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ABSTRACT
There is considerable debate on the appropriate discrete choice framework for examining injury severity. Researchers in the safety field have employed ordered and unordered frameworks for examining the various factors influencing injury severity. The objective of the current study is to investigate the performance of the ordered and unordered response frameworks at a fundamental level. Towards this end, we undertake a comparison of the alternative frameworks by estimating ordered and unordered response models using data generated through ordered, unordered data and a combination of ordered and unordered data generation processes. We also examine the influence of aggregate sample shares on the appropriateness of the modeling framework. Rather than be limited by the aggregate sample shares in an empirical dataset, simulation allows us to explore the influence of a broad spectrum of sample shares on the performance of ordered and unordered frameworks. We also extend the data generation process based analysis to under reported data and compare the performance of the ordered and unordered response frameworks. Finally, based on these simulation exercises, we provide a discussion of the merits of the different approaches. The results clearly highlight the emergence of the generalized ordered logit model as a true equivalent ordered response model to the multinomial logit model for ordinal discrete variables.

Keywords: Ordered and unordered discrete choice models for injury severity, ordinal discrete variables, generalized ordered logit, comparison



INTRODUCTION
Discrete choice models and their variants are employed extensively for analyzing decision processes in various fields including transportation, marketing, social sciences, bio-statistics and epidemiology. Discrete choice models in their broadest sense can be characterized as ordered and unordered response frameworks. The ordered response frameworks are suited for examining discrete variables that are ordinal in nature while the unordered response frameworks are applicable to analyzing all discrete variables. The ordered response models represent the decision process under consideration using a single latent propensity. The choice probabilities are determined by partitioning the uni‑dimensional propensity into as many categories as the dependent variable alternatives through a set of thresholds. Examples of ordered discrete variables in the field of transportation include: (1) driver and passenger injury severity in traffic collisions, (2) household vehicle (automobile and bicycle) ownership, and (3) activity participation indicators (such as number of tours, number of stops, activity episode participation frequency and activity duration). The prevalent mechanism to analyze ordered discrete variables is to employ the ordered response models such as ordered logit and ordered probit models depending on the distributional assumptions of the unobserved component of the latent propensity. 

Unordered discrete choice frameworks offer a potential alternative to the analysis of ordered discrete variables. These models are characterized, usually, by a latent variable per alternative and an associated decision rule. The most commonly employed unordered discrete models – the multinomial logit (MNL) model and its extensions – have their origin in the random utility domain. The latent variable per alternative is referred to as the alternative utility and the alternative with the highest utility is designated as the chosen alternative. There are a number of studies that have considered the multinomial logit (and its extensions) for examining ordinal discrete choice variables. For example, (1) injury severity (see Yasmin and Eluru, 2012, Savolainen et al., 2011, Eluru and Bhat, 2007 for detailed literature reviews on severity models), and (2) vehicle ownership (see Anowar et al., 2012 for a list of studies). 

The applicability of the two frameworks for analyzing ordinal discrete variables has evoked considerable debate on using the appropriate choice model for analysis. There has been considerable debate more recently in the safety community in adopting the appropriate framework for analysis in the injury severity context. There are many strengths and weaknesses for the ordered framework vis-à-vis the unordered framework. The ordered response models explicitly recognize the inherent ordering within the decision variable whereas the unordered response models neglect the ordering or require artificial constructs to consider the ordering (for example the ordered generalized extreme value model (OGEV)). On the other hand, the traditional ordered response models restrict the impact of exogenous variables on the choice process to be same across all alternatives while the unordered response models allow the model parameters to vary across alternatives (see Eluru et al., 2008 for a discussion). The restricted number of parameters ensures that ordered response models have a parsimonious specification. The unordered response models might not be as parsimonious but offer greater explanatory power because of the additional exogenous effects that can be explored. In fact, several studies highlight the advantages of multinomial logit models over the ordered response models (see for example Bhat and Pulugurta, 1998). 
Another concern with the ordered response framework is in the context of modeling datasets that might be affected by under reporting[footnoteRef:1] - an aspect of great relevance to safety literature. In fact, unordered response framework is considered to be more effective compared to the ordered response framework in this context. In the case of an under reported decision variable, the traditional multinomial logit model provides estimates that are unbiased i.e. the elasticity effects of the variables are not affected by the under reported data. This is quite critical in terms of examining exogenous variable impacts on the decision process. Further, the unordered response model can be applied by altering the constants if the true population shares are available. In the case of an ordered response model, the parameter estimates are expected to be biased and hence might lead to erroneous policy implications[footnoteRef:2]. In summary, in the context of accident literature there are two important aspects that need to be examined.  [1:  Injury severity reporting is considered to be substantially affected by under reporting (see Elvik and Mysen 1999, Yamamoto et al., 2008)]  [2:  Of course, the true advantage of the multinomial logit model in the context of under reporting is slightly reduced because the availability of “true” population level measures to the analyst is quite often rare.] 

1) Which model framework offers superior statistical fit (and thereby behavioral interpretability) to the dataset under consideration? 
2) How do these frameworks perform in the presence of under reported data?

It is in this light that we undertake the current research effort. The objective of the current study is to investigate the performance of the ordered and unordered response frameworks at a fundamental level. Towards this end, we undertake a comparison of the alternative frameworks by estimating ordered and unordered response models using data generated through ordered, unordered data and a combination of ordered and unordered data generation processes (more on this in Section 2.1.1). Subsequently, we examine the influence of aggregate sample shares on the appropriateness of the modeling framework i.e. are ordered response frameworks more suitable to examine ordered discrete variable with a particular share. Rather than be limited by the aggregate sample shares in an empirical dataset[footnoteRef:3], simulation allows us to explore the influence of a broad spectrum of sample shares on the performance of ordered and unordered frameworks. Third, we extend the data generation process based analysis to under reported data and compare the performance of the ordered and unordered response frameworks (in the context of different data generation processes and varying sample shares). Finally, based on these simulation exercises, we provide a summary of the strengths and weaknesses of the two frameworks for analyzing ordered discrete variables in general and for injury severity modeling in particular.  [3:  An empirical dataset provides a single realization of the aggregate sample share; thus limiting us in exploring the performance difference of the two frameworks as a function of aggregate sample share.] 


The remainder of the paper is organized as follows. Section 2 provides a background for the proposed research methodology; highlights the motivation for our research and discusses the experimental setup of our study. Section 3 briefly outlines the econometric frameworks of the three alternative frameworks considered. Section 4 presents the results from the simulation exercise for model comparisons. In Section 5, we discuss the simulation results in the context of datasets with under reporting. Section 6 provides a discussion of findings from our analysis while simultaneously providing guidelines on the appropriateness of the modeling frameworks for ordinal discrete variables. We conclude the paper in Section 7 with a discussion of the limitations of the current study and directions for future research.
BACKGROUND AND CURRENT STUDY IN CONTEXT
Earlier research
To be sure, some of the aspects highlighted above have been examined in earlier research. For example, Bhat and Pulugurta, 1998 undertook a comparison exercise of vehicle ownership decisions through the ordered logit and the multinomial logit models. In their study, the authors estimated the two models on four datasets and confirmed that the multinomial logit model offers superior data fit and validation capabilities. The study highlight how an ordered response model offers a parsimonious specification while the unordered response model offers enhanced behavioral interpretability through the addition of exogenous variable effects at the alternative level. Yamamoto et al. 2008 conducted an analysis of potential under reported data by comparing the performance of ordered probit and sequential binary probit models. The authors found that the sequential probit models outperform the ordered probit model in terms of bias values in the parameters. Ye and Lord, 2011 compared the ordered probit, multinomial logit and mixed logit model in terms of under reported data. The authors concluded that all the three models considered in the study perform poorly in the presence of under reported data. The exact impact of under reporting on these model frameworks needs further investigation. The study employed data simulation; however, the models were estimated with just one parameter and for a particular aggregate sample share. 

More recently Patil et al. 2012 demonstrated the application of a conditional maximum likelihood estimation approach to address under reporting in the context of crash severity analysis using nested logit model. Anowar et al. 2012 undertook a comparison of the ordered and unordered response models in the context of vehicle ownership. In their study, they found that the unordered response models outperform the ordered response models. Yasmin and Eluru, 2012 undertook a comprehensive comparison of various modeling frameworks including ordered logit, generalized ordered logit, multinomial logit, nested logit and ordered generalized extreme value logit for analyzing driver injury severity. In their study, the results clearly establish the superiority of the generalized ordered logit in the context of driver injury severity. In the study the authors also explored the issue of how different frameworks perform in the presence of under reporting in the data. The authors computed elasticity effects for the “true” and under reported datasets and concluded that the error in elasticity effects estimated from the unordered systems is not any better than the error in elasticity effects estimated from the ordered systems in their empirical context. 

Interestingly, none of these studies establish that the comparison relationship identified will hold for all possible datasets and sample shares. For example, in the context of accident injury severity it is possible that the additional flexibility of the MNL model can enhance the predictive capabilities. However, it is completely possible that for another decision process (or other injury severity datasets from other geographical regions) the additional flexibility offered by MNL might not yield similar benefits. 

Limitations of earlier research
Influence of Data Generation Process
An important reason for the inability to generalize the results from earlier analysis can be attributed to ignoring the underlying data generation process. The aforementioned studies do not examine the comparison of ordered and unordered frameworks from a fundamental data generation process perspective. The implicit assumption while estimating a discrete choice model for analyzing a decision process is that the model framework considered, reasonably represents the true data generation process of the decision maker. To elaborate, if the underlying data generation process (dgp) of the decision considered is ordered in reality an ordered model might be appropriate for analyzing the decision framework. At the same time, if the dgp for the decision maker is unordered in nature then the unordered response model might be a more plausible alternative. Unfortunately, the dgp is latent to the analyst and is seldom known. In any empirical comparison of the ordered and unordered response framework, the impact of the underlying dgp is hard to capture. For example, in the context of injury severity (as an ordinal variable) the underlying dgp could be ordered or unordered or more likely a combination of both. The earlier research efforts on comparison of the various frameworks have not explicitly examined the influence of the inherent dgp on the appropriateness of the framework. To conclusively establish the superiority of a particular framework, one can simulate data and examine how each framework performs based on the dgp under consideration. The comparison exercises undertaken so far have not tackled the comparison from this pure data generation process. In our current study, we attempt to examine the role of dgp on model estimation.

Generalized Ordered Logit model
Even if we confine ourselves to empirical datasets, the earlier literature has compared the traditional ordered logit/probit models with the multinomial logit model. However, the generalized logit model developed in the 1980s (Terza, 1985) and recently employed in traffic safety literature (Castro et al., 2012a; Eluru et al., 2008; Srinivasan, 2002) and modified for count models (Narayanamorrthy et al., 2012; Paleti et al., 2012; Castro et al., 2012b) offers a representative comparison between the ordered and unordered response mechanisms. Researchers have been very proactive in employing the more advanced variants of the multinomial logit model; however, recent advances in ordered regime have not been considered in the comparison (except for Yasmin and Eluru, 2012). It is important that an equivalent ordered response framework for the multinomial logit model is considered for the comparison exercise. The generalized ordered logit (GOL) model allows for the impact of exogenous variables to affect the threshold parameters thus relaxing the restrictive assumption of the traditional ordered response structure on limiting the parameters to be the same for all alternatives. In fact, the generalized ordered response model theoretically can estimate the same number of parameters as the multinomial logit for an ordinal discrete variable. Hence, an exercise comparing the alternative frameworks is incomplete without considering the generalized ordered logit.

Influence of Aggregate Population Sample Share
While undertaking the comparison exercise of alternative frameworks on empirical datasets (be it vehicle ownership or injury severity analysis), the analyst is often restricted to one dataset sample (or a very small number of datasets) with fixed aggregate shares. Thus it is unlikely that the analyst can examine the influence of sample shares on the appropriateness of the alternative decision frameworks. To investigate the effect of aggregate population sample shares on the appropriateness of the modeling approach, a feasible alternative is to undertake a comparison with simulated databases with varying aggregate sample shares. The current study undertakes this exercise to confirm (or invalidate) the hypothesis that aggregate sample shares of the dataset affects the appropriateness of the modeling framework. 

Under reporting
A commonly stated disadvantage of the traditional ordered models is the inability to obtain unbiased estimates in the presence of under reporting (Yamamoto et al., 2008). The recent study by Yasmin and Eluru, 2012 however provides counter evidence to the hypothesis. It is to be expected that an under reported sample will provide incorrect prediction when used on a population sample. However, prior to using a model framework, we need to explore for the presence of systematic biases in alternative model frameworks. The issue is particularly relevant to crash severity modeling as most police compiled datasets are affected by underreporting (see Elvik and Mysen, 1999). 

Mixed data generation process
In reality the dgp for the empirical comparison for models is probably a mix of ordered and unordered processes; i.e. for some proportion of the population the underlying decision process might represent an ordered response framework while the remainder of the population might follow an unordered decision process. Depending on the nature of the empirical dataset and aggregate sample shares it is possible that the proportion might have a significant influence on the compatibility of the modeling framework. Even if it is nearly impossible to realize the true proportion value, there is a need to evaluate the performance of alternative frameworks under different proportion levels. The effect of the potential mixing in the dgp has never been studied in the context of ordered and unordered models. 

Current Study 
The preceding discussion clearly highlights the different aspects of alternative framework comparison that have not been considered in previous research efforts. The main focus of our study is to augment the literature on comparison of ordered and unordered frameworks by focussing on the aforementioned aspects. To achieve this, we propose a four pronged approach. First, we consider the ordered logit, generalized ordered logit and the multinomial logit models for the comparison exercise. Second, we resort to a simulation exercise to understand the influence of underlying dgp on the modeling frameworks. We examine the performance of three models identified in various dgps. Third, we consider the influence of aggregate sample shares on the appropriateness of the model frameworks by considering a range of aggregate shares for the data generation. Finally, we repeat the comparison exercise (second and third steps) in the context of “artificially” generated under reported data.

Methodology
Prior to discussing the experimental design employed in the study we briefly provide details of the three model frameworks employed in our study.

Ordered Logit Model
In the traditional ordered response model, the discrete injury severity levels  are assumed to be associated with an underlying continuous, latent variable . This latent variable is typically specified as a linear function as follows   
,	for N                                                                                 (1)                                                     
where,
 represents the drivers
 is a vector of exogenous variables (excluding a constant)
 is a vector of unknown parameters to be estimated
 is the random disturbance term assumed to be standard logistic
Let ) and  denote the injury severity levels and the thresholds associated with these severity levels, respectively. These unknown thresholds are assumed to partition the propensity into  intervals. The unobservable latent variable is related to the observable ordinal variable  by the s with a response mechanism of the following form:
,	       for 	 	                                           (2)
In order to ensure the well-defined intervals and natural ordering of observed severity, the thresholds are assumed to be ascending in order, such that where  and . The probability expressions take the form:
					       (3)
where  represents the standard logistic cumulative distribution function.

Generalized Ordered Logit Model
The generalized ordered response model relaxes the constant threshold across population restriction to provide a flexible form of the traditional OL model. The basic idea of the GOL is to represent the threshold parameters as a linear function of exogenous variables (Maddala 1983, Terza 1985, Srinivasan 2002, Eluru et al. 2008). Thus the thresholds are expressed as:
                 							                   (4)
where,  is a set of exogenous variable (including a constant) associated with  threshold. Further, to ensure the accepted ordering of observed discrete severity . We employ the parametric form employed by Eluru et al. (2008):
           						                               (5)
 is a vector of parameters to be estimated. The remaining structure and probability expressions are similar to the OL model. For identification reasons, we need to either supress the latent propensity of one of the  vectors.

[bookmark: _Toc296501920]Multinomial Logit Model
Consider the probability of an accident  ending in a specific injury-severity level . The alternative specific latent variables take the form of:
                                                                                                                          (6)
where
 is a vector of coefficients to be estimated for outcome 
 is a vector of exogenous variables
 is a function of covariates determining the severity 
 is the random component assumed to follow a  gumber type 1 distribution.
Thus, the MNL probability expression is as follows:
                                                                                                                     (7)

Experimental Design
The experimental design considered for the comparison exercise is outlined in detail in this section. The objective is to evaluate the performance of the three frameworks on simulated data. In particular, we focus on data generated from a true ordered process, a true unordered process and a wide spectrum of mixed processes i.e. a proportion (p) of the population follows an ordered decision making process and the remainder of the population (1-p) follows an unordered decision making process. Specifically, we consider the range of p from 0 to 1 in intervals of 0.1, thus traversing the pure ordered dgp to pure unordered dgp in 11 steps[footnoteRef:4]. While generating nied dgp, we ensure that the ordered and unordered dgp originate from the same aggregate shares. Within each dgp, we estimate the three models and compare the performance of the frameworks in terms of data fit. [4:  To be sure, the idea is to examine, if there is any effect of mixed dgp on the appropriateness of the framework for analysis. There is very little information available to the analyst in terms of realizing the extent of mixture in the dgp. However, we believe the process will shed light on the strength and weakness of the alternative frameworks as the value of p changes. ] 


The simulation exercise is undertaken for a four alternative ordered dependent variable – typical injury severity categories employed in safety literature (see Eluru et al., 2008, Yasmin and Eluru 2012). We consider three independent variables (standard univariate normal random variables) to influence the decision process (see Ferdous et al., 2010 and Bhat et al., 2010 for similar data generation examples). The same three variables are used in the three model systems. In the OL model these variable are incorporated in the latent propensity. Hence, the OL model requires 3 parameters and 3 thresholds (a total of 6 parameters). In the GOL model the independent variables are incorporated in the latent propensity and thresholds 2 and 3 (threshold 1 is set to 0 for identification) resulting in 9 parameters, 1 propensity constant, 1 constant in threshold 2 and 1 constant in threshold 3, yielding a total of 12 parameters. The MNL model is estimated considering the first alternative as base. The MNL model has 9 parameters for independent variables and 3 constants (again a total of 12 parameters). 

Data generation
Data Generation for model estimation comparison
For ordered logit data, we generate the latent propensity for an ordered logit model using the three independent variables and a standard logistic error term. The discrete dependent variable value is determined based on the threshold parameters assumed. For generalized logit data, we generate the latent propensity and threshold vectors using the three independent variables and a standard logistic error term. The discrete dependent variable value is determined based on the location of the propensity with regard to the individual specific threshold. For multinomial logit data, we generate the systematic alternative utilities based on the three independent variables. The error components for the alternatives are generated using standard Type 1 extreme value distribution. The chosen alternative is determined based on the alternative with the highest utility. 

To cover a wide range of possible dgp’s we focus on two major configurations:
(1) Ordered logit dgp and Multinomial logit dgp mixed data generation
(2) Generalized ordered logit and Multinomial logit mixed data generation

The two dgps for the above configurations are generated by combining the independent dgps from ordered and unordered systems using a uniform random variable (U). For an individual, the ordered process generated dependent variable is the chosen alternative if U < p and unordered process generated dependent variable is the chosen alternative if U≥ p. In this manner we can easily generate a mixed dgp with varying levels of mixture. The above process is repeated for 6 aggregate sample shares. The parameter vectors and the aggregate sample shares for the three regimes are provided in Table 1. The sample shares selected in our analysis were targeted at covering the most probable combination of a four alternative dependent variable. Sample 1 is the equal share alternative. Sample 2 has proportions starting at a high value for the first alternative and gradually reducing for the last alternative. Sample 3 is the mirror image of Sample 2. Sample 4 considers high proportions allocated to interior alternatives. Sample 5 reflects extreme loading on the last alternative with diminishing shares for the other alternatives. Sample 6 is the mirror image of Sample 5. The sample shares are chosen so as to reflect the commonly observed sample shares in safety literature for driver injury severity (sample 2 and 6) and pedestrian injury severity (sample 3 and sample 5).

The reader would note that it is not straight forward to generate parameters that impact the dependent variable in a similar fashion across the different model frameworks. Hence, we resort to assuming parameters that provides the same aggregate shares in the population for the three frameworks. The parameter set for each sample for the three model frameworks are also presented in table 1. To elaborate on the parameters provided in Table 1, we discuss the estimates for Sample 1 for each of the model frameworks. The OL the independent variable parameters are 1.25, 0.25, and 0.50 and thresholds parameters are -1.50, 0.00 and 1.50. The GOL model constant parameters are 1.90, 0.50, 0.70 and the independent variable parameters: (1) in the propensity equation are 1.5, 0.75, 1.50, (2) threshold 2 are 0.75, 0.50, 1.25, and (3) threshold 3 are -1.50, 0.75, and 0.50. For the MNL model the first alternative is considered the base; the constant parameters are -0.75, -0.25, and -0.50 and and the parameters for independent variables: (1) alternative 2 are 1.50, -0.25, and 0.50, (2) alternative 3 are -0.50, 0.75, and 0.25 and (3) alternative 4 are -1.25, -0.50, and -0.25. The remainder of the parameter set also follows the same structure. With the parameter set presented in Table 1, 50 realizations of the data with 5000 observations each are generated for each proportion value (p). We generate a total of 6 aggregate sample shares for the two configurations identified above.  Within each configuration, we estimate the OL, GOL and MNL. In all the simulation exercises the three independent variables are retained to be the same across models. 

Data Generation for under reporting
The same process described in Section 4.1.1 is repeated for the under reported data with one minor change. The entire data generated is not used in the estimation exercise. Towards generating an under reported dataset, – a dataset that has few individuals choosing the first alternative - we remove a fraction of the records that are assigned to the first level for the ordinal variable. Specifically, we only sample about 70% (i.e. remove 30 %) of the data points that are in the first category. The resulting overrepresentation of data is different for different aggregate shares. The OL, GOL and MNL models are estimated using the under reported sample.

Performance Evaluation Metrics
The emphasis of the research effort is on examining the performance of the OL, GOL and MNL models in retrieving the behavior in the simulated data. It is important to note that parameter retrieval for comparison is not a possible evaluation measure. Because, based on how we generated the mixed data it is quite complex to generate the “true” model parameters for the system unless one finds the equivalent a latent segmentation based combination. The discovery of such parameter space is far from trivial and is not essential for our research effort. Hence we resort to comparing the model fit measures for the estimation sample for the three models. In terms of model fit comparison, the GOL model is a generalized version of OL; we can compare these two models by using likelihood ratio test for selecting the preferred model. However, to compare the ordered approaches with the unordered approach the likelihood ratio test is not appropriate. 

Towards this exercise, we employ the Bayesian Information Criterion (BIC) measure. The BIC for a given empirical model is equal to − 2ln(L) + K ln(Q), where ln(L) is the log‑likelihood value at convergence, K is the number of parameters, and Q is the number of observations. The model with the lower BIC values is the preferred model. BIC measure comparison for the GOL and MNL models actually collapses to a comparison of the log-likelihood because both these models have the same number of parameters. However, we still maintain the BIC comparison because BIC imposes higher penalty for additional parameters (as is common when we estimate GOL/MNL). The BIC parameter allows us to ensure we are not over fitting that data, a relevant criterion for accident datasets that usually have a large set of exogenous variables.

We compute two measures of BIC: (1) the proportion of datasets for which a framework has the lowest BIC and (2) average BIC. The first measure is computed as the proportion a framework has the lowest BIC by checking which framework provides the lowest BIC for each dataset. This measure is computed once for every aggregate sample. The proportion will allow us to identify the superior model over the entire analysis for each aggregate share. The second measure - average BIC - is computed by averaging the BIC value for each p value i.e. for each aggregate sample we have 11 measures. 

In the simulation exercise for the under-reported sample, we report similar measures computed in a slight different manner. Specifically, in the case of under reporting, we examine the performance of the three models in prediction i.e. estimate models with the underreported data and them employ the estimated parameters to predict the dependent variable in the “original” sample. The process allows us to see how the models perform when estimates are affected by under reporting.  The predictive ability of these under reported estimates in the context of true sample offers the most realistic comparison. The two measures computed earlier are computed for these predicted samples. The exercise is particularly relevant in the context of safety literature. 

RESULTS
Model Estimation Comparison
The model estimation comparison results are discussed in this section. The OL, GOL and MNL models are estimated for 6600 datasets of 5000 observations each (2 (data configurations) * 6 (aggregate shares))* 11 (p values) * 50 samples). For all these model estimations, we compute the BIC measures. The two BIC measures computed are reported in Tables 2 and 3. 

Proportion measure
In Table 2, the proportion of a particular model has the lowest BIC is reported for all 6 aggregate shares. In terms of the first data configuration (OL and MNL mixed dgp), we observe that the MNL model performs really well for 4 aggregate shares while GOL model performs really well for 2 aggregate shares. The MNL model clearly outperforms the other models in aggregate samples that are left skewed (samples 2 and 6). The MNL model also performs better than the GOL model for the equal share alternative sample. The GOL model outperforms the other two systems when we have aggregate shares that are right skewed (samples 3 and 5). In terms of the sample with high proportions of interior alternatives (sample 4) the MNL model is slightly better than the combined performance of OL and GOL model. The results clearly show that even for an OL and MNL mixture process the OL model rarely offers a good fit. This clearly establishes that the use of traditional ordered logit models for analyzing ordered discrete variables is quite restrictive. This supports the hypothesis of earlier safety research advocating the use of multinomial logit models. However, the results also indicate that employing the GOL model in this context reduces the difference substantially and in some cases even improves model fit. 

For the second data configuration (GOL and MNL mixed dgp) the results for the proportion measure are quite different. The results clearly show that in the presence of GOL based ordered process the OL model is clearly inefficient. In terms of the comparison between GOL and MNL; the result is an equal split across the 6 aggregate shares. Similar to what is observed earlier the MNL model outperforms the GOL model in Sample 1 (equal shares), Sample 2 (right skewed) and Sample 6 (extremely right skewed). The GOL model outperforms the MNL model for Sample 3 (left skewed), Sample 5 (extremely left skewed) and Sample 4 (high proportion of interior shares). The major difference in the current configuration is the switch for sample 4 from an MNL preference to a GOL preference. The results support the hypothesis that GOL offers a credible alternative to MNL for modeling ordinal discrete variables. Of course, the most striking result from the above discussion is that distinct aggregate shares provide variation in model preference clearly highlighting that the aggregate share has an influence on how the alternative model frameworks perform. 

Average BIC measure
The results corresponding to the average BIC measure are presented for all aggregate sample shares for all p values. The results are reported in Table 3 for the two data configurations. Table 3 provides information on the sample, the p value, the average BIC value for a constants only model as reference, and the average BIC values for the three models for data configuration 1 and 2. The lowest average BIC values for each model system and data configuration are underlined. The reader would note that as the p value increases the model shifts from a purely ordered (OL/GOL) process to a purely MNL process. In fact, the reader would note that the estimates for p=1 for data configurations 1 and 2 yield the same results because at p=1 we have a purely MNL process which is not influenced by the change in the ordered process from OL to GOL. 

The average BIC measure is a more representative metric of comparison because the metric in addition to identifying the superior framework also provides a sense of the difference between the model frameworks. The difference will allow us to see how different the best model framework performs relative to the other frameworks. For the first data configuration, the results closely resemble the trends described in the proportion measures. The OL model performs competitively for p values of 0-0.1 usually indicating that unless the data is purely or very close to purely ordered logit (p≤0.1) the ordered system cannot perform better than GOL/MNL even using a stringent penalty for excess parameters. The result clearly highlights the inadequate explanatory power offered by the traditional ordered logit model. The GOL model usually takes over from the OL model once p values are >0.1. The GOL model performs as well or better than the MNL model for p-values of up to 0.3 for Samples 1, and 2. On the other hand, for samples 3 and 5, the GOL model outperforms the MNL model for p values ranging from 0.2 through 0.8/0.9. A particularly important aspect to notice is even when the MNL model outperforms the GOL model the difference in LL is well below 2% in all cases (and even below 0.1% in many cases). The measure clearly indicates for a particular sample when GOL is inferior to the MNL the difference is a marginal one.

For the second data configuration, the results indicate that in the presence of GOL dgp, OL model is consistently inferior to GOL and MNL. In fact, the comparison here is a comparison of GOL and MNL models only. The trends observed here are similar to the trends observed for the proportion measure. For Samples 1, 2 and 6, the MNL model outperforms the GOL model for majority of the p value segments. For samples 3, 4 and 5 GOL model outperforms the MNL model. Again these results clearly highlight the potential of GOL model for examining ordinal discrete models. Further, the GOL model consistently performs well when compared to the MNL model irrespective of aggregate share. The results indicate that the performance of the GOL model for some empirical datasets (Eluru et al., 2008, Yasmin and Eluru, 2012) is not a lucky realization; but a realization of its strength in modeling of ordinal discrete variables. Again, the reader would note that in the event of a superior performance of the MNL model the GOL performance is well within 2% in all cases.

In summary the proportion measure and the average BIC highlight how GOL model offers a true ordered equivalent to the MNL model for a wide range of aggregate shares and inherently latent underlying dgps.
Performance in the Presence of Under-Reporting
The entire data generation and model estimation process was repeated to examine the performance of alternative frameworks under the presence of under reported data. The process involved estimating the alternative frameworks for the under reported data and employing the model parameters for predicting the outcome for the original dataset. To compare the alternative frameworks we employ the same measures generated previously. The results for the under reporting exercise are presented in Tables 4 and 5.

Proportion measure
In Table 4, the proportion of a particular model that has the lowest BIC is reported for all 6 aggregate shares. The proportion measure of prediction indicates that the overall performance trends for the various frameworks are not altered in the presence of under reporting. The result concludes that there is no evidence to suggest, at least for model prediction, one model is superior to another. Again, the result provides credence to the finding from Yasmin and Eluru, 2012 that the GOL model performed better than the MNL model. If the GOL model performs better than MNL model in estimation for a particular aggregate share; the performance in the presence of under reporting (given that the overall share structure is marginally affected) is likely to be very similar. The result is comforting in the sense that analysts can choose their preferred model solely on model estimation metrics and proceed with post processing analysis. 

Average BIC measure
The results corresponding to the average BIC measure are presented for all aggregate sample shares for all p values. The results are reported in Table 5 for the two data configurations. The lowest average BIC values for each model system and data configuration are underlined.

The results for the average BIC measure also very closely resemble the results observed for the model estimation. The average BIC measures examining the BIC for every p value for all the 6 aggregate shares indicates that the trends obtained in model estimation continue to be followed even in the context of under reported data providing further evidence to the lack of systematic bias in terms of the model frameworks for prediction. The reader would also note that in the event of a superior performance of the MNL model the GOL performance is not inferior by a huge margin. Another aspect to note in the under reported case is the higher BIC values compared to the  corresponding values in Table 3 indicating that there is a minor loss in efficiency when  under reported sample based parameters are used to predict for the “true” sample. The result is in line with intuitive expectations. 

Implications of the Findings
The two significant reasons for employing unordered models for ordered decision variables were: (1) substantial improvement in data fit offered by the unordered response models and (2) improved performance of unordered response models in presence of underreporting in the data. The current simulation exercise clearly indicates that it is possible to address these limitations with an improved ordered model, the Generalized Ordered Logit. The findings from our study have significant implications for accident analysis research. There is growing recognition within the safety community that modeling injury severity exogenous to seat belt use, alcohol consumption, or collision type is not realistic. For instance, the common unobserved factors that influence seat belt usage might also influence injury severity (See Eluru and Bhat, 2007). Accommodating these unobserved correlations when we consider injury severity as an unordered process increases the number of error terms to be handled in the model formulation and estimation resulting in computationally intensive model structures. The estimation approaches require either simulation or some form of approximation to handle the complexity. However, with a GOL structure the number of error terms to be handled can be restricted to one without any loss in model explicative power. In fact, employing GOL might allow us to simultaneously examine multiple ordered decisions in a straight forward manner. Moreover, the simpler error structure of the GOL model will lend itself to closed form couplings such as copulas (Bhat and Eluru, 2009). The corresponding model for the unordered response model would require K couplings where K corresponds to the number of alternatives in the injury severity model.

The advantages of considering GOL model further increase when we intend to correlate two ordinal variables. In choice scenarios that require us to capture spatial correlation, the unordered systems are particularly cumbersome whereas GOL model while retaining the simplicity of the traditional ordered systems offers a competitive alternative to capture spatial correlations (see for example Castro et al., 2012, Narayanmoorthy et al., 2012). Further, it is important to note that the GOL framework explicitly recognizes the inherent ordering in the discrete variable while also remaining unaffected by the Independence from Irrelevant Alternatives (IIA) property of the MNL model. In summary, the GOL model avoids the shortcomings of the MNL model while maintaining reasonably close statistical fit in comparison to the MNL model.

CONCLUSIONS
The applicability of the ordered and unordered frameworks for analyzing ordinal discrete variables has evoked considerable debate on using the appropriate choice model for analysis. The ordered response models explicitly recognize the inherent ordering within the decision variable whereas the unordered response models neglect the ordering or require artificial constructs to consider the ordering (for example the ordered generalized extreme value model. On the other hand, the traditional ordered response models restrict the impact of exogenous variables on the choice process to be same across all alternatives while the unordered response models allow the model parameters to vary across alternatives. The unordered response models might not be as parsimonious as the ordered response models but offer greater explanatory power because of the additional exogenous effects that can be explored. Another concern with the ordered response framework is in the context of modeling datasets that might be affected by under reporting.

It is in this background that we undertake the current research effort. The objective of the current study is to investigate the performance of the ordered and unordered response frameworks at a fundamental level. Towards this end, we undertake a comparison of the alternative frameworks by estimating ordered (OL and GOL) and unordered response models (MNL) using data generated through ordered, unordered data and a combination of ordered and unordered data generation processes. Subsequently, we examine the influence of aggregate sample shares on the appropriateness of the modeling framework. Rather than be limited by the aggregate sample shares in an empirical dataset, simulation allows us to explore the influence of a broad spectrum of sample shares on the performance of ordered and unordered frameworks. Third, we extend the data generation process based analysis to under reported data and compare the performance of the ordered and unordered response frameworks. Finally, based on these simulation exercises, we provide a summary of the strengths and weaknesses of the two frameworks for analyzing ordered discrete variables. 

The simulation exercise is undertaken for a four alternative ordered dependent variable. To cover a wide range of possible dgps we focus on two major data generation configurations: (1) Ordered logit dgp and Multinomial logit dgp mixed data generation and (2) Generalized ordered logit and Multinomial logit mixed data generation. For each of these configurations 6 different aggregate sample share based dgps are produced. The study also generates under reported datasets by removing a fraction of the records that are assigned to the first level for the ordinal variable. Specifically, we only sample about 70% (i.e. remove 30 %) of the data points that are in the first category.

The emphasis of the research effort is on examining the performance of the OL, GOL and MNL models in retrieving the behavior in the simulated data. For this purpose, we employ the Bayesian Information Criterion (BIC) measures. We compute two measures of BIC: (1) the proportion of datasets for which a framework has the lowest BIC and (2) the average BIC. The first measure is computed by checking which framework provides the lowest BIC for each dataset. This measure is computed once for every aggregate sample. The proportion will allow us to identify the superior model over the entire analysis for each aggregate share. The average BIC is computed by averaging the BIC value for each proportion (p) value i.e. for each aggregate sample we have 11 measures. The most striking result from the comparison exercise is that distinct aggregate shares provide variation in the model preference clearly highlighting that the aggregate share has an influence on how the alternative model frameworks perform. Further, the GOL model consistently performs well when compared to the MNL model irrespective of aggregate share. Even in cases where the MNL outperforms the GOL, the difference between the two frameworks is marginal. The results clearly indicate the emergence of the GOL model as the true ordered equivalent vis-a-vis the MNL model for examining ordinal discrete variables. Moreover, the result is of great significance for econometric modellers in general and safety researchers in particular for developing joint models and spatial effect models involving ordinal discrete variables. The application of GOL model frameworks for ordinal data reduces the computational burden of formulating joint models and spatial effect models compared to using the unordered response models.
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Table 1:  OL, GOL and MNL estimates and the corresponding Aggregate Shares for a 4 level ordinal discrete variable

	Sample
	Sample Shares
	OL parameters
	GOL parameters
	MNL parameters

	1
	Alternative 1
	25.0
	Propensity
	1.25 0.25 0.50
	Propensity
	1.90 1.50 0.75 1.50
	Alternative 1
	---

	
	Alternative 2
	25.0
	Threshold 1
	-1.50
	Threshold 1
	---
	Alternative 2
	-0.75  1.50 -0.25  0.50 

	
	Alternative 3
	25.0
	Threshold 2
	0.00
	Threshold 2
	0.50 0.75 0.50 1.25
	Alternative 3
	-0.25 -0.50  0.75  0.25 

	
	Alternative 4
	25.0
	Threshold 3
	1.50
	Threshold 3
	0.70 -1.50 0.75 0.50
	Alternative 4
	-0.50 -1.25 -0.50 -0.25

	2
	Alternative 1
	62.6
	Propensity
	1.00 0.25 0.50
	Propensity
	-0.75   1.5  -0.75 0.5 
	Alternative 1
	---

	
	Alternative 2
	25.1
	Threshold 1
	0.65
	Threshold 1
	---
	Alternative 2
	-1.55   1.50  -0.75  0.50 

	
	Alternative 3
	7.8
	Threshold 2
	2.40
	Threshold 2
	 0.25  -0.50  0.75  0.25 
	Alternative 3
	-2.55  -0.50   0.75  0.25 

	
	Alternative 4
	4.5
	Threshold 3
	3.60
	Threshold 3
	-0.50  -1.25 0.25 -0.25 
	Alternative 4
	-3.50  -1.25   0.25  -0.25 

	3
	Alternative 1
	4.5
	Propensity
	2.50 0.75 1.50
	Propensity
	 4.25   1.50  -0.75 0.5 
	Alternative 1
	---

	
	Alternative 2
	9.8
	Threshold 1
	-6.00
	Threshold 1
	---
	Alternative 2
	-1.00   1.50  -0.75 0.50 

	
	Alternative 3
	24.5
	Threshold 2
	-3.75
	Threshold 2
	 0.19 -0.50  0.75  0.25 
	Alternative 3
	 1.75  -0.50  0.75  0.25 

	
	Alternative 4
	61.2
	Threshold 3
	1.00
	Threshold 3
	0.20  -1.25 0.25 -0.25 
	Alternative 4
	 2.75  -1.25  0.25 -0.25 

	4
	Alternative 1
	5.9
	Propensity
	1.50 0.75 1.50
	Propensity
	4.65  1.50 -1.75 0.50
	Alternative 1
	---

	
	Alternative 2
	44.2
	Threshold 1
	-4.50
	Threshold 1
	---
	Alternative 2
	 1.45  1.50 -1.75  0.50

	
	Alternative 3
	44.1
	Threshold 2
	0.00
	Threshold 2
	1.32 -0.5 0.75 0.25
	Alternative 3
	 1.65 -0.50  0.75  0.25

	
	Alternative 4
	5.8
	Threshold 3
	4.50
	Threshold 3
	2.00 -1.25 0.25 -0.25
	Alternative 4
	-0.85 -1.25  0.25 -0.25

	5
	Alternative 1
	2.1
	Propensity
	1.50 0.75 1.50
	Propensity
	4.30  0.50  -0.50 0.75 
	Alternative 1
	---

	
	Alternative 2
	2.4
	Threshold 1
	-6.00
	Threshold 1
	---
	Alternative 2
	-0.50  0.50  -0.50  0.75 

	
	Alternative 3
	4.3
	Threshold 2
	-5.00
	Threshold 2
	-1.65  0.75  -0.50  0.50 
	Alternative 3
	 0.25  0.75  -0.50  0.50 

	
	Alternative 4
	91.2
	Threshold 3
	-4.00
	Threshold 3
	 -0.50 0.50 0.50 -0.50
	Alternative 4
	 4.00  0.50   0.50 -0.50

	6
	Alternative 1
	90.6
	Propensity
	1.50 0.75 1.50
	Propensity
	-3.25  1.50  -0.75 0.50 
	Alternative 1
	---

	
	Alternative 2
	4.6
	Threshold 1
	3.75
	Threshold 1
	---
	Alternative 2
	-4.20  1.50 -0.75 0.50 

	
	Alternative 3
	2.5
	Threshold 2
	4.75
	Threshold 2
	-1.00  -0.50  0.75  0.25 
	Alternative 3
	-4.00 -0.50  0.75  0.25 

	
	Alternative 4
	2.3
	Threshold 3
	5.75
	Threshold 3
	-1.65 -1.25 0.25 -0.25 
	Alternative 4
	-4.50 -1.25 0.25 -0.25 












Table 2: Comparison of BIC Proportion Measures for Model Estimation

	Sample
	Proportion of lowest BIC

	
	Mixed DGP: OL and MNL
	Mixed DGP: GOL and MNL

	
	OL
	GOL
	MNL
	OL
	GOL
	MNL

	1
	0.18
	0.19
	0.63
	0.00
	0.36
	0.64

	2
	0.18
	0.19
	0.63
	0.00
	0.14
	0.86

	3
	0.14
	0.67
	0.19
	0.00
	0.57
	0.43

	4
	0.19
	0.28
	0.53
	0.00
	0.65
	0.35

	5
	0.25
	0.64
	0.11
	0.00
	0.75
	0.25

	6
	0.33
	0.04
	0.63
	0.00
	0.14
	0.86


	










Table 3: Comparison of Average BIC value for the Estimation Sample

	Sample
	p
	BIC for constants only Model
	Mixed DGP: OL and MNL
	Mixed DGP: GOL and MNL

	
	
	
	OL
	GOL
	MNL
	OL
	GOL
	MNL

	1
	0.0
	13887
	11837
	11883
	11909
	9629
	6736
	7323

	
	0.1
	13887
	12516
	12538
	12591
	10394
	8533
	8738

	
	0.2
	13887
	13083
	13038
	13077
	11092
	9700
	9782

	
	0.3
	13888
	13430
	13297
	13313
	11572
	10383
	10412

	
	0.4
	13888
	13692
	13440
	13425
	11998
	10921
	10901

	
	0.5
	13888
	13848
	13434
	13386
	12352
	11275
	11216

	
	0.6
	13888
	13887
	13302
	13219
	12596
	11446
	11359

	
	0.7
	13888
	13818
	13002
	12872
	12802
	11521
	11390

	
	0.8
	13887
	13682
	12631
	12446
	12919
	11498
	11334

	
	0.9
	13888
	13377
	11871
	11579
	13036
	11284
	11026

	
	1.0
	13887
	13054
	11055
	10710
	13054
	11055
	10710

	2
	0.0
	9811
	8620
	8665
	8675
	8326
	7172
	7277

	
	0.1
	9805
	8777
	8807
	8834
	8700
	8092
	8095

	
	0.2
	9815
	8970
	8946
	8976
	9059
	8762
	8733

	
	0.3
	9798
	9075
	8983
	8999
	9291
	9132
	9095

	
	0.4
	9826
	9225
	9040
	9024
	9506
	9389
	9351

	
	0.5
	9840
	9371
	9061
	8989
	9689
	9528
	9482

	
	0.6
	9813
	9437
	8999
	8858
	9751
	9485
	9419

	
	0.7
	9821
	9526
	8894
	8656
	9830
	9356
	9251

	
	0.8
	9816
	9585
	8780
	8456
	9829
	9144
	8982

	
	0.9
	9809
	9646
	8505
	8059
	9763
	8656
	8362

	
	1.0
	9812
	9692
	8175
	7726
	9692
	8175
	7726

	3
	0.0
	10134
	6077
	6122
	6150
	9323
	6398
	7097

	
	0.1
	10145
	7605
	7603
	7791
	9554
	7460
	7888

	
	0.2
	10135
	8700
	8650
	8811
	9781
	8235
	8548

	
	0.3
	10138
	9335
	9236
	9353
	9860
	8675
	8897

	
	0.4
	10125
	9782
	9439
	9701
	9913
	9029
	9169

	
	0.5
	10161
	10074
	9874
	9916
	9920
	9291
	9343

	
	0.6
	10181
	10163
	9885
	9915
	9856
	9366
	9353

	
	0.7
	10153
	10036
	9678
	9707
	9668
	9209
	9183

	
	0.8
	10171
	9854
	9418
	9439
	9522
	9044
	9026

	
	0.9
	10161
	9350
	8749
	8728
	9159
	8541
	8498

	
	1.0
	10153
	8828
	8084
	7978
	8828
	8084
	7978

	4
	0.0
	10584
	7087
	7133
	7144
	9512
	6383
	6998

	
	0.1
	10589
	8027
	8055
	8158
	9818
	8146
	8231

	
	0.2
	10589
	8778
	8763
	8871
	10043
	9138
	9095

	
	0.3
	10576
	9229
	9166
	9246
	10125
	9561
	9560

	
	0.4
	10590
	9584
	9454
	9494
	10203
	9894
	9906

	
	0.5
	10576
	9778
	9556
	9547
	10129
	10002
	10001

	
	0.6
	10564
	9819
	9494
	9435
	10017
	9906
	9925

	
	0.7
	10559
	9731
	9252
	9140
	9794
	9545
	9604

	
	0.8
	10562
	9561
	8904
	8741
	9553
	9088
	9151

	
	0.9
	10548
	9133
	8106
	7869
	9118
	8168
	8142

	
	1.0
	10571
	8751
	7173
	6945
	8751
	7173
	6945

	5
	0.0
	3718
	2652
	2697
	2707
	3267
	2887
	2947

	
	0.1
	3769
	2983
	3008
	3031
	3372
	3064
	3135

	
	0.2
	3817
	3263
	3258
	3302
	3493
	3238
	3314

	
	0.3
	3807
	3384
	3356
	3413
	3492
	3285
	3355

	
	0.4
	3875
	3559
	3519
	3577
	3590
	3424
	3485

	
	0.5
	3926
	3676
	3636
	3685
	3652
	3537
	3580

	
	0.6
	3913
	3684
	3643
	3687
	3630
	3548
	3576

	
	0.7
	3955
	3710
	3660
	3694
	3630
	3579
	3587

	
	0.8
	4020
	3734
	3687
	3709
	3659
	3615
	3613

	
	0.9
	4040
	3649
	3601
	3604
	3610
	3567
	3557

	
	1.0
	4074
	3594
	3536
	3521
	3594
	3536
	3521

	6
	0.0
	4160
	2959
	3005
	3017
	3393
	3157
	3183

	
	0.1
	4153
	3183
	3224
	3251
	3570
	3464
	3465

	
	0.2
	4144
	3397
	3422
	3446
	3732
	3687
	3677

	
	0.3
	4141
	3541
	3543
	3555
	3840
	3824
	3804

	
	0.4
	4148
	3686
	3659
	3649
	3938
	3927
	3895

	
	0.5
	4153
	3832
	3770
	3729
	4038
	4010
	3957

	
	0.6
	4130
	3907
	3808
	3729
	4070
	4006
	3925

	
	0.7
	4115
	3967
	3803
	3671
	4110
	3989
	3867

	
	0.8
	4118
	4023
	3816
	3635
	4127
	3947
	3787

	
	0.9
	4132
	4093
	3787
	3546
	4139
	3838
	3620

	
	1.0
	4123
	4114
	3697
	3428
	4114
	3697
	3428










Table 4: Comparison of BIC Proportion Measures for Under reporting Data Prediction

	Sample
	Proportion of lowest BIC

	
	Mixed DGP: OL and MNL
	Mixed DGP: GOL and MNL

	
	OL
	GOL
	MNL
	OL
	GOL
	MNL

	1
	0.18
	0.19
	0.63
	0.01
	0.37
	0.62

	2
	0.19
	0.18
	0.63
	0.00
	0.14
	0.86

	3
	0.14
	0.67
	0.19
	0.01
	0.56
	0.43

	4
	0.19
	0.29
	0.52
	0.06
	0.64
	0.30

	5
	0.25
	0.64
	0.11
	0.00
	0.75
	0.25

	6
	0.33
	0.04
	0.63
	0.00
	0.14
	0.86






Table 5: Predictive BIC for OL, GOL, and MNL based on under reported sample estimates

	Sample
	p
	Mixed DGP: OL and MNL
	Mixed DGP: GOL and MNL

	
	
	OL
	GOL
	MNL
	OL
	GOL
	MNL

	1
	0.0
	11925
	11972
	11998
	9718
	6807
	7402

	
	0.1
	12609
	12630
	12684
	10486
	8612
	8826

	
	0.2
	13185
	13137
	13178
	11188
	9789
	9876

	
	0.3
	13540
	13402
	13419
	11677
	10483
	10517

	
	0.4
	13811
	13549
	13534
	12107
	11026
	11010

	
	0.5
	13973
	13546
	13497
	12469
	11385
	11329

	
	0.6
	14015
	13414
	13329
	12714
	11556
	11471

	
	0.7
	13955
	13121
	12988
	12933
	11637
	11508

	
	0.8
	13822
	12748
	12559
	13053
	11612
	11448

	
	0.9
	13524
	11988
	11690
	13181
	11400
	11141

	
	1.0
	13205
	11168
	10820
	13205
	11168
	10820

	2
	0.0
	8744
	8791
	8800
	8436
	7276
	7382

	
	0.1
	8901
	8933
	8961
	8823
	8211
	8214

	
	0.2
	9100
	9077
	9108
	9196
	8896
	8865

	
	0.3
	9205
	9114
	9133
	9437
	9277
	9239

	
	0.4
	9359
	9174
	9160
	9658
	9539
	9500

	
	0.5
	9511
	9197
	9127
	9851
	9686
	9638

	
	0.6
	9581
	9139
	8998
	9914
	9643
	9575

	
	0.7
	9674
	9037
	8795
	9998
	9517
	9407

	
	0.8
	9736
	8923
	8595
	9995
	9301
	9134

	
	0.9
	9803
	8648
	8194
	9927
	8808
	8504

	
	1.0
	9854
	8322
	7863
	9854
	8322
	7863

	3
	0.0
	6094
	6139
	6167
	9377
	6419
	7121

	
	0.1
	7625
	7624
	7812
	9589
	7474
	7904

	
	0.2
	8721
	8670
	8833
	9821
	8264
	8572

	
	0.3
	9359
	9260
	9378
	9896
	8703
	8923

	
	0.4
	9808
	9654
	9726
	9947
	9058
	9196

	
	0.5
	10101
	9900
	9942
	9950
	9320
	9368

	
	0.6
	10192
	9913
	9943
	9885
	9397
	9380

	
	0.7
	10064
	9706
	9736
	9697
	9239
	9211

	
	0.8
	9882
	9444
	9466
	9548
	9071
	9052

	
	0.9
	9378
	8775
	8756
	9187
	8567
	8525

	
	1.0
	8858
	8110
	8005
	8858
	8110
	8005
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	0.0
	7112
	7158
	7170
	9584
	6406
	7024

	
	0.1
	8053
	8081
	8185
	9880
	8174
	8262

	
	0.2
	8806
	8791
	8900
	10095
	9143
	9133

	
	0.3
	9259
	9195
	9276
	10162
	9600
	9594

	
	0.4
	9618
	9486
	9526
	10240
	9931
	9937

	
	0.5
	9814
	9589
	9580
	10163
	10037
	10034

	
	0.6
	9858
	9530
	9470
	10048
	9939
	9957

	
	0.7
	9773
	9289
	9174
	9829
	9580
	9639

	
	0.8
	9604
	8202
	8774
	9590
	9121
	9184

	
	0.9
	9182
	8145
	7903
	9164
	8205
	8178

	
	1.0
	8805
	7209
	6979
	8805
	7209
	6979
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	0.0
	2662
	2708
	2718
	3282
	2900
	2961

	
	0.1
	2994
	3019
	3043
	3386
	3076
	3148

	
	0.2
	3275
	3271
	3315
	3509
	3252
	3329

	
	0.3
	3396
	3369
	3425
	3506
	3299
	3370

	
	0.4
	3573
	3533
	3591
	3605
	3439
	3500

	
	0.5
	3690
	3650
	3699
	3667
	3552
	3595

	
	0.6
	3698
	3657
	3702
	3645
	3563
	3591

	
	0.7
	3725
	3675
	3709
	3645
	3595
	3601

	
	0.8
	3749
	3702
	3723
	3674
	3630
	3627

	
	0.9
	3664
	3615
	3619
	3625
	3581
	3571

	
	1.0
	3609
	3550
	3535
	3609
	3550
	3535

	6
	0.0
	2998
	3045
	3058
	3436
	3204
	3230

	
	0.1
	3226
	3268
	3295
	3617
	3513
	3514

	
	0.2
	3443
	3469
	3493
	3784
	3741
	3731

	
	0.3
	3590
	3592
	3605
	3895
	3880
	3859

	
	0.4
	3737
	3711
	3701
	3996
	3985
	3952

	
	0.5
	3886
	3825
	3783
	4098
	4069
	4016

	
	0.6
	3963
	3865
	3785
	4132
	4067
	3984

	
	0.7
	4024
	3862
	3727
	4173
	4051
	3926

	
	0.8
	4082
	3873
	3692
	4190
	4009
	3846

	
	0.9
	4153
	3847
	3603
	4201
	3900
	3677

	
	1.0
	4175
	3746
	3485
	4175
	3746
	3485




