated only for zones with non-zero crashes.
In addition to the different zonal level dependent variables, the explanatory attributes considered in the empirical study are also aggregated at the TAZ level accordingly. For the empirical analysis, the selected explanatory variables can be grouped into four broad categories: sociodemographic characteristics, roadway and traffic attributes, built environment characteristics and land use characteristics. To ensure that the exogenous variables considered reflect the analysis year trend, we generate these variables using data from 2010. Table 3 offers a summary of the sample characteristics of the exogenous variables and the definition of variables considered for final model estimation along with the zonal minimum, maximum and average. 

4. EMPIRICAL ANALYSIS
The model estimation results for different components are discussed separately. The final specifications of the models were based on removing the statistically insignificant variables in a systematic process based on statistical significance (90% confidence level). In estimating the models, several functional forms and variable specifications are explored. The functional form that provided the best result is used for the final model specifications as presented in Table 3.

4.1 Exposure Models
[bookmark: _Hlk67259601]In estimating aggregate level exposure models, the non-motorist trip demand is represented as total number of non-motorist trips originated from and destined to at a zonal resolution. Thus, the demands are non-negative integer values. Naturally, these integer values can be examined by employing count regression approaches, such as the Poisson and Negative Binomial (NB) regression approaches. However, for the zonal-level non-motorist trip counts, more than 84% and 96% TAZs have zero pedestrian and bicycle trip records, respectively. The traditional count models (Poisson and NB models) do not account for such over-representation of zero observations in the data. The Hurdle model is typically used in the presence of such excess zeroes. Cameron and Trivedi (1998) presented these models as finite mixture models with a degenerate distribution and probability mass concentrated at zeroes. The Hurdle approach is generally used for modeling excess sampling zeroes. It is interpreted as a two-part model: the first part is a binary response structure modeling the probability of crossing the hurdle of zeroes for the response and the second part is a zero-truncated formulation modeled in the form of standard count models (Poisson or NB). Therefore, to accommodate for the preponderance of zero trip counts, exposure models are developed using Hurdle Negative Binomial (HNB) regression approach (see Cai et al. 2016 for methodological framework)[footnoteRef:3]. Table 4 presents the estimation results of the exposure models: pedestrian trip generation (2nd and 3rd columns), pedestrian trip attraction (4th and 5th columns), bicycle trip generation (6th and 7th columns), and bicycle trip attraction (8th and 9th columns) models. In the Hurdle model, the positive (negative) coefficient in the probabilistic component corresponds to increased (decreased) propensity of non-zero trip events. The positive (negative) coefficient in the count component of the Hurdle model corresponds to increased (decreased) non-zero trip count events. Pedestrian and bicycle trip demand models are discussed in the following sections. [3:  The econometric framework of HNB model is presented in APPENDIX A.] 


Pedestrian Trip Demand Models
Probabilistic Component: In the probabilistic components, land-use mix, urban area and number of households are found to be significant in both pedestrian trip generation and attraction models. As these variables serve as surrogates for pedestrian activity, it is expected that TAZs with higher levels of these variables are likely to be associated with pedestrian trip generation and attraction.

Count Component: With respect to sociodemographic characteristics, from Table 4 we can see that proportion of 65+ aged population is positively associated with pedestrian trip generation. Zones with higher average speed limit on roadways are likely to generate less pedestrian trip origin demand (Pulugurtha and Repaka, 2008). Annual average daily traffic (AADT) is negatively associated with both pedestrian demand components. Higher proportion of arterial roads in zones are likely to increase pedestrian activities (Hankey et al., 2012) for generation and attraction. Higher proportion of roadways with 3 or more lanes are negatively associated with zonal level pedestrian activities. As expected, zones with higher length of sidewalk are likely to have higher level of pedestrian activities (Lu et al., 2018).
With respect to built environment, we find that higher number of business centers, entertainment centers, financial centers, park/recreational centers and shopping centers are positively associated with pedestrian attraction. On the other hand, higher number of transit hubs and restaurants are found to be negatively associated with pedestrian destination demand. Land-use characteristics are found to have significant influence in both pedestrian trip generation and attraction models. Among different land-use categories, industrial area is found to be negatively associated with pedestrian trip origin and trip destination demands (see (Hankey and Lindsey, 2016; Lu et al., 2018) for similar result). All other land-use categories (recreational, residential, retail/office and institutional area) are likely to generate higher level of pedestrian activities.

Bicycle Trip Demand Models
Probabilistic Component: Land-use mix, urban area and number of households are found to be significant in both bicycle trip generation and attraction models. As these variables serve as surrogates for bicycle activity, it is expected that TAZs with higher levels of these variables are likely to be associated with higher levels of bicycle trip generation and attraction.

Count Component: Proportion of 65+ aged population is negatively associated with bicycle generation indicating that TAZs with higher number of population aged 65+ have lower bicycle origin demand (Guo et al., 2007). AADT is negatively associated with bicycle trip generation component. Furthermore, higher proportion of arterial roads in zones are likely to have higher bicycle activity (see (Nordback et al., 2017)). Higher proportion of roadway with 3 or more lanes are negatively associated with zonal level bicycle activities. Zones with higher sidewalk length are likely to have higher level of bicycle activities.
Built environment attributes are considered only in bicycle attraction model. The study finds that higher number of education centers, entertainment centers, park/recreational centers, restaurants and transit hubs are positively associated with bicycle attractions. On the other hand, higher number of commercial centers, financial centers and shopping centers impose a negative effect on bicycle destination demand. Among different land-use categories, industrial, residential and institutional areas are found to be positively associated with bicycle activities (Tabeshian and Kattan, 2014). With respect to recreational area, the variable shows positive association in bicycle generation model but has a negative correlation with bicycle attraction model. On the other hand, retail/office area is found to be negatively associated with both bicycle trip origin and destination demand (Chen et al., 2017).

4.2 Non-motorist Trip Exposure Matrices 
In evaluating non-motorist exposure, we also generate different zonal level trip exposure matrices with the predicted number of daily trip origin (by using trip generation model results) and daily trip destination (by using trip attraction model results) at zonal level for both pedestrian and bicycle group of road users. Then, zonal level total trip demand matrices are generated by combining the trip origin and destination demand matrices across different zones (total trip demand = trip origin demand + trip destination demand). Thus, the dimensions of the generated total trip demand matrices are [4747×1] with total trip counts across different rows. The total zonal level trip demand matrices are generated for pedestrians and bicyclists separately, which is used as exogenous variables in developing safety models along with other zonal attributes.
4.3 Safety Models
We estimate two crash count models and two crash proportions by severity models for pedestrians and bicyclists. Crash count models are developed by using NB model, while the crash proportions by severity models are developed using Ordered Probit Fractional Split (OPFS) approach (see Bhowmik et al., 2018; Lee et al., 2018b for unordered fractional split structure and Yasmin and Eluru 2018; Yasmin et al. 2016; Bhowmik et al., 2019c for ordered fractional split structure). The NB model, which offers a closed-form expression while relaxing the mean variance equality constraint of Poisson regression, serves as the workhorse for crash count modeling.  Therefore, crash count models are developed in this study by using the NB modeling approach[footnoteRef:4]. Crash count data are often compiled by injury severity outcomes (for example: no injury, minor injury, major injury and fatal injury crashes). Given the consequences of road traffic crashes and policy implications, it is a common practice among safety researcher community to develop independent crash prediction models for different injury severity levels. However, for the same observation record, it might be beneficial to evaluate the impact of exogenous variables in a framework that directly relates a single exogenous variable to all severity count variables simultaneously. Such a framework would allow us to make inferences based on a single model. To that extent, in this current research effort, as opposed to modeling the number of crashes, we adopt a fractional split modeling approach to study the fraction of crashes by each severity level. Specifically, we employ OPFS models for examining pedestrian and bicycle crash proportions by severity levels[footnoteRef:5]. The estimation results of these models are presented in the following sections. [4:  The econometric framework of NB model is presented in APPENDIX B.]  [5:  The econometric framework of OPFS model is presented in APPENDIX C.] 


Crash Count Models
Table 5 presents the estimation results of the count models. The pedestrian crash count model results are presented in 2nd and 3rd columns while the bicycle crash count model results are presented in 4th and 5th columns.
The model results indicate that both pedestrian and bicycle crashes are positively associated with population density (see (Bhowmik et al., 2019b) for similar results) i.e. zones with higher population density are likely to experience more pedestrian and bicycle crashes (as expected). The results, surprisingly, indicate a reduced crash risk for both pedestrian and bicyclists with higher proportion of population aged 65 and more. One reasonable explanation can be attributed to the fact that senior people are more experienced which eventually protects them from colliding with the motor vehicles. Similar results are also observed in the study of Saha et al. (2018). Several roadway and traffic attributes are found to be significant determinants of non-motorist crashes at the zonal level. The results associated with traffic signal density reveal that an increase in traffic signal density in a zone increases the likelihood of both pedestrian and bicycle crashes (Nashad et al., 2016). The result is expected as the density of traffic intersections increases potential conflicts between vehicles and non-motorist road users are likely to increase. Higher proportion of arterial roads results in higher pedestrian and bicycle crash risks (Bhowmik et al., 2019a; Nashad et al., 2016). At the same time, higher proportion of local roads is found to have negative impact of bicycle crash risk. From Table 5, we can see that the likelihood of pedestrian crash is higher in zones with longer sidewalk length. This is intuitive as sidewalk lengths are reflections of pedestrian access. For instance, zones with higher length of sidewalk are likely to have higher level of pedestrian activities (Lu et al., 2018) which eventually results in more pedestrian crashes (see Cai et al., 2016; Nashad et al; ,2016 for similar results). Similarly, TAZs with longer bicycle lane length have an increased likelihood of bicycle crashes. The length of zonal level bus lane result reveals an increasing likelihood of bicycle crash risk. An increase in zonal AADT increases the likelihood of both pedestrian and bicycle crashes at the TAZ level. The result in bicycle crash model suggests that zones with higher truck AADT have a decreased likelihood of bicycle crashes possibly because bicycling is less prevalent in these zones (see Cai et al., 2016 for similar results). Trucks usually travel on the highways in their majority part of the trips. As a result, zones with higher truck volume are basically the zones with major highways which explain the reduced likelihood of bicycle crashes in those zones.
With respect to built environment, the estimation results of pedestrian crash risk model reveal that higher number of educational centers, transit hubs, restaurants and park/recreational centers result in higher pedestrian crash risk at zonal level. On the other hand, bicycle crash risk is positively associated with higher number of commercial centers, financial centers, restaurants and hospitals. Several land-use characteristics are found to be significant determinants of pedestrian and bicycle crash risks. Pedestrian and bicycle crash risks increase with increasing urbanized and residential area. In the bicycle crash risk model, recreational area is found to decrease the likelihood of zonal level bicycle crash risk. TAZs with higher land use mix increase the propensity of both pedestrian and bicycle crashes.
[bookmark: _Hlk67350929]The major objective of the current study is to integrate the non-motorist trip exposure as exogenous variable in developing aggregate level crash risk models. We use total daily trip demand of pedestrian and bicycle (as explained in section 4.2) as exogenous variables in pedestrian and bicycle crash risk models, respectively. We consider different functional forms of pedestrian and bicycle exposure measures in estimating NB models and the functional form that provides the best fit are considered in the final specifications. With respect to pedestrian crash risk model, pedestrian demand per household at a zonal level provides the best data fit and hence is considered in our final pedestrian crash risk model. From Table 5, we can see that higher number of pedestrians per household is likely to decrease the risk of pedestrian-motor vehicle crashes (Miranda-Moreno et al. 2011). The result perhaps is indicating that the motorists are more likely to exhibit safer driving behavior in the presence of higher volumes of pedestrians (Jacobsen, 2015; Schepers, 2012). With respect to bicycle crash risk model, bicycle exposure measures are found to have significant impact on zonal level bicycle-motor vehicle crash risk. The estimation result of exposure measure in bicycle crash risk model reveal that higher bicyclists trip demand at a zonal level increases the risk of bicycle crashes. The reader would note that even after controlling for trip exposure variables, several variables from other variable categories still serve as proxies for exposure. 

Crash Proportions by Severity Models
Table 6 presents the estimation results of the crash proportions by severity models. The pedestrian crash proportions by severity model results are presented in 2nd and 3rd columns and bicycle crash proportions by severity model results are presented in 4th and 5th columns of Table 6. These models are estimated by using OPFS framework. The effects of exogenous variables in model specifications for both pedestrian and bicycle crash proportions by severity models are discussed in this section. In OPFS models, the positive (negative) coefficient corresponds to increased (decreased) proportion for severe injury categories.
With respect to sociodemographic characteristics, the estimates indicate that population density results in lower likelihood of severe injury proportions for both pedestrian and bicycle crashes. Proportion of 22-29 years old group of population has negative impact on proportion of pedestrian crash severity outcomes implying a reduced likelihood of more severe pedestrian crashes (Yasmin et al., 2014). Relative to older people, young individuals are more flexible in handling any sudden activity which in turn protects them from enduring severe injuries (see Saha et al., 2018 for similar results). The OPFS model results for bicycle reveal a higher proportion of severe crash outcomes for zones with higher number of flashing beacon signs and higher number of school signals. As expected, availability of bike lane is found to reduce the likelihood of less severe bicycle crash proportions. With respect to traffic attributes, higher vehicles miles travelled (VMT) is positively associated with more severe crash proportions in the model for pedestrians. 
The pedestrian severity model reveals that the proportion of severe crashes is lower in TAZs with higher number of commercial centers (Moudon et al., 2011; Aziz et al., 2013). Higher number of hospitals is associated with lower likelihood of severe crash proportion in OPFS model for bicycle crashes. At the same time, the OPFS model results reveal that higher number of park and recreational centers increases the possibility of higher proportions of severe bicycle crash outcomes. From both pedestrian and bicycle models, we find that the possibility of more severe crashes decreases with increasing share of urbanized area of a TAZ (Boufous et al., 2012). Residential area is found to be a significant determinant of bicycle crash proportion by severity outcomes. The estimate for residential area has a positive coefficient in bicycle crash severity model suggesting that proportion of severe bicycle crashes increases with increasing zonal level residential area. Similar results are also observed in the study of Bhat et al. (2017).
	The non-motorist exposure measures generated (as presented in Section 4.2) are used as exogenous variables in evaluating zonal level pedestrian and bicycle crash severity proportions. With respect to, pedestrian crash severity proportion model, higher pedestrian demand per household at a zonal level decreases the propensity of higher proportion of severe crashes. With respect to bicycle crash severity proportion model, increase in bicycle trip demand per household at a zonal level decreases the risk of higher proportion of severe bicycle-motor vehicle crashes. The reader would note that the impact of exposure is contrasting in the count and severity models highlighting how increased exposure is likely to increase the number of crashes but at the same time contributing to reduced proportion of severe crashes. 

4.4 Predictive Performance Evaluation
[bookmark: _Hlk67259237]In order to demonstrate the predictive performance of the estimated exposure and safety (count and severity) models, a validation exercise is also carried out. The most common approach of performing validation exercise for aggregate level model is to evaluate the in-sample predictive measures. Therefore, to evaluate the predictive performance of the estimated eight models, we compute the predicted count/proportion events and compared those with the observed values across different zones. For demand models, to evaluate the in-sample goodness-of-fit measures, we computed the predicted count events for both zero and non-zero events and compared those with the observed values. For crash frequency models, we compute mean prediction bias (MPB) and mean absolute deviation (MAD). For crash proportion models, we compute mean absolute percentage error (MAPE) and root mean square error (RMSE). These fit measures quantify the error associated with model predictions and the model with lower fit measures provides better predictions of the observed data. These measures are computed as:
	



	(1) 


where,  and  are the predicted and observed values for event  ( be the index for event ) and  is the number of events. These measures are presented in Table 7. From Table 7 we can see that the error between observed and predicted values across all events of different models are quite small (ranging from -6.452% to 0.451%). Hence, we can conclude that the predictive performance of the estimated models is reasonable for all eight estimated models.

5. IMPLICATIONS

5.1 Policy Scenario Analysis
The parameter effects of exogenous variables as presented in Sections 4 do not directly provide the magnitude of the effects on zonal level non-motorists demand and safety and therefore cannot be directly employed for policy scenario analysis. For policy scenario analysis, we compute aggregate level “elasticity effects” of exogenous variables both in the trip demand models and safety models (see Eluru and Bhat 2007 for a discussion on the methodology for computing elasticities). We investigate the effect as percentage change in the expected change in zonal demand, change in zonal crash counts, and change in proportions by severity levels to the change in exogenous variables for the study region. In the current study context, we perform policy analysis for different scenario as follows:

· Scenario 1: 50% reduction in traffic volume within 2 miles buffer area of different central business district (CBD).
· Scenario 2: 30% reduction in traffic volume within 2 miles buffer area of different central business district (CBD).
· Scenario 3: 15% reduction in traffic volume within 4 miles buffer area of different central business district (CBD).
· Scenario 4: 5% reduction in traffic volume within 6 miles buffer area of different central business district (CBD).
· Scenario 5: All zones have sidewalk and the new proposed .
· Scenario 6: 50% increase in existing sidewalk length.
· Scenario 7: 15% reduction in zonal average maximum speed.
· Scenario 8: 25% reduction in zonal average maximum speed.
· Scenario 9: 15% reduction in zonal proportion of 3+lane road.
· Scenario 10: 25% reduction in zonal proportion of 3+lane road.

[bookmark: _Hlk67423966]These scenarios are evaluated for all zones and for both pedestrian and bicycle group of road users separately. For the buffer area around CBD scenarios, we consider multiple CBDs in the Central Florida region including Orlando, Sanford, Lakeland, Kissemme, Deland, Ocala, Melbourne, Palm Bay, Leesburg, Daytona Beach and Port Orange of Central Florida region. The spatial representation of the considered CBD locations is shown in Figure 1. By performing policy scenario analysis for exposure and safety components, we ensure that the updated demand matrices for each scenario is produced and employed in generating exposure measures for non-motorist travel as well as vehicular volumes on roadways. With these new exposure measures, the safety models are used to generate estimates of scenario-based crash and severity proportions and the change in safety situation. By following the simulation procedure, it is possible to predict demand matrices for future year and in turn predict safety by incorporating exposure measures. A comparison across scenarios would allow us to identify beneficial changes to existing infrastructure for improving non-motorist road user safety. Policy scenario analysis for non-motorist travel demand and safety components are presented in Table 8. We generated elasticity effects for all severity levels in crash proportion by severity models. However, we present the elasticity effects only for the highest injury severity category (fatal crash proportions). The following observations can be made based on the elasticity effects presented in Table 8. 
With respect to demand component, we can observe that - First, decreasing vehicular traffic volume near CBD locations has greater effect on pedestrian demand than bicycle demand. For both modes, we can observe from the table that higher level of non-motorist activities can be attained by restricting vehicular traffic; greater the restrictions, higher the level of non-motorist demand. Second, increasing sidewalk facilities are likely to attract more non-motorists, but for the hypothetical scenario 5, the demand for pedestrian is likely to get reduced. Third, the reduction in speed has greater impact on increasing pedestrian demand. However, for bicycle, the variable has no impact as it was found insignificant in bicycle demand models. Fourth, restriction in number of traffic lanes are likely to have similar impact and as we can see from Table 8, it increases non-motorists demand.
With respect to crash count component, we can observe that - First, decreasing vehicular traffic volume near CBD locations are likely to reduce pedestrian crashes with greater impact within the vicinity of CBD. However, bicycle crashes are likely to increase by about 3%. But number of bicycle-motor vehicle crashes are likely to decrease within the vicinity of CBD with greater reduction in vehicular volume. Second, the hypothetical scenario of sidewalk length shows that providing walk facilities has the potential to improve pedestrian safety. On the other hand, bicycle crashes are likely to be adversely affected by increasing sidewalk length – perhaps indicating greater exposure. Third, reduction in speed and restrictions in traffic lanes decreases pedestrian crashes. On the other hand, restrictions in traffic lanes increases bicycle crashes by about 4%. 
With respect to crash severity by proportions component, we can observe that - First, non-motorist friendly facilities are likely to reduce proportion of fatal crashes for both pedestrians and bicyclists. However, the impact on pedestrian mode is much higher than the impact on bicycle mode. Second, the decrease in pedestrian fatal crash severity proportions are about 1% for increase in sidewalk length, reducing speed and restricting traffic lanes. The contribution of these measures on bicycle crash severity are less pronounced relative to pedestrian modes.
It is a well-known fact that non-motorist safety tend to decrease with increasing non-motorist exposure, and only after a certain level of exposure (when traffic become familiar with higher number of non-motorists), the safety tends to improve. From the policy analysis, we can see that non-motorist friendly infrastructure has mixed effect on non-motorist safety in current study context. Therefore, it is imperative that policy implications for improving non-motorist safety should be identified by considering all known exogenous elements in identifying the appropriate tools. In general, providing more walking and bicycle friendly facilities are likely to encourage more people to use non-motorized mode and in targeted zones these measures are likely to improve non-motorist safety.  

5.2 Predictions for Future Year
In order to demonstrate the implications from the estimated demand models, we also generate the predicted demand matrices for the year 2015. Specifically, we have estimated predicted trip origin demand, predicted trip destination demand and predicted total trip demand for the year 2015. In generating demand matrices for the year 2015, we consider the increase in weight based on the change in population at a zonal level. These matrices are presented in Table 9 at the county level (the matrices are generated at the zonal-level but are shown at the county level for presentation purposes). From Table 9 we can see that overall bicycle demand has increased from 2010 to 2015, but total pedestrian demand has decreased over the same period. Similar matrices can be generated for any other year. These generated demand matrices can be further be used as non-motorist exposure measures in the safety model predictions for the year 2015. We employ the predicted results for the year 2015 to plot the spatial distribution of predicted crash counts and predicted crash counts by severity levels for both non-motorist road user groups. These plots are presented in Figure 5 (5(a) – 5(c)). From the spatial representation, we can see that high crash risk zones and zones with higher proportion of severe crashes are dispersed throughout the state. 

6. CONCLUSION
In developing non-motorist crash prediction models safety researchers have employed land use and urban form variables as surrogate for exposure information (such as pedestrian, bicyclist volumes and vehicular traffic). The quality of these crash prediction models is affected by the lack of “true” non-motorist exposure data. Modeling with high-resolution data frameworks such as activity-based or trip-based approach could be pursued for evaluating planning level non-motorist demand. However, running a travel demand model system to generate demand inputs for non-motorist safety evaluation is cumbersome and resource intensive. The current study focused on addressing this drawback by developing an integrated non-motorist trip demand and crash prediction framework for mobility and safety analysis. Towards this end, we proposed a three-step framework to evaluate non-motorists safety: (1) develop aggregate level models for non-motorist trip generation and attraction at a zonal level, (2) develop non-motorists trip exposure matrices for safety evaluation and (3) develop aggregate level non-motorists crash frequency and severity proportion models.
The three-step approach entailed estimation of eight different models for pedestrian and bicyclist road user groups – two trip attraction models, two trip generation models, two crash count models and two crash proportions by severity models. The model estimation was based on National Household Travel Survey (NHTS) Florida Add-on and Florida Department of Transportation non-motorist crash data. The integrated framework was employed for policy scenario analysis. The results provided useful insights on mobility and safety changes associated with these hypothetical scenarios. 
[bookmark: _Hlk533592447][bookmark: _Hlk67384901]To be sure, our study is not without limitations. We evaluated non-motorist demand by using NHTS database at an aggregate level which is not readily transferable for developing micro-level model. It might be interesting to generate micro-level trip demand model to identify non-motorist exposure at a corridor level. It might also be useful to conduct a pooled model estimation with random effects for pedestrians and bicyclists to improve model estimation efficiency.
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[image: ]FIGURE 1 Considered Central Business District (CBD) Locations


 FIGURE 2 Zones with pedestrian and bicycle O-D demand for the year 2009
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FIGURE 3 Pedestrian crashes (total and by different injury severity) for the year 2010
































FIGURE 4 Bicycle crashes (total and by different injury severity) for the year 2010
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FIGURE 5 (b) Spatial Distribution of Predicted Fraction of Pedestrian Crashes by Severity levels for the year 2015 
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FIGURE 5 (c) Spatial Distribution of Predicted Fraction of Bicycle Crashes by Severity levels for the year 2015 

TABLE 1 Summary of Earlier Research on Non-motorized Demand Model
	Studies
	Unit of Analysis
	Spatial 
Unit
	Temporal 
unit
	Methodological Approach
	Independent 
Variables Considered

	
	
	
	
	
	Socio-demographic
	Land-use
	Built Environment
	Roadway/ Infrastructure
	Weather

	Traditional Demand Model

	(Pulugurtha and Repaka, 2008)
	Pedestrian
	Intersection
	1-hour
	Multiple regression
	Yes
	Yes
	Yes
	Yes
	--

	(Schneider et al., 2009b)
	Pedestrian
	Intersection
	2-hour
	Ordinary least square
	Yes
	Yes
	Yes
	Yes
	--

	(Jones et al., 2010)
	Bicycle, Pedestrian
	Different locations
	1-hour, 2-hour, daily
	Ordinary least square
	Yes
	Yes
	Yes
	Yes
	--

	(Miranda-Moreno and Fernandes, 2011)
	Pedestrian
	intersections
	8-hour
	Log-linear, 
Negative binomial
	Yes
	Yes
	Yes
	Yes
	Yes

	(Hankey et al., 2012)
	Bicycle, Pedestrian
	Street segment
	12-hour
	Ordinary least square, Negative binomial 
	Yes
	--
	Yes
	Yes
	Yes

	(Schneider et al., 2012)
	Pedestrian
	Intersections
	Annual
	Log-linear 
	--
	--
	Yes
	Yes
	Yes

	(Hewawasam et al., 2014)
	Pedestrian
	Household
	Daily
	Multivariate regression 
	Yes
	Yes
	--
	--
	--

	(Wang et al., 2014)
	Bicycle, Pedestrian
	Multiuse trails
	Daily
	Linear and negative binomial 
	Yes
	--
	Yes
	--
	Yes

	(Tabeshian and Kattan, 2014)
	Bicycle, Pedestrian
	Intersection
	2-hour
	Multiple linear and Poisson regression 
	Yes
	Yes
	--
	Yes
	--

	(Kraemer et al., 2015)
	Bicycle
	Sites such as corridors
	1-hour
	Multiple linear regression
	--
	--
	--
	--
	Yes

	(Wang et al., 2016)
	Bicycle, Pedestrian
	Trail segment
	Annual
	Negative binomial
	Yes
	--
	Yes
	--
	--

	(Hankey and Lindsey, 2016)
	Bicycle, Pedestrian
	Block level
	3-hour 
	Stepwise linear regression, Reduced form core and time average model
	--
	Yes
	--
	Yes
	Yes

	(Fagnant and Kockelman, 2016)
	Bicycle
	Segments,
intersections
	3-hour 
	Poisson and Negative binomial 
	Yes
	--
	--
	Yes
	Yes

	(Clifton et al., 2016)
	Pedestrian
	Pedestrian and traffic analysis zones
	Daily
	Cross classification 
	Yes
	--
	Yes
	Yes
	--

	(Tian and Ewing, 2017)
	Pedestrian
	Household
	Daily
	Hurdle negative binomial 
	Yes
	--
	Yes
	Yes
	--

	(Dhanani et al., 2017)
	Pedestrian
	hexagons (diameter 350 m)
	Six year
	Poisson regression 
	--
	Yes
	Yes
	--
	--

	(Reardon et al., 2017)
	Bicycle, Pedestrian
	census blocks
	Daily
	Four step model
	Yes
	--
	Yes
	Yes
	--

	(Fournier et al., 2017)
	Bicycle
	Continuous counters
	Daily, monthly, annual
	Time series model
	--
	--
	--
	--
	Yes

	(Chen et al., 2017)
	Bicycle
	Bicycle count site buffer 
(0.25,0.5, 1-mile)
	2-hour
	A generalized
 linear mixed model
	Yes
	Yes
	Yes
	Yes
	--

	(Nordback et al., 2017)
	Bicycle, Pedestrian
	Count stations
	2-hour
	Survey-based, count based, and a sketch planning tool
	Yes
	--
	--
	Yes
	--

	(Hankey et al., 2017)
	Bicycle, Pedestrian
	Block level
	3-hour 
	Facility demand model,
 land-use regression 
	Yes
	--
	Yes
	Yes
	--

	(Ermagun et al., 2018b)
	Bicycle, Pedestrian
	Multiuse trails
	Daily
	Negative binomial 
	--
	--
	--
	--
	Yes

	(Ermagun et al., 2018a)
	Bicycle, Pedestrian
	Infrared-inductive loop counters
	1-hour, Daily
	Generalized linear model with gamma distribution
	Yes
	--
	Yes
	--
	Yes

	(Lu et al., 2018)
	Bicycle, Pedestrian
	Traffic 
monitoring station
	1-hour
	Stepwise linear regression
	--
	Yes
	--
	Yes
	--

	Studies Incorporate Demand in Safety

	(Raford and Ragland, 2004)
	Pedestrian
	Segment, intersection
	2-hour, annual
	Space syntax tool
	Yes
	--
	--
	--
	--

	(Miranda-Moreno et al., 2011)
	Pedestrian
	Intersection
	3-hour
	Log-linear and 
count regression model
	--
	--
	Yes
	Yes
	--

	(Strauss et al., 2013)
	Bicycle
	Intersection
	8-hour
	Bivariate mixed
Poisson model
	--
	Yes
	Yes
	Yes
	Yes

	(Strauss et al., 2015)
	Bicycle
	Segments, Intersection
	8-hour
	Linear regression model
	--
	--
	Yes
	Yes
	--

	(Lee et al., 2018a)
	Bicycle, Pedestrian
	American household survey metropolitan area
	Annual
	Bayesian integrated 
bivariate probit regression
	Yes
	Yes
	Yes
	Yes
	--

	(Lee et al., 2019)
	Pedestrian
	Intersections
	Annual
	Generalized linear model,
Tobit regression
	Yes
	Yes
	--
	Yes
	--




TABLE 2 Sample Statistics of Dependent Variables
	EXPOSURE MODELS

	Models
	Dependent variables
	Definitions
	Sample size
	Zonal (weighted)

	
	
	
	
	Minimum
	Maximum
	Mean

	Pedestrian generation model
	Pedestrian origin trip count
	Total number of daily pedestrian trips originated in TAZs
	4747
	0.00
	39232.01
	265.45

	Pedestrian attraction model 
	Pedestrian destination trip count
	Total number of daily pedestrian trips destined in TAZs
	4747
	0.00
	39232.01
	261.70

	Bicycle generation model
	Bicycle origin trip count
	Total number of bicycle trips originated in TAZs
	4747
	0.00
	7012.43
	35.02

	Bicycle attraction model 
	Bicycle destination trip count
	total number of bicycle trips destined in TAZs
	4747
	0.00
	7012.43
	34.94

	SAFETY MODELS

	Models
	Dependent variables
	Definitions
	Sample size
	Zonal

	
	
	
	
	Minimum
	Maximum
	Mean

	Pedestrian crash count model
	Pedestrian crash counts
	Total number of pedestrian crashes in TAZs
	4747
	0.00
	9.00
	0.31

	Bicycle crash count model
	Bicycle crash counts
	Total number of bicycle crashes in TAZs
	4747
	0.00
	8.00
	0.21

	Pedestrian crash proportion by severity model

	Proportion of PDO pedestrian crashes
	Total number of PDO pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs
	949
	0.00
	1.00
	0.11

	Proportion of possible injury pedestrian crashes
	Total number of possible injury pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs
	
	0.00
	1.00
	0.24

	Proportion of non-incapacitating injury pedestrian crashes
	Total number of non-incapacitating injury pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs
	
	0.00
	1.00
	0.38

	Proportion of incapacitating injury pedestrian crashes 
	Total number of incapacitating injury pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs
	
	0.00
	1.00
	0.18

	Proportion of fatal pedestrian crashes
	Total number of fatal pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs
	
	0.00
	1.00
	0.09

	Bicycle crash proportion by severity model

	Proportion of PDO bicycle crashes
	Total number of PDO bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs
	719
	0.00
	1.00
	0.12

	Proportion of possible injury bicycle crashes
	Total number of possible injury bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs
	
	0.00
	1.00
	0.32

	Proportion of non-incapacitating injury bicycle crashes
	Total number of non-incapacitating injury bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs
	
	0.00
	1.00
	0.41

	Proportion of incapacitating injury bicycle crashes 
	Total number of incapacitating injury bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs
	
	0.00
	1.00
	0.14

	Proportion of fatal bicycle crashes
	Total number of fatal bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs
	
	0.00
	1.00
	0.02



[bookmark: _Toc486593738]TABLE 3 Summary Characteristics for Exogenous Variables
	Variable names
	Definitions
	Zonal

	
	
	Minimum
	Maximum
	Mean

	Sociodemographic characteristics

	Population density
	Total number of Population of TAZ/ Area of TAZ in acre
	0.000
	19.956
	2.366

	Proportion of male population
	Total number of male of TAZ/ Total number of Population of TAZ
	0.000
	0.998
	0.49

	Proportion of 22-29 aged population 
	Total number of population who are 22 to 29 years old of TAZ/ Total number of Population of TAZ
	0.000
	0.397
	0.096

	Proportion of people aged 65+
	Total number of people above 65 years old of TAZ/ Total number of Population of TAZ
	0.000
	0.899
	0.182

	Roadway and traffic attributes

	Traffic signal density
	Total number of Traffic signal in TAZ
	0.000
	8.000
	0.379

	Proportion of arterial roads
	Total length of arterial road of TAZ/Total roadway length of TAZ
	0.000
	1.000
	0.459

	Proportion of local roads
	Total length of local road of TAZ/Total roadway length of TAZ
	0.000
	1.000
	0.040

	Length of sidewalks
	Total sidewalk length in meter of TAZ
	0.000
	36.346
	0.280

	Length of bike lane
	Total bike lane length in meter of TAZ
	0.000
	58.525
	0.421

	Availability of bike lane
	Presence of bike lane in TAZ
	0.000
	1.000
	0.041

	Length of bus lanes
	Total bus lane length in kilometer of TAZ
	0.000
	31.161
	0.888

	Average zonal speed
	Average zonal speed in mph
	0.000
	70.000
	36.028

	AADT
	Total Annual Average Daily Traffic (AADT) of TAZ/10000
	0.000
	27.550
	0.931

	Truck AADT
	Total Truck AADT of TAZ/10000
	0.000
	2.747
	0.083

	VMT
	Vehicle Miles Travel (VMT) = Total road length in miles * Average annual daily traffic / 100000
	0.000
	29.928
	0.225

	Number of flashing beacon sign
	Total number of flashing beacon of TAZ
	0.000
	2.000
	0.009

	Number of school signal
	Total number of school signal of TAZ
	0.000
	1.000
	0.001

	Built environment characteristics

	Number of commercial centers
	Total number of commercial center of TAZ
	0.000
	4.000
	0.087

	Number of financial centers
	Total number of financial center of TAZ
	0.000
	17.000
	0.586

	Number of educational centers
	Total number of educational center of TAZ
	0.000
	5.000
	0.275

	Number of transit hubs
	Total number of transit hub of TAZ
	0.000
	11.000
	0.051

	Number of restaurants
	Total number of restaurant of TAZ
	0.000
	36.000
	1.335

	Number of park and recreational centers
	Total number of park and recreational center of TAZ
	0.000
	20.000
	0.245

	Number of hospitals
	Total number of hospital of TAZ
	0.000
	2.000
	0.017

	Number of entertainment centers
	Total number of entertainment center of TAZ
	0.000
	3.000
	0.017

	Number of shopping centers
	Total number of shopping center of TAZ
	0.000
	78.000
	1.492

	Land-use characteristics

	Urban area
	Ln (Urban area in a TAZ in acre)
	-9.275
	8.491
	4.291

	Institutional area
	Ln (Institutional area in a TAZ in acre)
	-16.417
	7.071
	0.785

	Industrial area
	Ln (Industrial area in a TAZ in acre)
	-12.943
	6.709
	0.671

	Retail/Office area
	Ln (Office/Retail area in a TAZ in acre)
	-17.312
	6.611
	1.744

	Residential area
	Ln (Residential area in a TAZ in acre)
	-12.427
	8.014
	3.596

	Recreational area
	Ln (Recreational area in a TAZ in acre)
	-13.946
	10.040
	0.388

	Land-use mix
	Land use mix = , where  is the category of land-use,  is the proportion of the developed land area devoted to a specific land-use,   is the number of land-use categories in a TAZ
	0.000
	0.929
	0.355





TABLE 4 Estimation Results of Exposure Models – Hurdle-Negative Binomial Models
	Variable names
	Pedestrian demand models
	Bicycle demand models

	
	Pedestrian generation model
	Pedestrian attraction model
	Bicycle generation model
	Bicycle attraction model

	
	Estimates
	t-stat
	Estimates
	t-stat
	Estimates
	t-stat
	Estimates
	t-stat

	Probabilistic component

	Constant
	2.346
	55.615
	2.319
	54.774
	-0.197
	-3.661
	-0.339
	-6.208

	Land-use mix
	0.605
	8.143
	0.539
	7.212
	0.596
	8.187
	0.719
	9.832

	Urban area
	0.224
	37.315
	0.215
	35.200
	0.305
	38.242
	0.300
	36.621

	Number of Household
	0.212
	27.324
	0.228
	29.528
	0.287
	25.106
	0.304
	26.455

	Count component

	Constant
	-0.217
	-27.198
	-0.422
	-57.616
	-2.351
	-69.340
	-1.974
	-70.397

	Sociodemographic characteristics

	Proportion of 65+ aged population
	0.802
	62.096
	--*
	--
	-0.546
	-12.745
	--
	--

	Roadway and traffic attributes

	Average zonal speed
	-0.008
	-59.952
	--
	--
	
	
	
	

	AADT
	-0.035
	-31.141
	-0.047
	-40.822
	-0.028
	-8.577
	--
	--

	Proportion of arterial roads
	0.320
	53.077
	0.255
	43.828
	0.095
	6.921
	0.044
	3.473

	Proportion of 3 and more lane roads
	-0.316
	-32.398
	-0.420
	-39.923
	-0.740
	-33.999
	-1.243
	-55.656

	Length of sidewalk
	0.048
	48.038
	0.030
	31.668
	0.052
	16.866
	0.049
	15.968

	Built environment

	Number of commercial centers
	--
	--
	--
	--
	--
	--
	-0.416
	-29.226

	Number of educational centers
	--
	--
	--
	--
	--
	--
	0.112
	21.645

	Number of business centers
	--
	--
	0.158
	10.811
	--
	--
	
	

	Number of entertainment centers
	--
	--
	0.194
	14.437
	--
	--
	2.941
	23.494

	Number of financial centers
	--
	--
	0.021
	17.835
	--
	--
	-0.144
	-43.018

	Number of park and recreational centers
	--
	--
	0.099
	38.188
	--
	--
	0.339
	54.894

	Number of restaurants
	--
	--
	-0.022
	-27.858
	--
	--
	0.225
	73.716

	Number of shopping centers
	--
	--
	0.032
	46.627
	--
	--
	-0.098
	-36.605

	Number of transit hubs
	--
	--
	-0.057
	-10.832
	--
	--
	0.260
	23.207

	Land-use characteristics

	Industrial area
	-0.029
	-22.989
	-0.055
	-42.162
	0.092
	31.510
	0.052
	17.338

	Recreational area
	0.070
	70.274
	0.042
	38.617
	0.016
	6.847
	-0.057
	-23.155

	Residential area
	0.060
	57.244
	0.062
	55.280
	0.440
	82.309
	0.361
	74.286

	Retail/office area
	0.049
	40.450
	0.037
	25.914
	-0.127
	-39.940
	-0.191
	-53.656

	Institutional area
	0.126
	110.646
	0.146
	124.131
	0.041
	12.410
	0.032
	9.903

	Over dispersion parameter
	0.917
	116.574
	0.826
	110.526
	3.081
	26.618
	6.009
	20.365


*variable insignificant at 90% significance level
TABLE 5 Estimation Result of Crash Count Models – Negative Binomial Models
	Variable names
	Pedestrian crash count model
	Bicycle crash count model

	
	Estimates
	t-stat
	Estimates
	t-stat

	Constant
	-3.063
	-22.318
	-3.789
	-23.884

	Sociodemographic characteristics

	Population density
	0.131
	10.645
	0.130
	10.050

	Proportion of people aged 65+
	-1.401
	-4.229
	-0.979
	-3.019

	Roadway and traffic attributes

	Traffic signal density
	0.223
	6.001
	0.146
	3.994

	Proportion of arterial roads
	0.325
	3.723
	0.341
	3.619

	Proportion of local roads
	---*
	---
	-0.799
	-2.241

	Length of sidewalk
	0.025
	2.090
	---
	---

	Length of bike lane
	---
	---
	0.016
	1.681

	Length of bus lane
	---
	---
	0.087
	5.040

	AADT
	0.037
	2.373
	0.090
	2.272

	Truck AADT
	---
	---
	-1.054
	-2.510

	Built environment

	Number of commercial centers
	---
	---
	0.182
	1.863

	Number of financial centers
	---
	---
	0.063
	3.204

	Number of educational centers 
	0.085
	1.822
	---
	---

	Number of transit hubs
	0.254
	5.506
	---
	---

	Number of restaurants
	0.086
	9.055
	0.052
	5.135

	Number of park and recreational centers
	0.123
	3.173
	---
	---

	Number of hospitals
	---
	---
	0.307
	3.143

	Land-use characteristics

	Urban area
	0.123
	5.098
	0.165
	5.876

	Residential area
	0.041
	2.076
	0.082
	3.736

	Recreational area
	---
	---
	-0.049
	-2.222

	Land-use mix
	0.810
	4.673
	0.697
	3.719

	Exposure measures

	Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)]
	-0.277
	-1.482
	---
	---

	Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ]
	---
	---
	0.042
	2.055

	Over-dispersion parameter
	1.004
	9.297
	0.641
	5.642


*variable insignificant at 90% significance level



TABLE 6 Estimation Results of Crash Proportions by Severity Models – Ordered Probit Fractional Split Models
	Variable name
	Pedestrian crash proportions by severity model
	Bike crash proportions by severity model

	
	Estimates
	t-stat
	Estimates
	t-stat

	Threshold 1
	-1.708
	-13.117
	-1.450
	-8.330

	Threshold 2
	-0.870
	-6.818
	-0.395
	-2.309

	Threshold 3
	0.146
	1.148
	0.798
	4.589

	Threshold 4
	0.916
	7.018
	1.954
	9.929

	Sociodemographic Characteristics

	Population Density
	-0.022
	-1.898
	-0.032
	-2.061

	Proportion of people aged 22 to 29
	-1.321
	-1.965
	---
	---

	Roadway and Traffic Attributes

	Number of flashing beacon sign
	---*
	---
	0.936
	2.347

	Number of school signals
	---
	---
	0.362
	2.474

	Availability of bike lane
	---
	---
	-0.288
	-1.797

	VMT
	0.049
	1.675
	---
	---

	Built Environment

	Number of commercial centers
	-0.149
	-1.936
	---
	---

	Number of hospitals
	---
	---
	-0.189
	-1.795

	Number of park and recreational centers
	---
	---
	0.139
	2.802

	Land-use Characteristics

	Urban area
	-0.046
	-2.466
	-0.076
	-2.079

	Residential area
	---
	---
	0.066
	2.560

	Exposure Measures

	Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)]
	-1.063
	-2.756
	---
	---

	Total bicycle trip demand per household [Total bicycle daily trip demand in a TAZ/Total number of household in a TAZ]
	---
	---
	-0.005
	-1.040


*variable insignificant at 90% significance level


[bookmark: _Toc486593742]TABLE 7 Predictive Performance Evaluation
	In sample predictive fit measures for Demand Models

	Models
	Events
	Observed
	Predicted
	Percentage Error

	Pedestrian generator model
	Total Zones with zero trip count
	4007.00
	4006.80
	0.005

	
	Total number of zonal trips
	1260090.60
	1255479.90
	0.366

	
	Average zonal trips
	265.45
	264.48
	0.365

	Pedestrian attractor model
	Total Zones with zero trip count
	4010.00
	4010.49
	-0.012

	
	Total number of zonal trips
	1242270.50
	1236690.70
	0.449

	
	Average zonal trips
	261.70
	260.52
	0.451

	Bicycle generator model
	Total Zones with zero trip count
	4574.00
	4573.82
	0.004

	
	Total number of zonal trips
	166248.45
	165671.36
	0.347

	
	Average zonal trips
	35.02
	34.90
	0.343

	Bicycle attractor model
	Total Zones with zero trip count
	4581.00
	4581.18
	-0.004

	
	Total number of zonal trips
	165845.77
	171959.97
	-3.687

	
	Average zonal trips
	34.94
	36.22
	-3.663

	In sample predictive fit measures for Count Models

	Models
	Mean crash
	MPB
	MAD

	
	Observed
	Predicted
	
	

	Pedestrian
	0.31
	0.33
	-0.80
	11.49

	Bicycle
	0.21
	0.22
	-0.26
	6.39

	In sample predictive fit measures for Fractional Split Models

	Models
	Mean proportion
	MAPE
	RMSE

	
	Severity Levels
	Observed
	Predicted
	
	

	Pedestrian
	Proportion of property damage only crashes
	0.113
	0.113
	0.003
	0.526

	
	Proportion of minor injury crashes
	0.237
	0.237
	
	

	
	Proportion of non-incapacitating injury crashes
	0.382
	0.381
	
	

	
	Proportion of incapacitating injury crashes 
	0.183
	0.184
	
	

	
	Proportion of fatal crashes
	0.085
	0.084
	
	

	Bicycle
	Proportion of property damage only crashes
	0.115
	0.115
	0.005
	0.2912

	
	Proportion of minor injury crashes
	0.320
	0.320
	
	

	
	Proportion of non-incapacitating injury crashes
	0.407
	0.407
	
	

	
	Proportion of incapacitating injury crashes 
	0.141
	0.141
	
	

	
	Proportion of fatal crashes
	0.017
	0.017
	
	




TABLE 8 Policy Scenarios
	Scenarios
	Description of scenarios
	Study region
	Number of zones
	Change in zonal demand
	Change in crash count
	Change in crash severity proportions

	
	
	
	
	
	
	Fatal Crash

	
	
	
	
	Pedestrian
	Bicycle
	Pedestrian
	Bicycle
	Pedestrian
	Bicycle

	Scenario 1
 
	50% reduction in traffic volume with 2 miles buffer area of different central business district (CBD)
	All zones
	4747
	0.164
	0.043
	-0.63
	3.144
	-4.967
	-0.066

	
	
	Zones within 2 miles buffer of CBD
	703
	1.804
	0.389
	-3.266
	-2.889
	-4.687
	-0.045

	Scenario 2
 
	30% reduction in traffic volume with 2 miles buffer area of different central business district (CBD)
	All zones
	4747
	0.096
	0.026
	-0.437
	3.622
	-4.963
	-0.066

	
	
	Zones within 2 miles buffer of CBD
	703
	1.060
	0.231
	-2.120
	-0.274
	-4.664
	-0.045

	Scenario 3
 
	15% reduction in traffic volume with 4 miles buffer area of different central business district (CBD)
	All zones
	4747
	0.125
	0.030
	-0.482
	3.554
	-4.963
	-0.066

	
	
	Zones within 4 miles buffer of CBD
	1375
	0.498
	0.090
	-1.280
	1.680
	-4.55
	0.003

	Scenario 4
 
	5% reduction in traffic volume with 6 miles buffer area of different central business district (CBD)
	All zones
	4747
	0.071
	0.013
	-0.34
	3.935
	-4.96
	-0.066

	
	
	Zones within 6 miles buffer of CBD
	1985
	0.166
	0.027
	-0.589
	3.281
	-4.891
	0.015

	Scenario 5
	All zones have sidewalk and the new proposed 
	All zones
	4747
	-0.438
	0.108
	-1.360
	4.367
	-1.013
	-0.063

	Scenario 6
	50% increase in existing sidewalk length
	All zones
	4747
	0.705
	0.289
	0.985
	4.436
	-1.111
	-0.071

	Scenario 7
	15% reduction in zonal average maximum speed
	All zones
	4747
	1.407
	0.000
	-0.143
	0.000
	-1.107
	0.000

	Scenario 8
	25% reduction in zonal average maximum speed
	All zones
	4747
	2.389
	0.000
	-0.150
	0.000
	-1.135
	0.000

	Scenario 9
	15% reduction in zonal proportion of 3+lane road
	All zones
	4747
	0.287
	0.576
	-0.138
	4.436
	-1.077
	-0.068

	Scenario 10
	25% reduction in zonal proportion of 3+lane road
	All zones
	4747
	0.484
	0.337
	-0.143
	4.415
	-1.085
	-0.066


 
TABLE 9 Trip demand matrices by county level for the years 2010 and 2015
	PEDESTRIAN

	County
	Trip origin demand
	Trip destination demand
	Total trip demand

	
	2010
	2015
	% change
	2010
	2015
	% change
	2010
	2015
	% change

	Brevard
	154936.5
	153610.7
	-0.9
	149804.8
	144628.0
	-3.5
	304741.3
	298238.7
	-2.1

	Flagler
	26241.5
	24853.4
	-5.3
	23153.7
	22261.3
	-3.9
	49395.1
	47114.6
	-4.6

	Indian River
	12066.8
	12169.7
	0.9
	11826.2
	11663.3
	-1.4
	23892.9
	23833.0
	-0.3

	Lake
	67309.3
	68943.5
	2.4
	66545.9
	65799.1
	-1.1
	133855.2
	134742.6
	0.7

	Marion
	95199.9
	93593.9
	-1.7
	89602.9
	89575.3
	0.0
	184802.8
	183169.2
	-0.9

	Orange
	348163.9
	342918.6
	-1.5
	355169.8
	349371.2
	-1.6
	703333.7
	692289.8
	-1.6

	Osceola
	67651.6
	68006.6
	0.5
	65181.7
	64571.8
	-0.9
	132833.3
	132578.4
	-0.2

	Polk
	185959.9
	195780.4
	5.3
	195543.4
	205340.1
	5.0
	381503.4
	401120.4
	5.1

	Seminole
	75690.1
	79112.2
	4.5
	79212.2
	80228.2
	1.3
	154902.3
	159340.4
	2.9

	Sumter
	32272.8
	30488.9
	-5.5
	26598.9
	25489.9
	-4.2
	58871.7
	55978.8
	-4.9

	Volusia
	189987.7
	189005.7
	-0.5
	174051.2
	172072.2
	-1.1
	364038.8
	361077.9
	-0.8

	Total
	1255480.0
	1258483.6
	0.2
	1236691.0
	1231000.4
	-0.5
	2492171.0
	2489483.9
	-0.1

	BICYCLE

	County
	Trip origin demand
	Trip destination demand
	Total trip demand

	
	2010
	2015
	%change
	2010
	2015
	%change
	2010
	2015
	%change

	Brevard
	21663.6
	21822.8
	0.7
	23172.9
	23344.3
	0.7
	44836.5
	45167.1
	0.7

	Flagler
	2940.3
	2964.9
	0.8
	2634.0
	3031.2
	15.1
	5574.4
	5996.1
	7.6

	Indian River
	1735.3
	1734.3
	-0.1
	999.5
	998.4
	-0.1
	2734.7
	2732.8
	-0.1

	Lake
	10784.3
	10676.6
	-1.0
	9977.6
	9774.7
	-2.0
	20761.9
	20451.2
	-1.5

	Marion
	5238.3
	5448.9
	4.0
	4226.3
	4344.1
	2.8
	9464.5
	9793.0
	3.5

	Orange
	57661.9
	60551.9
	5.0
	64084.7
	68918.9
	7.5
	121746.7
	129470.8
	6.3

	Osceola
	4026.1
	4308.8
	7.0
	3875.6
	3974.1
	2.5
	7901.8
	8282.9
	4.8

	Polk
	10931.1
	11589.5
	6.0
	10687.7
	11851.7
	10.9
	21618.8
	23441.2
	8.4

	Seminole
	12179.4
	12529.5
	2.9
	11558.9
	11903.0
	3.0
	23738.3
	24432.5
	2.9

	Sumter
	553.1
	614.6
	11.1
	817.9
	1019.8
	24.7
	1371.0
	1634.4
	19.2

	Volusia
	37958.0
	38199.6
	0.6
	39924.9
	41457.9
	3.8
	77882.8
	79657.5
	2.3

	Total
	165671.4
	170441.4
	2.9
	171960.0
	180618.0
	5.0
	337631.3
	351059.4
	4.0




APPENDIX A: Hurdle Negative Binomial (HNB) Model Framework
The Hurdle approach is generally used for modeling excess sampling zeroes. It is usually interpreted as a two-part model: the first part is a binary response structure modeling the probability of crossing the hurdle of zeroes for the response and the second part is a zero-truncated formulation modeled in the form of standard count models (Poisson or NB). Thus, the probability expression for the Hurdle model can be expressed as:
 	(1)
where  is the index for TAZ  and  is the index for non-motorist (pedestrian and bicycle) trips occurring daily in a TAZ .
In Equation 1, is the probability of zero trip count and is modeled as a binary logit model as follows:
	(2)
where  is a vector of attributes and  is a conformable parameter vector to be estimated.
 in Equation 1 can be presented as NB expression in forming Hurdle NB (HNB) regression model. Given the setup as presented in Equation 1, the probability distribution for NB can be written as:
	(3)
where  is the Gamma function and  is the NB dispersion parameter.  is the expected number of daily trips non-motorists are making in TAZ  where represents the overdispersion parameter. We can express  as a function of explanatory variable  by using a log-link function as , where  is a vector of parameters to be estimated. 
Finally, the weighted log-likelihood function for the HNB model can be written as:
 	(4)
The daily trip weight at the zonal level is generated by using the following formulation:
	  (5)
where  represents the index for trip. 
The reader should note that in computing the weighting factor, as presented in Equation 5, we divided the yearly person trip factor, as obtained from NHTS data, by 365 to convert the yearly trip count to a daily trip count. Substitution of  by Equation 3 into Equation 4 results HNB model. The model presented in Equation 4 is estimated by using a maximum likelihood approach.

APPENDIX B: Negative Binomial (NB) Model Framework
The focus of our study is to model pedestrian crash frequency and bicycle crash frequency at zonal level by employing NB modeling framework. The econometric framework for the NB model is presented in this section.

Let  be the index for TAZ  and  be the index for crashes occurring over a period of time in a TAZ . The NB probability expression for random variable  can be written as:
	
	


where,  is the Gamma function,  is the NB dispersion parameter and  is the expected number of crashes occurring in TAZ  over a given period of time. We can express  as a function of explanatory variable  by using a log-link function as: , where  is a vector of parameters to be estimated. Finally, the log-likelihood function for the NB model can be written as:
	
	


The parameters to be estimated in the model of equation 2 are: and . The parameters are estimated using maximum likelihood approaches. 

APPENDIX C: Ordered Probit Fractional Split (OPFS) Model Framework
The formulation for the OPFS model for modeling the proportion of crashes by severity is presented in this section. The reader would note that conventional maximum likelihood approaches are not suited for factional proportion models. Hence, we resort to a quasi-likelihood approach. Let q (q = 1, 2, …, Q) be an index to represent TAZ, and let k (k = 1, 2, 3, …, K) be an index to represent severity category. The latent propensity equation for severity category at the q th zone:
	, 
	(1) 






This latent propensity  is mapped to the actual severity category proportion  by the  thresholds ( and).  is an (L x 1) column vector of attributes (not including a constant) that influences the propensity associated with severity category.  is a corresponding (L x 1)-column vector of mean effects. is an idiosyncratic random error term assumed to be identically and independently standard normal distributed across zones q.

Model Estimation


The model cannot be estimated using conventional Maximum likelihood approaches. Hence we resort to quasi-likelihood based approach for our methodology. The parameters to be estimated in the Equation (2) are , and  thresholds. To estimate the parameter vector, we assume that 
	

	(2) 




in our model takes the ordered probit probability () form for severity category k defined as 
	

	(3) 



The proposed model ensures that the proportion for each severity category is between 0 and 1 (including the limits). Then, the quasi-likelihood function, for a given value of vector may be written for site q as:
	

	(4) 



where G(.) is the cumulative distribution of the standard normal distribution and  is the proportion of crashes in severity category k. The model estimation is undertaken using routines programmed in Gauss matrix programming language. 
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