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ABSTRACT 
There is limited adoption of research modeling crash severity frequency considering different 

crash types due to the challenge associated with analyzing large number of dependent variables. 

The proposed research contributes to burgeoning econometric and safety literature by developing 

a joint modeling approach that can accommodate for several dependent variables within a 

parsimonious structure. By recasting the analysis levels for dependent variables, the proposed 

approach allows for flexible consideration of crashes by type and severity within a single 

framework. Specifically, we employ a Panel Mixed Negative Binomial- Generalized Ordered 

Probit Fractional Spilt (PMNB-GOPFS) model where the first component (NB) accommodates 

for crash frequency by crash type and the later component (GOPFS) studies the fraction of severity 

outcome for different crash types. The proposed model system increases interaction between 

dependent variables through observed variables thus reducing the dependency on unobserved 

interactions across dependent variables. Thus, the proposed approach allows for the estimation of 

parsimonious specifications reducing the need for computationally intensive simulation based 

estimation. The proposed system is also flexible to accommodate for common unobserved effects 

including: 1) common unobserved factors simultaneously affecting crash counts of different crash 

types; 2) common unobserved factors simultaneously affecting crash severity proportions of 

different crash types; and 3) common unobserved factors that simultaneously impact crash counts 

and severity proportions by different crash types. The model system performance is illustrated 

using a simulation study. The empirical analysis was conducted using zonal level crash count data 

for the year 2016 from Central Florida while considering a comprehensive set of exogenous 

variables including roadway, built environment, land-use, traffic and sociodemographic 

characteristics. To illustrate the applicability of our proposed system, we carried out a comparison 

exercise between our proposed joint PMNB-GOPFS and the traditional multivariate system for 

predicting crash counts across different crash severities. The resulting goodness of fit measures 

clearly highlight the superior/equivalent performance of the proposed PMNB-GOPFS model over 

the traditional RPMNB model with less than half the number of parameters. The proposed 

framework can predict several dimensions including total crash counts, total crash counts by crash 

types, crash counts for each severity level and finally, proportions and counts of crashes for each 

crash type by severity.  

 

Keywords: Crash type; Crash severity; Panel model; Fractional split model; Unobserved 

heterogeneity; Multivariate model  
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1 BACKGROUND 

Road traffic crash related morbidity and mortality is acknowledged to be a global challenge. 

Annually, it is reported that more than one and a quarter million people die in road traffic crashes 

with the number expected to exceed 2 million by 2020 (WHO, 2018). While many developed 

countries (such as Canada, and Japan) have been able to achieve a reduction in the number of road 

crash related fatalities, in the United States, the reduction rate is much lower (or worse with an 

occasional increase as observed in 2014). In reducing the burden of such unavoidable incidents, 

safety researchers are continually investigating approaches for crash occurrence reduction and 

crash consequence mitigation. A major analytical tool employed for examining the critical factors 

influencing crash occurrence include the econometric crash frequency models (Geedipally et al., 

2010; Jonathan et al., 2016; Yan et al., 2009). The proposed research contributes to burgeoning 

econometric and safety literature by developing a joint modeling approach that can accommodate 

several dependent variables within a parsimonious structure.  

The traditional modeling framework for crash frequency analysis is the univariate 

frequency model such as Poisson, Negative binomial or the Poisson-Lognormal model (see 

(Bhowmik et al., 2018; Bhowmik, 2020; Lord and Mannering, 2010) for a detailed review of these 

studies). In these studies, for an observational unit, the modeling variable of interest is typically 

the total number of crashes. The approach of aggregating all crashes into a single dependent 

variable can result in aggregation bias and a loss of information available in the dataset. For 

instance, consider two zones with 5 observed crashes in the analysis period. For zone 1, the 5 

crashes include 5 head-on crashes while for zone 2, the 5 crashes include 4 rear-end crashes and 

1 vehicle pedestrian crash. While the crash distribution by crash type across the two zones is quite 

distinct, an approach focusing on total crashes will consider both zones as having identical 

dependent variables. The aggregation would make it quite cumbersome to accurately estimate the 

impact of independent variables on total crashes. For example, in zone 1, geometric design 

inadequacies might be the reason for head-on crashes while in zone 2, the presence of a significant 

number of signalized urban intersections might be the reason for rear-end and pedestrian crashes. 

A single total crash model will not be able to parse these distinctions accurately. Hence, it is not 

surprising that in recent years, safety researchers have focused on disaggregating the data by 

various attributes such as crash typology (such as head-on or rear-end), injury severity (such as 

crashes by no injury or crashes by severe injury) and crash location (such as intersection versus 

non-intersection).  

The proposed disaggregation of the crash frequency variable increases the complexity of 

the modeling effort and presents many additional challenges. The number of dependent variables 

of interest increase based on the attribute levels of interest. For analyzing these multiple dependent 

variables, multiple univariate models with frequency by attribute levels (such as crashes by crash 

type) will need to be estimated. While developing multiple univariate crash frequency models will 

account for the influence of independent variables, these models ignore that the multiple crash 

frequency variables for a traffic analysis zone (TAZ) are potentially correlated. The different 

outcome dimensions (such as crash type and severity outcomes) under consideration are possibly 

correlated as both of these outcomes (within and across) share the same travel environment within 

a spatial planning unit over a specific given period of time. For example, for zonal level crash 

frequency analysis, it is possible that characteristics specific to the zone such as driver behavior, 

geometric design and build quality (possibly of higher or lower quality relative to the other zones) 

and traffic signal design objectives might influence different crash counts by crash type (such as 

head-on, rear-end). For instance, a higher presence of drivers using cell phone while driving in a 
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zone (information usually unavailable to the analyst) may contribute to a higher number of head 

on crashes. At the same time, due to the greater dissipation of kinetic energy associated with a 

head-on collision, the likelihood of serious injury crashes will be higher for the same unobserved 

factor (cell phone distracted driver proportion). This is an example of how one unobserved variable 

can significantly affect the two dimensions simultaneously (crash type and severity). Ignoring the 

presence of such correlation may result in biased parameter estimates and potentially incorrect 

model predictions and/or inefficient policy implications (see Liu and Sharma, 2018; Mannering et 

al., 2016; Zeng et al., 2018, Wang et al., 2019 for an extensive discussion). Thus, any modeling 

approach to analyze the multiple crash frequency variables needs to explicitly account for the 

presence of these common factors that are most often unobserved. The most common approach 

employed to address the potential unobserved heterogeneity in safety literature is the development 

of multivariate crash frequency models.  

 

1.1 Earlier Work 

A summary of earlier research efforts investigating crash frequencies by crash type and severity 

level are presented in Table 1 with information on the spatial unit (aggregation level), the region 

(covered area, for example state or city), crash unit (type of crash considered), number of 

dimensions examined (of the dependent variable), methodological framework employed, and 

different categories of exogenous variables considered in the analysis. The following observations 

can be made from Table 1. First, the most prevalent mechanism to analyze crash count by different 

levels are multivariate count regression approaches. Second, several spatial units are considered 

both at macro and micro level for analyzing the crash counts by type and injury severity including 

segments and intersections (for micro level); and census block and traffic analysis zone (for macro 

level). Third, the methodological frameworks adopted in these studies include Negative binomial, 

Poisson regression, Multivariate Poisson-lognormal, Multivariate Negative Binomial, 

Multinomial Generalized Poisson and Integrated Nested Laplace Approximation. Fourth, with 

respect to exogenous variables, the overall findings from earlier research effort are consistent. The 

various factors identified that influence crash severities include - (1) roadway characteristics such 

as shoulder width, arterial road length; (2) land-use characteristics such as urban land use and land 

use mix; (3) built environment characteristics such as number of access points (number of 

restaurant, entertainment center); (4) traffic characteristics such as Average Annual Daily Traffic 

(AADT) and  truck volume; (5) socio-demographic characteristics such as population density and 

people by different age group; and (6) weather variables such as precipitation rate. Fifth, the 

highest number of dependent variables considered in multivariate models is 8. Finally, none of the 

studies1 examined the crash counts of different crash types and their corresponding severity 

outcomes in an integrated framework at the planning level.  

 
1 One study (Yasmin et al., 2016) investigated the crash severity proportions considering different crash types, while 

developing separate models for different crash types. However, the study did not model the crash frequencies by crash 

type in the joint modeling approach.  
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TABLE 1 Summary of Existing Aggregate Level Multivariate Crash Type and Severity Studies 

Studies 
Spatial 

Unit 
Region 
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Crash Type Studies 

(Jonsson et al., 

2007) 

Highway 

segments 

(Micro) 

State 

(California) 

Motorized 

crash 

4 (same direction, 

intersecting direction, 

opposite direction, 

single vehicle crashes) 

Generalized linear 

model 
√ √ -- √ -- -- 

(Ye et al., 2009) 
Intersections 

(micro) 

County 

(Georgia) 

Any  

Crash 

7 (angle, head-on, 

rear-end, sideswipe: 

same and opposite 

direction, pedestrian) 

Multivariate Poisson 

regression model 
√ -- -- √ -- -- 

(El-Basyouny et 

al., 2014a) 

Citywide 

(Macro) 

City 

(Edmonton) 

Motorized 

crash 

7 (FTC*, FOTS**, 

SSV***, left turn, 

ILC****, parked 

vehicle and off-road) 

Multivariate Poisson-

lognormal model 
-- -- -- -- -- √ 

(El-Basyouny et 

al., 2014b) 

Citywide 

(Macro) 

City 

(Edmonton) 

Motorized 

crash 

7 (FTC*, FOTS**, 

SSV***, left turn, 

ILC****, parked 

vehicle and off-road) 

Multivariate Poisson-

lognormal model 
-- -- -- -- -- √ 

(Li et al., 2015) 
Freeway 

(micro) 

State  

(Florida) 

Motorized 

crash 

3 (rear-end, sideswipe 

and angle) 

Multivariate Poisson-

lognormal model 
√ -- -- √ -- -- 

(Mothafer et al., 

2016)  

Highway 

segments 

(Micro) 

State 

(Washington) 

Motorized 

crash 

4 (rear-end, sideswipe, 

fixed object and 

others) 

Multivariate Poisson 

gamma mixture count 

model 

√ -- -- √ -- -- 

(Jonathan et al., 

2016) 

Road 

segments 

(Micro) 

County 

(Pennsylvania) 

Any  

Crash 

4 (same direction, 

opposite direction, 

angular, fixed object) 

Multivariate Poisson-

lognormal spatial 

model 

√ -- -- √ -- -- 

(Serhiyenko et al., 

2016) 

Highway 

segments 

(Micro) 

State 

(Connecticut) 

Motorized 

crash 

3 (same direction, 

opposite direction, 

single vehicle crash) 

Multivariate Poisson-

lognormal model 
√ √ -- √ -- -- 

(Cheng et al., 

2017) 

Intersections 

(micro) 

City 

(California) 

Motorized 

crash 

6 (rear-end, head-on, 

sideswipe, broad side, 

Multivariate Poisson-

lognormal model 
√ -- -- √ -- -- 
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hit object crash, 

others) 

(Wang et al., 

2017) 

Road 

segments, 

intersections 

(Micro) 

State 

(Minnesota, 

Washington) 

Any  

Crash 

4 (same direction, 

intersecting direction, 

opposite direction, 

single vehicle crashes) 

Multivariate Poisson-

lognormal model 
√ -- -- √ -- -- 

(Alarifi et al., 

2018) 

Road 

segments, 

intersections 

(Micro) 

County 

(Florida) 

Any  

Crash 

6 (same direction, 

angular, opposite 

direction, non-

motorized, single 

vehicle and others)  

Bayesian multivariate 

hierarchical spatial 

joint model 

√ -- -- √ -- -- 

(Bhowmik et al., 

2018) 

STAZ 

(Macro) 

State 

(Florida) 

Motorized 

crash 

8 (rear-end, angular, 

sideswipe, head-on, 

single vehicle, off-

road, rollover and 

others) 

Multivariate negative 

binomial model, 

multinomial 

fractional split model 

√ √ √ √ -- -- 

(Hosseinpour et 

al., 2018) 

Road 

segments 

(micro) 

Nation 

(Malaysia) 

Motorized 

crash 

4 (head-on, rear-end, 

angle, and sideswipe) 

Multivariate Poisson 

regression model 
√ -- -- √ -- -- 

(Yasmin et al., 

2018) 

STAZ 

(Macro) 

State  

(Florida) 

Motorized 

crash 

4 (light truck, van, 

other vehicle and non-

motorized) 

Copula-based 

multivariate NB 

model 

√ √ -- √ √ -- 

(Guo et al., 2019a) 
Freeway 

(micro) 

State  

(Florida) 

Motorized 

crash 

3 (rear-end, sideswipe 

and angle) 

A random parameters 

multivariate Poisson-

lognormal model 

√ -- -- √ -- -- 

(Guo et al., 

2019b) 

Freeway 

(micro) 

State  

(Florida) 

Motorized 

crash 

3 (rear-end, sideswipe 

and angle) 

A random parameters 

multivariate Tobit 

model 

√ -- -- √ -- -- 

(Bhowmik et al., 

2019a) 

TAZ 

(Macro) 

State 

(Florida) 

Any  

Crash 

6 (rear-end, angular, 

sideswipe, single 

vehicle, other multi 

vehicle and non-

motorized) 

Panel mixed negative 

binomial model 
√ √ √ √ -- -- 

(Bhowmik et al., 

2021) 

STAZ 

(Macro) 

State 

(Florida) 

Any  

Crash 

4 (intersection, on-

road, off-road and 

non-motorized) 

Copula Based random 

parameter 

multivariate NB 

model 

√ √ √ √ -- -- 

Crash Severity Studies 
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(Narayanamoorthy 

et al., 2013) 

Census tract 

(Macro) 

Region 

(Manhattan) 

Non-

motorized 

Crash 

4 (possible injury, 

non-incapacitating 

injury, incapacitating 

injury and fatal injury) 

Generalized ordered-

response model with 

Composite Maximum 

Likelihood 

√ √ √ -- √ -- 

(Ye et al., 2013) 

Freeway 

segment 

(Micro) 

State 

(Washington) 

Any  

Crash 

3 (PDO, possible 

injury, injury/ fatality) 

Joint Poisson 

regression model 
√ -- -- √ -- √ 

(Barua et al., 

2014) 

Road 

segment 

(Micro) 

City 

(Richmond, 

Vancouver) 

Any  

Crash 

2 (no injury and 

injury/fatal crashes) 

Multivariate Poisson 

lognormal model 
√ √ √ √ -- -- 

(Chiou et al., 

2014) 

Freeway 

segment 

(Micro) 

State (Taiwan) 
Motorized 

Crash 

3 (PDO, possible 

injury, injury/ fatality) 

Multinomial 

Generalized Poisson 

with error 

components 

√ -- √ √ -- √ 

(Chiou and Fu, 

2015) 

Freeway 

segment 

(Micro) 

State (Taiwan) 
Motorized 

Crash 

3 (PDO, possible 

injury, injury/ fatality) 

Multinomial 

generalized Poisson 

with spatiotemporal 

error components 

√ -- √ √ -- √ 

(Zhan et al., 2015) 

Census tract 

(Macro) 

Roadway 

segment 

(Micro) 

City, State 

(New York, 

Washington) 

Pedestrian 

and 

Motorized 

Crash 

3 (no injury, possible 

injury and evident 

injury) 

Multivariate Poisson-

lognormal model 
√ √ √ √ √ √ 

(Anastasopoulos, 

2016) 

Highway 

segments 

(Micro) 

State 

(Indiana) 

Motorized 

crash 

3 (PDO, injury and 

fatality) 

Random parameter 

multivariate tobit 

model, Multivariate 

zero-inflated negative 

binomial model 

√ √ -- -- -- -- 

(Barua et al., 

2016) 

Road 

segment 

(Micro) 

City 

(Vancouver) 

Any  

Crash 

2 (no injury and injury 

crashes) 

Bayesian multivariate 

random parameters 

spatial model 

√ √ √ √ -- -- 

(Dong et al., 

2016) 

Intersection 

(Micro) 

State 

(Tennessee) 

Any  

Crash 

2 (disabling injury and 

non-disabling injury) 

Random parameter 

bivariate zero-inflated 

negative binomial 

model 

√ -- -- √ -- -- 

(Yasmin et al., 

2016) 

Road 

segments 

(Micro) 

State 

(Florida) 

Motorized 

Crash 

5 (no injury, minor 

injury, moderate 

injury, serious injury, 

fatal) 

Ordered fractional 

split model 
√ √ √ √ √ -- 
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(Bhat et al., 2017) 
Census tract 

(Macro) 

Region 

(Manhattan) 

Pedestrian 

Crash 

4 (possible injury, 

non-incapacitating 

injury, incapacitating 

injury and fatal injury) 

Random coefficients 

multivariate count 

model 

√ √ √ -- √ -- 

(Boulieri et al., 

2017) 

Ward 

(Macro) 
England 

Any  

Crash 

2 (slight accidents, 

fatal accidents 

Multivariate Bayesian 

Model 
√ -- -- √ -- -- 

(Chen et al., 2017) 

Highway 

segment 

(Micro) 

State 

(Indiana) 

Motorized 

Crash 

3 (PDO, possible 

injury, and 

injury/fatality) 

Multivariate Random 

Parameters Negative 

Binomial Approach 

√ -- -- √ -- -- 

(Ma et al., 2017) 

Highway 

segment 

(Micro) 

Interstate I70 

(Colorado) 

Motorized 

Crash 
2 (injury, no injury) 

Multivariate Poisson 

lognormal (normal, 

spatial and spatio-

temporal) 

√ -- -- √ -- √ 

(Wang et al., 

2017) 

Road 

segments, 

intersections 

(Micro) 

State 

(Minnesota, 

Washington) 

Any  

Crash 

3 (no injury, 

possible/non-

incapacitating injury 

and 

fatal/incapacitating 

injury crashes) 

Multivariate Poisson 

Lognormal model 
√ -- -- √ -- -- 

(Zeng et al., 2017) 

Census tract 

(Macro) 

Roadway 

segment 

(Micro) 

City 

(Hong Kong) 

Any  

Crash 

2 (slight injury crash 

and killed/seriously 

injured crashes) 

Multivariate Poisson-

lognormal model 
√ -- -- √ -- √ 

(Liu and Sharma, 

2018) 

County 

(macro) 

State 

(Iowa) 

Any  

Crash 

3 (Fatal crashes, major 

injury crashes, and 

minor injury crashes) 

Multivariate spatio-

temporal Bayesian 

model 

√ -- -- √ √ √ 

(Yasmin and 

Eluru, 2018) 

STAZ 

(Macro) 

STAZ 

(Macro) 

Motorized 

Crash 

4 (no injury, minor 

injury, incapacitating 

injury and fatal) 

Joint NB-ordered 

fractional split model 
√ √ √ √ √ -- 

(Lee and Khattak, 

2019) 

Road 

segments, 

(Micro) 

City (Lincoln) 
Motorized 

Crash 

5 (no injury, minor 

injury, moderate 

injury, serious injury, 

fatal) 

Network-based local 

spatial auto-

correlation 

√ -- -- √ -- -- 

(Shaon et al., 

2019) 

Highway 

segment 

(Micro) 

State 

(Wisconsin) 

Any  

Crash 
2 (No injury, injury) 

Multivariate multiple 

risk source regression 

model 

√ -- -- √ -- -- 

(Xie et al., 2019) 
Census tract 

(macro) 

City 

(Manhattan) 

Any  

Crash 

3 (no injury, serious 

and fatal) 

Multivariate 

Conditional 
√ √ -- √ -- -- 

https://www.sciencedirect.com/topics/social-sciences/regression-model
https://www.sciencedirect.com/topics/social-sciences/regression-model
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Autoregressive 

(MVCAR) model 

(Zeng et al., 2019) 
TAZs 

(macro) 

Metropolitan 

area  

(Hong Kong 

Any  

Crash 

3 (no injury, slight and 

KSI*****) 

Bayesian multivariate 

random-parameters 

spatio-temporal Tobit 

regression 

√ -- -- √ -- -- 

(Huang et al., 

2019) 

TAZs 

(macro) 

County 

(Florida) 

Any  

Crash 

2 (no injury and injury 

crashes 

Bayesian multivariate 

random parameters 

spatial model 

√ -- -- √ √ -- 

(Afghari et al., 

2020) 

Road 

segment 

(Micro) 

State 

(Queensland) 

Any  

Crash 

3 (minor, serious 

injury and fatal) 

Joint NB-ordered 

fractional split model 
√ -- -- √ -- -- 

*FTC = Follow too close; **FOTS= Failed to observe traffic signal; ***SSV= Stop sign violation, ****ILC= Improper lane change *****KSI=killed or seriously 

injured
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1.2 Current Study in Context and Study Contributions 

In multivariate count regression approaches described above, the impact of exogenous variables 

is quantified through the propensity component of count models. In accommodating the influence 

of unobserved effects, in general, these approaches partition the error components as a common 

term and an independent term across dependent variables (see (Mannering et al., 2016) for a 

detailed discussion of various methodologies). The approaches rely either on Maximum Simulated 

Likelihood (MSL) or Markov Chain Monte Carlo (MCMC) approach in the Bayesian realm for 

model estimation. MSL and MCMC methods provide substantial flexibility in accommodating for 

unobserved heterogeneity.  

While several research efforts have developed multivariate crash frequency models for a 

small number of dimensions (such as 5); there is limited adoption of multivariate approaches for 

count variables in the presence of larger number of dependent variables (say greater than 15).  For 

example, consider the development of crash frequency models by crash type (say 𝑁 types) and 

severity level (say 𝐾 levels). In the currently employed approaches, the number of crash propensity 

equations to be estimated will be N*K. While the estimation of 𝑁 ∗ 𝐾 univariate model systems 

is repetitive, it is still feasible. However, accommodating for unobserved heterogeneity with a 

large number of dependent variables is substantially challenging. The probability evaluation with 

high dimensional integrals is potentially affected by several challenges including - requirements 

of generating high dimensionality of random numbers, empirical identification issues due to 

relatively flat objective functions in larger dimensions and longer computational run times. 

Furthermore, the stability of the variance-covariance matrix is often sensitive to model 

specification and number of simulation draws (Bhat, 2011).  

The proposed research is geared toward addressing the dimensionality challenge in the 

traditional multivariate crash frequency models. In doing so, the proposed research builds on 

recent developments in crash frequency analysis along multiple directions. First, we draw on our 

recent work employing fractional split modeling approach for crash frequency analysis. In a 

fractional split approach, as opposed to modeling the count events, count proportions by different 

attributes (such as injury severity, crash type or vehicle type) for a study unit are examined. 

Yasmin and Eluru, 2018 employed a joint Negative Binomial-Ordered Logit Fractional Split (NB-

OLFS) model using zonal level crash records to tie the total crash count and severity in a single 

joint system. The authors concluded that the proposed approach is more appealing relative to the 

traditional multivariate models for multiple reasons: 1) it is computationally less burdensome as 

it requires the estimation of only two equations irrespective of the number of crash severity levels; 

2) the fractional split approach directly relates a single exogenous variable to count proportions of 

all attribute levels simultaneously. On the contrary, in the traditional multivariate models, the 

observed variables in different count propensity equations do not interact across different 

dimensions; and 3) the ordered fractional split framework recognize the inherent ordering for the 

severity levels which is ignored in the traditional multivariate models. Building on this fractional 

split approach, the proposed research develops a joint system for analysing crash frequency by 

crash type (𝑁) and severity level (𝐾) with (𝑁 ∗ 𝐾) dependent variables per observation as 

follows: The NB count model is employed to incorporate the frequency by the crash type 

dimension and the fractional model is employed to analyze crash severity within each crash type 

dimension. Thus, instead of modeling 𝑁 ∗ 𝐾 dependent variables with 𝑁 ∗ 𝐾 propensity equations 

(and integration of unobserved factors of the same order), we reduce the dimensionality to 𝑁 ∗ 2. 

At this stage, if the analyst is considering 𝐿1 observed variables and 𝐿2 unobserved parameters, 

the model estimation complexity has reduced to 𝑁 ∗ 2 ∗ (𝐿1 + 𝐿2) from 𝑁 ∗ 𝐾 ∗ (𝐿1 + 𝐿2).  
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Second, we draw on another recent work that recasts the multivariate distributional 

problem (for multiple crash frequency dependent variables) as a repeated measure univariate 

problem (see (Bhowmik et al., 2019a) for detail). For example, crash frequency by crash type is 

represented as a repeated measure of crash frequency variable recognizing that each repetition 

represents a different crash type instead of considering it as a multivariate distribution. The 

recasting process allows for the estimation of a parsimonious model system by allowing for an 

improved specification testing of variable impacts across different crash types (see Bhowmik et 

al., 2019a for detail). Using this consideration, the proposed model system enhances the efficiency 

of estimation through a single crash frequency model and a single crash proportion model, while 

also allowing for parameter effects to vary across different crash types through crash type specific 

deviation terms. Building on this study design, the 𝑁 ∗ 2 ∗ (𝐿1 + 𝐿2) could potentially be reduced 

to 2 ∗ (𝐿1 + 𝐿2). Of course, we envision that the exact number of parameters to be estimated will 

lie somewhere in the range between 2 ∗ (𝐿1 + 𝐿2) and 𝑁 ∗ 2 ∗ (𝐿1 + 𝐿2). The reduction in 

parameters especially for unobserved factors will contribute to substantial improvements in model 

efficiency and computational times. In our current study, the number of dependent variables 

analyzed is 24 (N=6 and K=4). Through our innovative adoption of the fractional split model for 

severity modeling and recasting of the crash frequency model from a multivariate to a repeated 

univariate structure we potentially reduce the number of parameters to be estimated to 2 ∗ (𝐿1 +
𝐿2) in the best case and 6 ∗ 2 ∗ (𝐿1 + 𝐿2) in an absolute worst case. To summarize, the proposed 

model system results in the estimation of about 
1

12
 of the model parameters in the best case and 

about 
1

2
 in the worst case. From any metric of comparison this is a substantial improvement.  

Third, the proposed approach reduces the reliance on unobserved heterogeneity by 

allowing for direct impact of observed variable interaction across dependent variables. To 

elaborate, in traditional models, the interaction between the multiple dependent variables is 

accommodated through unobserved error correlations. Typically, these correlations are captured 

through simulation based approaches or specialized dependency structures (such as copulas). For 

example, in our empirical setting with 6 crash types and 4 crash severities, the traditional approach 

will need to estimate 24 (6*4) separate equations and then test for the presence of 24𝐶2 potential 

correlation terms. The additional estimation and computational complexity explains why earlier 

research has focused either on crash type or crash severity only. In our approach, we allow for 

observed variable interaction in modeling severity proportions. Thus, we actually allow for 

interaction across dependent variables without needing for the introduction of simulation based 

error terms. Further, we consider unobserved correlations across dependent variables as needed. 

Given the direct interaction across the dependent variables, we are likely to have fewer parameters 

to test because of the model structure. This improves model estimation efficiency as maximum 

simulated models with large dimensions of integrals are less efficient and are prone to potential 

inaccuracies (see Bhat, 2011). 

Finally, the proposed model structure allows for recognizing the potential ordering in the 

severity dependent variables. In the traditional model setting, with multivariate models for 

multiple dependent variables accommodating for such ordering is not possible. Ignoring this 

potential ordering can possibly manifest itself through the significance of multiple unobserved 

variables representing correlation across dependent variables (that are actually ordered). Further, 

as illustrated in existing literature  (see Eluru and Yasmin, 2015; Fountas and Anastasopoulos, 

2017; Xin et al., 2017; Bhowmik et al., 2019b; Kabli et al., 2020; Wang et al., 2021 for detail), 

adopting a generalized ordered framework that relaxes the restrictive assumptions of the ordered 
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outcome model (also referred to as parallel lines assumption) by allowing the threshold parameters 

to vary in response to observational attributes would be more representative. Thus, in our proposed 

model structure, we also develop a generalized ordered model structure that also accommodates 

for the potential parallel line assumption documented in ordered literature. 

The model is estimated using zonal level crash count, crash type and severity data for both 

motorized and non-motorized crashes. The crash data is extracted for the year 2016 from Central 

Florida region of the USA. The dimension of the dependent variables analysed is 24 [(6 ∗ 4) from 

6 crash types (rear-end, angular, sideswipe, head-on, single vehicle and non-motorist crash) and 4 

severity levels (severe (fatal and incapacitating as one category), non-incapacitating, possible 

injury and property damage).  

In summary, the current study contributes to safety literature both methodologically and 

empirically by proposing a joint econometric approach for examining the count events as well as 

the severity outcome for different crash types. Methodologically, we build an integrated 

framework that embeds the fractional split model structure within the recasting framework to 

develop a joint model with high dimensionality. To be specific, we employ a Joint Panel mixed 

Negative Binomial- Generalized Ordered Probit Fractional Spilt (PM-NB-GOPFS) model where 

the first component (NB) will accommodate for crash frequency by crash type and the second 

component (GOPFS) will study the fraction of severity outcome for different crash types.   

Empirically, the proposed approach allows for flexible consideration of crashes by crash types and 

severity levels within a single framework. Further, the proposed model results offer insights on 

important variables affecting crash frequency and severity for different crash types at a zonal 

(macro) level. 

The rest of the paper is organized as follows: The next section presents the methodological 

framework adopted in the analysis and presents a simulation exercise to illustrate the strengths of 

the proposed model. The third section provides a detailed description of the dataset. Model 

findings are discussed in the fourth section followed by the prediction performance evaluation of 

the of the proposed model in section five. Finally, the concluding remarks are summarized in the 

last section. 

 

2 METHODOLOGY 

In this section, we provide details of the Panel mixed Negative Binomial - Generalized Ordered 

Probit Fractional Spilt (PMNB-GOPFS) model employed in our study. 

 

2.1 Count Model Structure 

The focus of our study is to recast the multivariate NB count model as a panel mixed univariate 

NB modeling framework. For this purpose, we consider the six types of crashes as repeated 

measures (same TAZ is repeated 6 times) of crash frequency in a univariate NB formulation while 

recognizing that each repetition represents a different crash type. The econometric framework of 

the proposed approach is presented in this section. Let’s assume 𝑖 (𝑖 = 1,2,3, … , 𝑁;  𝑁 = 3,815) 

be an index to represent observation unit (TAZs) and 𝑟 (𝑟 = 1,2, … , 𝑅;  𝑅 = 6) be an index for 

different crash type and 𝑘 (𝑘 = 1,2,3, … , 𝐾; 𝐾 = 4) be the index to represent injury severity 

categories at observation unit 𝑖. Then the probability equation of the NB formulation can be 

rewritten as follow: 

𝑃(𝑐𝑖𝑟|𝑣𝑖𝑟 , 𝜆′) =  
Γ (𝑐𝑖𝑟 +

1
𝜆′

)

Γ(𝑐𝑖𝑟 + 1)Γ (
1
𝜆′

)
(

1

1 + 𝜆′𝑣𝑖𝑟
)

1
𝜆′

(1 −
1

1 + 𝜆′𝑣𝑖𝑟
)

𝑐𝑖𝑟

 (1)  
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where, 𝑐𝑖𝑟 be the index for crash counts occurring over a period of time in observation unit  𝑖 and 

crash type 𝑟. 𝑃(𝑐𝑖𝑟) is the probability that unit 𝑖 has 𝑐𝑖𝑟 number of crashes for crash type 𝑟. 𝜆′ is 

NB over dispersion parameter and 𝑣𝑖𝑟 is the expected number of crashes occurring in 𝑖 over a 

given time period for crash type 𝑟. In equation 1, we can express 𝑣𝑖𝑟 as a function of explanatory 

variables using a log-link function as follows:  

𝑣𝑖𝑟 = 𝑒𝑥𝑝((τ + 𝛷𝑖𝑟 + 𝜚𝑖 + 𝜂𝑖𝑟𝑘)𝑥𝑖𝑟 + 𝜀𝑖𝑟) (2)  

where, 𝑥𝑖𝑟 is a vector of explanatory variables associated with observations 𝑖 for crash type 𝑟. 𝝉 is 

a vector of coefficients to be estimated. 𝛷𝑖𝑟 is a vector of unobserved factors moderating the 

influence of attributes in 𝑥𝑖𝑟 on the crash count propensity for analysis unit 𝑖, 𝜚𝑖 is a vector of 

unobserved effects specific to crash type 𝑟. This 𝝔𝑖 will be same across crash types in our case 

and thus the unobserved heterogeneity across crash types will be captured. 𝜀𝑖𝑟 is a gamma 

distributed error term with mean 1 and variance 𝜆′. 𝜂𝑖𝑟𝑘 captures unobserved factors that 

simultaneously impact number of crashes by crash type and proportion of crashes by severity for 

different crash types for unit 𝑖. 
 

2.2 Severity Model Structure 

In the joint model framework, the modeling of crash proportions by severity levels across different 

crash types is undertaken using the Generalized Ordered Probit Fractional Split (GOPFS) model. 

In the ordered outcome framework, the actual injury severity proportions (𝑦𝑖𝑟𝑘) are assumed to 

be associated with an underlying continuous latent variable (𝑦𝑖𝑟
∗ ). The latent propensity equation 

is typically specified as the following linear function: 

𝑦𝑖𝑟
∗ = (𝛼𝑟 + 𝛾𝑖𝑟𝑘 + 𝛿𝑖𝑟 + 𝜂𝑖𝑟𝑘)𝑧𝑖𝑟 +  𝜉𝑖𝑟𝑘  (3)  

This latent propensity 𝑦𝑖𝑟
∗  is mapped to the actual severity proportion categories 𝑦𝑖𝑘  by the 

𝜓𝑟 thresholds (𝜓𝑟0 =-∞ and 𝜓𝑟𝑘= ∞). 𝑧𝑖𝑟 is a vector of attributes that influences the propensity 

associated with crash severities. 𝛼𝑟 is a corresponding vector of mean effects specific to 𝑟, and 

𝛾𝑖𝑟𝑘 is a vector of unobserved factors on severity proportion propensity for TAZ 𝑖 specific to crash 

type 𝑟 and its associated zonal characteristics assumed to be a realization from standard normal 

distribution: 𝝆~𝑁(0, 𝝈2). 𝛿𝑖𝑟 is a vector of unobserved effects specific to crash type 𝑟. This 𝛿𝑖𝑟 

will be same across severity proportions in any TAZ and thus the unobserved heterogeneity across 

the severity proportions will be captured. 𝜉𝑖𝑟𝑘 is an idiosyncratic random error term assumed to be 

identically and independently standard normal distributed across TAZ 𝑖. 𝜂𝑖𝑟𝑘 term generates the 

correlation between equations for total number of crashes and crash proportions by severity levels 

for different crash type. 

The GOPFS model relaxes the constant threshold across observation to provide a flexible 

form of the OPFS model. The basic idea of the GOPFS is to represent the threshold parameters as 

a linear function of exogenous variables. Thus, the thresholds are expressed as: 

𝜓𝑟𝑘 = 𝑓𝑛(𝑠𝑖𝑟𝑘) (4)  
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where, 𝑠𝑖𝑟𝑘 is a set of exogenous variables (including a constant) associated with 𝑘 th threshold. 

Further, to ensure the accepted ordering of observed crash severity proportion (−∞ < 𝜓r1 <
𝜓r2 <  … … … < 𝜓rK−1 < +∞), we employ the following parametric form as employed by Eluru 

et al.(Eluru et al., 2008): 

𝜓𝑟𝑘 = 𝜓𝑟,𝑘−1 + 𝑒𝑥𝑝((𝛽𝑟𝑘 + 𝜃𝑖𝑟𝑘 + 𝜍𝑖𝑟 + 𝜂
𝑖𝑟𝑘

)𝑠𝑖𝑟𝑘) (5)  

where, 𝛽𝑟𝑘 is a vector of parameters to be estimated. 𝜃𝑖𝑟𝑘 is another vector of unobserved factors 

moderating the influence of attributes in 𝑠𝑖𝑟𝑘 on the severity proportions for analysis unit 𝑖 , crash 

type r and injury severity category 𝑘. 𝜍𝑖𝑟 is a vector of unobserved effects specific to crash type 𝑟. 

This 𝜍𝑖𝑟 will be same across the threshold parameters (upper severity categories) in any TAZ and 

thus the unobserved heterogeneity across the threshold parameters will be captured. 

To estimate the model presented in equation 3, we assume that:    

𝐸(𝑦𝑖𝑟𝑘|𝑍𝑖𝑟𝑘) = 𝐻𝑖𝑟𝑘(𝛼𝑟 , 𝜓𝑟𝑘 , 𝛿𝑖𝑟 , 𝜃𝑖𝑟𝑘), 0 ≤ 𝐻𝑖𝑟𝑘 ≤ 1, ∑ 𝐻𝑖𝑟𝑘 = 1𝑟𝐾
𝑟𝑘=1  (6)  

where 𝐻𝑖𝑟𝑘 in our model takes the generalized ordered probit probability form for the severity 

category 𝑘 specific to crash type 𝑟. Given these relationships across different parameters, the 

resulting probability for the GOPFS model takes the following form:  

𝑃𝑖𝑟𝑘 = 𝐺 [(𝜓𝑟𝑘 − {(𝛼 + 𝛾𝑖𝑟𝑘 + 𝛿𝑖𝑟 + 𝜂𝑖𝑟𝑘)𝑧𝑖𝑟} ] − 𝐺 [(𝜓𝑟,𝑘−1 − {(𝛼 + 𝛾𝑖𝑟𝑘 + 𝛿𝑖𝑟 +

𝜂𝑖𝑟𝑘)𝑧𝑖𝑟}] 
(7)  

where, G(∙) is the standard normal cumulative distribution function (Eluru et al., 2013; Papke, 

1996). The proposed model ensures that the proportion for each severity category is between 0 

and 1 (including the limits).   

 

2.3 Correlation Structure 

In the current research effort, several unobserved factors are considered. At the observation level 

(TAZ), we consider influence of common unobserved factors across crash frequency (𝛷𝑖𝑟) and 

crash severity (𝛾𝑖𝑟𝑘, 𝜃𝑖𝑟𝑘). In addition to this, a number of correlation terms are tested including: 

1) common unobserved factors simultaneously affecting crash counts of different crash types (𝝔𝑖); 

2) common unobserved factors simultaneously affecting crash severity proportions of different 

crash types (𝛿𝑖𝑟 , 𝜍
𝑖𝑟

 );  and 3) common unobserved factors that simultaneously impact crash counts 

and severity proportions by different crash types (𝜂𝑖𝑟𝑘). A discussion of these correlation structures 

are presented below:  
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(8)  

Equation 8 provides the overall structure of the correlation matrix. The order of the 

correlation matrix is provided by the total number of crash type and crash severity levels (N+K). 

The reader would note that unobserved factors affecting crash type and severity might have a 

positive (negative) association i.e. unobserved factors increasing crashes by a type also increase 

(decrease) severity proportion for that type.  Thus, it is not hard to recognize a large possibility of 

combinations of positive and negative correlations. The matrix Þ is introduced to recognize that 

the common unobserved factors between crash type, severity and type and severity combination 

can either be positive or negative. Þ is an appropriately concatenated matrix composed of three 

matrices (þ𝑟 , þ𝑘 , þ𝑟𝑘). The Þ matrix allows us to generate the various possible combinations of 

positive and negative associations between these correlations.  

 To elaborate on the structure, we discuss the three main components of the matrix. The 

top left part represents the correlation matrix for the crash type only: 

 

(9)  

As described in Equation 9, these terms represent the correlation between crash types. For 

example, the correlation parameter я12  in equation 9 captures the common unobserved factors 

affecting the crash counts of crash type 1 and crash type 2 (which is rear-end and angular for the 

current study context) simultaneously while я2J represents the potential correlation between crash 

type 2 and crash type J. þ𝑟 matrix will be +1 if the association is positive, -1 if association is 

negative and 0 if no association is considered.  

Equation 10 represents the lower right part of the correlation matrix in equation 8 that 

accommodates for the common unobserved heterogeneity across the crash severity proportions. 
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(10)  

To elaborate, the correlation parameter џ1𝐾” captures the presence of common unobserved factors 

between the crash proportion of severity category 1 and K (which is no and severe injury for the 

current analysis). þ𝑘follows similar notation as earlier. 

Equation 11, representing the bottom left or top right parts in the correlation matrix from 

equation 8 captures the potential correlation between a crash type and its’ corresponding severity 

proportion.  

 

(11)  

Specifically, the correlation parameter ѓ11 captures the presence of potential correlation 

between the crash counts of crash type 1 and crash proportion of severity category 1. It is important 

to note that the correlation structure presented is applicable to each independent variable examined 

in the model (including constants). þ𝑟𝑘 follows similar notation as earlier. This indicates that 

potentially (N+K)* (N+K)/2 elements can be estimated for each variable. While theoretically this 

is possible, it is important to conduct the estimation judiciously to avoid identification issues. For 

ease of following þ matrix, an example realization is provided in the Appendix A. As is apparent, 

it is possible to test a large number of combinations of the þ matrix. However, as opposed to 

running all possibilities, the estimation is judiciously conducted for expected relationships. The 

model structure that offers the superior data fit is considered as the final model. 

 

2.4 Joint (NB-GOPFS) Model Estimation  

In estimating the model, it is necessary to specify the structure for the unobserved vectors 

𝛷, 𝜚, 𝛾 𝑎𝑛𝑑 𝛿 represented by Ω. In this study, it is assumed that these elements are drawn from 

independent normal distribution: Ω~𝑁(0, (𝜋2, 𝜎2 𝜈2)). Thus, conditional on Ω, the likelihood 

function for the joint probability can be expressed as: 



 

17 

 

𝐿𝑖 = ∫ ∏ [(𝑃(𝑐𝑖𝑟)) × ∏(𝑃𝑖𝑟𝑘)𝜛𝑖𝑟𝑑𝑖𝑟𝑘

𝐾

𝑘=1

]

𝑅

𝑟=1Ω

𝑑Ω (12)  

where, 𝜛𝑖𝑟 is a dummy with 𝜛𝑖𝑟 = 1 if TAZ 𝑖 has at least one crash specific to crash type 𝑟 over 

the study period and 0 otherwise. 𝑑𝑖𝑟𝑘 is the proportion of crashes in severity category 𝑘 for each 

crash types.  Further, we apply simulation techniques to approximate the integrals in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function across zones 

with respect to  . The simulation technique approximates the likelihood function in Equation (12) 

by computing the 𝐿𝑖for each 𝑇𝐴𝑍𝑖 at different realizations drawn from a multivariate normal 

distribution and averaging it over the different realizations (see (Eluru and Bhat, 2007) for detail). 

Notationally, if 𝐷𝐿𝑖is the realization of the likelihood function in the cth draw (c = 1, 2, …, C), 

then the observational likelihood function is approximated as: 

𝐷𝐿𝑖 =
1

𝐶
∑(𝐷𝐿𝑖

𝑐)

𝐶

𝑐=1

 (13)  

 

In our research, we tested the model specification with several realization levels (such as 

50, 100, ..200). We found that model parameters were stable around 100. For additional stability, 

we selected the number of draws as 200 (C value). Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (14)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 8. The parameters to be estimated in the model are: 𝛷, 𝜚, 𝛾  𝛿, 𝛼, τ, 𝛽, 𝜓, 𝜋, 

𝜎 and 𝜈. To estimate the proposed model, we apply Quasi-Monte Carlo simulation techniques 

based on the scrambled Halton sequence to approximate this integral in the likelihood function 

and maximize the logarithm of the resulting simulated likelihood function across individuals (see 

(Bhat, 2001; Eluru et al., 2008) for examples of Quasi-Monte Carlo approaches in literature).The 

model estimation routine is coded in GAUSS Matrix Programming software (Aptech).  

 

2.5 Simulation Study 

We conduct a simulation study to illustrate how the proposed PMNB-GOPFS can be employed 

for 1) replicating the model results based on an assumed data generation process (DGP) and 2) 

evaluate the performance of model relative to the traditional random parameters multivariate 

negative binomial (RPMNB) model.  

 

2.5.1 Parameter Retrieval of PMNB-GOPFS 

The simulation and estimation of the proposed exercise is conducted considering 2 crash types 

and 3 crash severities. Therefore, our proposed joint system will result in 2 count and 3 ordered 

dependent variables. Among each of these components, we consider three independent variables 
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drawn from a univariate standard normal random distribution. The simulation exercise was 

conducted for different sample sizes (including 1,000; 2,000; 3,000 and 5,000 records). Across 

each sample size, 50 samples each were generated. The results across these various sample sizes 

are consistent. Hence, to conserve on space, we present the results of the 5,000 observation sample. 

The performance evaluation is conducted based on the parameter retrieval capability along two 

dimensions: (1) parameter bias and (2) asymptotic standard error. These two measures examine if 

the parameter values are recovered while ensuring the parameters are statistically significant. The 

results of our simulation exercise are presented in Table 2. The columns of the Table include True 

parameter, Mean Estimate, Absolute Percentage Bias and Asymptotic Standard Error. The mean 

estimate is obtained as the mean parameter value from the 50 samples. The absolute percentage 

bias is computed as |[
𝑇𝑟𝑢𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−𝑀𝑒𝑎𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
] ∗ 100|. The asymptotic standard error is 

computed as the mean of the parameter standard error across the samples. The values presented in 

the Table 2 clearly illustrate that the proposed model system retrieves the parameters with small 

standard errors.  

 

2.5.2 Comparison with the RPMNB model  

The simulation exercise is further augmented by evaluating the PMNB-GOPFS model 

performance relative to the RPMNB model system. The reader would note that the comparison 

between these model systems results in two challenges. First, the two model systems arise out of 

different data generation processes (DGPs). Hence, any comparison ought to consider the 

underlying DGP. Second, the two model systems do not have the same econometric and/or 

likelihood structure and cannot be compared in the estimation space. The model performance 

comparison has to be considered with prediction measures.  

In our simulation, we consider simulation and estimation using the two DGPs. First, we 

simulate data using the PMNB-GOPFS DGP following the same process described in Section 

2.5.1. Using the data generated, both models are estimated. Subsequently, we generate data using 

the RPMNB DGP (i.e. assume the crashes occur following the count frequency process) and 

estimate the two models. In our comparison, we compute the root mean square error (RMSE) 

value at disaggregate level (see (Bhowmik et al., 2019a, 2018) for detail) and compare their 

performances for all the crash types and severities. The box plots in Figure 3 represents the RMSE 

values specific to each severity group for each crash type predicted from the two models under the 

two DGPs. The Figure clearly highlights the overall superior predictive performance offered by 

the proposed PMNB-GOPFS over the traditional RPMNB model as indicated by the lower/similar 

RMSE values, irrespective of the data generation process. The findings further reinforce the 

applicability of our proposed framework for crash safety literature. 
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Table 2: Evaluation of the PMNB-GOPFS Model Ability to Recover True Parameter  

  Crash Type 1 Crash Type 2 

 

Coefficient 
TRUE 

Parameter 

Mean 

Parameter 

Estimates 

Absolute 

Percentage 

Bias (%) 

Asymptotic 

Standard 

Error 

TRUE 

Parameter 

Mean 

Parameter 

Estimates 

Absolute 

Percentage 

Bias (%) 

Asymptotic 

Standard 

Error 

PMNB  

(Crash 

Count) 

τ0 1.000 0.967 3.287 0.004 -0.750 -0.783 4.345 0.014 

τ1 0.800 0.816 2.025 0.002 1.800 1.893 5.167 0.012 

τ2 -0.350 -0.357 1.947 0.002 -0.350 -0.376 7.571 0.004 

τ3 1.500 1.520 1.307 0.003 0.500 0.541 8.202 0.005 

𝜆 0.450 0.440 2.239 0.010 1.500 1.488 0.788 0.027 

GOPFS 

(Crash 

Severity 

Proportions) 

𝜓1 1.000 0.998 0.187 0.001 0.250 0.234 6.245 0.002 

𝜓2 2.750 2.708 1.527 0.001 2.500 2.394 4.229 0.004 

𝛼1 -1.500 -1.456 2.954 0.001 -1.500 -1.507 0.458 0.003 

𝛼2 -1.750 -1.712 2.185 0.001 0.250 0.252 0.861 0.001 

𝛼3 -0.150 -0.144 4.188 0.001 -2.150 -2.099 2.363 0.002 

Note: τ0, τ1, τ2 and τ3 represent the vector of coefficients for independent variables and 𝜆 – over-dispersion parameter;  
𝛼1, 𝛼2, 𝛼3represent the coefficients for independent variables and 𝜓1, 𝜓2-are thresholds in the GOPFS model 
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Figure 3 Performance Comparison of PMNB-GOPFS and RPMNB Model for Simulated data
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3 DATA PREPARATION 

Our study area includes the Central Florida Region encompassing a total of 11 counties in the state 

of Florida with 4,747 zones. The crash records compiling the information of crash types and the 

corresponding severity outcomes were acquired from Florida Department of Transportation 

(FDOT), Crash Analysis Reporting System (CARS) and Signal Four Analytics (S4A) databases.  

The analysis is conducted using the 2016 crash records considering six different types of crashes. 

At first, the crash data were sorted into two classes based on the road user group: motorist and 

non-motorist2; within the motorized group, the records are further classified into five categories 

based on the manner of crash: rear-end, angular, sideswipe, head-on and single vehicle crashes.  

Then for each crash types, crashes are further classified by injury severity levels such as fatal (K), 

incapacitating (A), non-incapacitating (B), possible injury (C), and property damage only (O) 

crashes. Based on crash records, fatal and incapacitating injuries are combined as one category 

and defined as severe injury. Finally, the crash records are aggregated at a zonal level and the 

corresponding severity proportions by crash type are as follows: (1) proportion of no injury 

(property damage only) crashes, (2) proportion of minor injury crashes, (3) proportion of non-

incapacitating injury crashes, and (4) proportion of severe injury crashes.  

 

 
Figure 1 Crash Frequency and Severity Proportions (mean) by Crash Types 

 

A total of 1,14,458 motorized (ranging from 0 to 243) and 3,413 non-motorized crashes 

(ranging from 0 to 12) were reported in the Central Florida for the year 2016.  Within the motorized 

crashes, rear-end is found to be the most prevalent crash type (44.09%) while sideswipe is less 

frequent with 10.82% among all other motorized crash types. The crash counts and severity 

outcome proportions for each crash type are presented in Figure 1. From the Figure 1, we can 

 
2 For our analysis, non-motorized crashes refer to the crashes where at least one non-motorist was involved 
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observe that number of no injury crashes has the highest proportion followed by proportion of 

minor injury crashes. Further, in terms of crash types, the Figure 1 shows that non-motorists are 

more prone to severe crashes whereas the injury outcomes are higher for motorists involved in 

head-on crashes. On the other hand, in approximately 84% and 72% sideswipe and rear-end 

crashes, respectively, the outcomes were no injury. The most commonly used approach of 

modeling severity frequency or proportion without considering crash type would result in an 

inaccurate aggregation. From the Figure (1), it is evident that severity proportions by crash type 

vary significantly across crash types. 

 

3.1 Explanatory Variables Considered 

In addition to the crash records, a number of zonal level attributes are considered for the current 

analysis including roadway, built environment, land-use, traffic and sociodemographic 

characteristics. Information about these variables are collected from different data sources 

including FDOT Transportation Statistics Division, US Census Bureau, American Community 

Survey and Florida Geographic Data Library databases. Similar to the crash records, explanatory 

attributes are also aggregated at a zonal level using the GIS. With respect to roadway attributes, 

road lengths for different functional class, proportion of rural and urban road, proportion of road 

with different number of lanes (1, 2, and 3 or more), number of intersections and signals, average 

posted speed limit, length of road with different speed limit (≤40mph, 41-54mph and ≥55mph), 

average width of inside and outside shoulder, average width of bike lane and sidewalk are 

considered in the current study. While the information about land use category including area of 

urban, residential, industrial, institutional, recreational, office and land use mix are provided in the 

land use attributes, built environment characteristics mainly reflects the information about the 

number of business center, commercial center, school, hospital, recreational center, restaurant and 

shopping center are collected. Further to accommodate for traffic attributes, we consider average 

annual daily traffic (AADT), average annual daily truck traffic (truck AADT), vehicle miles 

traveled (VMT), truck vehicle miles traveled (truck VMT) and proportion of heavy traffic. Finally, 

the zonal level sociodemographic attributes included population and household density, 

proportion of means of transportation used by commuter for their work trips (car, motorcycle, 

transit, bike and walk) proportion of people by age and race and proportion of household by 

vehicle ownership level (0, 1, 2, and 3 or more).  

Table 3 summarizes sample characteristics of the explanatory variables with the 

appropriate definition considered for final model estimation along with the minimum, maximum 

and mean values at a zonal level. In estimating the model, several functional forms and 

combination of variables are considered and those that provides the best fit are retained in the final 

specification. The final specification of the model was based on removing the statistically 

insignificant variables in a systematic process based on 90% confidence level. 
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TABLE 3 Summary Statistics of Exogenous Variables (Zonal Level) 

Variables Definition 
Zonal (N=4,747) 

Minimum Maximum Mean Std. Deviation 

Roadway Characteristic 

Proportion of rural road (Rural road length/total road length)  0.000 1.000 0.121 0.309 

Proportion of urban road (Urban road length/total road length)  0.000 1.000 0.806 0.381 

Proportion of arterial road (Arterial road length/total road length)  0.000 1.000 00377 0.393 

Proportion of local road (Local road length/total road length) 0.000 1.000 0.053 0.170 

Number of Intersection Ln (no of intersection) 0.000 4.682 1.921 1.053 

Signal intensity Total number of traffic signal per intersection 0.000 1.000 0.038 0.096 

Average speed limit Ln (mean speed limit in mph) 0.000 4.248 3.228 1.279 

Variance of speed limit Ln (variance of speed limit in mph) 0.000 6.686 2.325 2.041 

Proportion of road with 

separated median 

Length of road with separated median/total 

road length 
0.000 1.000 0.510 0.459 

Average bike lane length Ln (average length of bike lane in feet) 0.000 1.662 0.044 0.147 

Average inside shoulder 

width 
Ln (average inside shoulder width in feet) 0.000 2.650 0.288 0.445 

Average outside shoulder 

width 
Ln (average outside shoulder width in feet) 0.000 2.977 0.964 0.579 

Average sidewalk width Ln (average sidewalk width in feet) 0.000 2.977 0.964 0.579 

Road ≥55mph Proportion of road length greater than 55mph 0.000 1.000 0.088 0.174 

Proportion of poor 

pavement road 

Road length with poor pavement condition/ 

total road length 
0.000 1.000 0.035 0.144 

Land-use Attributes 

Urban area Ln (urban area+1) in acre 0.000 9.440 4.921 1.970 

Recreational area Ln (recreational area+1) in acre 0.000 9.814 0.470 1.408 

Office area Ln (office area+1) in acre 0.000 6.440 0.877 1.383 

Residential area Ln (residential area+1) in acre 0.000 8.131 3.811 2.075 

Industrial area Ln (industrial area+1) in acre 0.000 7.067 1.118 1.306 

Institutional area Ln (institutional area+1) in acre 0.000 6.617 1.946 1.589 
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Land use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the 

category of land-use, 𝑝 is the proportion of the 

developed land area for specific land-use, 𝑁  is 

the number of land-use categories   

0.000 0.946 0.369 0.221 

Built Environment Characteristics 

No of business center Z score:  No of business center -0.138 19.664 0.000 1.000 

No of commercial center Z score:  No of commercial center -0.270 9.521 0.000 1.000 

No of educational center Z score:  No of educational center -0.487 11.610 0.000 1.000 

No of recreational center Z score:  No of park and recreational center -0.475 16.678 0.000 1.000 

No of restaurant Z score:  No of restaurant -0.464 11.021 0.000 1.000 

No of shopping center Z score:  No of shopping center -0.442 19.728 0.000 1.000 

Traffic Characteristics 

VMT Vehicle miles travelled 0.000 15.026 7.914 3.368 

Congested traffic AADT> 85th percentile of AADT 0.000 1.000 0.130 0.336 

Truck VMT Tuck vehicle miles traveled 0.000 13.049 3.474 2.864 

Proportion of heavy 

vehicles 
Total truck AADT/ Total AADT 0.000 0.369 0.068 0.046 

Sociodemographic Characteristics 

Population density Total population/Total area of TAZ in acre 0.000 21.293 2.364 2.233 

household density  Total number of household/Total area of TAZ 

in acre 
0.000 8.556 0.902 0.878 

Average TAZ income Ln (Average TAZ income+1) 0.000 12.534 11.065 0.386 

Employee  Total number of commuter/1,000 0.000 8.265 0.401 0.584 

Non-motorist commuter Ln (Non motorized means to work for a TAZ) 0.000 5.261 1.278 1.098 

Transit commuter Ln (transit means to work for a TAZ) 0.000 6.369 0.756 1.114 

Proportion of senior people 
Total number of people over 65 years/total 

population in TAZ 
0.000 0.821 0.206 0.114 

Proportion of African-

American people 

Total number of African-American people 

/total population in TAZ 
0.000 0.969 0.142 0.159 

Proportion of household 

with no vehicle 

Number of household with no vehicle/total 

household 
0.000 0.471 0.069 0.065 
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4 EMPIRICAL ANALYSIS 

 

4.1 Model Specification and Overall Measure of Fit 

The number of TAZs in the study area is 4,747. Among these zones, 3,815 TAZs are randomly 

selected for model estimation and the records from other 932 TAZs are set aside for validation 

purposes. Thus, the estimation sample has 22,890 (3,815*6) records and the validation sample has 

5,592 (932*6) data records. The empirical analysis involved a series of model estimations. First, 

we estimated separate independent models (NB and GOPFS models) to establish a benchmark for 

comparison. Second, we proposed a parsimonious model structure using the same independent 

model system (NB and GOPFS) while restricting the parameters across different crash types 

considered. To elaborate, observing the model specifications in the independent models (NB and 

GOPFS), we identify potential parameters that can be restricted to be the same across various 

crash types and test that restriction (both NB and GOPFS dimension) in our proposed model 

system (see (Bhowmik et al., 2019a) for more details). Third, within our proposed system, we 

consider the unobserved heterogeneity in the joint model estimation. In summary, we estimated 

three different models in the current research effort including: 1) Independent NB-GOPFS model; 

2) Panel NB-GOPFS model without unobserved component parameters and 3) Joint Panel NB-

GOPFS model with unobserved heterogeneity. The log-likelihood values at convergence for these 

estimated models are: a) Independent NB-GOPFS (with 131 parameters) is -51,904.45 (b) Panel 

NB-GOPFS model without unobserved component (with 100 parameters) is -51,912.92.11 and (c) 

Joint Panel NB-GOPFS model with unobserved heterogeneity (with 105 parameters) is -

50,945.82. We also compute the Bayesian Information Criterion (BIC) (lower is better) for these 

three frameworks to determine the best model. The corresponding BIC values for the three models 

are as follows: 105,123.93 (independent NB-GOPFS model), 104,650.50 (panel NB-GOPFS 

model) and 102,757.53 (joint panel NB-GOPFS model). Based on the BIC values, two 

observations can be made. First, the proposed framework that accounts for penalty for additional 

parameters provide improved data fit compared to the traditional model (independent NB-GOPFS 

model). This supports our hypothesis that the impact of some variables may not differ across the 

crash types and through the proposed structure (recasting), we can have a parsimonious model 

system with improved parameter efficiency. Second, models considering unobserved 

heterogeneity outperforms the respective independent models which underscores the importance 

of accommodating for such unobserved effects in examining crash frequencies and severities at 

the planning level for different crash types.  

 

4.2 Model Estimation Results 

This section offers a detailed discussion of exogenous variable effects on the crash count as well 

as the severity outcome for different crash types. In discussing the model results, for the sake of 

brevity, we will restrict ourselves to the discussion of the joint panel model (NB-GOPFS) only 

(see Appendix A for the results of independent NB-GOPFS model). For the ease of presentation, 

we first present an intuitive discussion of crash count component (Table 4) followed by the 

discussion of the severity component (Table 5) for different crash types.  

 

4.2.1 Count Component 

The coefficients in Table 4 represent the effect of exogenous variables on the frequency 

component of each crash type. The reader would note that, the variables in the crash count 

component of Table 4 with positive (negative) sign indicates that an increase in the variable is 
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TABLE 4 Joint Panel Mixed NB-GOPFS Model Results (Count Component) 

Variables (np) 
Rear-End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant (6) -0.626 -7.73 -1.684 -15.407 -2.687 -21.582 -3.557 -18.081 -0.744 -9.932 -2.580 -23.487 

Roadway Characteristics 

Proportion of 

arterial roads (2) 
0.166 4.034 0.166 4.034 --1 -- -- -- -0.284 -5.105 0.166 4.034 

Number of 

intersections (1) 
-- -- 0.347 11.804 -- -- 0.347 11.804 -- -- 0.347 11.804 

Signal intensity (3) 0.416 2.422 -- -- -0.630 -3.277 -- -- -0.447 -1.746 0.416 2.422 

Road length over 

55mph (5) 
0.468 3.679 -1.573 -7.679 0.468 3.679 -1.022 -2.877 0.892 7.676 -1.172 -4.591 

Standard 

deviation 
-- -- 0.903 3.288 -- -- -- -- -- -- -- -- 

Variance of Speed 

(2) 
0.040 3.697 0.040 3.697 0.069 4.451 -- -- -- -- -- -- 

Roads with 

separated median 

(2) 

0.172 3.798 0.172 3.798 0.172 3.798 -0.156 -1.411 -- -- -- -- 

Average outside 

shoulder width (4) 
-0.308 -7.120 -0.439 -8.323 -0.563 -9.800 -0.308 -7.120 -0.115 -2.621 -- -- 

Average sidewalk 

width (1) 
-- -- -- -- -- -- -- -- -- -- -0.215 -3.693 

Traffic Characteristic 

VMT (4) -- -- 0.131 8.496 0.259 16.909 0.185 8.852 -- -- 0.021 1.678 

Truck VMT (2) 0.179 15.852 -- -- -- -- -- -- 0.270 26.819 -- -- 

Land-use attributes 

Urban area (4) 0.164 15.359 0.164 15.359 0.149 9.530 0.111 4.094 -- -- 0.114 6.279 

Office area (2) 0.148 10.384 -- -- 0.148 10.384   -- -- 0.127 7.389 

Residential area (1) -- -- -- -- -0.077 -6.915 -0.077 -6.915 -- -- -- -- 

Built environment characteristic 

No. of restaurants 

(3) 
0.273 10.432 -- -- 0.084 3.394 -- -- -- -- 0.175 7.958 
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No. of shopping 

centers (1) 
0.030 1.712 -- -- 0.030 1.712 -- -- -- -- -- -- 

Socio-demographic characteristics 

Non-motorists (3) 0.052 2.892 0.148 7.166 0.168 7.581 -- -- -- -- 0.052 2.892 

Transit users (1) 0.222 13.287 -- -- -- -- -- -- -- -- 0.222 13.287 

Over dispersion (6) 0.671 16.130 0.251 6.515 0.284 8.270 1.002 6.245 0.713 19.270 0.235 4.459 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
1 --= attribute insignificant at 90% confidence level 
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likely to result in more (less) crashes. In the subsequent sections, we provide a discussion of model 

results for different crash types by variable groups. The reader would note that Table 4 identifies 

the number of parameters estimated for each variable from a possible set of six (one effect for 

each crash type).  

 

Roadway Characteristics: The results regarding the impact of proportion of arterial roads reveal 

that a TAZ with higher proportion of arterial road is more likely to experience increased incidence 

of rear-end, angular and non-motorized crashes while the number of single vehicle crashes 

reduces. Single vehicle crashes (rollover and off-road) usually occur on high speed roads. On 

arterial roads, there is likely to be higher traffic interactions reducing operating speed and thus 

contributing to fewer single vehicle crashes. At the same time, the increased traffic interactions 

result in higher number of rear-end and angular crashes. It is also important to note that the 

influence of arterial roads is not different for rear-end, angular and non-motorized crashes i.e. a 

single parameter is adequate to accommodate for the impact of the variable. Traditional 

approaches in frequency modeling would have estimated three separate parameters while in our 

model, we estimate a single parameter. This is an example of how the proposed framework allows 

us to obtain a parsimonious specification (see (Bhowmik et al., 2019a) for similar results). 

Consistent with earlier research, the current analysis also found that the intersection variable is 

positively associated with angular and non-motorized crashes (Reynolds et al., 2009; Xuesong et 

al., 2006). Interestingly, the number of intersections variable has a positive coefficient for head-

on crashes. While the result might seem counter-intuitive, a possible reason could be that vehicles 

turning left at an intersection stop at the outside lane that is closest to the oncoming traffic and as 

a consequence, the possibility of getting hit by the opposing traffic is likely to increase (see 

(Hosseinpour et al., 2014) for similar effect). The variable corresponding to signal intensity offers 

interesting insights. While an increase in the variable is positively associated with rear-end and 

non-motorized crashes, a negative relation is observed for sideswipe and single vehicle crashes. 

The trend is intuitive as the density of traffic intersections increases the potential conflicts between 

vehicles to vehicles and vehicles to non-motorists. At the same time, these conflicts result in lower 

operating speed thus reducing single vehicle crashes.  

The parameter associated with proportion of road over or equal to 55 mph speed limit 

exhibits contrasting impact on crash occurrence across crash types. The estimated results show 

that TAZs having higher percentage of roads over 55mph speed limit results in increased incidence 

of rear-end, sideswipe and single vehicle crashes while the likelihood of angular, head-on and non-

motorized crash reduces. Within the positive effects, the parameter for single vehicle crashes has 

a higher magnitude (Yu and Abdel-Aty, 2013). Moreover, we found that the impact of the 

proportion of road over 55mph has significant variability on angular crashes (indicated by the 

standard deviation parameter) which implies that the overall impact is most likely to be negative 

(96%). Further, variance of speed is also found to be significant in rear-end, angular and sideswipe 

crash count component with a positive impact. In terms of proportion of road with separate 

median, the variable is found to have the same positive effect on rear-end, angular and sideswipe 

crashes whereas a negative coefficient is observed for head-on crashes. Roads with separated 

median, such as with guardrail, restricts a vehicle from entering the opposing direction. On the 

other hand, vehicles hitting the guardrail have a higher likelihood of colliding with the vehicles in 

the same direction. Hence, the result is expected. As found in previous studies (Bhowmik et al., 

2018; Geedipally et al., 2010), average outside shoulder width reveals a negative association with 

all motorized crash types. Outside shoulder width in a road reflects the extra margin of safety for 
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vehicular maneuvers and thus reduce the potential of all kinds of motorized crashes. With respect 

to sidewalk width, a number of earlier research concluded that increased sidewalk width is 

associated with higher pedestrian activity and as a result, they are more exposed to crashes. In our 

current study, we found an opposing (negative) effect of average sidewalk width for non-

motorized crashes. However, there is a reasonable explanation for the effect identified. First, the 

reader would note that we consider the non-motorist activity separately in the model framework 

(will be discussed in the following sections) and second, increased sidewalk width will provide 

additional safety to the non-motorist from colliding with a motorized vehicle.  

 

Traffic Characteristics: The parameters associated with traffic characteristics highlight intuitive 

trends. Positive coefficient of VMT clearly underscores the higher propensity of angular, 

sideswipe, head-on and non-motorized crashes with increased VMT. VMT variable serves as a 

surrogate for exposure for traffic volume and therefore, with higher exposure, the likelihood of 

getting involved in a crash increases. On the other hand, zones with increased exposure to truck 

volume are likely to have a higher risk of getting involved in rear-end and single vehicle crashes, 

consistent with earlier research findings (Geedipally et al., 2010).  

 

Land-use Attributes: With respect to land-use attributes, several factors exert significant impact 

on crash count components across crash types. The coefficient corresponding to urban area 

indicates that zones with higher urbanized area are likely to have increased crash risk for five of 

the six crash types (except single vehicle crashes). Similarly, office area in a zone is also found to 

be positively associated with rear-end, sideswipe and non-motorized crashes. These two variables 

basically reflect presence of higher vehicular and non-motorist interactions and in turn, higher 

exposure for both road user groups. Further, the result in Table 4 reveals a reduced propensity for 

sideswipe and single vehicle crashes with higher residential area.   

 

Built Environment Attributes: In terms of built environment attributes, several variables have been 

explored out of which only number of restaurants and shopping centers are found to be related 

with zonal level crash risks. As is evident from Table 4, we can observe that both number of 

restaurants and shopping centers have positive influence on rear-end and sideswipe crashes, 

perhaps indicating a higher density of traffic volume for these areas. With respect to non-

motorized crashes, number of restaurants is found to be a significant determinant with a positive 

impact (see (Yasmin et al., 2021) for similar result). 

s 

Socio-demographic Characteristics: For socio-demographic attributes, we consider the number of 

non-motorists (walk/bike) and transit commuters in a zone serving as additional exposure 

measures for the crash risk model. The estimated result shows that higher number of pedestrians, 

bike and transit commuters, intuitively, increases the crash risk for rear-end and non-motorized 

crashes. Moreover, the coefficient specific to non-motorist commuters indicates that the variable 

is positively associated with angular and sideswipe crashes.  

 

4.2.2 Severity Component 

The coefficients in Table 5 represent the effect of exogenous variables on the injury severity 

proportion across different crash types.  In the propensity, a positive (negative) coefficient 

corresponds to increased (decreased) proportion for severe injury categories specific to each crash 

type. When the threshold parameter is positive (negative), the result implies that the threshold is 
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TABLE 5 Panel Mixed NB-GOPFS Model Results (Severity Component) 

Variables (np) 
Rear End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Threshold 1 0.564 14.380 0.221 6.466 0.948 9.171 -0.038 -0.331 0.264 5.198 -0.671 -8.045 

Threshold 2 -0.395 -12.342 -0.492 -19.890 -0.678 -13.290 -0.688 -9.478 -0.808 -23.022 -0.463 -10.780 

Threshold 3 -0.262 -6.067 -0.373 -10.523 -0.440 -6.093 -0.506 -6.480 -0.469 -12.780 -0.062 -1.599 

Roadway Characteristics 

Arterial roads (2) 0.085 3.647 0.183 4.797 --1 -- -- -- 0.085 3.647 -- -- 

Possible and non-

incapacitating 

injury (1) 

-0.082 -1.719 -- -- -- -- -- -- -- -- -- -- 

Local roads (1) -- -- -- -- -- -- -0.335 -2.132 -- -- -0.335 -2.132 

Number of 

intersections (1) 
-- -- -- -- -- -- -0.051 -3.549 -0.051 -3.549 -- -- 

Traffic signals (1) -- -- -0.040 -4.198 -0.040 -4.198 -0.040 -4.198 -- -- -- -- 

Average inside 

shoulder width (1) 
-- -- -- -- -0.171 -3.469 -- -- -- -- -- -- 

Average outside 

shoulder width (1) 
-0.046 -1.697 -- -- -- -- -- -- -- -- -- -- 

Proportion of roads 

over 55mph speed 

(2) 

0.331 5.112 0.331 5.112 -- -- 0.878 3.029 0.331 5.112 0.331 5.112 

Non-

incapacitating and 

severe injury (1) 

-0.667 -2.959 -- -- -- -- -- -- -- -- -1.335 -3.723 

Poor pavement 

condition (1) 
-- -- -- -- 0.208 2.822 -- -- -- -- -- -- 

Traffic Characteristic 

Traffic Intensity 

(Congested) (1) 
-0.074 -3.308 -0.074 -3.308 -- -- -- -- -- -- -- -- 

Non-

incapacitating and 

severe injury (1) 

-- -- 0.123 1.980 -- -- -- -- -- -- -- -- 

Truck VMT (1) -- -- -- -- 0.046 4.591 0.046 4.591 -- -- -- -- 
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Land Use Characteristic 

Urban area (2) -- -- -- -- -0.402 -5.839 -0.402 -5.839 -0.057 -1.022 -- -- 

Land use mix (1) -0.117 -2.241 -0.117 -2.241 -- -- -- -- -- -- -- -- 

Built environment characteristic 

No. of commercial 

centers (1) 
-- -- -- -- -- -- -- -- -- -- -0.048 -2.101 

No. of recreational 

centers (1) 
-0.028 -2.265 -- -- -- -- -- -- -- -- -- -- 

No. of restaurants 

(1) 
-- -- -- -- -- -- -- -- -0.046 -3.011 -- -- 

Non-

incapacitating and 

severe injury (1) 

-- -- -- -- -- -- -- -- 0.049 1.650 -- -- 

No. of shopping 

centers (1) 
-- -- -0.047 -4.863 -0.047 -4.863 -0.047 -4.863 -- -- -- -- 

Possible and non-

incapacitating 

injury (1) 

-- -- -- -- 0.051 1.916 -- -- -- -- -- -- 

Socio-demographic characteristics 

Employee (1) -- -- -- -- -- -- -- -- -- -- -0.084 -2.380 

Motorcycle users 

(1) 
-- -- 0.134 2.354 -- -- -- -- -- -- -- -- 

Proportion of older 

people (65+) (1) 
-- -- -- -- -- -- -- -- -- -- -0.460 -2.045 

Household with no 

cars (1) 
-- -- -- -- -- -- -- -- -- -- 0.060 2.368 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
1 --= attribute insignificant at 90% confidence level 



 

32 

 

bound to increase (decrease). The estimation results are discussed by variable groups in the 

following sections. The reader would note that Table 5 identifies the number of parameters 

estimated for each variable from a possible set of six (one effect for each crash type).  
 

Roadway Characteristics: The variable specific to arterial road indicates that the likelihood of 

more severe crashes (proportions) increases with increasing share (length) of arterial road in a 

zone, particularly for rear-end, angular and single vehicle crashes.  Further, we found an effect of 

arterial road on threshold value for rear-end crashes which provide a sense of how the probability 

of injury in specific injury categories is affected relative to the case of fixed thresholds. The 

negative coefficient of the variable on the threshold value highlights the higher proportions of 

serious injury (non-incapacitating or severe) crashes for rear-end crashes with increased length of 

arterial roads. Moreover, it can be seen from Table 5 that crashes on local road tends to be less 

severe for head-on and non-motorized crash types. The reduced likelihood of severe crashes for 

these two crash types perhaps can be attributed to reduced driving speed on local roads.  

With increased number of intersections in a zone, the possibility of being involved in a 

severe crash decreases, particularly for head-on and single vehicle crashes. Similarly, we find that 

higher number of traffic signals in a zone reduce the possibility of higher injury risks for angular, 

sideswipe and head-on crashes. The results associated with both of these variables (intersection 

and signal) is potentially an indication that denser and signalized zones have a lower vehicle 

operating speed reducing crash consequences. Similar to the crash count components, the impacts 

of intersection and traffic signal do not differ across crash types; thus, we only estimate two 

parameters across the entire 4 dimensions (4 crash types) in the fractional split component.  

Wider shoulder in a road provides additional safety margin for vehicular maneuverability 

and as expected, variables associated with it are found to have a negative influence on crash 

severity outcome. While an increase in average insider shoulder width decreases the possibility of 

severe crashes for sideswipe crashes, the likelihood of higher injury risk for rear-end crashes 

reduces with wider outside shoulder width. In terms of roadway attributes, one of the most 

important variables is speed and consistent with previous research, we also find speed to be an 

important contributing factor for severe crashes for different crash types. Specifically, zones with 

higher proportion of road over 55mph speed limit are more likely to experience higher proportion 

of severe crashes for five of the six crash types (except sideswipe crashes). Further the negative 

sign of threshold demarcating the non-incapacitating and severe injury proportion indicates higher 

likelihood of severe crash proportion for rear-end and non-motorized crashes with increased share 

of high speed (>55mph) road in a zone. Finally, the parameter associated with proportion of road 

with poor pavement condition reflects the higher injury risk propensity for sideswipe crashes.  

 

Traffic Characteristics: Traffic congestion and truck VMT are found to have significant impact on 

crash proportions by severity levels for different crash types. As is evident from Table 5, we can 

observe that roads are typically safer in a congested traffic environment. In particular, the 

likelihood of severe crash proportion for rear-end and angular crashes are lower in a congested 

traffic environment (>85th percentile traffic) compared to the uncongested condition (<=85th 

percentile traffic).  

Further, the impact of the variable on the threshold value for angular crashes implies a 

lower propensity of severe crash proportions in a gridlock situation. Moreover, the estimated result 

reveals a positive association between the truck VMT and the crash severity proportion, 

specifically for sideswipe and head-on crashes.  
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Land-use Attributes: With respect to land use attributes, urban area in a zone contributes 

negatively to injury severity propensity for sideswipe, head-on and single vehicle crashes, 

presumably because of the slower traffic on roadways in an urbanized environment. Further, the 

estimated results show that crash severity proportions are negatively associated with higher land 

use mix in a zone, particularly for rear-end and angular crashes. 

 

Built Environment Attributes: In terms of built environment attributes, several factors are 

considered including number of commercial, recreation, restaurants and shopping centers. 

Interestingly, all of these reveal negative associations with the crash severity proportions across 

different crash types, perhaps indicating that with higher traffic density vehicle operating speed is 

likely to be lower and thus crash consequences are possibly less severe. For instance, consistent 

with previous findings (Yasmin et al., 2021), number of commercial centers reduce the higher 

injury risk propensity for non-motorized crashes. Similarly, in the presence of higher number of 

recreational centers in a zone, a lower proportion of severe crash outcomes for single vehicle 

crashes is observed. Further, the GOPFS model results reveals that higher number of restaurants 

are associated with lower likelihood of severe crash proportions for single vehicle crashes, as 

indicated by the negative coefficient. The positive coefficient of the variable on the threshold value 

further reflects the lower probability of severe crash proportions. Finally, the variable 

corresponding to shopping centers results in lower likelihood of severity outcome, particularly for 

angular, sideswipe and head-on crashes (same impact). We also found a positive effect of the 

variable on the threshold which further implies the lower possibility of higher injury risk for 

sideswipe crashes with increased number of shopping centers in a zone. 

 

Socio-demographic Characteristics: The results for the effect of socio-demographic characteristics 

indicate that non-motorists are less prone to high injury risk with increased number of commuters 

in a zone (see (Yasmin et al., 2021) for similar results). The likelihood of being involved in a 

severe crash is higher for increasing share of motor vehicle commuters, particularly for angular 

crashes. Previous studies (Pai and Saleh, 2008) also confirm the findings. Further, as found in 

previous studies (Quddus, 2008), the estimated results suggests that zones with more older people 

are associated with fewer severe crash proportion for non-motorized crashes. The coefficient 

specific to proportion of households without vehicle indicates a positive influence on severity 

outcome for non-motorized crashes indicating a higher propensity of more severe crash proportion 

for non-motorized crashes (for similar results, see (Quddus, 2008)).   

 

4.2.3 Unobserved Effects 

The final set of variables in both Table 6 correspond to the correlation matrix (unobserved 

heterogeneity) in the joint model. As discussed earlier, in the current research effort, a number of 

correlation effects are tested including: 1) common unobserved factors affecting crash counts of 

different crash types simultaneously; 2) common unobserved factors affecting crash severity 

proportions of different crash types simultaneously and 3) common unobserved factors that 

simultaneously impact crash counts and severity proportions by different crash types. The reader 

would note that in our empirical setting with 6 crash types and 4 crash severities, we can test for 

the presence of 24C2 potential correlation terms. However, testing for such high number of 

correlation results in estimation and computational complexity. In our approach, we have made 

every effort to reduce the dimensionality of the model parameters to ensure parsimonious 

specification. This has resulted in restricting correlations across multiple dependent variables 
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TABLE 6 Panel Mixed NB-GOPFS Model Results (Unobserved Correlation) 

Variables (np) 
Rear-End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Within Crash Counts of Different Crash types 

Correlation 1 (1)** 

𝝔𝑖𝑟1, matrix A1 
0.585 21.818 -- -- -- -- -- -- -- -- 0.585 21.818 

Correlation 2 (1) 

𝝔𝑖𝑟2, matrix A1 
-- -- 0.957 43.658 0.957 43.658 0.957 43.658 -- -- -- -- 

Between Crash Counts and Severity Proportions of Different Crash Types 

Correlation 3 (1) ***  

𝜂𝑖𝑟𝑘1, matrix A3 
-- -- -- -- -- -- -- -- -- -- 0.072 2.831 

Correlation 4 (1)   

𝜂𝑖𝑟𝑘2, matrix A3 
-- -- -- -- -- -- 0.479 4.516 -- -- -- -- 

**Correlation 1 refers to common unobserved factors affecting rear-end and non-motorized crashes and  

Correlation 2 refers to common unobserved factors affecting other multi vehicular crashes (angular, sideswipe and head-on) simultaneously  

***Correlation 3 refers to common unobserved factors affecting non-motorized crash counts and its corresponding threshold between proportion of no and possible 

injuries simultaneously  

 Correlation 4 refers to common correlation affecting head-on crash counts and its corresponding threshold between non-incapacitating and severe crash 

proportions simultaneously  
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resulting in the appearance of a small number of correlations.  Further, we allow for observed 

variable interaction in modeling severity proportions through the fractional split framework. The 

inherent ordering considered in severity module contributes to reducing correlation across crash 

types as a subset of the dependent variables are explicitly interconnected in their mathematical 

structure. Further, we consider unobserved correlations across dependent variables as needed. 

Given the direct interaction across the dependent variables, we are likely to have fewer parameters 

to test because of the model structure. We believe this is an inherent advantage of our proposed 

system. 

Within crash type itself, the potential number of correlations that can exist is 6C2 (15). 

However, these 15 correlations can materialize in many ways. For example, all 6 dimensions might 

have the same correlation (unobserved effect remain the same for all dimensions). Similarly, it is 

possible for 3 dimensions to have a common effect. The exact parameters estimated are arrived at 

based on exhaustive model estimation. After exhaustive testing, we find two correlations are 

significant including (1) correlation 1: common unobserved factors affecting rear-end and non-

motorized crashes and (2) correlation 2: common unobserved factors affecting other multi 

vehicular crashes (angular, sideswipe and head-on). Further as indicated earlier, we test for the 

correlations with both positive and negative sign and based on the result, we find that positive sign 

offers improved data fit for both correlations (1 and 2). Following this sign, the correlation 1 

implies that zones with higher number of rear end crashes are more likely to have higher number 

of non-motorized crashes. Similar interpretation can also be stated for correlation 2. It should be 

noted that the reason we allow for same unobserved effect (correlation 2) across the three 

dependent variables is to reduce the number of separate unobserved terms we estimate. 

Additionally, we restrict them to be the same to improve model estimation efficiency without any 

loss in data fit. The estimated two unobserved effects allow for correlation across at least 5 of the 

6 crash type count dimensions.” 

On the other hand, with respect to common factors between two components (count and 

proportions), we found two correlation terms significant including: (1) correlation 3: common 

unobserved factors affecting non-motorized crash counts and its corresponding threshold between 

proportion of no and possible injuries; and (2) correlation 4: common correlation affecting head-

on crash counts and its corresponding threshold between non-incapacitating and severe crash 

proportions. Again, the correlation could be either positive or negative and the sign can change 

for every unobserved factor estimated. In our analysis, we found the negative sign offers better fit 

for common correlation between total crash counts and threshold between proportion of no and 

possible injuries for non-motorized crashes. This indicates that a zone with higher number of non-

motorized crashes are more likely to incur lower proportions of no injury crashes. On the other 

hand, a positive common correlation is found between the total number of head-on crashes and 

the corresponding threshold between proportion of non-incapacitating and severe crashes which 

implies that zones with higher number of head-on crashes intrinsically are more likely to incur 

higher proportions for serious crashes. Overall, the results clearly support our hypothesis that 

common unobserved factors influence the two components (crash counts and severity proportion). 

 

5 PREDICTIVE PERFORMANCE EVALUATION 

 

5.1 Comparison Exercise 

In an effort to illustrate the applicability of our proposed system, we carried out a comparison 

exercise between our proposed joint PMNB-GOPFS and the existing traditional multivariate 
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system for predicting crash counts across different crash severities. Further, we realize that sample 

size in estimation could play a critical role in model performances and hence we considered the 

influence of different sample sizes in model estimation by estimating the two model systems for 

different sample sizes. To be specific, from the in-sample dataset (3,815 TAZs), we draw 1,000; 

2,000 and 3,000 TAZs randomly and estimate both models for all of these estimation samples and 

compare their performances based on the final specifications from each estimation sample. 

Further, for feasibility of estimating the traditional model system, we consider three crash types3 

(rear-end, angular and non-motorized) and for each crash type, we develop a random parameters 

multivariate negative binomial (RPMNB) model for analyzing the crash counts of different 

severity levels. In all these samples, the reader would note that the proposed PMNB-GOPFS model 

has substantially fewer number of parameters compared to traditional RPMNB model. The 

comparison of parameters between the PMNB-GOPFS and RPMNB model are as follows: 

estimation sample 1,000 - 54 vs 116; estimation sample 2,000- 56 vs 128; estimation sample 

3,000- 56 vs 141; and estimation sample 3,815- 61 vs 148. Clearly, the proposed model structure 

presents a parsimonious model specification irrespective of the sample size.  

Using the final specification of both systems (PMNB-GOPFS and RPMNB), we compute 

the root mean square error (RMSE) value at disaggregate level (see (Bhowmik et al., 2019a, 2018) 

for detail) and compare their performances for all the crash severities as well as an overall 

summary (combining the crash severities) across the three crash types. For comparison purposes, 

50 data samples with 500 records (TAZs) each are randomly generated from the holdout sample 

consisting of 932 TAZs. For these samples, we compute the differences in RMSE between PMNB-

GOPFS and RPMNB models and based on the differences, we create 5 categories as follows: 1. 

Strongly outperform (if PMNB-GOPFS has lower RMSE value with a difference > 5); 2: 

Outperform (if PMNB-GOPFS has lower RMSE value with a difference >1.5 and ≤ 5 ); 3. No 

difference (absolute differences of RMSE between the two system is ≤1.5); 4. Underperform (if 

PMNB-GOPFS has higher RMSE value form with a difference >1.5 and ≤ 5); and 5. Strongly 

underperform (if PMNB-GOPFS has higher RMSE value with a difference > 5). Figure 2a and 2b 

presents the performance (RMSE) of the PMNB-GOPFS model relative to the RPMNB model for 

different estimation samples.    

The reader would note that for the ease of presentation, we considered 5 crash levels 

including 4 severities and one total crash (overall) across each crash types for the comparison 

exercise. The overall crash level is simply the summation of all crash severities specific to crash 

types and is considered to evaluate the crash type (count) errors. In summary, there is a total 3,000 

measures computed (5 crash levels *3 crash types*50 validation samples*4 sample sizes) out of 

which RPMNB model did not provide any improved performance across any measures as 

indicated by the 0% in the U and SU categories.  In fact, out of 3,000 RMSE measures, 19% of 

the cases PMNB-GOPFS model exhibits superior performance (with at least an order of magnitude 

difference) while providing equivalent prediction for the remaining 81% measures relative to the 

traditional RPMNB model. With respect to crash type errors (overall), the performance of the two 

systems are quite similar over the different estimation samples for angular and non-motorized 

crashes whereas for rear-end crashes, our proposed model provided superior performance relative 

to the traditional RPMNB model (out of 200 measures - SO:182 O:17 ND:1; U:0; SU:0-) 

irrespective of estimation sample size. On the other hand, in terms of injury severities, our 

proposed system strongly outperforms the RPMNB model across no-injury and minor injury  

 
3 We can consider all six crash types. However, running RPMNB model with unobserved effects for all crash types 

will be time consuming. So, to reduce the computational burden. we selected three crash types. 
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Figure 2a Performance Comparison between PMNB-GOPFS and RPMNB Model 
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Figure 2b Performance Comparison between PMNB-GOPFS and RPMNB Model 
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categories for rear-end crashes. However, for angular and non-motorized crashes, we find 

equivalent performance from the two system regardless of the sample size. The results clearly 

highlight that with fewer (at most half) number of parameters, our proposed joint system either 

provides improved or at worst, similar predictive performance compared to the RPMNB model. 

 

5.2 Validation Analysis 

A validation exercise was also undertaken using the final model parameter estimates to of the 

proposed joint (PMNB-GOPFS) model to ensure that the statistical results obtained above are not 

a manifestation of over fitting to data. In doing so, we employ mean absolute deviation (MAD) 

and mean absolute percentage error (MAPE) which quantifies the error associated with model 

prediction and the measure is computed on two datasets including: 1) model estimation sample 

with 3,815 TAZs and 2) hold out sample (validation sample) with 932 TAZs. One of the major 

advantages of the proposed framework is that in a single econometric framework, we can predict 

a number of dimensions including total crash counts, total crash counts by crash types, crash 

proportions for each severity level, crash counts for each severity level and finally, proportions 

and counts of crashes for each crash type by severity. In evaluating the predictive performance, 

we compute the errors (MAD and MAPE) across all the aforementioned dimensions. The 

prediction results clearly indicate that the joint model for crash counts and severity proportions by 

crash type performs adequately for both datasets (in-sample and validation sample) under 

consideration. A summary of the validation procedures and the results are presented in appendix 

B.  

 

6 CONCLUSIONS 

Despite the distinct injury severity profile, there is limited adoption of research modeling severity 

frequency or proportion considering different crash types. The main challenge is with the number 

of dependent variables as accommodating unobserved heterogeneity for such large number of 

dimensions is substantially burdensome. The probability evaluation with high dimensional 

integrals is potentially affected by several challenges including - requirements of generating high 

dimensionality of random numbers, empirical identification issues due to relatively flat objective 

functions in larger dimensions and longer computational run times.  In this context, the proposed 

research contributes to burgeoning econometric and safety literature by developing a joint 

modeling approach that can accommodate for a large number of dependent variables (considering 

crash types and severities) within a parsimonious structure. With respect to crash type specific 

component, instead of considering the crash frequency by crash type as a traditional multivariate 

distribution, we recasted it as a repeated measures of crash frequency while recognizing that each 

repetition represents a crash type specific to a zone. At the same time, for the severity component, 

as opposed to modeling the count events, count proportions by different severity level for a study 

unit were examined. Finally, we developed a joint model to tie the two components in a single 

integrated framework while accommodating unobserved heterogeneity across and within the two 

components (crash frequency and crash severity proportions by types).  

In our current research effort, we employed a Panel mixed Negative Binomial- Generalized 

Ordered Probit Fractional Spilt (PMNB-GOPFS) model where the first component (NB) 

accommodated for crash frequency by crash type and the later component (GOPFS) studied the 

fraction of severity outcome for different crash types. The empirical analysis was conducted using 

the zonal level crash count data for the year 2016 from Central Florida while considering a 

comprehensive set of exogenous variables including roadway, built environment, land-use, traffic 
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and sociodemographic characteristics. The empirical analysis involved a series of model 

estimations including: 1) Independent NB-GOPFS model; 2) Panel NB-GOPFS model without 

unobserved component parameters; and 3) Joint Panel NB-GOPFS model with unobserved 

heterogeneity. The comparison exercise, based on the Bayesian Information Criterion (BIC) value 

highlighted the superiority of the proposed framework that accounts for penalty for additional 

parameters (model 2 and 3) and within the proposed approach, the model considering unobserved 

heterogeneity (model 3) outperformed its’ counterpart (model 2).  

The analysis was further augmented by undertaking a prediction exercise using the final 

model parameter estimates. One of the major advantages of the proposed framework is that in a 

single econometric framework, we can predict several dimensions including total crash counts, 

total crash counts by crash types, crash proportions for each severity level, crash counts for each 

severity level and finally, proportions and counts of crashes for each crash type by severity. In 

evaluating the predictive performance, we carried out a comparison exercise between our proposed 

joint PMNB-GOPFS and the existing traditional multivariate system (RPMNB) for predicting 

crash counts across different crash severities. Specifically, we compute the RMSE value at 

disaggregate level and compare their performances across the two models (proposed PMNB-

GOPFS and traditional RPMNB). The comparison exercise is conducted using different hold-out 

sample (50 to be specific) considering different estimation sets to accommodate the influence of 

different sample sizes in model estimation. The resulting goodness of fit measures clearly 

highlight the superior/equivalent performance of the proposed PMNB-GOPFS model over the 

traditional RPMNB model despite having fewer number of parameters. The comparison exercise 

is further augmented through a simulation exercise (evaluate performance on simulated data) and 

the results further reinforce the applicability of our proposed PMNB-GOPFS model in crash safety 

literature.  

In summary, the current study contributes to safety literature both methodologically and 

empirically. Methodologically, we developed a joint framework analysing 24 dependent variables 

(6*4 from 6 crash types and 4 severities). With this integrated framework, two major 

enhancements are achieved: 1) increased estimation efficiencies offered by the proposed system 

(parsimony) and 2) increased interaction across the dependent variables via the observed variables 

resulting increased model stability with reduced simulation needs. Empirically, by increasing the 

dimensionality of the dependent variable, the proposed approach allows for flexible consideration 

of crashes by type and severity within a single framework. Further, the proposed model results 

offer insights on important variables affecting crash frequency and severity for different crash 

types. Such macro-level model outcomes can be used to devise safety-conscious decision support 

tools to facilitate proactive approach in assessing medium and long-term policy-based 

countermeasures. For instance, transportation planners are required to forecast future crashes 

given changes in region’s characteristics (population increase, addition of new facility (such as 

road or major facility). The proposed crash prediction models can aid the process. Another 

application of the planning level models is the consideration of various initiative programs for 

saving lives. For example, government officials may want to consider initiatives to reduce the 

number of motor-vehicle related fatalities in a jurisdiction in response to the changes in land-use, 

and population. Such quantitative exercises will warrant planning level safety models. Thus, it is 

very useful to develop crash type and severity models at a planning level.  

To be sure, the paper is not without limitations. In our study, left-turn and right-turn crashes 

were considered in the same category due to sample size restrictions despite differences in crash 

mechanisms of these two categories. In future research, it might be useful to consider these 
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separately. Moreover, given the inherent aggregation of the dataset, it would also be beneficial to 

accommodate for the presence of spatial unobserved effects.  Further, as the main focus of the 

paper was on model formulation and estimation of high dimensionality of dependent variables, 

we focused on one year of data. However, it would be interesting in the future to explore the model 

development with multiple years to accommodate for temporal effects. 
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APPENDIX A 

Example of Correlation Structure 

As discussed in the main manuscript, we test for both positive and negative correlations across 

different components in our proposed joint framework and finally, we select the model that offer 

best fit. It is important to note that this sign can vary within the matrix elements. For instance, let 

us consider the correlation structure across the crash counts only for different crash types which 

is indicated by the Ѧ1 matrix. The structure of the Ѧ1 matrix is as follows: 

 

(A.1) 

where the first part ( 𝑎1) represents the covariance structure across the crash counts of 

different crash types and the second component (þ𝑟) is a vector with a value of +1 if the association 

is positive, -1 if association is negative and 0 if no association is considered. This þ𝑟 matrix allows 

us to generate the various possible combinations of positive and negative associations between 

these correlations. Now, let us consider the following scenarios: 

1. A common positive correlation affecting the rear-end (RE), angular (ANG) and sideswipe 

(SW) crash frequencies simultaneously CR1: indicates that zones with higher number of 

rear-end crashes will be more likely to have higher number of angular and sideswipe 

crashes.  

2. A common negative correlation across RE, head-on (HD) and single vehicle (SV) crash 

counts CR2: indicates that zones with higher number of rear-end crashes will be more likely 

to incur lower number of head-on and single vehicle crashes.  

3. A positive correlation between RE and non-motorized (NMT) crash counts CR3 

4. A positive correlation between ANG and SW crash counts CA1 

5. A negative correlation between SW and SV crash counts CS1 

6. A positive correlation between HD and SV crash counts CH1 

7. There are no other correlations 

With these scenarios, the first and second part of equation A.1 will be: 

 

 



 

47 

 

 

The reader would note that the final matrix (Ѧ1) is estimated by conducting an element-

by-element multiplication of the two-matrixes mentioned above (𝑎1𝑎𝑛𝑑 þ𝑟). For instance, lets’ 

assume t (1,2,…6)  and u (1,2…6) be the indexes represent the row and column number of the 

matrixes (𝑎1, þ𝑟 𝑎𝑛𝑑 Ѧ1) respectively. So, each element of the Ѧ1 matrix will be: 

 

Ѧ1(tu) =  𝑎1(𝑡𝑢) x þ𝑟(𝑡𝑢)                                                                  (A.2) 

 

Therefore, the final Ѧ1 matrix will be: 

 
  

As we can see, using our proposed joint system, within the crash count component itself, 

we can test for different combination of correlations with different signs. We allow the similar 

þ𝑘  or þ𝑟𝑘 terms within the Ѧ2 𝑎𝑛𝑑 Ѧ3 correlation matrix to allow for the positive and negative 

correlations.  
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Independent Model Results 

 

TABLE A.1 Independent Panel NB model 

Variables (np) 
Rear End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant (6) -0.611 -8.094 -0.990 -9.461 -1.826 -16.869 -3.080 -16.270 -0.744 -9.933 -2.523 -23.787 

Roadway Characteristics 

Proportion of 

arterial road (2) 
0.205 4.418 0.205 4.418 -- -- -- -- -0.284 -5.103 0.205 4.418 

Number of 

intersections (1) 
-- -- 0.284 9.008 -- -- 0.284 9.008 -- -- 0.284 9.008 

Signal intensity (3) 0.456 2.578 -- -- -0.577 -2.725 -- -- -0.447 -1.746 0.456 2.578 

Road length over 

55mph (5) 
0.568 4.554 -1.451 -7.764 0.568 4.554 -1.346 -3.784 0.892 7.675 -1.298 -5.172 

Variance of Speed 

(2) 
0.039 3.499 0.039 3.499 0.067 4.564 -- -- -- -- -- -- 

Road with 

separated median 

(2) 

0.164 3.770 0.164 3.770 0.164 3.770 -0.201 -1.741 -- -- -- -- 

Average outside 

shoulder width (4) 
-0.269 -6.450 -0.381 -7.637 -0.410 -7.666 -0.269 -6.450 -0.115 -2.622 -- -- 

Average sidewalk 

width (1) 
-- -- -- -- -- -- -- -- -- -- -0.201 -3.583 

Traffic Characteristic 

VMT (4) -- -- 0.102 6.738 0.191 13.228 0.197 8.470 -- -- 0.048 3.180 

Truck VMT (2) 0.174 15.400 -- -- -- -- -- -- 0.270 26.825 -- -- 

Land-use attributes 

Urban area (4) 0.158 14.896 0.158 14.896 0.127 8.396 0.086 3.347 -- -- 0.099 5.712 

Office area (2) 0.190 11.928 -- -- 0.190 11.928   -- -- 0.148 7.389 

Residential area (1) -- -- -- -- -0.093 -7.387 -0.093 -7.387 -- -- -- -- 

Built environment characteristic 

No. of restaurant (3) 0.254 8.912 -- -- 0.310 9.759 -- -- -- -- 0.198 8.803 
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No. of shopping 

center (1) 
0.066 2.040 -- -- 0.066 2.040 -- -- -- -- -- -- 

Socio-demographic characteristics 

Non-motorists (3) 0.067 3.996 0.145 7.109 0.144 6.858 -- -- -- -- 0.067 3.996 

Transit user (1) 0.222 14.898 -- -- -- -- -- -- -- -- 0.222 14.898 

Over dispersion (6) 0.992 30.183 1.176 25.054 1.024 21.268 1.995 8.123 0.713 19.272 0.455 8.840 

Log-Likelihood (np) -39954.27 (53) 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
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TABLE A.2 Independent Panel GOPFS (Generalized Ordered Probit Fractional Split Model) Model Results 

Variables (np) 
Rear End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Threshold 1 0.564 14.394 0.221 6.458 0.948 9.321 -0.039 -0.344 0.264 5.202 -0.665 -7.978 

Threshold 2 -0.395 -12.332 -0.492 -19.891 -0.678 -13.289 -0.688 -9.480 -0.808 -23.019 -0.445 -10.656 

Threshold 3 -0.262 -6.063 -0.373 -10.521 -0.439 -6.093 -0.505 -6.480 -0.469 -12.778 -0.062 -1.610 

Roadway Characteristics 

Arterial road 0.085 3.644 0.183 4.804 -- -- -- -- 0.085 3.644 -- -- 

Possible and non-

incapacitating 

injury 

-0.081 -1.710 -- -- -- -- -- -- -- -- -- -- 

Local road -- -- -- -- -- -- -0.334 -2.128 -- -- -0.334 -2.128 

Number of 

intersections 
-- -- -- -- -- -- -0.051 -3.564 -0.051 -3.564 -- -- 

Traffic signal -- -- -0.040 -4.192 -0.040 -4.192 -0.040 -4.192 -- -- -- -- 

Average inside 

shoulder width 
-- -- -- -- -0.171 -3.479 -- -- -- -- -- -- 

Average outside 

shoulder width 
-0.046 -1.702 -- -- -- -- -- -- -- -- -- -- 

Proportion of road 

over 55mph speed 
0.330 5.101 0.330 5.101 -- -- 0.876 3.026 0.330 5.101 0.330 5.101 

Non-

incapacitating and 

severe injury 

-0.669 -2.965 -- -- -- -- -- -- -- -- -1.338 -3.725 

Poor pavement 

condition 
-- -- -- -- 0.208 2.821 -- -- -- -- -- -- 

Traffic Characteristic 

Traffic Intensity 

(Congested) 
-0.074 -3.311 -0.074 -3.311 -- -- -- -- -- -- -- -- 

Non-

incapacitating and 

severe injury 

-- -- 0.122 1.965 -- -- -- -- -- -- -- -- 

Truck VMT -- -- -- -- 0.046 4.640 0.046 4.640 -- -- -- -- 

Land Use Characteristic 
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Urban area -- -- -- -- -0.402 -5.912 -0.402 -5.912 -0.058 -1.027 -- -- 

Land use mix -0.117 -2.245 -0.117 -2.245 -- -- -- -- -- -- -- -- 

Built environment characteristic 

No. of commercial 

centers 
-- -- -- -- -- -- -- -- -- -- -0.049 -2.140 

No. of recreational 

centers 
-0.028 -2.270 -- -- -- -- -- -- -- -- -- -- 

No. of restaurants -- -- -- -- -- -- -- -- -0.046 -3.011 -- -- 

Non-

incapacitating and 

severe injury 

-- -- -- -- -- -- -- -- 0.049 1.660 -- -- 

No. of shopping 

centers 
-- -- -0.047 -4.862 -0.047 -4.862 -0.047 -4.862 -- -- -- -- 

Possible and non-

incapacitating 

injury 

-- -- -- -- 0.051 1.918 -- -- -- -- -- -- 

Socio-demographic characteristics 

Employee -- -- -- -- -- -- -- -- -- -- -0.083 -2.381 

Motorcycle user -- -- 0.134 2.351 -- -- -- -- -- -- -- -- 

Proportion of older 

people (65+) 
-- -- -- -- -- -- -- -- -- -- -0.443 -1.968 

Household with no 

cars 
-- -- -- -- -- -- -- -- -- -- 0.060 2.384 

Sample Size 2992 2585 2116 806 2510 1417 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
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APPENDIX B 

 

Validation Analysis 

For the validation analysis, we compute MAD at a disaggregate level by generating measures at 

the study unit level (TAZ) and compute the average measures across all units (total crash, crash 

type and severity). Other than total crash counts and crash count by crash type, we generate crash 

counts by severity levels for different crash types using the following equation:  

𝐸(𝑷𝑖𝑟𝑘) = 𝜇𝑖𝑟 ∗ Λ(𝑦𝑖𝑟𝑘 = 𝑘) (15)  

where, 𝜇𝑖𝑟 is the expected number of crashes for crash type r in TAZ 𝑖;  Λ(𝑦𝑖𝑟𝑘 = 𝑘) is the 

predicted proportion of severity corresponding to crash type r and TAZ 𝑖; and  𝐸(𝑷𝑖𝑟𝑘) is the 

expected number of crashes by injury severity 𝑘  for crash type r in TAZ 𝑖. Finally, we compute 

MAD as: 

MAD =   𝑚𝑒𝑎𝑛 |𝑦̂𝑖 − 𝑦𝑖|  (16)  

where, 𝑦̂𝑖 and 𝑦𝑖 are the predicted and observed, number of crashes occurring over a period of 

time in a TAZ 𝑖 (corresponds to different dimension: total crash, crash type, severity etc). Figure 

B.1 and B.2 presents the value of MAD for estimation and validation sample, respectively.  

On the other hand, we employ MAPE measures at an aggregate level where we estimate 

the number and proportion of crashes for corresponding dimension and predict the TAZ shares for 

different count and proportion alternatives and compared it with the observed shares. For example, 

let us consider the crash counts by crash type where we predict the number of crashes for each 

crash type at an individual level (observation) and then we estimate how many TAZs have 

0,1….250 crashes. Finally, we compute the MAPE as: 

MAPE =
1

𝑛
∑ |

𝑦̂𝑛−𝑦𝑛

𝑦𝑛
|𝑁

𝑛=1        (1)  

where, 𝑦̂𝑛 and 𝑦𝑛 are the predicted and observed, number of TAZs (corresponds to different 

dimension) for different count alternative n. Figure B.1 and B.2 presents the value of MAPE for 

estimation and validation sample, respectively.  

In terms of MAD, we found that both datasets (from Figure B.3 and B.4) offer similar 

predictive performance which highlights the applicability of the proposed joint framework by 

eliminating the overfitting issue. Further, out of all crash alternatives, the prediction accuracy is 

quite poor for no injury crashes followed by rear-end crashes relative to other crash types, crash 

severities and total crash counts. With respect to MAPE measures, the following observations can 

be made from the values presented in Figures B.3 and B.4. First, the predictive performance of the 

two datasets (estimation and validation sample) are quite similar. Second, in terms of the total 

crash counts, the predicted share of TAZs for different count alternatives are reasonably close to 

the observed share for both dataset with an error of 0.9% (both dataset) respectively. The reader 

would note we converted the numbers in the figures to percentage for discussion. Third, with 

respect to different severity levels, the model performs better for the lower categories (up to 

possible injury) while a slightly higher error rate (about 3%) is observed in the upper classes 
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(category 3 and 4). Fourth, the MAPE values corresponds to crash types offer interesting insights. 

While we observe a lower accuracy for rear-end crashes in both datasets (12.4 % and 11.4 % 

respectively), the model performs adequately for other crash types with a maximum of 6.4% error 

rate for angular crash in the estimation sample. Finally, within each crash type, the MAPE values 

for each severity fractions are quite reasonable without any significant trend highlighting the 

appropriateness of the proposed model.  
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Figure B.1 MAD Tree for Estimation Sample (3,815 TAZs) 
*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 

 



 

55 

 

 
Figure B.2 MAD Tree for Validation Sample (932 TAZs) 
*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 
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Figure B.3 MAPE Tree for Estimation Sample (3,815 TAZs) 
*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 
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Figure B.4 MAPE Tree for Validation Sample (932 TAZs) 
*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 

 


