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Abstract 

In this note, a flexible approach to allow for variation in the impact of traffic volume in the 

estimation of Safety Performance Functions (SPFs) is proposed. The approach generalizes a 

recently proposed approach by Gayah and Donnell (2021) (GD) titled “Estimating safety 

performance functions for two-lane rural roads using an alternative functional form for traffic 

volume”. GD approach proposes a multiple regime structure for AADT impact while explicitly 

constraining the impact at the regime threshold to be the same.  While the GD approach provides 

a flexible structure, the framework as proposed calls for careful judgement for threshold selection 

and additional model estimation complexity for the AADT constraint. The current note establishes 

the equivalence of the proposed approach with the GD approach and subsequently presents a more 

flexible model structure that improves on the GD approach. Subsequently, we document the 

advantages of our proposed approach in terms of model estimation, parameter significance testing, 

flexibility to consider multiple traffic volume ranges and ease of accommodating random 

parameters for analysis. Finally, we present potential directions for future research.  
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Background  

Traffic volume — typically represented using Average Annual Daily Traffic (AADT) — are 

considered in Safety Performance Function (SPF) estimation employing a natural logarithm 

transformation. The natural logarithm of the expected number of crashes on a facility i (𝜇𝑖) is 

specified as a function of AADT (in log form) and other explanatory variables using a log-link 

function as follows: 

𝑙𝑛⁡(𝜇𝑖) = β𝐴𝐴𝐷𝑇 𝑙𝑛(AADT𝑖) + γ𝒛𝑖 + 𝜀𝑖 (1)  

where β𝐴𝐴𝐷𝑇  represents the parameter for the natural logarithm of AADT for facility i, 𝒛𝑖 is a 

vector of other explanatory variables associated with facility 𝑖 including a constant, γ is a vector 

of coefficients to be estimated, and exp(𝜀𝑖) is a gamma distributed error term with mean 1 and 

variance 𝛼.  

Traditional SPFs restrict the impact of AADT on crash frequency to remain the same across the 

range of AADT1. However, as highlighted in several research efforts, it is possible that the 

influence of AADT on crash frequency might vary with AADT. Towards addressing this 

limitation, Gayah and Donnell (2021) – referred to as GD in the rest of the note – recently proposed 

an alternative functional form for considering AADT in estimating SPFs. The GD functional form 

facilitates different elasticities of traffic volume for different traffic volume ranges and addresses 

the limitations of approaches documented in prior research (Shankar et al., 1998; Ulfarsson and 

Shankar, 2003; Anastasopoulos and Mannering, 2009; Venkataraman et al., 2011; Hauer, 2015; 

see Gayah and Donnell (2021) for more details). It provides a continuous relationship between 

crash frequency and AADT, which more realistically reflects how crash frequencies should vary 

as traffic volume increases. The use of discrete traffic volume ranges also provides natural 

breakpoints to consider how the effects of other features might vary on low- or high-volume roads. 

 

Proposed Approach 

The GD approach assumes that two regimes exist in the crash frequency model. Regime 1 is 

applied when AADT is below the pre-defined AADT threshold, while Regime 2 is applied 

otherwise. To ensure continuity in AADT impact across the regimes at the threshold value, an 

explicit constraint is added to the model estimation process. This process can be extended to three 

or more regimes to accommodate a continuous relationship between safety performance and 

AADT, while allowing the impact of traffic volume to vary across the range of AADT values. 

However, this requires a priori determination of the AADT threshold(s) used to separate the 

regimes. This is far from trivial and involves an iterative procedure. Further, the constrained 

maximization approach places substantial burden for estimating random parameters. Overall, 

while the GD approach provides a flexible structure, the framework as proposed calls for careful 

 
1 The reader would note that several alternative approaches such as a semi-parametric approach or adoption of 

generalized additive models have been proposed to allow for varying impact of AADT in safety literature (for 

example, see Kononov et al., 2011 and Zhang et al., 2012). 



judgement for threshold selection, additional model estimation complexity due to the presence of 

the AADT regime constraint (in particular for random parameter estimation). 

In this note, we propose an approach that offers a simpler process to achieve the objectives sought 

by Gayah and Donnell (2021). The proposed approach subsumes the GD method without any need 

for constrained optimization. Traditional SPFs consider a linear representation of the impact of 

ln (AADT) on crash propensity (𝑙𝑛⁡(𝜇𝑖)) as presented in Equation 1. The assumption of restricting 

the parameter (βAADT) to be the same implies a constant marginal impact or slope for the ln (AADT) 

variable irrespective of AADT value. To address this restriction, in the proposed approach, we 

consider a piece-wise linear representation of the impact our variable of interest (natural logarithm 

of AADT). To elaborate, we consider that the influence of ln (AADT) will stay the same within a 

specified range and the slope of the line can increase or decrease at pre-defined intervals selected 

by the analyst. Consider the following illustrative formulation 

𝑙𝑛⁡(𝜇𝑖) = β𝐴𝐴𝐷𝑇 𝑙𝑛(AADT𝑖) + δ1𝐴𝐴𝐷𝑇𝑖𝑛𝑐1 + δ2𝐴𝐴𝐷𝑇𝑖𝑛𝑐2⁡ + γ𝒛𝑖 + 𝜀𝑖 (2)  

where, the newly added independent variables 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐1and 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐2 are defined as follows 

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐1 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) − 𝑙𝑛(𝑇1)] (3)  

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐2 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) − 𝑙𝑛(𝑇2)] (4)  

and δ1 and δ2 represent the parameters for the newly created independent variable to capture the 

changes to the impact of AADT variable (𝑙𝑛(AADT𝑖)); T1 and T2 represent the 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) 

threshold points where the slope is expected to change.  

To facilitate the reader’s understanding, the traditional and proposed model forms are shown in 

Figure 1. The x-axis represents the 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) while the y-axis represents crash propensity 

(𝑙𝑛⁡(𝜇𝑖)). The figure on the left presents the traditional model where the marginal effect (or slope) 

of the relationship is constant. In the figure on the right, we present the more flexible model 

structure. Specifically, at 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) value = T1 the slope changes from βAADT to βAADT + δ1 and is 

associated with 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐1. A positive value for δ1 would imply an increase in the marginal effect 

of AADT (as shown in the figure for illustrative purposes) while a negative value would represent 

a reduction in marginal effect of AADT. A second shift in marginal effect is considered at T2. The 

overall slope beyond T2 is (β1 + δ1+ δ2). The approach can accommodate additional changes in 

slope in a similar manner. The reader would note that the newly created independent variables 

(such as 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐1 and 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐2) are non-negative only after the corresponding threshold is 

crossed and 0 otherwise. The proposed approach has been employed for variables in their linear 

form for relaxing the constant slope assumption for the contribution of travel time to mode choice 

utility (see Pinjari and Bhat, 2006). The change in slope at the thresholds (such as T1 and T2) can 

be attributed to differences in driver behavior across facilities with different volumes (increased 

caution exercised in locations with increasing volumes), potential presence of custom design 

features closely associated with traffic volumes and other AADT associated factors.  

  



 

 

 

 

Figure 1:  Illustration of the traditional SPF and the proposed SPF



Empirical Analysis 

In this section, we present the results of the model estimated employing the proposed functional 

form. For the sake of brevity, data preparation and sample characteristics are not presented 

(interested readers can see Gayah and Donnell (2021)). We start with illustrating how the proposed 

model can represent the GD functional form and subsequently present a more flexible model with 

our proposed system.  

 

GD Approach and Proposed Equivalent Model 

The GD approach considers two ranges of AADT employing a single threshold to differentiate the 

impact at AADT = 1900. We illustrate how our proposed framework can replicate this one 

threshold model in our framework. The model results are presented in Table 1. The second column 

panel presents the results from Gayah and Donnell (2021) and the third column panel presents the 

One Threshold framework for our proposed alternative form. The propensity equation and the 

AADT variable employed in the estimation for our proposed form is defined as follows 

𝑙𝑛⁡(𝜇𝑖) = β𝐴𝐴𝐷𝑇 𝑙𝑛(AADT𝑖) + δ1𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_1900⁡ + γ𝒛𝑖 + 𝜀𝑖 (5)  

where 

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_1900 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(AADT𝑖) − 𝑙𝑛(1900)] (6)  

The following observations can be made from the review of the results in Table 1. First, apart from 

the second constant in the GD approach and second AADT related variable in the two systems, all 

other variables are identical across the two systems. The model fit for the two systems is also 

identical. Further, it is easy to illustrate that the other parameters also offer the same mathematical 

relationship across the regimes. For example, the reduced constant for the higher traffic volume 

regime is -4.7634 in the GD approach (1.485 reduction from -6.2488). The drop compensates the 

drop in AADT parameter at an AADT value of 1900 (i.e., (0.7723-0.5756)*ln(1900) = 1.485). 

Also, the new incremental coefficient in the proposed model -0.1967 is the same as the change in 

AADT parameter from the GD system (0.5756 – 0.7723 = -0.1967). The comparison clearly 

illustrates that the two models are identical in how impact of AADT and all other variables are 

accommodated. Second, the number of parameters in Gayah and Donnell (2021) is higher by 1. 

Based on what we have shown above, it indicates that the second constant in GD approach is an 

artifact of the specification and not an additional degree of freedom. Finally, given the nature of 

the separate regime model in the GD approach, the AADT coefficient for both regimes will be 

significant and quite likely different in most cases. However, this does not establish that the 

difference is statistically significant. In our proposed framework, the comparison is more 

straightforward. If the parameter for 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_1900 is statistically insignificant then one can 

conclude there is no reason for using the different AADT ranges. The ease of undertaking this 

statistical test is of value to analysts testing if AADT impact is indeed different across different 

ranges.  

 



Flexible version of the Proposed Model 

The proposed system can be employed to test several AADT ranges. For this exercise, we 

considered AADT values of 500, 1000, 2000, 5000 and 10,000 as thresholds. The exact 

independent variables generated and considered in our model estimation include: 

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_500 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) − 𝑙𝑛(500)] (7)  

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_1000 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) − 𝑙𝑛(1000)] 
(8)  

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_2000 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(𝐴𝐴𝐷𝑇) − 𝑙𝑛(2000)] 
(9)  

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_5000 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(𝐴𝐴𝐷𝑇) − 𝑙𝑛(5000)] 
(10)  

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_10000 = ⁡𝑀𝑎𝑥[0, 𝑙𝑛(𝐴𝐴𝐷𝑇) − 𝑙𝑛(10000)] 
(11)  

The final model results with this specification are presented in Table 2. From the results, we can 

observe that only two of the five tested variables are statistically significant. The results indicate 

that there exist three ranges of AADT impact: 0-2000, 2000-5000 and above 5000. The coefficients 

associated with AADT within these ranges can be computed as 0.7998, 0.4522 (0.7998 - 0.3476) 

and 0.7799 (0.7998 - 0.3476 + 0.3277). The flexible system significantly improved the log-

likelihood compared to the one threshold system. The log-likelihood test value comparing the two 

model systems is 2 * (-19525.262+19531.932) = 13.34; a value higher than the corresponding ψ2 

test-statistic for any level of significance for one degree of freedom. 

 

Advantages of the Proposed Framework 

The proposed approach offers several advantages. First, the proposed approach does not require 

any additional infrastructure to estimate the model. Unlike the GD approach, which requires a 

constraint to be included in the model estimation, the proposed model can be estimated with 

currently employed software for SPF estimation without any modification. The approach requires 

only an addition of independent variables to allow for 𝑙𝑛(𝐴𝐴𝐷𝑇𝑖) impact to vary across its range 

as shown in equations 3 and 4. Second, the determination of whether the impact changes beyond 

a threshold value is relatively straightforward. The t-statistic of the parameters (such as δ1 and δ2 

in Equation 2) for the new independent variables (such as 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐1and 𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐2) provide a 

clear indication of the parameter significance. Thus, the analyst can easily evaluate if the proposed 

additional parameter results represent a significant change in AADT impact. The t-statistic based 

evaluation can also be augmented with a likelihood ratio test2 to confirm the findings. In most 

empirical cases, the t-statistic evaluation and likelihood ratio test are closely aligned. The 

computation of such comparisons for the GD approach will be far from straight forward and would 

 
2 The likelihood ratio test statistic is computed as -2 [LR – LUR] where LR represents the restricted model and LUR 

represents the unrestricted model (model with higher number of parameters).  The computed statistic is compared to 

𝜒2distribution with K degrees of freedom where K is the difference in the number of parameters in the two models 

(see Wilks, 1938).  



require complex procedures for hypothesis testing. Third, as opposed to the GD approach, 

consideration of multiple AADT ranges entails only small incremental computation in the form of 

independent variable generation. To elaborate, the analyst will only need to generate additional 

independent variables as illustrated in Equations 7-11 to examine changes to AADT parameter in 

their empirical context. Finally, the flexibility to accommodate multiple thresholds might increase 

analyst burden in determining the appropriate number of thresholds and the actual threshold 

values. The analyst will need to draw on their experience to identify the number of thresholds and 

cut-off points. A useful approach would be to plot the AADT frequency distribution and identify 

natural cut-off points in the data. We recommend considering up to 4 cut-off points for typical data 

[resulting in 5 ranges of AADT]. After determining the cut-off points, the model can be estimated 

relatively easily with additional independent variables (following equations 7-11). The variables 

included should be evaluated for statistical significance using the t-statistic or the likelihood ratio 

test. At the same time, given the flexible nature of the proposed approach, differences in the 

number and cut-offs are likely to result in only smaller overall changes to AADT impact across 

the study region.  

 

Consideration of Unobserved Heterogeneity 

The proposed framework is focused on simplifying the GD paper framework for estimating AADT 

parameters for different ranges. The current formulation of the GD approach employs a constraint 

maximization framework for model estimation. Within this framework, estimating random 

parameters that satisfy the constraint across regimes is far from straightforward. For example, let 

us consider random parameters for each of the AADT parameter across the two regimes. To 

estimate the model, the constraint that AADT parameters from different regimes need to be the 

same at the threshold value needs to be satisfied. Given the usual unbounded nature of the random 

parameters (such as those that arise from a multivariate normal distributional assumption), it is not 

possible to test the constraint for every realization of the random parameter. Traditional estimation 

approaches for RP will estimate the constraint maximization framework over a set of realizations 

(say 500-1000 draws). However, matching the constraint for these draws does not ensure that the 

constraint will be met for all possible realizations. To elaborate, it is not possible to estimate the 

simulated probability for all realizations of the random parameters to ensure that the constraint is 

met. Hence, overlaying random parameters could be analytically infeasible in the GD approach. 

The proposed approach in our note by eliminating the need for constrained optimization, 

circumvents the problem and allows for employing the approaches routinely employed for 

estimating random parameters. 

The reader would note that recent research in accommodating for unobserved heterogeneity 

can be overlaid on the proposed model specification to accommodate for the influence of 

unobserved factors. The methods to be considered include random parameters approach, random 

parameters with heterogeneity in means and variances approach, latent segmentation methods, and 

latent segmentation methods with random parameters in segments (see for example 

Anastasopoulos and Mannering, 2009; Xiong and Mannering, 2013; Yasmin et al., 2014; 

Mannering et al., 2016; Behnood and Mannering, 2016; for a recent review of literature on 

https://www.sciencedirect.com/science/article/pii/S2213665716300100?casa_token=GHUNd2ipPVIAAAAA:u1d9obCoxJ_LiQCv9pcnc2T_nItsDkmZQys3tbHBipGMCuLQNg-i39xsJpKecaAQKWcyMmw#bib13


unobserved heterogeneity see Bhowmik et al., 2021). More recently, there is also growing 

recognition of the importance of temporal stability of parameters in safety literature as documented 

in Mannering (2018). The approaches accounting for temporal instability include Markov 

switching models, subsample-based model comparisons and scaled model frameworks (for 

example see Malyshkina et al. 2009; Marcoux et al., 2018; Tirtha et al., 2020; Islam and 

Mannering, 2021; Yan et al., 2021). The approaches employed in these studies can also be 

embedded within our proposed approach easily. Finally, analysts considering advanced model 

structures are encouraged to consider recent research on prediction with random parameter model 

systems (Hou et al., 2021a; Xu et al., 2021; Hou et al., 2021b).  

While estimating random parameters is beneficial, the analyst should recognize the 

inherent challenges with the estimation process. The estimation of fixed parameters model is easy 

and accurate. The process of estimating random parameters requires simulated maximum 

likelihood estimation as the probability functions are no longer analytically tractable. Hence, even 

with an adequate number of random draws for estimation, the likelihood function is still an 

approximation. The simulation-based estimation can run into challenges particularly in gradient 

and hessian computation when many random parameters are simultaneously considered or in cases 

where the multidimensional log-likelihood function is flat near the optimal region (see Bhat, 2011 

for a detailed discussion). In such scenarios, pinning down the value of the random parameter is 

not easy and sometimes can lead to non-global optima. Hence, it is beneficial to estimate the best 

fixed parameter model and then augment the model with random parameters (drawing on earlier 

work cited above). This approach reduces the potential complexity involved by reducing the 

number of random parameters being estimated simultaneously. 

 

Conclusion  

The brief note presented a flexible approach to allow for variation in the impact of AADT across 

different ranges of AADT. The approach generalizes a recently proposed approach by Gayah and 

Donnell (2021). The note establishes the equivalence of the proposed approach with Gayah and 

Donnell (2021) and subsequently presents a more flexible model structure that improves on the 

Gayah and Donnell (2021) approach. We document the advantages of our proposed approach in 

terms of model estimation, parameter significance testing and the flexibility to consider multiple 

AADT ranges for analysis. Subsequently, we also discuss how the proposed methodology 

addresses the limitation of GD approach in accommodating for unobserved heterogeneity and thus 

can be easily extended to accommodate for unobserved heterogeneity and temporal instability. 

Finally, it would be interesting for future research efforts to compare the proposed approach with 

semi-parametric approaches or generalized additive models that offer alternative approaches that 

allow for varying impact of AADT. For the comparison, it might be beneficial to employ a 

comprehensive experimental design framework for simulating data generated using a wide range 

of independent variable distributions (see Eluru, 2013; Bhowmik et al., 2021; Xu et al., 2021 for 

example studies employing simulation for model comparison). 
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Table 1: Model Estimation Results for One Threshold Systems 

Coefficient 

Gayah and Donnell (2021) One Threshold 

Coefficient  Std. error p-value Coefficient  Std. error p-value 

Constant when traffic volume lower 

than threshold 
-6.2488 0.2369 <0.001 --- --- --- 

Constant when traffic volume 

higher than threshold 
-4.7634 0.2039 <0.001 --- --- --- 

Constant --- --- --- -6.2488 0.2369 <0.001 

Natural log of traffic volume (lower 

than threshold) [veh/day] 
0.7723 0.0323 <0.001 --- --- --- 

Natural log of traffic volume 

(greater than threshold) [veh/day] 
0.5756 0.0248 <0.001 --- --- --- 

ln(𝐴𝐴𝐷𝑇𝑖) --- --- --- 0.7723 0.0323 <0.001 

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_1900 --- --- --- -0.1967 0.0471 <0.001 

Natural log of segment length [mi] 0.8032 0.0366 <0.001 0.8032 0.0366 <0.001 

Presence of a passing zone 

[1 if present, 0 otherwise] 
-0.1274 0.0244 <0.001 -0.1274 0.0244 <0.001 

Presence of shoulder rumble strips 

 [1 if present, 0 otherwise] 
-0.1096 0.0540 0.042 -0.1096 0.0540 0.042 

Access density [access points/mi] 0.0108 0.0009 <0.001 0.0108 0.0009 <0.001 

Curve density [curves/mi] 0.0398 0.0059 <0.001 0.0398 0.0059 <0.001 

Total degree of curvature per mile 

along the segment [deg/100 ft/mile] 
0.0014 0.0003 <0.001 0.0014 0.0003 <0.001 

Roadway segment in Bradford 

county [1 if yes, 0 otherwise] 
0.1043 0.0286 <0.001 0.1043 0.0286 <0.001 

Roadway segment in Lycoming or 

Montour counties  

[1 if yes, 0 otherwise] 

0.0985 0.0313 <0.001 0.0985 0.0313 <0.001 

Roadway segment in Sullivan or 

Union counties  

[1 if yes, 0 otherwise] 

-0.1317 0.0382 <0.001 -0.1317 0.0382 <0.001 

Over-dispersion parameter 0.4773 0.0262 <0.001 0.4773 0.0262 <0.001 

AADT threshold 1900 1900 

Log-likelihood at convergence -19531.932 -19531.932 

 



Table 2: Flexible Model Estimation Results for Multiple Thresholds 

Coefficient 
Multiple Thresholds 

Coefficient 

estimate 
Std. error p-value 

Constant -6.4219 0.2373 <0.001 

Natural log of segment length [mi] 0.7999 0.0366 <0.001 

ln(𝐴𝐴𝐷𝑇𝑖) 0.7998 0.0325 <0.001 

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_2000 -0.3476 0.0626 <0.001 

𝐴𝐴𝐷𝑇𝑖_𝑖𝑛𝑐_5000 0.3277 0.0884 <0.001 

Presence of a passing zone 

[1 if present, 0 otherwise] 
-0.1224 0.0244 <0.001 

Presence of shoulder rumble strips 

[1 if present, 0 otherwise] 
-0.1275 0.0544 0.019 

Access density [access points/mi] 0.0106 0.0009 <0.001 

Curve density [curves/mi] 0.0404 0.0059 <0.001 

Total degree of curvature per mile along the segment 

[deg/100 ft/mile] 
0.0014 0.0003 <0.001 

Roadway segment in Bradford county [1 if yes, 0 

otherwise] 
0.0993 0.0287 0.001 

Roadway segment in Lycoming or Montour counties 

[1 if yes, 0 otherwise] 
0.0910 0.0313 0.004 

Roadway segment in Sullivan or Union counties 

[1 if yes, 0 otherwise] 
-0.1504 0.0386 <0.001 

Over-dispersion parameter 0.4733 0.0262 <0.001 

Log-likelihood at convergence -19525.262 

 


