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ABSTRACT 

In this study, we demonstrate the development of a methodology for simulating transit bus 

ridership and GHG emissions (in CO2 equivalent) across a network of 200 bus lines in the city of 

Montreal, Canada. The current study estimates ridership and emissions at a micro level i.e. at the 

disaggregate stop level for 24 hours of a typical weekday for all the bus lines (and their trips) in 

the bus network of Montreal. The disaggregate level simulation process incorporates for 

specificities such as vehicle type, age, fuel, and passenger load. The micro-simulation platform 

developed has three embedded modules: (1) stop level boarding and alighting, (2) bus occupancy 

determination, and (3) disaggregate emission estimation. Our simulation allows us to estimate 

emissions for individual buses while running as well as while idling at bus stops. The proposed 

model system provides measures of per capita emissions (total emissions/total boardings), per km 

emissions (total emissions/total kms travelled), and per person km emissions (total emissions/total 

person kms travelled on bus transit). To further illustrate the applicability of the proposed study, 

we conducted several policy scenario analyses. We investigated the effect of a 20 percent 

systemwide increase in ridership and observed a 1.1% increase in total emissions and a 13% 

decrease in per capita emissions. We estimated the effects of decreasing the frequency of low 

occupancy buses and increasing the frequency of high occupancy buses as well and observed that 

these frequency changes are associated with proportional changes in emissions.   

 

Keywords: transit bus emissions, MOVES, air pollution, greenhouse gases, transit ridership, 

emission modeling  
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1. INTRODUCTION 

Overdependence on automobiles for travel has resulted in a vast array of negative consequences 

including congestion, poor health outcomes, traffic crashes, smog, air pollution, and greenhouse 

gas (GHG) emissions (Santos et al., 2010a). Development of an efficient intermodal public 

transportation system comprised of railways (commuter rail, light rail, high-speed rail, inter-urban 

rail), metro (underground subway), buses (regular buses, articulated buses), and ferries offer a 

unique and promising solution for mitigating the different road traffic externalities (Santos et al., 

2010b). Therefore, not surprisingly, many urban regions are either enhancing or considering 

improvements to their existing public transportation infrastructure to address the private vehicle 

use challenge (for example, see transportation plans of Montreal (Ville de Montreal, 2008) and 

Toronto (Get Toronto Moving, 2014)). Positive impacts of public transit, particularly, in the 

reduction of harmful emissions such as CO2 have been reported in the literature (Givoni et al., 

2009; Chester and Horvath, 2009; Lau et al., 2011). It has also been reported that a few percentage 

point increase in public transit’s mode share could lead to considerable GHG reductions (Bailey, 

2007). Moreover, mass transit systems encourage more resource efficient land use and personal 

activity patterns (Bailey et al., 2008).  

The current study contributes to a burgeoning literature on emissions associated with public 

transit by developing an urban regional level micro-simulation model for transit bus emissions. 

While transit in general is an environmentally friendly and sustainable transportation mode, owing 

to the variations in passenger load, service type, fuel type, weather, time of the day, road grade, 

vehicle configuration and type, and vehicle age, the emissions output may vary substantially (Alam 

et al., 2014; Lau et al., 2011). A major portion of the transit bus emission results from the 

combustion of fuels during vehicle operation. These include: (1) combustion of fuel during 

transport of passengers between destinations (via bus stops); (2) combustion of fuel while idling 

(allowing for boarding and alighting of passengers); and (3) combustion of fuel while driving with 

an empty vehicle, where such driving is a direct result/requirement of transporting passengers such 

as arriving from the bus depot to the bus route starting point. However, there is a paucity of 

literature that attempts to quantify and understand the emissions generated by bus transit at the 

level of an entire system. In our study, we attempt to improve the methodology for bus transit 

emission evaluation by undertaking disaggregate level analysis of bus transit emissions in 

Montreal, Canada. 

The overall methodology involves the development of a microsimulation platform that 

considers bus transit emissions for all bus routes and all scheduled trips by simulating boarding 

and alighting at each stop allowing us to simulate passenger ridership at the finest resolution. 

Disaggregate boarding information augmented with vehicle type and configuration, vehicle age 

and fuel type allows us to identify accurate emission factors (EFs) for emission computation. The 

proposed framework is employed to evaluate bus emissions for all bus routes in the Montreal 

region. Further, based on ridership numbers and emissions computed, several useful emission 

indicators are developed. To illustrate the value of the proposed simulator, several scenario 

analyses are considered: (a) effect of fixed percentage (20%) increase in ridership on emissions, 
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(b) effect of reducing transit bus frequency in low use bus lines, and (c) effect of increasing transit 

bus frequency in high use bus lines. 

The rest of the paper is organized as follows. Section 2 provides a brief literature review. 

In Section 3, study area, data source and methodology are described in detail. The estimation 

results are presented in Section 4. Section 5 concludes the paper and presents directions for future 

research. 

 

2. LITERATURE REVIEW 

Traffic-related air pollution is a byproduct of the combustion process that occurs in the majority 

of automobiles, buses and trucks, producing a host of pollutants such as particulate matter, nitrogen 

oxides (NOx), volatile organic compounds (VOC), and more. A significant amount of research over 

the past few years has linked exposure to the aforementioned pollutants with a host of chronic and 

acute health effects (Brauer et al., 2008; Gan et al., 2012; Selander et al., 2009). Thus, there is 

growing acceptance of the importance of improving urban air quality in transportation and health 

research communities. Towards improving air quality, an accurate quantification of emissions is 

absolutely critical. The transportation field has made substantial progress in recent years in 

developing quantitative frameworks that estimate disaggregate level automobile emissions 

accounting for the influence of travel patterns, vehicle characteristics (such as age, type and fuel 

type), and land use patterns on automobile emission outputs (Sider et al., 2013; Sider et al., 2014; 

Beckx et al., 2013; Beckx et al., 2010; Dons et al., 2011).  Multiple studies have examined bus 

emissions at the urban region level with particular emphasis on bus fleet and fuel decisions for 

various cities including London, Hong Kong and Macau (Chong et al., 2014; Li et al., 2015; Song 

et al., 2018). However, these studies estimate bus emissions at an aggregate level and are unlikely 

to provide detailed person level emissions in the process. Thus, the research on bus emission 

estimation is yet to be on par with private vehicle emission estimation approaches.   

 

  

A summary of earlier studies relevant to our research is presented below. In a majority of 

the studies, researchers investigated operational or lifecycle GHG emissions of transit buses – with 

Chan et al. (2013) reporting that operational emissions make up the largest part of the lifecycle 

emissions for bus fleets without any electric vehicles. An early attempt at inventorying the 

operating transit bus fleet emission was carried out by Regie Autonome des Transports Parisiens, 

the major transit agency in Paris. Using static instrumentation system, installed in 400 buses (10% 

of the fleet), they evaluated the effects of changes in bus type, fuel, age, mileage, and other bus-

dependent conditions on operating emissions (Dolidze, 2007). Studies dealing with operational 

GHG emissions were mostly conducted for the peak traffic periods (morning or afternoon or both) 

to capture the effect of ridership loads as well as the surrounding vehicular traffic. For instance, 

Lau et al. (2011) modeled exhaust emissions for transit buses operated by Toronto Transit 

Commission (TTC), Canada. The methodology involved linking of micro simulated transit 

assignment results with EFs to develop link-based, route-based, and stop based emissions for 

individual buses under varying combinations of age, fuel type, and Sulphur content. Quite 
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intuitively, the busiest routes were associated with the highest total emissions and the highest dwell 

emissions were observed at intermodal transfer stations. On average, bus trips were found to be 

three times more fuel efficient than car trips. However, the highlight of the research findings relates 

to the sensitivity of transit emissions to occupancy rates; a finding which is also documented by 

Chester and Horvath (2009).  

Some researchers attempted to quantify the impact of different traffic control and operation 

techniques on emissions. Amongst others, transit signal priority was reported to reduce GHG 

emissions by 14% in congested conditions (Alam and Hatzopoulou, 2014b) while Alam et al. 

(2014a) observed that bus lanes and express bus services also reduce emissions significantly and 

use of smart card reduces idling emissions. In another study, Maghelal (2011) examined the effects 

of fuel price on transit ridership and CO2 emissions. Specifically, a negative binomial regression 

model was used to study transit ridership and ordinary least squares (OLS) model was utilized to 

estimate CO2 emissions. It was observed that an increase in fuel price increases transit ridership 

and decreases emissions.  

An interesting study was conducted by Diana et al. (2007) where they compared the 

emissions of demand responsive transit service with conventional fixed route transit service by 

making use of hypothetical scenarios composed of varying road networks, service quality, and 

demand densities. It was observed that the demand responsive transit service had lower emissions 

especially under lower demand densities. In another study, Dessouky et al. (2003) evaluated 

lifecycle environmental impacts of demand responsive (paratransit or dial-a-ride) systems using 

simulation. Use of hypothetical scenarios for estimation and visualization of emissions by 

conventional diesel buses was suggested by Li et al. (2009). Another study indicated that the 

implementation of bus rapid transit system in Mexico City, Mexico resulted in a 20% to 70% 

reduction of carbon monoxide (CO), benzene, and particulate matters (PM2.5) due to the lower 

emission rates of the buses and the reduction in commute times (Wohrnschimmel et al., 2008). A 

set of research studies have developed algorithms for optimal fleet allocation of alternative fuel 

vehicles to obtain better environmental benefits (for example see Beltran et al., 2009, and Li and 

Head, 2009).   

 

2.1 Current Study in Context 

Our literature review indicates that transit bus emissions are receiving more attention from the 

emission research community in recent years. Evidently, there is a need to quantify the 

environmental impact and performance of the existing public bus transit systems, so that better 

deployment, operation, and routing strategies can be formulated. Most of the studies conducted in 

the field of bus transit emissions are either micro level i.e. bus/route/corridor level studies or macro 

i.e. aggregate transit system level studies. The micro level studies, while very insightful, provide 

no information on the overall system; thus, it is very hard to generalize findings from one bus route 

to the system level. On the other hand, at a macro level, the data used to evaluate the performance 

of the system is aggregated resulting in ignoring the effects of various factors at a disaggregate 

level. The current study aims to bridge the gap between the micro and macro level studies by 

estimating ridership and emissions at a micro level i.e. disaggregate stop level for 24 hours of a 
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typical weekday for all the bus lines (and their trips) in the bus network of Montreal, Canada. To 

the best of the authors’ knowledge, this is the first attempt to develop such a disaggregate modeling 

framework to evaluate the emissions of a public bus transit system in a large urban metropolitan 

region using detailed stop level boardings and alightings. 

 

3. STUDY REGION AND RESEARCH METHODS 

Our study is set in Montreal, which is the second most populous metropolitan area in Canada with 

3.7 million residents. According to the 2008 Montreal Origin-Destination (OD) survey (AMT, 

2008), 67.8% of trips are undertaken by car, 21.4% by public transit, and 10.8% by active 

transportation (walking and bicycling). The annual transit trips made by the residents of Montreal 

are higher than those made in most major North American cities. The higher share of public transit 

trips can be attributed to the multimodal transit system of Montreal which includes 4 metro lines, 

5 commuter train lines, and over 200 bus lines managed by different travel agencies (Chakour and 

Eluru, 2016; Eluru et al., 2012). In the last 15 years, the transit patronage (bus, metro, train) has 

increased by over 25% for the Montreal Metropolitan Region. The Société de transport de 

Montreal (STM), which serves bus and metro on the Island of Montreal, has reached a record 

transit ridership in 2011 with 405 million trips, exceeding the previous record of the year 1945 

(STM, 2012). Thus, the Montreal metropolitan region with its unique public transit characteristics 

and culture of the region forms an ideal test bed for our analysis. 

Our methodology is divided into the following three modules: (a) ridership simulation for 

boarding and alighting, (b) bus occupancy determination, and (c) emission estimation. In the 

following sub-sections, we describe each of the components in detail.   

 

3.1 Module 1: Stop Level Boarding and Alighting 

At the core of Module 1 is an object oriented programming code written in JAVA to predict 

boardings and alightings at a stop level for the entire metropolitan region. The program predicts 

hourly boardings and alightings based on a series of stop level regression models developed for 

the bus system (a complete description of the models including model structure, data fit measures 

and validation is available in Chakour and Eluru, 2016). The data employed for the model 

development is drawn from data collected by STM. Specifically, three stop level regression models 

for low, medium, and high ridership stops are estimated. The categorization is based on the overall 

daily ridership (boarding + alighting) at the stop. The stops with daily ridership of less than 50 are 

characterized as low use stops; stops with daily ridership between 50 and 250 are characterized as 

medium use stops, and stops with daily ridership of more than 250 are classified as high use stops. 

Then a separate model for each stop category and time of day is developed (see Chakour and Eluru, 

2016 for complete details on the econometric modeling approach and parameters influencing 

ridership) considering the influence of a whole range of transit accessibility, transport 

infrastructure, and built environment factors. Eventually, these models are employed to predict the 

expected number of boardings and alightings at every bus stop for every hour of the day. 

Considering a uniform rate of arrival in the hour, these boardings and aligthings are converted to 

per minute arrivals. In cases with multiple buses arriving at the same stop, the boardings and 
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alightings are pro-rated based on frequency of the buses1.  

 

3.2 Module 2: Bus Occupancy Determination 

The stop level boarding and alighting information is available across all stops for 24 hours from 

the first module. In the second module, these boardings and aligthings are assigned to actual buses. 

The occupancy module starts for a bus route and its first trip as per the bus schedule. Based on the 

vehicle fleet information of STM bus service, a bus type is probabilistically allocated for this 

instance of bus route. Now this bus begins its service from the starting origin on schedule. Based 

on the stop level model, people waiting at the stop, board the bus and the bus occupancy is updated 

accordingly. As the bus arrives at the next stop, based on the stop level boardings and alightings 

predicted, we update the bus occupancy. The calculation of occupancy is done in the following 

manner. Say, a bus with 10 people on board arrived at a stop. According to the ridership model, 

the predicted number of boardings and alightings are 4 and 2, respectively. Hence, the occupancy 

of the bus until the next stop is 10+42=12.  The boardings and alightings at each stop are saved 

so as to calculate the time for idling at the stop. The procedure is repeated at each stop thus updating 

bus occupancy, boardings and alightings at every stop.  

While these steps are repeated across all stops in the leg, several consistency checks are 

incorporated. For example, if the bus is at capacity (determined as 75 for a regular bus and 115 for 

an articulated bus) when it arrives at a particular stop, the passengers are forced to wait for the next 

bus with space. If the bus has no passengers, no alightings are allowed. The reader would note that 

the same bus type is employed for the entire leg of the tour. The process is repeated across all legs 

of the bus route based on its schedule. Once a single bus route has been analyzed, the second bus 

route is chosen for simulation and so on until all buses in the Montreal system are covered. The 

outputs from the ridership module include detailed information on bus occupancy at every stop for 

every route and every leg. The information also includes detailed stop level boarding and alighting 

numbers.  

 

3.3 Module 3: Emission Estimation 

In this module, GHG emissions (in CO2 equivalent) are calculated for each bus line by time of day 

by linking the results of module 2 to EFs. The module connects the bus lines directly to the 

emissions and further computes both active and idle emissions for each bus line at each bus stop. 

 

3.3.1 Emission Factor (EF) Generation 

Bus EFs were generated using MOVES2014 (Motor Vehicle Emission Simulator), the latest 

emissions inventory model developed by the US Environmental Protection Agency (USEPA, 

2010). MOVES has an enriched database for estimating passenger vehicle emissions for both 

average and instantaneous speeds. But in the case of transit buses, it has many limitations (see 

                                                      
1 For example, consider that a stop with predicted hourly boarding of 100 has two routes A and B. Route A has a 

frequency of 4 buses per hour (or a headway of 15 minutes) and Route B has a frequency of 2 buses per hour (or a 

headway of 30 minutes). The ridership is allocated to these routes as follows: Route A = (100/6*4) = 66.67 and 

Route B = (100/6*2) = 33.33. 
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Alam and Hatzopoulou, 2015 for more details). Specifically, when only average speeds are 

available, the MOVES database lacks transit bus specific data and as a result, the estimated 

emissions might be under/over predicted compared to a local context. Recognizing this, we made 

an effort to quantify the extent of the difference between emission estimates using MOVES default 

data and emission estimates generated after embedding local data into the MOVES database.  

Towards that end, the MOVES embedded drive cycles were updated using manually 

collected Montreal specific transit data along eight routes covering a wide variation of built-

environments and road geometries. Local data along these routes were collected during a 6-week 

campaign in 2013 with GPS devices installed on-board transit buses.  Repeated observations were 

conducted at different times of day; each bus route was monitored 6 times in each direction (3 trips 

in the morning and 3 trips in the afternoon periods). To embed our own drive cycles into the 

MOVES database we considered only the drives cycles that were collected for zero-grade links. 

In our data, a total of 1,998 link observations were found having zero grade (1,389 for regular 

buses and 609 for articulated buses) and we grouped them into 25 speed categories with average 

speeds ranging from 1 to 25 mph. For speeds between 3 and 17 mph, at least 50 observations were 

found in each category, while for the other categories at least 10 observations were found.  

For each link-level observation, a cumulative operating mode (opmode)2 distribution was 

developed considering the second-by-second speed profile and onboard passenger number. Later, 

within each speed category the variations among different link-specific cumulative opmode 

distributions were carefully observed. For each average speed category, a median cumulative 

opmode distribution was identified to represent the drive cycle characteristics of all the 

observations in that category. It was calculated using the cumulative opmode distribution of all 

individual drive cycles within this category. Then, in each speed category, one drive cycle was 

selected in such a way that the calculated opmode distribution of that selected drive cycle was the 

closest to the median opmode distribution. Later on, Root mean square error (RMSE)3 for each 

drive cycle was calculated. For each average speed category, the drive cycle having the lowest 

RMSE was selected as the representative drive cycle of that category. Then the selected 25 drive 

cycles for 25 average speed categories were assigned a drivescheduleID. Using the MySQL 

platform, three files in the MOVES2014 database were modified to incorporate this 

drivescheduleID. Figure 1 provides sample of locally generated EFs for a 2013 standard bus on 

urban restricted and unrestricted roads for boarding =40.  

 

                                                      
2 An opmode distribution provides the amount of time that the vehicle has spent under different opmode categories. 

Each opmode is characterized by the combination of vehicle specific power (VSP) and speed. VSP is defined as the 

engine power output per vehicle unit mass and indicates the tractive power needed to haul the vehicle. It is a function 

of instantaneous speed, acceleration, vehicle weight, and road grade as shown in equation 1.  

3 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1 ; where, 𝑦𝑖  is the opmode fraction of the drive cycle at opmodeID ‘𝑖’; ŷ𝑖 is the opmode 

fraction of the median opmode distribution at opmodeID ‘𝑖’ ; ‘𝑖’  is the opmodeID, and 𝑛  is the number of total 

opmodeID which is 23 as MOVES has a total of 23 opmodes. 
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3.3.2 Generating Emission Estimates 

Once the EFs are generated , bus transit emissions are estimated at the stop level for each bus line 

for 24 hours of the day using outputs from module 2. The distances between stops for each bus 

line is calculated using ArcGIS network distance and the time taken to travel between the stops is 

calculated from the difference between the scheduled arrival times (provided by STM) of the buses 

at the stops under consideration. Then, the operating speed of the bus between each bus stop is 

computed by simply dividing the distance by the travel time obtained using the bus schedules. 

Although direct traffic congestion was not considered for speed calculation, it is dependent on the 

realistic time which the bus takes to travel from one stop to another (since in designing the bus 

schedule the arrival times of buses at the stops are set up considering peak and off-peak hour traffic 

conditions). In fact, it varies by time of day depending upon the traffic conditions or other variables 

affecting the travel time between the bus stops. However, congestion or delay due to traffic signal 

or road networks are not explicitly taken into account. The bus type is chosen in Module 2 and 

given the STM bus model distribution, a model year is also probabilistically selected for each bus 

line. Finally, roadway grade and type are then calculated using both GIS and GPS.  

The EF tables contain factors both in grams/mile for running emission and grams/hour for 

idle emissions separated by speed, bus type, bus model year, road type, and bus occupancy. We 

considered zero grade due to relatively flat topography of the island and meteorology data of only 

summer season. Two EF look-up tables were generated: (1) based on the MOVES default drive 

cycles associated with different average speeds, and (2) based on the local drive cycles embedded 

into MOVES to replace the default distributions. Each look-up table includes EFs for two types of 

buses (regular and articulated), two types of road categories (urban restricted and urban 

unrestricted), 72 average speed categories with in increment of 1 mph, 30 model years of buses 

ranging from 1983 to 2013, 75 onboard passenger loads for regular buses, and 125 onboard 

passenger load for articulated buses. A total of 864,000 EFs were generated for all identified 

combinations.  

Given this information, an EF is selected from the EF look up tables described above. Total 

emissions include the sum of both the moving emissions given by the EFs and the idling emissions 

given by idling time. The idling time is considered a function of number of people boarding and 

alighting at the bus stop. However, to ensure the randomness of the process, we assume each 

boarding (alighting) to follow a normally distributed time in seconds with mean of 3 (2) and 

standard deviation of 3 (2). The alighting process is likely to take less time as there is no need to 

swipe or pay for the ticket. Based on the normal random draws, the total times for boarding and 

alighting are computed. The higher of the alighting or boarding time is considered as idling time. 

The emissions procedure is repeated from one stop to another to cover all stops in the leg, all 

instances of a bus route in a day and all bus routes in the region. The process provided as outputs: 

(1) total emissions in the region, (2) total emissions by bus route, and (3) emission information 

that is related to time of day and bus occupancy. 

 

3.4 Performance Measures 

Based on our micro simulation exercise, we can estimate emissions by bus line as well as by time 
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of day. With disaggregate boarding information, more useful emission indicators can be computed. 

To understand the overall emission values, we generate a host of system level indicators. The total 

system level emissions are obtained by aggregating the emissions from all bus lines during the 

time period of interest. Specifically, we compute emissions for the entire day, AM peak period 

(6.30 – 9.30), off peak day period (9.30 – 15.30), PM peak period (15.30 – 18.30), and off peak 

night period (18.30 – 6.30). In addition, we also compute the per capita emissions (total 

emissions/total boardings), per km emissions (total emissions/total kms travelled), and per person 

km emissions (total emissions/total person kms travelled on transit). The last indicator requires the 

knowledge of bus occupancy between each stop. The person kms are computed as a sum of (total 

occupancy * distance between stops) across the entire system. This metric allows us to come up 

with a comparable number to emissions from automobile users. The indicators developed above 

can also be generated at a bus route level or time of day level for identifying inefficiencies in the 

system.  

 

4. RESULTS AND ANALYSIS 

In this section, the base case analysis results are presented first followed by the outcomes of the 

scenario analysis. Our entire emission analysis is based on the output of the ridership model 

embedded in the emission estimation code. Hence, prior to moving on with the emission analysis, 

we validated our ridership model using observed ridership. The accuracy of ridership prediction is 

paramount since it affects the emission calculations directly. Based on our observed ridership from 

operator data and predicted ridership, the difference for boardings and alightings is 2%. For such 

a large micro-simulation process these errors are reasonable. Further, the simulations were 

conducted multiple times to examine the impact of randomness. For the urban region level 

emissions, the system level boarding, person distance travelled and simulated emission estimates 

provided very minor changes across runs. The differences from the mean range from a low of 

0.002% to high of 0.5%.  

 

4.1 Base Case Results 

For the base case, we computed the emission indicators based on two sets of EFs from MOVES: 

default and local. The default emissions rely on the MOVES default values while the local 

emissions correspond to the customized EFs discussed in the previous section. The comparison of 

emissions measures (in CO2 equivalent) - total and average for the entire bus network of Montreal 

indicates that the use of local EFs instead of default MOVES distributions results in an estimate 

of emissions that is approximately 15 percent higher. Given the observed differences, it is 

recommended that EFs be customized for the local jurisdiction whenever possible.  

In order to better understand the spatial and temporal variation of emissions in the region, 

the total computed emissions for AM and PM peak periods are plotted using the “Point Density 

Tool” from ArcGIS. The tool calculates the density from point features (emission) around each 

output raster cell. Figure 2 and Figure 3 represent the plots. A closer inspection of the figures 

reveals that the city center of Montreal has high value of emissions as compared to the rest of city. 

One plausible explanation for the trend is that more bus lines are serving the downtown area 
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because of high ridership. Higher values of emissions were also observed close to intermodal 

transfer points – particularly, metro-bus transfer points. Presumably, increased number of 

boardings and alightings takes place at this intermodal junctions, resulting in high emission from 

buses. Furthermore, a reduction in the emissions can be seen in the suburban areas as compared to 

the downtown area.  

To provide better insight into the base case scenario, we prepared some additional figures. 

Figure 4 presents the distance traveled by the transit buses, total boardings, total emissions, and 

emissions per hour categorized by specific time period of the day. From the figure, it is clear that 

on an hourly basis, peak AM and PM periods contribute larger share of emissions. However, given 

the longer duration of the OPD and OPN time periods, their contribution to total emission is also 

significant. Figure 5 presents the three emission indicators categorized by time of day along with 

total distance traveled by the transit buses and total boardings. As expected, the emissions are 

always higher during AM and PM peak periods while the lowest average emissions in terms of all 

three indicators are observed for the off-peak night period. AM peak period has slightly higher per 

person and per person-kilometer emissions than the PM peak period.  

 

4.2 Scenario Analysis 

To demonstrate the applicability of the platform developed in terms of policy analysis, we 

computed the proposed emission indicators for three policy scenarios. For the first scenario, we 

increased the overall ridership; while for the second and third scenarios, we varied the bus 

frequencies.  

 

4.2.1 Scenario 1: Increase in Ridership 

In order to study the effect of changes in ridership on emissions, the ridership at all the bus stops 

was increased by 20% and emissions were generated at the bus stop level. Afterwards, the 

emissions estimated at the stop level were aggregated at a system level. We observed that the 

increase in ridership resulted in an increase in systemwide emissions. Table 1 provides a 

comparison between total systemwide emissions before and after the increase in ridership. From 

the table, we can see that the total emissions for the day increased by 1.1 percent with a 20 percent 

increase in systemwide boardings and alightings. Also, the average emissions per km increased by 

the same percentage. However, average emissions per capita and average emissions per person per 

km decreased by about 13% and 16%, respectively. Clearly, although the increase in transit 

ridership increases total emissions, it enhances the performance of the system by reducing per 

capita emissions in addition to decreasing private vehicle emissions presumably resulting from the 

change in mode choice of additional transit riders. To be sure, improving bus ridership could also 

be a result of mode shift from subway riders in some cases. 

 

4.2.2 Scenario 2: Effects of Change in Bus Frequency 

In order to evaluate the effect of change in bus frequencies on emissions, low and high occupancy 

buses in the network were identified. The occupancy for each bus line was calculated by dividing 

the total number of individuals on bus by the capacity of the bus. Later on, the occupancy of the 
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buses was determined at the disaggregate stop level and then aggregated by bus line. The bus lines 

were then categorized as low or high occupancy buses based on the aggregated sum of occupancy 

at the bus line level. The scenario was based on the intuition that the frequency of low occupancy 

buses need to be decreased and the frequency of high occupancy buses need to be increased in 

order to reduce emissions. The obtained results are presented in Table 2.  

 

4.2.2.1 Decreasing bus frequency for low occupancy buses 

Route 21 was found to be the bus line with the lowest occupancy. Note that it is a morning peak 

period bus that connects the Lasalle metro station to Bell campus with an average headway of 30 

minutes. The total boardings for the morning peak period observed for seven roundtrips is 12 as 

compared to a capacity of 75. In this scenario, the effect of increasing the headway from 30 minutes 

to 60 minutes is investigated. Doing so increased the ridership per bus twice. The emissions were 

estimated for the said scenario of decreasing the bus frequency and doubling the headway. Table 

2 presents the emission details as well as a comparison of total emissions for before and after the 

increase in ridership owing to a decrease in the frequency of buses. We observe that the decrease 

in bus frequency resulted in a 49% decrease in emissions.  

 

4.2.2.2 Increasing bus frequency for high occupancy buses 

Based on the occupancy values, Route 18 was one of the high occupancy buses. We found that 

during the PM peak it runs at capacity for 60 percent of the bus stops. Obviously, there is a need 

to increase the frequency of this bus line in order to improve its service. Note that Route 18 is a 

major bus line that runs during all 24 hours of the day and connects Honore Beaugrand metro 

station to Saint Laurent. It contributes almost 2% of the total bus emissions in Montreal. Again, 

from Table 2, we can see that increasing the frequency by 25% led to a decrease in bus ridership 

at the cost of increasing total emissions by ~21%. While the total emissions have increased, the 

intangible parameters such as comfort, seat availability and lower waiting time (as less likelihood 

of a full bus arriving at a stop) are the positive impacts of such frequency increase. It is also 

possible that with improved frequency, ridership could potentially increase (not considered in the 

analysis) thus offsetting the emission increase. Finally, the reader would note that the increase in 

bus transit emissions with the higher bus frequency could still be lower than the emissions from 

private vehicles for the current riders. 

In our research, the focus was on developing emissions estimates for the entire bus transit 

system in Montreal. However, the proposed framework can be employed to conduct diagnostic 

analysis by route allowing us to (1) identify routes where transit riders have to wait for multiple 

buses as the buses are full when they arrive at stops on the route, (2) identify bus routes that have 

very low ridership and contribute to high per-capita emissions, and (3) identify routes with high 

ridership and low per-capita emissions that can benefit from increased bus frequency. In response 

to these diagnostics, public transit agencies can undertake remedial measures to enhance the 

service quality in the region. Finally, the research recognizes that vehicle fleet (automobile and 

bus transit) is evolving. The current study did not explicitly consider automated and electric 

vehicles in our analysis. In fact, with the emergence of these vehicles, we believe the rich data 
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available can significantly enhance the proposed approach for estimating emissions.  

 

 

5. CONCLUSION 

Estimating transit bus emissions is an important step towards the improvement of transit’s carbon 

footprint in urban areas. While transit is considered as a more environmentally friendly mode of 

transportation, buses could be as polluting as private cars on a per passenger basis under low 

ridership situations. Similarly, busy transit corridors going through dense urban neighborhoods 

may become characterized by poor air quality due to bus emissions especially when fueled with 

conventional diesel.  

In this study, we demonstrate the development of a method for estimating transit emissions 

over a large network of 200 bus lines, at the level of the individual bus. This method allows us to 

incorporate bus and route characteristics in the emission modeling process. This in turn will make 

it feasible to investigate the effects of changing ridership, frequencies, and ultimately bus types 

and fuels. Such a systems perspective to transit bus emissions is crucial in the evaluation of 

planning strategies both at the network level and at a corridor level. With this tool, we can help 

address questions relating to the allocation of buses based on type, size, and technology while 

keeping GHG emissions at the forefront of planning decisions. The applicability of the emissions 

platform was evaluated for a base condition and two scenarios. The results from these exercise 

offered intuitive and useful insights. In terms of future research, the simulation platform will be 

updated to incorporate traffic congestion (as opposed to schedule-based speeds) in emission 

calculation. Further refinements to boarding and alighting models will also need to be investigated. 

The proposed framework can also be expanded to include other pollutants in the future. In the 

future, with appropriately designed emissions monitoring experiment, the proposed framework 

can be enhanced/validated using real-time emissions measurements.    
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FIGURE 1 Emission Factors for 2013 Model Standard Bus for Boarding =40 
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FIGURE 2 Emissions for AM peak period 
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FIGURE 3 Emissions for PM peak periods 
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FIGURE 4 Total distance, ridership and emissions categorized by time of day 

Note: OPD = Off peak day; OPN = Off peak night   
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FIGURE 5 Emission indicators categorized by time of day 
Note: OPD = Off peak day; OPN = Off peak night   
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TABLE 1 Comparison of emissions after increase in ridership 

 

Emission indicator Before increase in ridership After 20 % increase in ridership 
% 

change 

Total emissions for the day  

(grams) 
316,369,839 319,877,769 1.109 

Average emissions per capita  

(grams/person) 
301.94 263.57 -12.708 

Average emissions per km  

(grams/km) 
1487.87 1504.37 1.109 

Average Emissions per person per km  

(grams/person km) 
99.89 84.27 -15.637 
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TABLE 2 Comparison of emissions after decrease/increase in frequency of buses 

 

Time period No of buses 
Average headway 

(mm:ss) 

Average trip 

time 

(mm:ss) 

Trip 

distance 

(km) 

Base case 

emissions 

(grams) 

Modified 

emissions 

(grams) 

%  

change 

Scenario: Decrease in Frequency (50%) 

AM peak 13 30:00 13:00 4.21 69,948.00 35,756.50 -48.88% 

Scenario: Increase in Frequency (25%) 

AM peak 61 2:51 48:39 11.04 1,247,372 1,502,728 20.47% 

Off peak day 108 3:20 49:39 11.04 2,083,032 2,534,865 21.69% 

PM peak 58 3:03 50:50 11.04 1,249,973 1,510,724 20.86% 

Off peak night 85 14:45 42:25 11.04 1,596,376 1,947,754 22.01% 

Total 312 - - - 6,176,753 7,496,070 21.36% 

 

 


