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ABSTRACT 
There is considerable debate on the appropriate discrete choice framework for examining injury 

severity. Researchers in the safety field have employed ordered and unordered frameworks for 

examining the various factors influencing injury severity. The objective of the current study is to 

investigate the performance of the ordered and unordered response frameworks at a fundamental 

level. Towards this end, we undertake a comparison of the alternative frameworks by estimating 

ordered and unordered response models using data generated through ordered, unordered data 

and a combination of ordered and unordered data generation processes. We also examine the 

influence of aggregate sample shares on the appropriateness of the modeling framework. Rather 

than be limited by the aggregate sample shares in an empirical dataset, simulation allows us to 

explore the influence of a broad spectrum of sample shares on the performance of ordered and 

unordered frameworks. We also extend the data generation process based analysis to under 

reported data and compare the performance of the ordered and unordered response frameworks. 

Finally, based on these simulation exercises, we provide a discussion of the merits of the 

different approaches. The results clearly highlight the emergence of the generalized ordered logit 

model as a true equivalent ordered response model to the multinomial logit model for ordinal 

discrete variables. 

 

Keywords: Ordered and unordered discrete choice models for injury severity, ordinal discrete 

variables, generalized ordered logit, comparison 

 

  



1 INTRODUCTION 

Discrete choice models and their variants are employed extensively for analyzing decision 

processes in various fields including transportation, marketing, social sciences, bio-statistics and 

epidemiology. Discrete choice models in their broadest sense can be characterized as ordered and 

unordered response frameworks. The ordered response frameworks are suited for examining 

discrete variables that are ordinal in nature while the unordered response frameworks are 

applicable to analyzing all discrete variables. The ordered response models represent the decision 

process under consideration using a single latent propensity. The choice probabilities are 

determined by partitioning the uni-dimensional propensity into as many categories as the 

dependent variable alternatives through a set of thresholds. Examples of ordered discrete 

variables in the field of transportation include: (1) driver and passenger injury severity in traffic 

collisions, (2) household vehicle (automobile and bicycle) ownership, and (3) activity 

participation indicators (such as number of tours, number of stops, activity episode participation 

frequency and activity duration). The prevalent mechanism to analyze ordered discrete variables 

is to employ the ordered response models such as ordered logit and ordered probit models 

depending on the distributional assumptions of the unobserved component of the latent 

propensity.  

 

Unordered discrete choice frameworks offer a potential alternative to the analysis of ordered 

discrete variables. These models are characterized, usually, by a latent variable per alternative 

and an associated decision rule. The most commonly employed unordered discrete models – the 

multinomial logit (MNL) model and its extensions – have their origin in the random utility 

domain. The latent variable per alternative is referred to as the alternative utility and the 

alternative with the highest utility is designated as the chosen alternative. There are a number of 

studies that have considered the multinomial logit (and its extensions) for examining ordinal 

discrete choice variables. For example, (1) injury severity (see Yasmin and Eluru, 2012, 

Savolainen et al., 2011, Eluru and Bhat, 2007 for detailed literature reviews on severity models), 

and (2) vehicle ownership (see Anowar et al., 2012 for a list of studies).  

 

The applicability of the two frameworks for analyzing ordinal discrete variables has evoked 

considerable debate on using the appropriate choice model for analysis. There has been 

considerable debate more recently in the safety community in adopting the appropriate 

framework for analysis in the injury severity context. There are many strengths and weaknesses 

for the ordered framework vis-à-vis the unordered framework. The ordered response models 

explicitly recognize the inherent ordering within the decision variable whereas the unordered 

response models neglect the ordering or require artificial constructs to consider the ordering (for 

example the ordered generalized extreme value model (OGEV)). On the other hand, the 

traditional ordered response models restrict the impact of exogenous variables on the choice 

process to be same across all alternatives while the unordered response models allow the model 

parameters to vary across alternatives (see Eluru et al., 2008 for a discussion). The restricted 

number of parameters ensures that ordered response models have a parsimonious specification. 

The unordered response models might not be as parsimonious but offer greater explanatory 

power because of the additional exogenous effects that can be explored. In fact, several studies 

highlight the advantages of multinomial logit models over the ordered response models (see for 

example Bhat and Pulugurta, 1998).  



Another concern with the ordered response framework is in the context of modeling datasets that 

might be affected by under reporting
1
 - an aspect of great relevance to safety literature. In fact, 

unordered response framework is considered to be more effective compared to the ordered 

response framework in this context. In the case of an under reported decision variable, the 

traditional multinomial logit model provides estimates that are unbiased i.e. the elasticity effects 

of the variables are not affected by the under reported data. This is quite critical in terms of 

examining exogenous variable impacts on the decision process. Further, the unordered response 

model can be applied by altering the constants if the true population shares are available. In the 

case of an ordered response model, the parameter estimates are expected to be biased and hence 

might lead to erroneous policy implications
2
. In summary, in the context of accident literature 

there are two important aspects that need to be examined.  

1) Which model framework offers superior statistical fit (and thereby behavioral 

interpretability) to the dataset under consideration?  

2) How do these frameworks perform in the presence of under reported data? 

 

It is in this light that we undertake the current research effort. The objective of the current study 

is to investigate the performance of the ordered and unordered response frameworks at a 

fundamental level. Towards this end, we undertake a comparison of the alternative frameworks 

by estimating ordered and unordered response models using data generated through ordered, 

unordered data and a combination of ordered and unordered data generation processes (more on 

this in Section 2.1.1). Subsequently, we examine the influence of aggregate sample shares on the 

appropriateness of the modeling framework i.e. are ordered response frameworks more suitable 

to examine ordered discrete variable with a particular share. Rather than be limited by the 

aggregate sample shares in an empirical dataset
3
, simulation allows us to explore the influence of 

a broad spectrum of sample shares on the performance of ordered and unordered frameworks. 

Third, we extend the data generation process based analysis to under reported data and compare 

the performance of the ordered and unordered response frameworks (in the context of different 

data generation processes and varying sample shares). Finally, based on these simulation 

exercises, we provide a summary of the strengths and weaknesses of the two frameworks for 

analyzing ordered discrete variables in general and for injury severity modeling in particular.  

 

The remainder of the paper is organized as follows. Section 2 provides a background for the 

proposed research methodology; highlights the motivation for our research and discusses the 

experimental setup of our study. Section 3 briefly outlines the econometric frameworks of the 

three alternative frameworks considered. Section 4 presents the results from the simulation 

exercise for model comparisons. In Section 5, we discuss the simulation results in the context of 

datasets with under reporting. Section 6 provides a discussion of findings from our analysis 

while simultaneously providing guidelines on the appropriateness of the modeling frameworks 

for ordinal discrete variables. We conclude the paper in Section 7 with a discussion of the 

limitations of the current study and directions for future research. 

                                                 
1
 Injury severity reporting is considered to be substantially affected by under reporting (see Elvik and Mysen 1999, 

Yamamoto et al., 2008) 
2
 Of course, the true advantage of the multinomial logit model in the context of under reporting is slightly reduced 

because the availability of “true” population level measures to the analyst is quite often rare. 
3
 An empirical dataset provides a single realization of the aggregate sample share; thus limiting us in exploring the 

performance difference of the two frameworks as a function of aggregate sample share. 



2 BACKGROUND AND CURRENT STUDY IN CONTEXT 

2.1 Earlier research 

To be sure, some of the aspects highlighted above have been examined in earlier research. For 

example, Bhat and Pulugurta, 1998 undertook a comparison exercise of vehicle ownership 

decisions through the ordered logit and the multinomial logit models. In their study, the authors 

estimated the two models on four datasets and confirmed that the multinomial logit model offers 

superior data fit and validation capabilities. The study highlight how an ordered response model 

offers a parsimonious specification while the unordered response model offers enhanced 

behavioral interpretability through the addition of exogenous variable effects at the alternative 

level. Yamamoto et al. 2008 conducted an analysis of potential under reported data by comparing 

the performance of ordered probit and sequential binary probit models. The authors found that 

the sequential probit models outperform the ordered probit model in terms of bias values in the 

parameters. Ye and Lord, 2011 compared the ordered probit, multinomial logit and mixed logit 

model in terms of under reported data. The authors concluded that all the three models 

considered in the study perform poorly in the presence of under reported data. The exact impact 

of under reporting on these model frameworks needs further investigation. The study employed 

data simulation; however, the models were estimated with just one parameter and for a particular 

aggregate sample share.  

 

More recently Patil et al. 2012 demonstrated the application of a conditional maximum 

likelihood estimation approach to address under reporting in the context of crash severity 

analysis using nested logit model. Anowar et al. 2012 undertook a comparison of the ordered and 

unordered response models in the context of vehicle ownership. In their study, they found that 

the unordered response models outperform the ordered response models. Yasmin and Eluru, 

2012 undertook a comprehensive comparison of various modeling frameworks including ordered 

logit, generalized ordered logit, multinomial logit, nested logit and ordered generalized extreme 

value logit for analyzing driver injury severity. In their study, the results clearly establish the 

superiority of the generalized ordered logit in the context of driver injury severity. In the study 

the authors also explored the issue of how different frameworks perform in the presence of under 

reporting in the data. The authors computed elasticity effects for the “true” and under reported 

datasets and concluded that the error in elasticity effects estimated from the unordered systems is 

not any better than the error in elasticity effects estimated from the ordered systems in their 

empirical context.  

 

Interestingly, none of these studies establish that the comparison relationship identified will hold 

for all possible datasets and sample shares. For example, in the context of accident injury 

severity it is possible that the additional flexibility of the MNL model can enhance the predictive 

capabilities. However, it is completely possible that for another decision process (or other injury 

severity datasets from other geographical regions) the additional flexibility offered by MNL 

might not yield similar benefits.  

 



2.2 Limitations of earlier research 

2.2.1 Influence of Data Generation Process 

An important reason for the inability to generalize the results from earlier analysis can be 

attributed to ignoring the underlying data generation process. The aforementioned studies do not 

examine the comparison of ordered and unordered frameworks from a fundamental data 

generation process perspective. The implicit assumption while estimating a discrete choice 

model for analyzing a decision process is that the model framework considered, reasonably 

represents the true data generation process of the decision maker. To elaborate, if the underlying 

data generation process (dgp) of the decision considered is ordered in reality an ordered model 

might be appropriate for analyzing the decision framework. At the same time, if the dgp for the 

decision maker is unordered in nature then the unordered response model might be a more 

plausible alternative. Unfortunately, the dgp is latent to the analyst and is seldom known. In any 

empirical comparison of the ordered and unordered response framework, the impact of the 

underlying dgp is hard to capture. For example, in the context of injury severity (as an ordinal 

variable) the underlying dgp could be ordered or unordered or more likely a combination of both. 

The earlier research efforts on comparison of the various frameworks have not explicitly 

examined the influence of the inherent dgp on the appropriateness of the framework. To 

conclusively establish the superiority of a particular framework, one can simulate data and 

examine how each framework performs based on the dgp under consideration. The comparison 

exercises undertaken so far have not tackled the comparison from this pure data generation 

process. In our current study, we attempt to examine the role of dgp on model estimation. 

 

2.2.2 Generalized Ordered Logit model 

Even if we confine ourselves to empirical datasets, the earlier literature has compared the 

traditional ordered logit/probit models with the multinomial logit model. However, the 

generalized logit model developed in the 1980s (Terza, 1985) and recently employed in traffic 

safety literature (Castro et al., 2012a; Eluru et al., 2008; Srinivasan, 2002) and modified for 

count models (Narayanamorrthy et al., 2012; Paleti et al., 2012; Castro et al., 2012b) offers a 

representative comparison between the ordered and unordered response mechanisms. 

Researchers have been very proactive in employing the more advanced variants of the 

multinomial logit model; however, recent advances in ordered regime have not been considered 

in the comparison (except for Yasmin and Eluru, 2012). It is important that an equivalent ordered 

response framework for the multinomial logit model is considered for the comparison exercise. 

The generalized ordered logit (GOL) model allows for the impact of exogenous variables to 

affect the threshold parameters thus relaxing the restrictive assumption of the traditional ordered 

response structure on limiting the parameters to be the same for all alternatives. In fact, the 

generalized ordered response model theoretically can estimate the same number of parameters as 

the multinomial logit for an ordinal discrete variable. Hence, an exercise comparing the 

alternative frameworks is incomplete without considering the generalized ordered logit. 

 

2.2.3 Influence of Aggregate Population Sample Share 

While undertaking the comparison exercise of alternative frameworks on empirical datasets (be it 

vehicle ownership or injury severity analysis), the analyst is often restricted to one dataset 

sample (or a very small number of datasets) with fixed aggregate shares. Thus it is unlikely that 

the analyst can examine the influence of sample shares on the appropriateness of the alternative 



decision frameworks. To investigate the effect of aggregate population sample shares on the 

appropriateness of the modeling approach, a feasible alternative is to undertake a comparison 

with simulated databases with varying aggregate sample shares. The current study undertakes 

this exercise to confirm (or invalidate) the hypothesis that aggregate sample shares of the dataset 

affects the appropriateness of the modeling framework.  

 

2.2.4 Under reporting 

A commonly stated disadvantage of the traditional ordered models is the inability to obtain 

unbiased estimates in the presence of under reporting (Yamamoto et al., 2008). The recent study 

by Yasmin and Eluru, 2012 however provides counter evidence to the hypothesis. It is to be 

expected that an under reported sample will provide incorrect prediction when used on a 

population sample. However, prior to using a model framework, we need to explore for the 

presence of systematic biases in alternative model frameworks. The issue is particularly relevant 

to crash severity modeling as most police compiled datasets are affected by underreporting (see 

Elvik and Mysen, 1999).  

 

2.2.5 Mixed data generation process 

In reality the dgp for the empirical comparison for models is probably a mix of ordered and 

unordered processes; i.e. for some proportion of the population the underlying decision process 

might represent an ordered response framework while the remainder of the population might 

follow an unordered decision process. Depending on the nature of the empirical dataset and 

aggregate sample shares it is possible that the proportion might have a significant influence on 

the compatibility of the modeling framework. Even if it is nearly impossible to realize the true 

proportion value, there is a need to evaluate the performance of alternative frameworks under 

different proportion levels. The effect of the potential mixing in the dgp has never been studied 

in the context of ordered and unordered models.  

 

2.3 Current Study  

The preceding discussion clearly highlights the different aspects of alternative framework 

comparison that have not been considered in previous research efforts. The main focus of our 

study is to augment the literature on comparison of ordered and unordered frameworks by 

focussing on the aforementioned aspects. To achieve this, we propose a four pronged approach. 

First, we consider the ordered logit, generalized ordered logit and the multinomial logit models 

for the comparison exercise. Second, we resort to a simulation exercise to understand the 

influence of underlying dgp on the modeling frameworks. We examine the performance of three 

models identified in various dgps. Third, we consider the influence of aggregate sample shares 

on the appropriateness of the model frameworks by considering a range of aggregate shares for 

the data generation. Finally, we repeat the comparison exercise (second and third steps) in the 

context of “artificially” generated under reported data. 

 

3 Methodology 

Prior to discussing the experimental design employed in the study we briefly provide details of 

the three model frameworks employed in our study. 



 

3.1 Ordered Logit Model 

In the traditional ordered response model, the discrete injury severity levels      are assumed to 

be associated with an underlying continuous, latent variable    
  . This latent variable is typically 

specified as a linear function as follows    

  
        , for           N                                                                                 (1)                                                      

where, 

                represents the drivers 

   is a vector of exogenous variables (excluding a constant) 

  is a vector of unknown parameters to be estimated 

  is the random disturbance term assumed to be standard logistic 

Let               ) and    denote the injury severity levels and the thresholds 

associated with these severity levels, respectively. These unknown thresholds are assumed to 

partition the propensity into     intervals. The unobservable latent variable   
  is related to the 

observable ordinal variable    by the  s with a response mechanism of the following form: 

                
    ,        for                                                          (2) 

In order to ensure the well-defined intervals and natural ordering of observed severity, the 

thresholds are assumed to be ascending in order, such that               where 

      and      . The probability expressions take the form: 

           |     (      )   (        )            (3) 

where   represents the standard logistic cumulative distribution function. 

 

3.2 Generalized Ordered Logit Model 

The generalized ordered response model relaxes the constant threshold across population 

restriction to provide a flexible form of the traditional OL model. The basic idea of the GOL is to 

represent the threshold parameters as a linear function of exogenous variables (Maddala 1983, 

Terza 1985, Srinivasan 2002, Eluru et al. 2008). Thus the thresholds are expressed as: 

                                                                (4) 

where,     is a set of exogenous variable (including a constant) associated with      threshold. 

Further, to ensure the accepted ordering of observed discrete severity               

               . We employ the parametric form employed by Eluru et al. (2008): 

                                                                       (5) 

    is a vector of parameters to be estimated. The remaining structure and probability 

expressions are similar to the OL model. For identification reasons, we need to either supress the 

latent propensity of one of the     vectors. 

 

3.3 Multinomial Logit Model 

Consider the probability of an accident   ending in a specific injury-severity level  . The 

alternative specific latent variables take the form of: 

                                                                                                                                       (6) 

where 

   is a vector of coefficients to be estimated for outcome   



    is a vector of exogenous variables 

    is a function of covariates determining the severity  

    is the random component assumed to follow a  gumber type 1 distribution. 

Thus, the MNL probability expression is as follows: 

      
           

∑            
 
   

                                                                                                                     (7) 

 

4 Experimental Design 

The experimental design considered for the comparison exercise is outlined in detail in this 

section. The objective is to evaluate the performance of the three frameworks on simulated data. 

In particular, we focus on data generated from a true ordered process, a true unordered process 

and a wide spectrum of mixed processes i.e. a proportion (p) of the population follows an 

ordered decision making process and the remainder of the population (1-p) follows an unordered 

decision making process. Specifically, we consider the range of p from 0 to 1 in intervals of 0.1, 

thus traversing the pure ordered dgp to pure unordered dgp in 11 steps
4
. While generating nied 

dgp, we ensure that the ordered and unordered dgp originate from the same aggregate shares. 

Within each dgp, we estimate the three models and compare the performance of the frameworks 

in terms of data fit. 

 

The simulation exercise is undertaken for a four alternative ordered dependent variable – typical 

injury severity categories employed in safety literature (see Eluru et al., 2008, Yasmin and Eluru 

2012). We consider three independent variables (standard univariate normal random variables) to 

influence the decision process (see Ferdous et al., 2010 and Bhat et al., 2010 for similar data 

generation examples). The same three variables are used in the three model systems. In the OL 

model these variable are incorporated in the latent propensity. Hence, the OL model requires 3 

parameters and 3 thresholds (a total of 6 parameters). In the GOL model the independent 

variables are incorporated in the latent propensity and thresholds 2 and 3 (threshold 1 is set to 0 

for identification) resulting in 9 parameters, 1 propensity constant, 1 constant in threshold 2 and 

1 constant in threshold 3, yielding a total of 12 parameters. The MNL model is estimated 

considering the first alternative as base. The MNL model has 9 parameters for independent 

variables and 3 constants (again a total of 12 parameters).  

 

4.1 Data generation 

4.1.1 Data Generation for model estimation comparison 

For ordered logit data, we generate the latent propensity for an ordered logit model using the 

three independent variables and a standard logistic error term. The discrete dependent variable 

value is determined based on the threshold parameters assumed. For generalized logit data, we 

generate the latent propensity and threshold vectors using the three independent variables and a 

standard logistic error term. The discrete dependent variable value is determined based on the 

                                                 
4
 To be sure, the idea is to examine, if there is any effect of mixed dgp on the appropriateness of the framework for 

analysis. There is very little information available to the analyst in terms of realizing the extent of mixture in the 

dgp. However, we believe the process will shed light on the strength and weakness of the alternative frameworks as 

the value of p changes.  



location of the propensity with regard to the individual specific threshold. For multinomial logit 

data, we generate the systematic alternative utilities based on the three independent variables. 

The error components for the alternatives are generated using standard Type 1 extreme value 

distribution. The chosen alternative is determined based on the alternative with the highest 

utility.  

 

To cover a wide range of possible dgp’s we focus on two major configurations: 

(1) Ordered logit dgp and Multinomial logit dgp mixed data generation 

(2) Generalized ordered logit and Multinomial logit mixed data generation 

 

The two dgps for the above configurations are generated by combining the independent dgps 

from ordered and unordered systems using a uniform random variable (U). For an individual, the 

ordered process generated dependent variable is the chosen alternative if U < p and unordered 

process generated dependent variable is the chosen alternative if U≥ p. In this manner we can 

easily generate a mixed dgp with varying levels of mixture. The above process is repeated for 6 

aggregate sample shares. The parameter vectors and the aggregate sample shares for the three 

regimes are provided in Table 1. The sample shares selected in our analysis were targeted at 

covering the most probable combination of a four alternative dependent variable. Sample 1 is the 

equal share alternative. Sample 2 has proportions starting at a high value for the first alternative 

and gradually reducing for the last alternative. Sample 3 is the mirror image of Sample 2. Sample 

4 considers high proportions allocated to interior alternatives. Sample 5 reflects extreme loading 

on the last alternative with diminishing shares for the other alternatives. Sample 6 is the mirror 

image of Sample 5. The sample shares are chosen so as to reflect the commonly observed sample 

shares in safety literature for driver injury severity (sample 2 and 6) and pedestrian injury 

severity (sample 3 and sample 5). 

 

The reader would note that it is not straight forward to generate parameters that impact the 

dependent variable in a similar fashion across the different model frameworks. Hence, we resort 

to assuming parameters that provides the same aggregate shares in the population for the three 

frameworks. The parameter set for each sample for the three model frameworks are also 

presented in table 1. To elaborate on the parameters provided in Table 1, we discuss the 

estimates for Sample 1 for each of the model frameworks. The OL the independent variable 

parameters are 1.25, 0.25, and 0.50 and thresholds parameters are -1.50, 0.00 and 1.50. The GOL 

model constant parameters are 1.90, 0.50, 0.70 and the independent variable parameters: (1) in 

the propensity equation are 1.5, 0.75, 1.50, (2) threshold 2 are 0.75, 0.50, 1.25, and (3) threshold 

3 are -1.50, 0.75, and 0.50. For the MNL model the first alternative is considered the base; the 

constant parameters are -0.75, -0.25, and -0.50 and and the parameters for independent variables: 

(1) alternative 2 are 1.50, -0.25, and 0.50, (2) alternative 3 are -0.50, 0.75, and 0.25 and (3) 

alternative 4 are -1.25, -0.50, and -0.25. The remainder of the parameter set also follows the 

same structure. With the parameter set presented in Table 1, 50 realizations of the data with 5000 

observations each are generated for each proportion value (p). We generate a total of 6 aggregate 

sample shares for the two configurations identified above.  Within each configuration, we 

estimate the OL, GOL and MNL. In all the simulation exercises the three independent variables 

are retained to be the same across models.  

 



4.1.2 Data Generation for under reporting 

The same process described in Section 4.1.1 is repeated for the under reported data with one 

minor change. The entire data generated is not used in the estimation exercise. Towards 

generating an under reported dataset, – a dataset that has few individuals choosing the first 

alternative - we remove a fraction of the records that are assigned to the first level for the ordinal 

variable. Specifically, we only sample about 70% (i.e. remove 30 %) of the data points that are in 

the first category. The resulting overrepresentation of data is different for different aggregate 

shares. The OL, GOL and MNL models are estimated using the under reported sample. 

 

4.2 Performance Evaluation Metrics 

The emphasis of the research effort is on examining the performance of the OL, GOL and MNL 

models in retrieving the behavior in the simulated data. It is important to note that parameter 

retrieval for comparison is not a possible evaluation measure. Because, based on how we 

generated the mixed data it is quite complex to generate the “true” model parameters for the 

system unless one finds the equivalent a latent segmentation based combination. The discovery 

of such parameter space is far from trivial and is not essential for our research effort. Hence we 

resort to comparing the model fit measures for the estimation sample for the three models. In 

terms of model fit comparison, the GOL model is a generalized version of OL; we can compare 

these two models by using likelihood ratio test for selecting the preferred model. However, to 

compare the ordered approaches with the unordered approach the likelihood ratio test is not 

appropriate.  

 

Towards this exercise, we employ the Bayesian Information Criterion (BIC) measure. The BIC 

for a given empirical model is equal to − 2ln(L) + K ln(Q), where ln(L) is the log-likelihood 

value at convergence, K is the number of parameters, and Q is the number of observations. The 

model with the lower BIC values is the preferred model. BIC measure comparison for the GOL 

and MNL models actually collapses to a comparison of the log-likelihood because both these 

models have the same number of parameters. However, we still maintain the BIC comparison 

because BIC imposes higher penalty for additional parameters (as is common when we estimate 

GOL/MNL). The BIC parameter allows us to ensure we are not over fitting that data, a relevant 

criterion for accident datasets that usually have a large set of exogenous variables. 

 

We compute two measures of BIC: (1) the proportion of datasets for which a framework has the 

lowest BIC and (2) average BIC. The first measure is computed as the proportion a framework 

has the lowest BIC by checking which framework provides the lowest BIC for each dataset. This 

measure is computed once for every aggregate sample. The proportion will allow us to identify 

the superior model over the entire analysis for each aggregate share. The second measure - 

average BIC - is computed by averaging the BIC value for each p value i.e. for each aggregate 

sample we have 11 measures.  

 

In the simulation exercise for the under-reported sample, we report similar measures computed in 

a slight different manner. Specifically, in the case of under reporting, we examine the 

performance of the three models in prediction i.e. estimate models with the underreported data 

and them employ the estimated parameters to predict the dependent variable in the “original” 

sample. The process allows us to see how the models perform when estimates are affected by 

under reporting.  The predictive ability of these under reported estimates in the context of true 



sample offers the most realistic comparison. The two measures computed earlier are computed 

for these predicted samples. The exercise is particularly relevant in the context of safety 

literature.  

 

5 RESULTS 

5.1 Model Estimation Comparison 

The model estimation comparison results are discussed in this section. The OL, GOL and MNL 

models are estimated for 6600 datasets of 5000 observations each (2 (data configurations) * 6 

(aggregate shares))* 11 (p values) * 50 samples). For all these model estimations, we compute 

the BIC measures. The two BIC measures computed are reported in Tables 2 and 3.  

 

5.1.1 Proportion measure 

In Table 2, the proportion of a particular model has the lowest BIC is reported for all 6 aggregate 

shares. In terms of the first data configuration (OL and MNL mixed dgp), we observe that the 

MNL model performs really well for 4 aggregate shares while GOL model performs really well 

for 2 aggregate shares. The MNL model clearly outperforms the other models in aggregate 

samples that are left skewed (samples 2 and 6). The MNL model also performs better than the 

GOL model for the equal share alternative sample. The GOL model outperforms the other two 

systems when we have aggregate shares that are right skewed (samples 3 and 5). In terms of the 

sample with high proportions of interior alternatives (sample 4) the MNL model is slightly better 

than the combined performance of OL and GOL model. The results clearly show that even for an 

OL and MNL mixture process the OL model rarely offers a good fit. This clearly establishes that 

the use of traditional ordered logit models for analyzing ordered discrete variables is quite 

restrictive. This supports the hypothesis of earlier safety research advocating the use of 

multinomial logit models. However, the results also indicate that employing the GOL model in 

this context reduces the difference substantially and in some cases even improves model fit.  

 

For the second data configuration (GOL and MNL mixed dgp) the results for the proportion 

measure are quite different. The results clearly show that in the presence of GOL based ordered 

process the OL model is clearly inefficient. In terms of the comparison between GOL and MNL; 

the result is an equal split across the 6 aggregate shares. Similar to what is observed earlier the 

MNL model outperforms the GOL model in Sample 1 (equal shares), Sample 2 (right skewed) 

and Sample 6 (extremely right skewed). The GOL model outperforms the MNL model for 

Sample 3 (left skewed), Sample 5 (extremely left skewed) and Sample 4 (high proportion of 

interior shares). The major difference in the current configuration is the switch for sample 4 from 

an MNL preference to a GOL preference. The results support the hypothesis that GOL offers a 

credible alternative to MNL for modeling ordinal discrete variables. Of course, the most striking 

result from the above discussion is that distinct aggregate shares provide variation in model 

preference clearly highlighting that the aggregate share has an influence on how the alternative 

model frameworks perform.  

 



5.1.2 Average BIC measure 

The results corresponding to the average BIC measure are presented for all aggregate sample 

shares for all p values. The results are reported in Table 3 for the two data configurations. Table 

3 provides information on the sample, the p value, the average BIC value for a constants only 

model as reference, and the average BIC values for the three models for data configuration 1 and 

2. The lowest average BIC values for each model system and data configuration are underlined. 

The reader would note that as the p value increases the model shifts from a purely ordered 

(OL/GOL) process to a purely MNL process. In fact, the reader would note that the estimates for 

p=1 for data configurations 1 and 2 yield the same results because at p=1 we have a purely MNL 

process which is not influenced by the change in the ordered process from OL to GOL.  

 

The average BIC measure is a more representative metric of comparison because the metric in 

addition to identifying the superior framework also provides a sense of the difference between 

the model frameworks. The difference will allow us to see how different the best model 

framework performs relative to the other frameworks. For the first data configuration, the results 

closely resemble the trends described in the proportion measures. The OL model performs 

competitively for p values of 0-0.1 usually indicating that unless the data is purely or very close 

to purely ordered logit (p≤0.1) the ordered system cannot perform better than GOL/MNL even 

using a stringent penalty for excess parameters. The result clearly highlights the inadequate 

explanatory power offered by the traditional ordered logit model. The GOL model usually takes 

over from the OL model once p values are >0.1. The GOL model performs as well or better than 

the MNL model for p-values of up to 0.3 for Samples 1, and 2. On the other hand, for samples 3 

and 5, the GOL model outperforms the MNL model for p values ranging from 0.2 through 

0.8/0.9. A particularly important aspect to notice is even when the MNL model outperforms the 

GOL model the difference in LL is well below 2% in all cases (and even below 0.1% in many 

cases). The measure clearly indicates for a particular sample when GOL is inferior to the MNL 

the difference is a marginal one. 

 

For the second data configuration, the results indicate that in the presence of GOL dgp, OL 

model is consistently inferior to GOL and MNL. In fact, the comparison here is a comparison of 

GOL and MNL models only. The trends observed here are similar to the trends observed for the 

proportion measure. For Samples 1, 2 and 6, the MNL model outperforms the GOL model for 

majority of the p value segments. For samples 3, 4 and 5 GOL model outperforms the MNL 

model. Again these results clearly highlight the potential of GOL model for examining ordinal 

discrete models. Further, the GOL model consistently performs well when compared to the MNL 

model irrespective of aggregate share. The results indicate that the performance of the GOL 

model for some empirical datasets (Eluru et al., 2008, Yasmin and Eluru, 2012) is not a lucky 

realization; but a realization of its strength in modeling of ordinal discrete variables. Again, the 

reader would note that in the event of a superior performance of the MNL model the GOL 

performance is well within 2% in all cases. 

 

In summary the proportion measure and the average BIC highlight how GOL model offers a true 

ordered equivalent to the MNL model for a wide range of aggregate shares and inherently latent 

underlying dgps. 



5.2 Performance in the Presence of Under-Reporting 

The entire data generation and model estimation process was repeated to examine the 

performance of alternative frameworks under the presence of under reported data. The process 

involved estimating the alternative frameworks for the under reported data and employing the 

model parameters for predicting the outcome for the original dataset. To compare the alternative 

frameworks we employ the same measures generated previously. The results for the under 

reporting exercise are presented in Tables 4 and 5. 

 

5.2.1 Proportion measure 

In Table 4, the proportion of a particular model that has the lowest BIC is reported for all 6 

aggregate shares. The proportion measure of prediction indicates that the overall performance 

trends for the various frameworks are not altered in the presence of under reporting. The result 

concludes that there is no evidence to suggest, at least for model prediction, one model is 

superior to another. Again, the result provides credence to the finding from Yasmin and Eluru, 

2012 that the GOL model performed better than the MNL model. If the GOL model performs 

better than MNL model in estimation for a particular aggregate share; the performance in the 

presence of under reporting (given that the overall share structure is marginally affected) is likely 

to be very similar. The result is comforting in the sense that analysts can choose their preferred 

model solely on model estimation metrics and proceed with post processing analysis.  

 

5.2.2 Average BIC measure 

The results corresponding to the average BIC measure are presented for all aggregate sample 

shares for all p values. The results are reported in Table 5 for the two data configurations. The 

lowest average BIC values for each model system and data configuration are underlined. 

 

The results for the average BIC measure also very closely resemble the results observed for the 

model estimation. The average BIC measures examining the BIC for every p value for all the 6 

aggregate shares indicates that the trends obtained in model estimation continue to be followed 

even in the context of under reported data providing further evidence to the lack of systematic 

bias in terms of the model frameworks for prediction. The reader would also note that in the 

event of a superior performance of the MNL model the GOL performance is not inferior by a 

huge margin. Another aspect to note in the under reported case is the higher BIC values 

compared to the  corresponding values in Table 3 indicating that there is a minor loss in 

efficiency when  under reported sample based parameters are used to predict for the “true” 

sample. The result is in line with intuitive expectations.  

 

5.3 Implications of the Findings 

The two significant reasons for employing unordered models for ordered decision variables 

were: (1) substantial improvement in data fit offered by the unordered response models and (2) 

improved performance of unordered response models in presence of underreporting in the data. 

The current simulation exercise clearly indicates that it is possible to address these limitations 

with an improved ordered model, the Generalized Ordered Logit. The findings from our study 

have significant implications for accident analysis research. There is growing recognition within 

the safety community that modeling injury severity exogenous to seat belt use, alcohol 



consumption, or collision type is not realistic. For instance, the common unobserved factors that 

influence seat belt usage might also influence injury severity (See Eluru and Bhat, 2007). 

Accommodating these unobserved correlations when we consider injury severity as an unordered 

process increases the number of error terms to be handled in the model formulation and 

estimation resulting in computationally intensive model structures. The estimation approaches 

require either simulation or some form of approximation to handle the complexity. However, 

with a GOL structure the number of error terms to be handled can be restricted to one without 

any loss in model explicative power. In fact, employing GOL might allow us to simultaneously 

examine multiple ordered decisions in a straight forward manner. Moreover, the simpler error 

structure of the GOL model will lend itself to closed form couplings such as copulas (Bhat and 

Eluru, 2009). The corresponding model for the unordered response model would require K 

couplings where K corresponds to the number of alternatives in the injury severity model. 

 

The advantages of considering GOL model further increase when we intend to correlate two 

ordinal variables. In choice scenarios that require us to capture spatial correlation, the unordered 

systems are particularly cumbersome whereas GOL model while retaining the simplicity of the 

traditional ordered systems offers a competitive alternative to capture spatial correlations (see for 

example Castro et al., 2012, Narayanmoorthy et al., 2012). Further, it is important to note that 

the GOL framework explicitly recognizes the inherent ordering in the discrete variable while 

also remaining unaffected by the Independence from Irrelevant Alternatives (IIA) property of the 

MNL model. In summary, the GOL model avoids the shortcomings of the MNL model while 

maintaining reasonably close statistical fit in comparison to the MNL model. 

 

6 CONCLUSIONS 

The applicability of the ordered and unordered frameworks for analyzing ordinal discrete 

variables has evoked considerable debate on using the appropriate choice model for analysis. The 

ordered response models explicitly recognize the inherent ordering within the decision variable 

whereas the unordered response models neglect the ordering or require artificial constructs to 

consider the ordering (for example the ordered generalized extreme value model. On the other 

hand, the traditional ordered response models restrict the impact of exogenous variables on the 

choice process to be same across all alternatives while the unordered response models allow the 

model parameters to vary across alternatives. The unordered response models might not be as 

parsimonious as the ordered response models but offer greater explanatory power because of the 

additional exogenous effects that can be explored. Another concern with the ordered response 

framework is in the context of modeling datasets that might be affected by under reporting. 

 

It is in this background that we undertake the current research effort. The objective of the current 

study is to investigate the performance of the ordered and unordered response frameworks at a 

fundamental level. Towards this end, we undertake a comparison of the alternative frameworks 

by estimating ordered (OL and GOL) and unordered response models (MNL) using data 

generated through ordered, unordered data and a combination of ordered and unordered data 

generation processes. Subsequently, we examine the influence of aggregate sample shares on the 

appropriateness of the modeling framework. Rather than be limited by the aggregate sample 

shares in an empirical dataset, simulation allows us to explore the influence of a broad spectrum 

of sample shares on the performance of ordered and unordered frameworks. Third, we extend the 



data generation process based analysis to under reported data and compare the performance of 

the ordered and unordered response frameworks. Finally, based on these simulation exercises, 

we provide a summary of the strengths and weaknesses of the two frameworks for analyzing 

ordered discrete variables.  

 

The simulation exercise is undertaken for a four alternative ordered dependent variable. To cover 

a wide range of possible dgps we focus on two major data generation configurations: (1) Ordered 

logit dgp and Multinomial logit dgp mixed data generation and (2) Generalized ordered logit and 

Multinomial logit mixed data generation. For each of these configurations 6 different aggregate 

sample share based dgps are produced. The study also generates under reported datasets by 

removing a fraction of the records that are assigned to the first level for the ordinal variable. 

Specifically, we only sample about 70% (i.e. remove 30 %) of the data points that are in the first 

category. 

 

The emphasis of the research effort is on examining the performance of the OL, GOL and MNL 

models in retrieving the behavior in the simulated data. For this purpose, we employ the 

Bayesian Information Criterion (BIC) measures. We compute two measures of BIC: (1) the 

proportion of datasets for which a framework has the lowest BIC and (2) the average BIC. The 

first measure is computed by checking which framework provides the lowest BIC for each 

dataset. This measure is computed once for every aggregate sample. The proportion will allow us 

to identify the superior model over the entire analysis for each aggregate share. The average BIC 

is computed by averaging the BIC value for each proportion (p) value i.e. for each aggregate 

sample we have 11 measures. The most striking result from the comparison exercise is that 

distinct aggregate shares provide variation in the model preference clearly highlighting that the 

aggregate share has an influence on how the alternative model frameworks perform. Further, the 

GOL model consistently performs well when compared to the MNL model irrespective of 

aggregate share. Even in cases where the MNL outperforms the GOL, the difference between the 

two frameworks is marginal. The results clearly indicate the emergence of the GOL model as the 

true ordered equivalent vis-a-vis the MNL model for examining ordinal discrete variables. 

Moreover, the result is of great significance for econometric modellers in general and safety 

researchers in particular for developing joint models and spatial effect models involving ordinal 

discrete variables. The application of GOL model frameworks for ordinal data reduces the 

computational burden of formulating joint models and spatial effect models compared to using 

the unordered response models. 
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Table 1:  OL, GOL and MNL estimates and the corresponding Aggregate Shares for a 4 level ordinal discrete variable 

 

Sample Sample Shares OL parameters GOL parameters MNL parameters 

1 

Alternative 1 25.0 Propensity 1.25 0.25 0.50 Propensity 1.90 1.50 0.75 1.50 Alternative 1 --- 

Alternative 2 25.0 Threshold 1 -1.50 Threshold 1 --- Alternative 2 -0.75  1.50 -0.25  0.50  

Alternative 3 25.0 Threshold 2 0.00 Threshold 2 0.50 0.75 0.50 1.25 Alternative 3 -0.25 -0.50  0.75  0.25  

Alternative 4 25.0 Threshold 3 1.50 Threshold 3 0.70 -1.50 0.75 0.50 Alternative 4 -0.50 -1.25 -0.50 -0.25 

2 

Alternative 1 62.6 Propensity 1.00 0.25 0.50 Propensity -0.75   1.5  -0.75 0.5  Alternative 1 --- 

Alternative 2 25.1 Threshold 1 0.65 Threshold 1 --- Alternative 2 -1.55   1.50  -0.75  0.50  

Alternative 3 7.8 Threshold 2 2.40 Threshold 2  0.25  -0.50  0.75  0.25  Alternative 3 -2.55  -0.50   0.75  0.25  

Alternative 4 4.5 Threshold 3 3.60 Threshold 3 -0.50  -1.25 0.25 -0.25  Alternative 4 -3.50  -1.25   0.25  -0.25  

3 

Alternative 1 4.5 Propensity 2.50 0.75 1.50 Propensity  4.25   1.50  -0.75 0.5  Alternative 1 --- 

Alternative 2 9.8 Threshold 1 -6.00 Threshold 1 --- Alternative 2 -1.00   1.50  -0.75 0.50  

Alternative 3 24.5 Threshold 2 -3.75 Threshold 2  0.19 -0.50  0.75  0.25  Alternative 3  1.75  -0.50  0.75  0.25  

Alternative 4 61.2 Threshold 3 1.00 Threshold 3 0.20  -1.25 0.25 -0.25  Alternative 4  2.75  -1.25  0.25 -0.25  

4 

Alternative 1 5.9 Propensity 1.50 0.75 1.50 Propensity 4.65  1.50 -1.75 0.50 Alternative 1 --- 

Alternative 2 44.2 Threshold 1 -4.50 Threshold 1 --- Alternative 2  1.45  1.50 -1.75  0.50 

Alternative 3 44.1 Threshold 2 0.00 Threshold 2 1.32 -0.5 0.75 0.25 Alternative 3  1.65 -0.50  0.75  0.25 

Alternative 4 5.8 Threshold 3 4.50 Threshold 3 2.00 -1.25 0.25 -0.25 Alternative 4 -0.85 -1.25  0.25 -0.25 

5 

Alternative 1 2.1 Propensity 1.50 0.75 1.50 Propensity 4.30  0.50  -0.50 0.75  Alternative 1 --- 

Alternative 2 2.4 Threshold 1 -6.00 Threshold 1 --- Alternative 2 -0.50  0.50  -0.50  0.75  

Alternative 3 4.3 Threshold 2 -5.00 Threshold 2 -1.65  0.75  -0.50  0.50  Alternative 3  0.25  0.75  -0.50  0.50  

Alternative 4 91.2 Threshold 3 -4.00 Threshold 3  -0.50 0.50 0.50 -0.50 Alternative 4  4.00  0.50   0.50 -0.50 

6 

Alternative 1 90.6 Propensity 1.50 0.75 1.50 Propensity -3.25  1.50  -0.75 0.50  Alternative 1 --- 

Alternative 2 4.6 Threshold 1 3.75 Threshold 1 --- Alternative 2 -4.20  1.50 -0.75 0.50  

Alternative 3 2.5 Threshold 2 4.75 Threshold 2 -1.00  -0.50  0.75  0.25  Alternative 3 -4.00 -0.50  0.75  0.25  

Alternative 4 2.3 Threshold 3 5.75 Threshold 3 -1.65 -1.25 0.25 -0.25  Alternative 4 -4.50 -1.25 0.25 -0.25  

 

 

 



 

 

 

 

 

 

 

Table 2: Comparison of BIC Proportion Measures for Model Estimation 

 

Sample 

Proportion of lowest BIC 

Mixed DGP: OL and MNL Mixed DGP: GOL and MNL 

OL GOL MNL OL GOL MNL 

1 0.18 0.19 0.63 0.00 0.36 0.64 

2 0.18 0.19 0.63 0.00 0.14 0.86 

3 0.14 0.67 0.19 0.00 0.57 0.43 

4 0.19 0.28 0.53 0.00 0.65 0.35 

5 0.25 0.64 0.11 0.00 0.75 0.25 

6 0.33 0.04 0.63 0.00 0.14 0.86 

  

 

 

 

 

 

 

 

 

 



Table 3: Comparison of Average BIC value for the Estimation Sample 

 

Sample p 

BIC for 

constants 

only 

Model 

Mixed DGP: OL and 

MNL 

Mixed DGP: GOL 

and MNL 

OL GOL MNL OL GOL MNL 

1 

0.0 13887 11837 11883 11909 9629 6736 7323 

0.1 13887 12516 12538 12591 10394 8533 8738 

0.2 13887 13083 13038 13077 11092 9700 9782 

0.3 13888 13430 13297 13313 11572 10383 10412 

0.4 13888 13692 13440 13425 11998 10921 10901 

0.5 13888 13848 13434 13386 12352 11275 11216 

0.6 13888 13887 13302 13219 12596 11446 11359 

0.7 13888 13818 13002 12872 12802 11521 11390 

0.8 13887 13682 12631 12446 12919 11498 11334 

0.9 13888 13377 11871 11579 13036 11284 11026 

1.0 13887 13054 11055 10710 13054 11055 10710 

2 

0.0 9811 8620 8665 8675 8326 7172 7277 

0.1 9805 8777 8807 8834 8700 8092 8095 

0.2 9815 8970 8946 8976 9059 8762 8733 

0.3 9798 9075 8983 8999 9291 9132 9095 

0.4 9826 9225 9040 9024 9506 9389 9351 

0.5 9840 9371 9061 8989 9689 9528 9482 

0.6 9813 9437 8999 8858 9751 9485 9419 

0.7 9821 9526 8894 8656 9830 9356 9251 

0.8 9816 9585 8780 8456 9829 9144 8982 

0.9 9809 9646 8505 8059 9763 8656 8362 

1.0 9812 9692 8175 7726 9692 8175 7726 

3 

0.0 10134 6077 6122 6150 9323 6398 7097 

0.1 10145 7605 7603 7791 9554 7460 7888 

0.2 10135 8700 8650 8811 9781 8235 8548 

0.3 10138 9335 9236 9353 9860 8675 8897 

0.4 10125 9782 9439 9701 9913 9029 9169 

0.5 10161 10074 9874 9916 9920 9291 9343 

0.6 10181 10163 9885 9915 9856 9366 9353 

0.7 10153 10036 9678 9707 9668 9209 9183 

0.8 10171 9854 9418 9439 9522 9044 9026 

0.9 10161 9350 8749 8728 9159 8541 8498 

1.0 10153 8828 8084 7978 8828 8084 7978 



4 

0.0 10584 7087 7133 7144 9512 6383 6998 

0.1 10589 8027 8055 8158 9818 8146 8231 

0.2 10589 8778 8763 8871 10043 9138 9095 

0.3 10576 9229 9166 9246 10125 9561 9560 

0.4 10590 9584 9454 9494 10203 9894 9906 

0.5 10576 9778 9556 9547 10129 10002 10001 

0.6 10564 9819 9494 9435 10017 9906 9925 

0.7 10559 9731 9252 9140 9794 9545 9604 

0.8 10562 9561 8904 8741 9553 9088 9151 

0.9 10548 9133 8106 7869 9118 8168 8142 

1.0 10571 8751 7173 6945 8751 7173 6945 

5 

0.0 3718 2652 2697 2707 3267 2887 2947 

0.1 3769 2983 3008 3031 3372 3064 3135 

0.2 3817 3263 3258 3302 3493 3238 3314 

0.3 3807 3384 3356 3413 3492 3285 3355 

0.4 3875 3559 3519 3577 3590 3424 3485 

0.5 3926 3676 3636 3685 3652 3537 3580 

0.6 3913 3684 3643 3687 3630 3548 3576 

0.7 3955 3710 3660 3694 3630 3579 3587 

0.8 4020 3734 3687 3709 3659 3615 3613 

0.9 4040 3649 3601 3604 3610 3567 3557 

1.0 4074 3594 3536 3521 3594 3536 3521 

6 

0.0 4160 2959 3005 3017 3393 3157 3183 

0.1 4153 3183 3224 3251 3570 3464 3465 

0.2 4144 3397 3422 3446 3732 3687 3677 

0.3 4141 3541 3543 3555 3840 3824 3804 

0.4 4148 3686 3659 3649 3938 3927 3895 

0.5 4153 3832 3770 3729 4038 4010 3957 

0.6 4130 3907 3808 3729 4070 4006 3925 

0.7 4115 3967 3803 3671 4110 3989 3867 

0.8 4118 4023 3816 3635 4127 3947 3787 

0.9 4132 4093 3787 3546 4139 3838 3620 

1.0 4123 4114 3697 3428 4114 3697 3428 

 

 

 

 

 

 



 

 

Table 4: Comparison of BIC Proportion Measures for Under reporting Data Prediction 

 

Sample 

Proportion of lowest BIC 

Mixed DGP: OL and MNL Mixed DGP: GOL and MNL 

OL GOL MNL OL GOL MNL 

1 0.18 0.19 0.63 0.01 0.37 0.62 

2 0.19 0.18 0.63 0.00 0.14 0.86 

3 0.14 0.67 0.19 0.01 0.56 0.43 

4 0.19 0.29 0.52 0.06 0.64 0.30 

5 0.25 0.64 0.11 0.00 0.75 0.25 

6 0.33 0.04 0.63 0.00 0.14 0.86 

 

 

  



Table 5: Predictive BIC for OL, GOL, and MNL based on under reported sample estimates 

 

Sample p 
Mixed DGP: OL and MNL 

Mixed DGP: GOL and 

MNL 

OL GOL MNL OL GOL MNL 

1 

0.0 11925 11972 11998 9718 6807 7402 

0.1 12609 12630 12684 10486 8612 8826 

0.2 13185 13137 13178 11188 9789 9876 

0.3 13540 13402 13419 11677 10483 10517 

0.4 13811 13549 13534 12107 11026 11010 

0.5 13973 13546 13497 12469 11385 11329 

0.6 14015 13414 13329 12714 11556 11471 

0.7 13955 13121 12988 12933 11637 11508 

0.8 13822 12748 12559 13053 11612 11448 

0.9 13524 11988 11690 13181 11400 11141 

1.0 13205 11168 10820 13205 11168 10820 

2 

0.0 8744 8791 8800 8436 7276 7382 

0.1 8901 8933 8961 8823 8211 8214 

0.2 9100 9077 9108 9196 8896 8865 

0.3 9205 9114 9133 9437 9277 9239 

0.4 9359 9174 9160 9658 9539 9500 

0.5 9511 9197 9127 9851 9686 9638 

0.6 9581 9139 8998 9914 9643 9575 

0.7 9674 9037 8795 9998 9517 9407 

0.8 9736 8923 8595 9995 9301 9134 

0.9 9803 8648 8194 9927 8808 8504 

1.0 9854 8322 7863 9854 8322 7863 

3 

0.0 6094 6139 6167 9377 6419 7121 

0.1 7625 7624 7812 9589 7474 7904 

0.2 8721 8670 8833 9821 8264 8572 

0.3 9359 9260 9378 9896 8703 8923 

0.4 9808 9654 9726 9947 9058 9196 

0.5 10101 9900 9942 9950 9320 9368 

0.6 10192 9913 9943 9885 9397 9380 

0.7 10064 9706 9736 9697 9239 9211 

0.8 9882 9444 9466 9548 9071 9052 

0.9 9378 8775 8756 9187 8567 8525 

1.0 8858 8110 8005 8858 8110 8005 



4 

0.0 7112 7158 7170 9584 6406 7024 

0.1 8053 8081 8185 9880 8174 8262 

0.2 8806 8791 8900 10095 9143 9133 

0.3 9259 9195 9276 10162 9600 9594 

0.4 9618 9486 9526 10240 9931 9937 

0.5 9814 9589 9580 10163 10037 10034 

0.6 9858 9530 9470 10048 9939 9957 

0.7 9773 9289 9174 9829 9580 9639 

0.8 9604 8202 8774 9590 9121 9184 

0.9 9182 8145 7903 9164 8205 8178 

1.0 8805 7209 6979 8805 7209 6979 

5 

0.0 2662 2708 2718 3282 2900 2961 

0.1 2994 3019 3043 3386 3076 3148 

0.2 3275 3271 3315 3509 3252 3329 

0.3 3396 3369 3425 3506 3299 3370 

0.4 3573 3533 3591 3605 3439 3500 

0.5 3690 3650 3699 3667 3552 3595 

0.6 3698 3657 3702 3645 3563 3591 

0.7 3725 3675 3709 3645 3595 3601 

0.8 3749 3702 3723 3674 3630 3627 

0.9 3664 3615 3619 3625 3581 3571 

1.0 3609 3550 3535 3609 3550 3535 

6 

0.0 2998 3045 3058 3436 3204 3230 

0.1 3226 3268 3295 3617 3513 3514 

0.2 3443 3469 3493 3784 3741 3731 

0.3 3590 3592 3605 3895 3880 3859 

0.4 3737 3711 3701 3996 3985 3952 

0.5 3886 3825 3783 4098 4069 4016 

0.6 3963 3865 3785 4132 4067 3984 

0.7 4024 3862 3727 4173 4051 3926 

0.8 4082 3873 3692 4190 4009 3846 

0.9 4153 3847 3603 4201 3900 3677 

1.0 4175 3746 3485 4175 3746 3485 

 

 


