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INDIVIDUAL EXPOSURE TO TRAFFIC RELATED AIR POLLUTION 

ACROSS LAND-USE CLUSTERS 

 

ABSTRACT 

 

In this study, we estimated the transportation-related emissions of nitrogen oxides (NOx) at an 

individual level for a sample of the Montreal population. Using linear regression, we quantified 

the associations between NOx emissions and selected individual attributes. We then investigated 

the relationship between individual emissions of NOx and exposure to nitrogen dioxide (NO2) 

concentrations derived from a land-use regression model. Factor analysis and clustering of land-

uses were used to test the relationships between emissions and exposures in different Montreal 

areas. We observed that the emissions generated per individual are positively associated with 

vehicle ownership, gender, and employment status. We also noted that individuals who live in the 

suburbs or in peripheral areas generate higher emissions of NOx but are exposed to lower NO2 

concentrations at home and throughout their daily activities. Finally, we observed that for most 

individuals, NO2 exposures based on daily activity locations were often slightly more elevated 

than NO2 concentrations at the home location. We estimated that between 20% and 45% of 

individuals experience a daily exposure that is largely different from the concentration at their 

home location. Our findings are relevant to the evaluation of equity in the generation of transport 

emissions and exposure to traffic-related air pollution. We also shed light on the effect of 

accounting for daily activities when estimating air pollution exposure.  

 

 

Keywords: transport emissions, traffic related air pollution, exposure, land-use, built environment, 

travel survey 
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1. INTRODUCTION 

 

Transport plays a crucial role in urban development by providing access to education, markets, 

employment, recreation, health care and other key services. Currently, 82% of Canadian 

commuters drive to work while the remainder rely on public transit and active transportation 

(Turcotte, 2011). In Canada, on-road traffic accounts for 19% of nitrogen oxide (NOx) emissions 

and in Montreal, Canada’s second largest city, transportation accounts for 85% of NOx emissions 
(Brisset and Moorman, 2009; Statistics Canada, 2012). In urban areas, NOx often refers to NO and 

NO2 since the contribution of other nitrogen oxides is minimal. NOx concentrations are often used 

as a tracer of road traffic emissions (Lewne et al., 2004). NOx is always higher in the vicinity of 

roadways and lower further away, as roads are the major source of NOx emissions. Meteorological 

parameters such as wind speed and direction affect the decay of NOx concentrations away from 

the roadway. Ambient nitrogen dioxide (NO2) is associated with vehicular traffic since vehicles 

mostly emit NO, which is then transformed to NO2 through photochemical reactions involving 

ozone and volatile organic compounds. However, because ambient NO2 is also affected by other 

sources (such as industries), we would expect NO2 to have lower spatial variability compared to 

NOx concentrations that would exhibit large differences between roadways and residential areas. 

Gilbert et al. (2005) argue that more than 50% of the variability in air pollution concentrations in 

Montreal can be explained by local traffic.  

Exposure to traffic-related air pollution has been associated with various acute and chronic 

health effects (Cesaroni et al., 2012; Crouse et al., 2010; Gan et al., 2012; Künzli et al., 2000; 

Smargiassi et al., 2005). A number of studies have established positive associations between 

various cancers and exposure to NO2 an accepted marker of traffic-related air pollution (Ahrens, 

2003; Costa et al., 2014; Crouse et al., 2010; Parent et al., 2013; Snowden et al., 2014; 

Shekarrizfard et al., 2015). Part of the challenge of reducing ambient air pollution in urban areas 

involves reducing the demand for private motorized transportation at an individual and household 

level. As such, there is a need for analysis tools that can assist policy-makers in evaluating the 

impacts of transport policies on urban air quality and population exposure. Tools that can provide 

detailed air emission estimates at a person and trip level are also of extreme relevance to the 

appraisal of transport plans. Recently, a number of researchers developed modelling frameworks 

that account for vehicle emissions whereby activity-based models were used to calculate person- 

and trip-level emissions (Beckx et al., 2009a). A number of studies have also included an analysis 

of atmospheric dispersion and population exposure (Beckx et al., 2009b; Hatzopoulou and Miller, 

2010; Int Panis et al., 2011).  

Travel activity, land use patterns, and the distribution of traffic often lead to inequities in 

the exposure to vehicle-related air pollutants (Buzzelli and Jerrett, 2003, 2007; Houston et al., 

2004; Jerrett, 2009). Individuals who live in densely populated areas may be exposed to higher 

concentrations while generating low levels of emissions throughout their daily travel (Dannenberg 

et al., 2003). Most studies that examine the generation of transport-related emissions ignore their 

effect on air quality and exposure, while studies that investigate exposure to air pollution rarely 

investigate the generation of air emissions (Fallon, 2002; Hatzopoulou and Miller, 2010; Havard 

et al., 2009; Sider et al., 2013).  

In this paper we quantify the emissions of -and exposure to- traffic-related air pollution 

simultaneously at an individual level. We hypothesize that high emitters would reside in areas 

characterized by low air pollution (e.g. suburbs) while low emitters would reside in areas with 
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poor air quality (neighborhoods of the inner city). We also investigate the relationship between 

both variables across different land-uses and socio-economic characteristics.  

 

2. MATERIALS AND METHODS 

 

Our methodology consists of three main steps: 1) generating individual-level NOx emissions from 

daily travel using a traffic assignment model extended with detailed emission modelling capability, 

2) estimating individual daily exposure to NO2 using a land-use regression model; and 3) 

investigating the determinants of NOx emissions and the relationship with NO2 exposures as a 

function of land-use and socio-demographic characteristics. Our study area is focused on the Island 

of Montreal (Fig. 1). 

 

2.1 Description of Data Sources 

 

We estimated NOx emissions for car users using a transportation and emissions model. This model 

includes a traffic assignment component linked with an emission tool that simulates traffic flows 

and emissions for driving trips in the Montreal metropolitan region (Sider et al., 2013). The traffic 

assignment model, which is developed in the PTV VISUM platform (Vision, 2009), simulates 

traffic flow, average speed, and vehicle mix on every road segment and was validated against 

traffic counts at several major intersections and bridges within the region (R2 = 0.65) (Sider et al., 

2013). Based on the vehicle mix per road segment, average speed, and type of roadway (e.g. 

highway vs. arterial road with intersections), an emission factor for NOx was assigned to the road 

segment. Emission Factors were derived from the MOtor Vehicle Emission Simulator (MOVES) 

model, with input data describing local conditions (USEPA, 2013). After summarizing the daily 

driving trips for each person in the origin-destination survey, NOx emissions were calculated for 

each individual.  

In addition to deriving individual NOx emissions from driving, we made use of estimates 

of NO2 concentrations from a LUR model (Crouse et al., 2009), to generate a NO2 polygon-based 

map (with gridcell dimensions 80m x 80m amounting to a total of approximately 60,000 

polygons). This map (Fig. 2) was used to identify the NO2 concentration at the home location of 

every individual as well as estimate daily exposures using data on activity locations using ESRI’s 

ArcGIS. Since the NO2 estimates were derived from three separate 2-week sampling periods in 

2006 thus representing a long-term average; we recognize that what we consider a daily exposure 

is a weighted average NO2 concentration across daily activity locations (including home). 

Therefore the spatial variability in NO2 concentrations is accounted for in the exposure metric but 

not the temporal variability. Our activity-weighted NO2 concentration (in ppb) per person was 

estimated using Equation (1). 
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In Equation (1), m is number of trips for each individual (i), k
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C
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 is the NO2 concentration 

(in ppb) assigned to a destination using the NO2 polygon map, and k

stop
t  is the total time an 

individual spent at every destination (in hours). We define the stop time ( k

stop
t ) at each destination 
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as the difference between the start time of the trip leaving the activity location and the start time 

of the trip leading to the activity. This means that the time spent on the trip leading to an activity 

contributes to the exposure during that activity. We make this assumption to avoid calculating 

exposures during travel. While we recognize this step as an approximation, it is made due to the 

lack of information on in-vehicle exposures across modes.  

While NOx emissions were generated for drivers only, daily NO2 exposures were compiled 

for drivers and transit riders but not for those who took active transportation. This simplification 

is due to the fact that we could not infer activity times associated with walking and cycling trips 

due to the lack of paths and travel times for these trips. Future model developments will address 

path selection and travel times for active transport users. We made use of the 2008 Origin-

Destination (O-D) survey for Montreal (AMT, 2010) to extract individual daily trip characteristics 

including origin and destination coordinates, trip start time, mode and purpose, as well as 

individual and household attributes (age, gender, employment status, household size, residential 

location, and vehicle ownership). The OD survey includes information on a 5% sample of the 

Montreal population, encompassing a total of 355,000 daily trips conducted by approximately 

157,000 individuals associated with 66,000 households across the metropolitan region. We 

restricted the data to the Island of Montreal (Fig. 1). Also, we considered only single mode trips, 

thus yielding a final dataset of approximately 32,000 individuals. The latter restriction was needed 

in order to facilitate the inference of trip paths and travel times across the road network.  

 Emissions and exposures were evaluated in the context of the residential location of 

individuals in Montreal. For this purpose, we used factor analysis and clustering methods to 

develop “land-use clusters” based on the 1,552 Traffic Analysis Zones (TAZs) in Montreal. The 

geographic unit of analysis is the Traffic Analysis Zone (TAZ), a division used by the Québec 

Ministry of Transportation (MTQ) in travel demand modelling and traffic assignment. A host of 

variables were compiled at the TAZ level including: land-use variables (such as residential density, 

commercial density, and governmental and institutional density), transportation network 

characteristics (such as length of highways, minor roads, and major roads), public transit (bus stops 

and metro stations), socio-economics (such as population density, job density, and average/median 

income) and point of interests (such as restaurants, bars, and other commercial enterprises). All of 

the variables mentioned were extracted from the Transportation Research at McGill (TRAM) 

database: for the land use, point of interests and streets network, the DMTI Spatial Inc. Database 

2009 was used, defining the road and land-use categories; the bus and metro stops are derived from 

the local transit provider (STM 2010), the socio-economic data from Statistics Canada. 

Due to the presence of a large number of variables that might be correlated with each other, 

factor analysis was used to retrieve a smaller number of principal components. Then, a two-step 

cluster analysis was used to classify each zone to be part of a cluster based on original variables 

and derived components. Several possible loading configurations of variables for factor and cluster 

analysis were used. Principal components estimation and varimax rotation were used in deriving 

the results of factor analysis. Factor loadings below 0.20 were considered insignificant. Three 

separate factors were identified for: 1) Public transport attributes 2) Road network attributes and 

3) Points of interest attributes. Public transport attributes of a TAZ yielded two components 

representing metro and bus service. The road network component captures transportation network 

characteristics including the density of highways, major roads and local streets. The points of 

interest factor encompasses the density of restaurants, bars and other commercial enterprises in a 

zone.  
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2.2 Statistical Analysis 

 

Our investigation addressed three different dimensions to the question of emission generation and 

exposure at the individual level. First, we regressed the total NOx emissions generated by drivers 

as a function of socio-economic variables. Second, we contrasted individual NOx emissions and 

NO2 concentrations at the home location for these same individuals in order to investigate whether 

“high emitters” resided in relatively low polluted areas. Finally, we examined whether average 

NO2 concentrations at home locations were sufficient to understand daily exposures by contrasting 

NO2 at home with daily activity-weighted NO2 exposures. 

In order to identify the main variables associated with NOx emissions, we used a log-linear 

multiple regression model to relate the logarithm of the generated emissions for drivers with 

individual characteristics including employment status, gender, age, vehicle ownership, vehicle 

type and age. We used an iterative process that allows dropping or adding variables. For this 

purpose, we eliminated from the model the predictors one-by-one on the basis of their statistical 

significance. The performance of the regression was evaluated using the root mean square error 

(RMSE) and R2 of regression. 

In order to compare daily NOx emissions from travel with NO2 concentrations at home 

locations of the same individuals, we divided car users into four groups based on their home 

location within one of the four land-use clusters that we identified in the cluster analysis. We 

conducted a descriptive analysis to identify the clusters in terms of their contribution to traffic 

emissions and air quality. In addition, we developed an exposure-emission index, which helped us 

visualize the agreement between emissions and exposure (Equation 2). For example, this index 

would represent whether those who emit a lot are also exposed to poor air quality at their home 

location or whether they enjoy low concentrations of NO2 at home. For this purpose, we converted 

NOx emissions and NO2 concentrations into deciles (with 1 indicating the lowest decile and 10 the 

highest) and computed the ratio of NO2 to NOx (in deciles) at each TAZ. The ratio ranges from 0.1 

representing minimum NO2 exposure and maximum NOx emissions to 10 representing maximum 

NO2 exposure and minimum emissions (Equation 2).  

 

Exposure to emission index= 
decileemission

decileexposure
2

x
NO

NO
 (2) 

  
 Finally, we conducted a comparison between daily activity-weighted NO2 exposure and 

average NO2 concentration at the home location to evaluate the size of the discrepancy between 

both measures. Traditional epidemiologic studies often rely on the air pollution concentration at 

the home location as a potential predictor for the odds of various air pollution-related health effects 

(Hamra et al., 2015; Lee et al., 2014; Parent et al., 2013; Chen et al., 2008; Krämer at al., 2000). 

This dimension of our analysis investigates whether daily exposure can be approximated by the 

daily average concentration at home. We conducted this analysis for both drivers and transit riders. 

Moreover, we examined the frequencies of individuals for whom the differences between the 

activity-weighted and at-home exposures are ‘large’ (i.e. those who accumulate in a day a lot more 

or a lot less than the concentration at home). Our threshold for a ‘large’ difference is a difference 

between an activity-weighted concentration and concentration at the home location that is 20 

percent higher or lower than the mean difference for all individuals. The frequency of individuals 
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(f) with a ‘large’ difference is identified using Equations (3) and (4). We conducted this analysis 

by land-use cluster and for car (j=1) and transit users (j=2) separately: 
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In Equation (3), N is the number of individuals in each cluster, 
i

NOa
C

2  (in ppb) represents 

the activity-weighted NO2 exposure and )(1
2maxmin ],[

i

NOaCC
C


 is an indicator function of the home-

NO2 exposure (
2NOh

C
 ) which is defined in Equation (4) and based on (Ganji, 2010). In Equation 

(4),  is equal to 0.2 (indicating our threshold of 20%) and 
2NOh

C
 represents the mean at-home 

concentration for all individuals in a given cluster. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Land-Use Clusters 

 

The Montreal region consists of 1552 Traffic Analysis Zones (TAZs). We used factor analysis and 

clustering methods to identify four different clusters.   

Based on the original variables and the three components: Public Transport attributes, Road 

Network attributes and Point of Interest attributes, a two-step cluster analysis was employed to 

classify TAZs into four distinct clusters. A cluster analysis maximizes differences amongst clusters 

and minimizes the variation within each cluster. Further, a descriptive analysis was used to 

examine the zonal characteristics of each cluster. Overall, the factor analysis and cluster analysis 

provided intuitive and reasonable results. Table 1 shows the final results of factor analysis (in the 

first part of the table) and cluster analysis and the mean value of zonal attributes for each cluster 

(in the second part of the table). Principal components estimation and varimax rotation were used 

in deriving the results of factor analysis. Factor loadings below 0.20 were considered insignificant 

and were not presented in the table.  

Cluster 1 indicates zones with higher population density, higher governmental and 

institutional areas, denser road network and better access to metro and bus service. It characterizes 

most of the downtown. Cluster 2 characterizes zones with higher industrial density and lower 

residential, governmental and institutional densities and poorer transit accessibility. Cluster 3 

includes zones with higher residential density and lower industrial density. Zones with fewer 

points of interest, lower population density and lower accessibility to transit service were included 

in cluster 4. Clusters 3 and 4 refer to the zones located along the periphery of the region and away 

from the central and dense areas (Fig. 3). 

 

3.2 Regression of NOx Emissions against Individual Attributes 
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Fig. 4 illustrates the descriptive statistics and frequency distribution of NOx emissions at the 

individual level for all drivers. The results of a log-linear multivariable regression analysis are 

presented in Table 2. We observe that the emissions generated per individual are positively 

associated with gender (males generating more than females), vehicle age and type (older and 

larger vehicles emitting higher levels), as well as employment status. We observe that passenger 

trucks (e.g. sports utility vehicles) with model years older than 2000 were associated with higher 

emissions.  

Average NOx emissions were calculated for the four land-use clusters based on the 

individuals residing in each cluster (Table 3). We observe that the mean NOx varies in different 

clusters and is higher for clusters 3 and 4. This indicates that individuals living along the periphery 

and away from the central and dense areas generate higher NOx emissions from travel.  
 

 

3.3 Comparison of Individual NOx Emissions and NO2 Concentrations at Home  

 

Individual NOx emissions generated in section 3.2 were compared with NO2 concentrations at the 

home locations of the same individuals. Table 4 presents mean NOx emissions per individual and 

mean NO2 concentrations per land-use cluster. We observe that while mean NOx emissions 

increase from cluster 1 to cluster 4 indicating that central neighborhoods generate lower emissions 

per person, NO2 concentrations are lowest in cluster 4 and highest in cluster 1. This means that 

individuals who generate higher NOx emissions from travel tend to reside in neighborhoods with 

lower NO2 concentrations, while individuals associated with low levels of NOx emissions from 

travel, reside in clusters with high concentrations of NO2. Note that while the differences in mean 

NOx emissions and mean NO2 concentrations across clusters are small, they are nonetheless 

significant.  

Fig. 5 illustrates the spatial distribution of the exposure to emission index (Equation 2) at 

a TAZ level. We observe that for cluster 4 (as presented in Fig. 3), which characterizes peripheral 

areas, our proposed index is lowest indicating that the NOx decile is much higher than the NO2 

decile therefore characterizing these areas as “high emitters, low exposure”. In contrast, areas 

highlighted in red in Fig. 3, and which correspond to many of the neighborhoods in clusters 1 and 

2, experience “high exposure and low emissions”.  

 

3.4 Comparison between Daily Activity-Weighted NO2 Exposure and NO2 at Home  

 

Recall that due to the difficulty in computing commute-level exposures, we approximated daily 

exposures with activity-weighted NO2 concentrations (Equation 1). In this exercise, NO2 

concentrations were computed for drivers and transit riders. The descriptive statistics for activity-

weighted and at-home NO2 exposures are presented in Table 5. It is clear that clusters 1 and 4 have 

the highest and lowest NO2 exposures (daily and home), respectively. We also observe that in 

clusters 1 and 2 with the highest NO2 concentrations, the activity-weighted exposures are lower 

than at-home concentrations indicating that most individuals tend to accumulate a daily 

concentration slightly lower that the concentration at their home location. In contrast, in clusters 3 

and 4, characterized by lower NO2 concentrations, individuals tend to accumulate a slightly higher 

concentration throughout the day. Obviously, they are more likely to be present in more polluted 

neighbourhoods if they live in areas with lower concentrations. While these differences are small, 

they are nonetheless significant (Fig. 6).    



9 

 

Fig. 7 illustrates the frequency distributions of the differences between activity-weighted 

and at home NO2 concentrations computed at an individual level (NO2 activity weighted - NO2 home). As 

expected, we observe that positive differences occur more frequently in clusters 3 and 4. This 

means that individuals residing in these clusters worsen their daily exposure by leaving home while 

individuals residing in clusters 1 and 2 improve their daily exposure by leaving their home. Fig. 7 

also shows the percentage of individuals with ‘large’ differences between activity-weighted and 

at-home concentrations (as formulated in Equation 3) for car (f1) and transit (f2) users separately. 

These values illustrate the percentage of car and transit users who experienced a level of exposure 

that is largely different from the mean in a specific cluster (smaller than Cmin which represents the 

mean minus 20% or larger than Cmax which represents the mean plus 20%). In general, we observe 

that approximately between 20% and 45% of individuals experience a ‘large’ change in exposure 

(in either direction) when accounting for their activities compared to the concentration at the home 

location. Most noticeably in clusters 1 and 3, we observe that more drivers decrease their exposure 

by leaving their home compared to transit riders. This can be seen when examining percentages of 

drivers and transit riders in clusters 1 and 3 with exposures lower than Cmin. This observation is 

coherent with our intuitive hypothesis that drivers travel longer distances away from their home 

and therefore increase their chances of visiting locations with concentrations that are lower than 

the concentration at home. Transit riders are more likely to stay closer to home.    

 

4. CONCLUSION 

 

In this study, we quantified the effects of the built-environment and individual attributes 

on the generation of, and exposure to, traffic emissions. Our results show that transport emissions 

are associated with gender, employment status, age, vehicle type and model year. We also observe 

that the “highest emitters” reside in the peripheral areas with limited accessibility to retail and 

employment opportunities. They also experience the lowest air pollution concentrations at their 

home location. In contrast, individuals who reside in areas with the highest concentrations, 

generate the least amount of emissions during daily travel. 

While these findings point toward potential inequities in the generation of air emissions 

from transport and the exposure to traffic-related air pollution, a major assumption prevailing in 

this analysis is in the fact that daily exposure is approximated by the NO2 concentration at home. 

In fact, most individuals move around the urban area in a day (albeit spending a large portion of 

their time at home) and therefore are exposed to varying NO2 concentrations at their activity 

locations and during travel. Besides this approach being more reflective of an individual’s daily 

exposure, its usefulness remains an open question in the field of epidemiology. In this study, the 

availability of data on individual mobility allowed us to investigate the disparity between at home 

concentrations and daily activity-weighted concentrations based on activity locations. We 

therefore compared air quality at the home location and exposures based on daily sequences of 

activities. We observe individuals who increase and others who decrease their daily exposure 

compared to the concentration at the home location. These trends were also associated with land-

use characteristics at home locations. More accentuated differences between at-home and activity-

weighted exposures would be expected if hourly concentration maps were used as opposed to a 

static map obtained from integrated sampling.  

Our findings are of relevance to policy evaluation, when cities are faced with challenges 

such as reducing traffic emissions in future horizon scenarios the spatial variability in emissions 

and the responsibility for these emissions are two dimensions that are crucial for the development 
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of meaningful policy able to reduce these emissions. The tool we propose provides a way to 

quantify the responsibility for emissions and the impact of individuals’ emissions on other 

individuals’ exposure. It can be used to simulate regional-level transport policies and their effects 

on the spatial distributions of emissions and on equity in the generation and exposure to air 

pollution. As cities become increasingly faced with the challenge of reducing traffic related 

emissions, tools such as the one we propose help identify the areas most responsible for these 

emissions therefore helping with the identification of priority investments. The results of our 

analysis are also relevant to epidemiologic studies of air pollution exposure and health effects 

because we demonstrate that exposure misclassification is bound to arise when we approximate 

daily exposure with the concentration at the home location, ignoring the activity locations. 

For future extensions of the model, we propose to add multimodal and active travel trips 

and in-travel NO2 exposure in the analysis of individual exposures. In-travel NO2 exposure could 

account for a significant part of the daily exposure (Fruin et al., 2014). Furthermore, considering 

that the inequity pattern for generated NOx and exposed NO2 could be different from other vehicle-

related pollutants with different dispersion patterns, further research is needed to understand the 

cumulative impacts of different pollutants. Although, the LUR map used in this study has been 

validated, alternative techniques such as individual monitoring using mobile technologies 

(Houston et al., 2013) could be an asset to validate the estimated exposures.   
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Fig. 1. Land-use map for the Montreal region featuring the Island of Montreal



Fig. 2. Visualizing NO2 levels across the Montreal region. Average NO2 concentrations are 
illustrated at five different levels with green shades representing the lowest concentrations and 
red shades the highest concentrations.



  (a)   (b) 

Fig. 3. Map of land-use clusters including: Cluster 1 characterized by TAZs with higher population density, higher 
governmental and institutional areas, denser road network and better access to metro and bus service; Cluster 2 
characterized by TAZs with higher industrial density and lower residential, governmental, and institutional 
densities and poorer transit accessibility; Cluster 3 characterized by TAZs with higher residential density and lower 
industrial density; and Cluster 4 characterized by TAZs with fewer points of interest, lower population density and 
lower accessibility to transit service. The home locations of individuals in the OD survey are presented in Fig 3b.



Fig. 4. Descriptive statistics for individual NOx emissions (all drivers)



Fig. 5. Spatial variation of the exposure to emission index at a TAZ level. The index varies from 0.1 
to 1; a lower index represents an area characterized as “high emitter, and low exposure” (green) 
and a higher index refers to “high exposure and low emissions” (red).



Fig. 6. Activity-weighted NO2 (ppb) versus at-home exposure (ppb) for the four clusters 



    Cluster 1        Cluster 2 

 Cluster 3           Cluster 4 

[0,Cmin) (Cmax,+ ∞) 
f1 22.47 13.48 
f2 13.56 11.67 
 

[0,Cmin) 

f1 21.99 
f2 17.80 
 

[0,Cmin) (Cmax,+ ∞) 
f1 19.01 19.57 
f2 14.25 22.80 

[0,Cmin) (Cmax,+ ∞) 
f1 15.79 23.83 
f2 17.75 21.10 

(Cmax,+ ∞) 
18.20 
18.06 

Fig. 7. Distribution of differences between activity-weighted exposures and at-home concentrations.  f1 and f2 
represent the percentages of drivers (f1) and of transit riders (f2) with differences between activity-weighted 
exposures and at-home concentrations that are higher or lower than the mean by 20%. Cmin represents the 
mean difference minus 20%; Cmax represents the mean difference plus 20%



Table 1. Results of factor analysis and cluster analysis 

Factor Analysis Results                                                                              

                                               Components                                                                                    

Factors 
Public Transit 

Road 

Network 
Point of Interests 

  (Metro & Bus)  (AMT Train)   

Density of Bus Stops in TAZ 0.645  NA NA 

Density of STM Metro Lines in TAZ 0.827  NA NA 

Density of AMT Train Lines in TAZ  0.811 NA NA 

Density of AMT Train Stations in TAZ  0.821 NA NA 

Density of STM Metro Stations in TAZ 0.817  NA NA 

Density of Major Roads in TAZ NA NA 0.936 NA 

Density of Highways in TAZ NA NA 0.837 NA 

Density of Minor Roads in TAZ NA NA 0.736 NA 

Density of Restaurants in TAZ NA NA NA 0.947 

Density of Bars in TAZ NA NA NA 0.669 

Density of All other types of Commercials NA NA NA 0.883 

Summary statistics     

Eigen value 1.82 1.29 2.12 2.12 

% of variance accounted by the component 36.41 25.85 70.50 70.80 

Cluster Analysis Results: Cluster 1 Cluster 2 Cluster 3 Cluster 4 

 Mean SD Mean SD Mean SD Mean SD 

Number of TAZs in Cluster 171 - 275 - 659 - 447 - 

Population Density 23.18 19.61 8.52 6.80 8.82 5.94 2.17 2.97 

Residential Density 0.39 0.29 0.24 0.26 0.71 0.15 0.17 0.16 

Industrial Density 0.11 0.16 0.49 0.31 0.08 0.09 0.04 0.07 

Governmental & Institutional Density 0.27 0.33 0.02 0.06 0.046 0.07 0.013 0.04 

Average Income (1000$) 59.55 27.22 76.89 43.20 59.87 18.33 67.94 16.37 

Point of Interests 1.14 2.66 -0.11 0.31 -0.08 0.31 -0.25 0.07 

Road Network 1.16 1.69 0.25 0.90 0.12 0.61 -0.77 0.42 

Transit (Metro-Bus) 1.36 2.40 -0.15 0.38 -0.01 0.43 -0.42 0.13 

Transit (AMT Train) 0.46 2.73 0.15 0.78 -0.11 0.30 -0.11 0.12 

 

 

 

 

 

 

 



 

 

Table 2.  Linear regression of NOx emissions (R2 = 0.33) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category Variable 
 

t-stat 

 
Constant 0.407 19.197 

Gender 
Male 0.039 3.545 

Female - - 

Status 

Employed-Part-time 0.060 2.081 

Employed-Full-time 0.131 6.437 

Student 0.212 6.325 

Retired -0.046 -1.995 

Other - - 

Age 

16-25   

26-40   

41-60 0.031 2.756 

>60 - - 

Vehicle Age 

and Type 

PC ≥ 2000 - - 

PC < 2000 0.555 44.589 

PT ≥ 2000 0.170 10.951 

PT < 2000 0.740 35.834 



 

 

 

 

Table 3.  Descriptive statistics for average NOx emissions in each cluster 

 
Cluster 

1 2 3 4 

N  268 923 3958 684 

Mean NOx/person (gr) 9.66 10.11 11.22 11.58 

Std. Error of Mean (gr) 0.83 0.49 0.26 0.62 

Median (gr) 4.52 4.39 5.17 5.64 

Std. Deviation (gr) 13.65 14.77 16.12 16.09 

Minimum (gr) 0.00 0.00 0.00 0.00 

Maximum (gr) 105.16 132.03 178.07 138.81 

N: number of individuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4.  Mean NOx emissions and at-home NO2 concentrations in each cluster 

 

 Custer 

N 

1 

268 

2 

925 

3 

3958 

4 

684 

 NOx (gr) NO2 (ppb) NOx (gr) NO2 (ppb) NOx (gr) NO2 (ppb) NOx (gr) NO2 (ppb) 

Mean 9.66 9.70 10.11 8.94 11.22 7.83 11.58 7.05 

Std. Error of Mean 0.83 0.15 0.49 0.09 0.26 0.04 0.62 0.07 

Median 4.52 9.45 4.39 8.71 5.17 7.56 5.64 6.91 

Std. Deviation 13.65 2.52 14.76 2.60 16.12 2.32 16.09 1.93 

Minimum 0.00 5.14 0.00 3.04 0.00 2.24 0.00 2.63 

Maximum 105.16 17.72 132.03 20.13 178.07 46.88 138.81 13.80 

 N: number of individuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 5.  Descriptive statistics for NO2 exposure per individual in each cluster 

N 

 

 Clusters 

 
1 

584 

2 

1676 

3 

7205 

4 

1101 

 NO2-A NO2-H  D*% NO2-A NO2-H D% NO2-A NO2-H  D% NO2-A NO2-H  D% 

Mean 9.63 9.79 -1.63 8.90 8.96 -0.67 8.13 7.95 2.26 7.13 6.97 2.30 

Std. Error of Mean 0.08 0.1 -20.00 0.05 0.06 -16.67 0.02 0.03 -33.33 0.05 0.06 -16.67 

Median 9.37 9.45 -0.85 8.78 8.71 0.80 7.92 7.71 2.72 7.05 6.86 2.77 

Std. Deviation 2.02 2.43 -16.87 2.19 2.55 -14.12 1.99 2.23 -10.76 1.77 1.9 -6.84 

Minimum 5.39 5.23 3.06 1.3 3.04 -57.24 0.56 2.24 -75.00 0.51 2.63 -80.61 

Maximum 16.94 17.72 -4.40 17.42 20.13 -13.46 17.81 18.22 -2.25 14.01 13.8 1.52 

 

NO2-A: activity-weighted NO2 

NO2-H: NO2 at home 

D: relative difference,  D=  ×100 

N: number of individuals 
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